
Oxygen XML Editor 27.1
User Guide

Contents

Chapter 1. Introduction... 27

Chapter 2. Getting Started.. 28

What is Oxygen XML Editor.. 28

Getting Familiar with the Interface...29

Supported Document Types... 30

Resources to Help You Get Started Using Oxygen XML Editor ...31

Your First Document or Project..33

Your First XML Document... 33

Getting Started with DITA..39

Creating a New Project..46

Getting Help..50

Help Menu...50

Frequently Used Shortcut Keys.. 54

Accessibility Support in Oxygen... 59

Oxygen XML Editor VPAT Accessibility Conformance Report.. 63

Chapter 3. Installation...87

Installing Oxygen XML Editor on Windows..88

Installing Oxygen XML Editor on macOS...92

Installing Oxygen XML Editor on Linux.. 94

Installing Oxygen XML Editor on Windows Server.. 99

Installing Oxygen XML Editor on a Linux / UNIX Server... 101

Site-Wide Deployment... 103

Licensing...104

License Types...105

Installing License Servers..112

Managing License Servers.. 118

Common Problems: License Server Errors.. 123

Upgrading..124

Upgrading Oxygen XML Editor on Windows/Linux..125

Upgrading Oxygen XML Editor on macOS... 126

Installing and Updating Add-ons.. 126

Contents | iii

Privacy Options.. 128

Uninstalling... 131

Chapter 4. Configuration... 132

Preferences...132

Global Preferences...134

Appearance Preferences..137

Application Layout Preferences.. 143

Add-ons Preferences..145

Project Level Settings Preferences...145

Document Type Association Preferences..146

Document Templates Preferences... 175

Encoding Preferences.. 176

Editor Preferences..177

CSS Validator Preferences.. 244

XML Preferences..244

DITA Preferences..278

Markdown Preferences..285

Data Sources Preferences...286

SVN Preferences.. 291

Diff Preferences..296

Archive Preferences... 301

Plugins Preferences... 302

External Tools Preferences... 302

Menu Shortcut Keys Preferences... 304

File Types Preferences.. 307

Open/Find Resource Preferences Page... 308

Custom Editor Variables Preferences...310

Network Connection Settings Preferences.. 311

XML Structure Outline Preferences.. 316

Views Preferences..316

Messages Preferences.. 317

Configuring Options...318

Customizing Default Options.. 319

Contents | iv

Storing Global and Project Level Options.. 321

Sharing Application Settings...323

Importing/Exporting/Resetting Global Options... 324

Configuring the Layout of the Views and Editors... 325

Configuring Toolbars... 330

Import/Export Transformation or Validation Scenarios... 333

Editor Variables.. 333

Custom Editor Variables..343

Custom System Properties... 343

Localizing the User Interface..348

Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor.......................................349

Setting Parameters for the Application Launchers... 350

Setting Parameters in the Command-Line Scripts.. 352

Creating Custom Startup Parameters File... 353

How to Increase the Amount of Available Memory..353

Chapter 5. Perspectives.. 354

Editor Perspective..354

DITA Perspective..356

XSLT Debugger Perspective..357

XQuery Debugger Perspective ...359

Database Perspective .. 360

Chapter 6. Editing Modes..363

Text Editing Mode..363

Grid Editing Mode.. 364

Author Editing Mode..364

Design Editing Mode (Schema Diagram Editor)..365

Chapter 7. Working With Documents.. 368

Getting Familiar with the Interface...368

Configuring the Layout of the Views and Editors..370

Configuring Toolbars..375

Creating, Opening, Saving, and Closing Documents... 378

Creating New Documents and Templates... 378

Opening Documents...392

Contents | v

Saving Documents... 395

Auto Recover Documents..395

Closing Documents..397

Working with Remote Documents..397

Open URL.. 398

WebDAV over HTTPS...401

HTTP Authentication Schemes...403

Switching, Moving, or Hiding Editor Tabs..404

Contextual Menu of the Current Editor Tab...407

Viewing File Properties... 408

Simple Text Editor..409

Using Projects to Group Documents... 410

Creating a New Project..410

Project View..414

Batch Validation and Transformation...426

Sharing a Project - Team Collaboration... 427

Contextual Project Operations Using 'Main Files' Support... 430

Search and Find/Replace Features.. 434

Open/Find Resource View... 434

Open/Find Resource Dialog Box...437

Searching in Content..440

Searching in File Paths..443

Searching in Reviews...443

Find/Replace Dialog Box... 443

Find/Replace in Multiple Files...448

Find All Elements Dialog Box..454

Find and Invoke Actions.. 456

Quick Find Toolbar... 458

Keyboard Shortcuts for Finding the Next and Previous Match.. 458

Regular Expressions Syntax.. 459

Spell Checking..460

Spell Check Dictionaries and Term Lists... 462

Learned Words... 468

Contents | vi

Ignored Words (Elements)...468

Automatic Spell Check.. 469

Spell Check Multiple Files... 470

AutoCorrect Misspelled Words...472

Add Dictionaries for the AutoCorrect Feature... 474

Working with Special Characters and Encoding... 474

Unicode Support...475

Opening and Saving Documents with Unsupported Characters.. 476

Unicode Fallback Font Support...477

Inserting Special Characters with the Character Map.. 478

Image Preview..481

Loading Large Documents..482

Optimize Loading for Large Files..482

Optimize Loading for Huge Files.. 483

Documents with Long Lines... 484

Handling Read-Only Files.. 484

Scratch Buffer.. 484

Compare Files or Directories ...485

Compare Files Tool..486

Compare Directories Tool..506

Compare Directories Against a Base (3-Way) Tool... 512

Generate HTML Report for Directory Comparison.. 521

Viewing Status Information.. 524

Editor Highlights...524

Printing a Document..525

Chapter 8. Editing Supported Document Types... 528

Editing XML Documents..528

Editing XML Documents in Text Mode...529

Editing XML Documents in Grid Mode...592

Editing XML Documents in Author Mode...601

Validating XML Documents...788

XML Quick Fixes.. 828

Associating a Schema to XML Documents... 831

Contents | vii

Working with XML Catalogs..842

Modular Contextual XML Editing Using 'Main Files' Support... 845

Search and Refactoring Actions for IDs and IDREFS..845

XML Referenced/Dependent Resources View... 848

Combining XML Content Using DTD Entities and XInclude..851

Refactoring XML Documents.. 856

Applying All Default Quick Fix Proposals...894

XML Digital Signatures.. 896

Editing XSLT Stylesheets...905

Modular Contextual XSLT Editing Using 'Main Files' Support ..906

Validating XSLT Stylesheets..906

XSLT Quick Fix Support ..909

Content Completion in XSLT Stylesheets...911

Syntax Highlighting in XSLT.. 918

XSLT Outline View.. 918

XSLT Input View... 923

XSLT Referenced/Dependent Resources View.. 925

XSLT Component Dependencies View... 928

Highlight Component Occurrences...930

Finding XSLT References and Declarations... 930

XSLT Stylesheet Component Documentation Support..931

XSLT 3.0 Text Value Templates.. 933

XSLT 3.0 Packages (xsl:package Element)..934

XSLT Refactoring Actions..934

XSLT Quick Assist Support..939

XSLT Unit Test (XSpec)..941

Generating Documentation for an XSLT Stylesheet.. 944

Compiling an XSL Stylesheet for Saxon...951

Editing Ant Build Files... 953

Modular Contextual Ant Build File Editing Using 'Main Files' Support... 954

Validating Ant Build Files.. 954

Transforming Ant Build Files...955

Ant Quick Fix Support..956

Contents | viii

Content Completion in Ant Build Files... 956

Syntax Highlighting in Ant Files..957

Ant Outline View...957

Ant Referenced/Dependent Resources View...961

Ant Component Dependencies View.. 962

Highlight Component Occurrences...963

Find References and Declarations of Ant Components..964

Ant Refactoring Actions.. 965

Ant Quick Assist Support.. 966

Editing XML Schemas (XSD).. 966

XML Schema Design Mode (XML Schema Diagram Editor)...967

Editing XML Schema in Text Editing Mode..1009

Modular Contextual XML Schema Editing Using 'Main Files' Support...1009

Validating XML Schema Documents..1010

Quick Fixes for DTD, XSD, and Relax NG Errors.. 1010

Content Completion in XML Schema... 1011

Syntax Highlighting in XML Schema.. 1012

XML Schema Outline View..1013

XML Schema Attributes View... 1015

XML Schema Referenced/Dependent Resources View.. 1017

XML Schema Component Dependencies View... 1020

Highlight Component Occurrences...1022

Searching and Refactoring Actions in XML Schemas.. 1022

XML Schema Quick Assist Support... 1024

Generating Sample XML Files...1026

Generating Documentation for an XML Schema...1031

Converting Schema to Another Schema Language.. 1041

Converting Database to XML Schema... 1044

Flatten an XML Schema.. 1045

Generating Java Classes from XML Schema..1047

XML Schema Regular Expressions Builder Tool... 1047

XML Schema 1.1..1049

Setting the XML Schema Version...1050

Contents | ix

Editing XQuery Documents... 1052

XQuery Validation...1052

Content Completion in XQuery... 1053

Syntax Highlighting in XQuery...1054

Formatting and Indenting XQuery Documents.. 1055

Folding in XQuery Documents.. 1055

XQuery Outline View.. 1056

XQuery Builder View.. 1057

XQuery Input View..1061

Generating HTML Documentation for an XQuery Document... 1063

Transforming XML Documents Using XQuery...1064

XQuery Unit Test (XSpec)..1068

Editing WSDL Documents (Deprecated).. 1069

Modular Contextual WSDL Editing Using 'Main Files' Support...1070

Validating WSDL Documents.. 1071

Content Completion Assistance in WSDL Documents... 1071

WSDL Syntax Highlighting...1072

WSDL Outline View.. 1073

WSDL Referenced/Dependent Resources View in WSDL Documents... 1077

WSDL Component Dependencies View..1080

Highlight Component Occurrences in WSDL Documents...1081

Searching and Refactoring Operations in WSDL Documents...1082

Quick Assist Support in WSDL Documents... 1084

Generating Documentation for WSDL Documents (Deprecated)... 1085

WSDL SOAP Analyzer Tool (Deprecated)...1090

Editing CSS Stylesheets.. 1094

Validating CSS Stylesheets... 1094

Content Completion in CSS Stylesheets.. 1095

Syntax Highlighting in CSS Files...1096

CSS Outline View... 1096

Folding in CSS Stylesheets... 1097

Formatting and Indenting CSS Stylesheets (Pretty Print)...1097

Minifying CSS Stylesheets...1097

Contents | x

Editing LESS Stylesheets.. 1098

Validating LESS Stylesheets..1099

Content Completion in LESS Stylesheets.. 1099

Syntax Highlighting in LESS Files...1100

Compiling LESS Stylesheets to CSS...1100

Editing Relax NG Schemas... 1101

Modular Contextual Relax NG Schema Editing Using 'Main Files' Support....................................... 1101

Relax NG Schema Diagram Editor..1102

Validating Relax NG Schema Documents..1106

Content Completion in Relax NG Schemas... 1107

Syntax Highlighting in Relax NG Schemas.. 1108

Quick Fixes for DTD, XSD, and Relax NG Errors.. 1108

Relax NG Outline View...1109

RNG Referenced/Dependent Resources View... 1112

Relax NG Schema Component Dependencies View... 1115

Searching and Refactoring Actions in RNG Schemas.. 1116

RNG Quick Assist Support.. 1118

Configuring a Custom Datatype Library for a RELAX NG Schema...1120

Editing NVDL Schemas... 1120

NVDL Schema Diagram...1120

Validating NVDL Schema Documents..1123

Content Completion in NVDL Schemas... 1123

Syntax Highlighting in NVDL Schemas.. 1124

NVDL Outline View...1125

NVDL Schema Component Dependencies View... 1125

Searching and Refactoring Actions in NVDL Schemas.. 1126

Editing JSON Documents..1128

JSON Editor.. 1128

Navigating References in JSON Documents... 1132

Validating JSON Documents...1134

Content Completion Assistant in JSON...1142

Associating a Schema to JSON Documents... 1144

Syntax Highlighting in JSON Documents...1149

Contents | xi

Folding in JSON... 1150

JSON Outline View...1150

JSON to XML Converter.. 1152

XML to JSON Converter.. 1155

JSON to YAML Converter..1158

YAML to JSON Converter..1159

Contextual Menu Actions in JSON Documents...1160

Transforming and Querying JSON Documents... 1165

Editing JSON Schema Documents...1173

JSON Schema Editor... 1173

JSON Schema Design Mode (JSON Schema Diagram Editor)...1175

Generating JSON Schema from a JSON File...1196

Generating JSON Schema Documentation..1198

Generating Sample JSON Files from a JSON Schema... 1198

XSD to JSON Schema Converter..1200

JSON Schema Converter...1200

Validating JSON Schema Documents..1201

Syntax Highlighting in JSON Schema Documents..1202

Flatten JSON Schema... 1203

Editing JSON Lines Documents... 1203

Editing JSON5 Documents... 1203

Editing YAML Documents... 1204

YAML Editor.. 1204

Validating YAML Documents.. 1205

Content Completion Assistant in YAML...1210

Syntax Highlighting in YAML Documents.. 1211

Folding in YAML Documents...1211

Formatting/Indenting YAML Documents..1211

YAML Outline View.. 1211

YAML to JSON Converter..1213

JSON to YAML Converter..1214

Contextual Menu Actions in YAML Documents.. 1215

Editing XLIFF Documents..1221

Contents | xii

Editing JavaScript Documents... 1221

JavaScript Editing Actions.. 1222

Validating JavaScript Files.. 1224

Content Completion in JavaScript Documents... 1224

Syntax Highlighting in JavaScript Documents...1225

JavaScript Outline View...1226

Editing XProc Scripts...1227

Editing Schematron Schemas.. 1229

Examples of Schematron Rules and Quick Fixes..1231

Modular Contextual Schematron Editing Using 'Main Files' Support...1243

Presenting Schematron Validation Issues... 1243

Integrating Schematron Rules in a Framework and Sharing Them..1244

Validating Schematron Documents..1246

Content Completion in Schematron Documents...1246

Syntax Highlighting in Schematron.. 1247

Embedding Schematron Rules in XML Schema or RELAX NG...1248

Schematron Outline View.. 1249

Schematron Referenced/Dependent Resources View.. 1251

Highlight Component Occurrences in Schematron Documents...1253

Searching and Refactoring Operations in Schematron Documents...1254

Quick Assist Support in Schematron Documents... 1256

Schematron Unit Test (XSpec)... 1257

Editing Schematron Quick Fixes...1259

Examples of Schematron Rules and Quick Fixes..1259

Defining Schematron Quick Fixes...1272

Integrating SQF in a Framework and Sharing Them... 1281

Validating Schematron Quick Fixes..1283

Content Completion in SQF...1284

Highlight Quick Fix Occurrences in SQF.. 1284

Searching and Refactoring Operations in SQF.. 1284

Embedding Schematron Quick Fixes in Relax NG or XML Schema... 1286

Editing SVG Files... 1287

Standalone SVG Viewer...1288

Contents | xiii

Integrated SVG Viewer in the Results Panel..1290

Editing HTML Documents...1291

HTML Editor..1291

HTML Validation...1293

HTML Content Completion Assistant.. 1295

Syntax Highlighting in HTML Documents.. 1295

Folding in HTML...1296

Minifying HTML Documents... 1296

HTML Outline View.. 1297

Querying HTML Documents with XPath.. 1297

Associating a CSS with an HTML Document.. 1298

Editing Markdown Documents... 1298

Markdown Editor.. 1299

Creating New Markdown Documents...1301

Actions Available in the Markdown Editor... 1302

Syntax Highlighting in the Markdown Editor..1310

Automatic Validation in Markdown Documents..1310

Working with Markdown Documents in DITA..1311

Markdown Editor Syntax Rules and Specifications...1314

Other Supported Document Types...1327

Chapter 9. Built-in Frameworks (Document Types)... 1329

DocBook 4 Document Type (Framework)... 1329

DocBook 4 Author Mode Actions...1331

Inserting an Olink in DocBook Documents.. 1347

DocBook 5 Document Type (Framework)... 1350

DocBook 5 Author Mode Actions...1352

Inserting an Olink in DocBook Documents.. 1369

DocBook Assembly (5.1 and Later)... 1372

DocBook Topic (5.1 and Later).. 1373

DocBook Targetset Document Type (Framework)..1374

DITA Topics Document Type (Framework)..1375

DITA Topic Author Mode Actions...1376

DITA Map Document Type (Framework)... 1399

Contents | xiv

DITA Map Author Mode Actions...1401

XHTML Document Type (Framework)... 1412

XHTML Validation.. 1413

XHTML Author Mode Actions...1414

TEI P5 Document Type (Framework)...1426

TEI P5 Author Mode Actions.. 1427

How to Install a TEI Framework with the Latest Schema and Stylesheets....................................... 1438

TEI ODD Document Type (Framework)..1439

TEI ODD Author Mode Actions... 1440

jTEI Document Type (Framework)..1451

JATS Document Type (Framework)... 1452

JATS Author Mode Actions...1453

EPUB Document Type (Framework)...1464

OpenAPI (Swagger) Document Type (Framework)...1466

OpenAPI Test Scenario Document Type (Framework)... 1467

AsyncAPI Document Type (Framework)..1468

JSON-LD Document Type (Framework)...1469

Chapter 10. Additional XML Editing Frameworks (Document Types)... 1470

S1000D Document Type (Framework)...1470

Chapter 11. Publishing..1472

Transformation Scenarios...1472

Built-in Transformation Scenarios.. 1473

Creating New Transformation Scenarios...1504

Editing a Transformation Scenario...1613

Duplicating a Transformation Scenario..1615

Applying Associated Transformation Scenarios... 1615

Configure Transformation Scenario(s) Dialog Box..1616

Batch Transformations.. 1621

Sharing Transformation Scenarios... 1622

Transformation Scenarios View..1622

WebHelp Output Customization... 1626

WebHelp Responsive Output for DITA... 1627

DITA to PDF Output Customization... 1827

Contents | xv

CSS-based PDF Customization...1827

XSL-FO to PDF Customization.. 2096

DocBook to PDF Output Customization.. 2108

Chapter 12. Working with XPath Expressions..2109

XPath Toolbar.. 2110

XPath Builder View.. 2112

XPath Expression Results View..2115

XPath and XML Catalogs..2117

XPath Prefix Mapping..2117

Chapter 13. Working with Archives... 2118

Browsing Archives... 2118

Working with Archive Files... 2121

Creating an Archive..2123

Editing and Saving Files Inside an Archive.. 2123

Migrating Archives to DITA or TEI.. 2124

Chapter 14. Databases and SharePoint...2125

Working with Databases... 2125

Data Source Explorer View..2125

Table Explorer View... 2127

Database Connection Support..2130

WebDAV Connections..2171

SQL Execution Support..2174

XQuery and Databases.. 2177

Integration with Microsoft SharePoint...2184

How to Configure a SharePoint Connection.. 2185

SharePoint Browser View.. 2189

SharePoint Contextual Menu Actions.. 2191

Browsing for Remote Files with SharePoint Online.. 2194

MS Azure Active Directory Authentication...2195

Chapter 15. Importing Data...2197

Import from Text Files.. 2197

Import from MS Excel Files..2199

Import Database Data as an XML Document... 2202

Contents | xvi

Import from HTML Files... 2204

Import Content Dynamically... 2205

Chapter 16. XSLT/XQuery Debugging..2209

Debugger Layout..2210

Control Toolbar...2211

Debugging Information Views...2215

Multiple Output Documents in XSLT 2.0 and XSLT 3.0... 2228

Steps in a Typical Debugging Process.. 2228

Identify the XSLT / XQuery Expression that Generated Particular Output...2229

Using Breakpoints..2232

Performance Profiling of XSLT Stylesheets and XQuery Documents..2233

Invocation Tree View... 2235

Hotspots View.. 2236

Debugging XSLT that Call Java Extensions...2238

Debugging Java Extensions..2238

Supported Processors for XSLT / XQuery Debugging.. 2239

Chapter 17. Framework and Author Mode Customization... 2240

Creating and Configuring Custom Frameworks..2240

Creating a Framework through the Configuration Dialog... 2240

Creating a Framework Using an Extension Script...2241

Author Mode Customization... 2254

Content Completion Assistant..2301

Transformation Scenarios... 2327

Validation Scenarios.. 2329

Document Templates...2338

XML Catalogs... 2339

Localization...2340

Java Extensibility Guide...2342

Sharing a Framework...2399

Basic Framework Customization Tutorial..2400

Overview..2401

Creating and Configuring a Custom Framework... 2407

CSS Support in Author Mode... 2417

Contents | xvii

Associating a CSS with an XML Document...2417

Handling CSS Imports... 2419

Displaying Processing Instructions from Other XML Editors... 2420

Specifying Media Types in the CSS .. 2420

CSS At-Rules...2421

Standard W3C CSS Supported Features..2423

CSS Extensions.. 2444

Debugging CSS Stylesheets.. 2521

Chapter 18. Extending Oxygen With the SDK.. 2522

Extending Oxygen XML Editor with Plugins.. 2522

General Configuration of an Oxygen XML Editor Plugin... 2522

Installing an Oxygen XML Editor Plugin...2525

Types of Plugin Extensions Available with the SDK..2526

How to Write a CMS Integration Plugin... 2550

How to Write A Custom Protocol Plugin..2555

How to Share a Class Loader Between a Framework and Plugin..2556

Packing and Deploying Plugins as Add-ons.. 2557

Testing Plugins and Java Extensions...2557

Disabling a Plugin.. 2562

Oxygen XML Author Component..2563

Licensing...2563

Installation Requirements..2564

Customization...2564

Adding MathML support in the Oxygen XML Author Component..2567

Adding Support to Insert References from a WebDAV Connection .. 2569

Using Plugins with the Oxygen XML Author Component... 2569

Frequently Asked Questions .. 2570

Oxygen XML Web Author Component... 2573

Web Author vs. Web Author Component... 2574

Developer Quick Start Guide...2576

Plugins...2576

Frameworks.. 2583

Difference Between a Framework (Document Type) and a Plugin Extension................................... 2588

Contents | xviii

SDK Common Use Cases... 2589

Add Custom Actions to the Contextual Menu...2589

Add Custom Callouts...2591

Add Custom Highlights to Content.. 2597

Auto-Generate an ID When a Document is Opened or Created..2598

Change the Default Track Changes (Review) Author Name...2599

Change the DOCTYPE of an Open XML Document...2599

Control XML Serialization in the Oxygen XML Author Component.. 2600

Customize the Outline View in Text Mode...2601

Disable Context-Sensitive Menu Items for Custom Author Actions.. 2607

Dynamically Add Form Controls Using a Styles Filter...2608

Dynamically Modify the Content Inserted by the Author.. 2610

Extend the Java Functionality of an Existing Framework (Document Type)..................................... 2612

Impose Custom Options for Authors... 2613

Insert an Element with all the Required Content...2613

Modify the XML Content on Open..2615

Modify the XML Content on Save...2616

Multiple Rendering Modes for the Same Document in Author Mode.. 2618

Obtain the Currently Selected Element Using the Author API.. 2618

Open a Document from Another Application.. 2619

Run XSLT or XQuery Transformations..2619

Save a New Document with a Predefined File Name Pattern.. 2620

Split Paragraph on Enter (Instead of Showing Content Completion List)..2622

Use Custom Rendering Styles for Entity References, Comments, or PIs...2622

Chapter 19. Add-ons... 2627

Chapter 20. Tools..2628

XML Refactoring.. 2628

Built-in Refactoring Operations... 2631

Custom Refactoring Operations... 2644

Storing and Sharing Refactoring Operations... 2659

Localizing XML Refactoring Operations...2660

Generate Sample XML Files... 2661

Applying All Default Quick Fix Proposals.. 2667

Contents | xix

Generate/Convert Schema..2669

Convert DB Structure to XML Schema.. 2672

Flatten Schema.. 2673

Generate Java Classes from XSD.. 2675

Compile XSL Stylesheet for Saxon.. 2675

JSON Tools.. 2677

Generate Sample JSON Files..2678

Generate JSON Schema..2679

JSON to YAML... 2681

YAML to JSON... 2681

JSON to XML..2682

XML to JSON..2685

XSD to JSON Schema Converter..2689

JSON Schema Converter...2689

OpenAPI Tester.. 2690

Run OpenAPI Test Scenario.. 2690

Format and Indent Files..2691

Generate Documentation.. 2692

XML Schema Documentation Generator... 2693

XSLT Stylesheet Documentation Generator... 2696

XQuery Documentation Generator..2700

WSDL Documentation Generator (Deprecated)...2702

JSON Schema Documentation Generator..2705

OpenAPI Documentation Generator... 2705

Canonicalize... 2706

Sign... 2707

Verify Signature..2710

WSDL SOAP Analyzer (Deprecated)...2710

Testing Remote WSDL Files..2712

XML Schema Regular Expressions Builder... 2713

Large File Viewer... 2714

Hex Viewer... 2716

SVG Viewer...2717

Contents | xx

Tree Editor (Deprecated)...2719

Comparison Tools..2719

Compare Files.. 2719

Merge Documents with Change Tracking Highlights..2748

Compare Directories.. 2749

Compare Directories Against a Base (3-Way)... 2755

Generate HTML Report for Directory Comparison.. 2764

Merge Directories with Change Tracking Highlights...2767

Syncro SVN Client (Deprecated).. 2771

Main Window..2771

Getting Started... 2787

Syncro SVN Client Views...2861

Revision Graph of an SVN Resource..2896

Oxygen XML Editor SVN Preferences...2901

Entering Local Paths and URLs.. 2901

Technical Issues...2902

External Tools.. 2905

Chapter 21. Troubleshooting...2908

Performance Problems and Solutions...2908

Display Problems on Linux or Solaris.. 2908

Out of Memory on External Processes.. 2908

Too many nested apply-templates calls Error When Running a Transformation.............................. 2909

Performance Issues with Large Documents... 2909

Performance Issues when Using Oxygen XML Editor with Remote Desktop.................................... 2910

Misc Problems and Solutions.. 2910

Address Family Not Supported by Protocol Family.. 2911

Application Reports Errors During Startup After Installing a New Version..2911

Application Takes Several Minutes to Start...2912

Archive Distribution Fails to Run on macOS 10.12 (Sierra).. 2913

Blank Window is Shown When Starting the App Over an RDP Connection on Linux........................ 2913

Cannot Connect to SVN Repository from Repositories View... 2914

Cannot Open Files from Desktop/Downloads/OneDrive on macOS.. 2915

Cannot Uninstall Oxygen XML Editor in Windows...2916

Contents | xxi

Compatibility Issue Between Java and Certain Graphics Card Drivers..2916

Crash at Startup on Windows with an Error About the nvoglv32.dll File... 2916

Damaged File Associations on macOS..2917

Details to Submit in a Request for Technical Support Using the Online Form.................................. 2918

Dialog Boxes Cannot Be Resized on Mac..2919

DITA Map Transformation Fails (Cannot Connect to External Location)...2919

DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)...............................2920

DITA-OT Transformation Takes a Long Time to Process... 2920

DITA PDF Transformation Fails.. 2921

DITA PDF Processing Common Errors...2922

DITA PDF CSS-based Processing Common Errors... 2924

DITA to CHM Transformation Fails - Cannot Open File.. 2924

DITA to CHM Transformation Fails - Compilation Failed..2924

Fonts Installed in Windows Do Not Appear in Fonts Preferences Page..2925

Format and Indent Fails.. 2925

Handshake Failure Error When Accessing an HTTPS (SSL) Resource.. 2926

Hunspell Spell Checker is Unusable on Your Platform Error.. 2926

High Resolution Scaling Issues.. 2927

High Resolution Scaling Issues on Linux...2927

Images Appear Stretched Out in the PDF Output... 2928

Increasing the Memory for the Ant Process..2929

Java Virtual Machine (JVM) Crash on macOS..2929

JPEG CMYK Color Space Issues.. 2929

Keyboard Language Resets to Default on Windows...2930

Keyboard Shortcuts Do Not Work At All.. 2930

Keyboard Shortcuts Result in Unexpected Behavior...2930

Mac Touch Bar Function Keys Do Not Work... 2931

Server Signature Mismatch Error..2931

MSXML 4.0 Transformation Issues..2932

Navigation to a Web Page is Canceled when Viewing CHM on a Network Drive..............................2933

Out Of Memory Error When Opening Large Documents...2933

References Outside the Main DITA Map Folder.. 2933

Saxon 9.7 Transformer Issues..2934

Contents | xxii

Scroll Function of my Notebook Trackpad is Not Working.. 2935

Special Characters are Replaced with a Square..2935

TocJS Transformation Does not Generate All Files for a Tree-Like TOC...2936

Text on Buttons and Labels is Invisible for Linux Installer... 2936

Text Rendering Issues on macOS.. 2937

XML Document Takes a Long Time to Open.. 2937

XSLT Debugger Is Very Slow...2937

Chapter 22. DITA Authoring.. 2939

Getting Started with DITA... 2940

Working with Projects in DITA..2947

Working with DITA Maps.. 2948

DITA Maps Manager..2950

Creating a Map...2967

Managing DITA Maps.. 2970

Chunking DITA Topics... 2995

DITA Map Validation and Completeness Check..2995

DITA Map Author Mode Actions...3001

Opening a DITA Map With Topic Content Resolved..3012

Working with DITA Topics...3013

Creating a New DITA Topic...3015

Fast Create Multiple DITA Topics...3018

Editing DITA Topics..3021

Converting DITA Topics to Another Type...3024

Changing the Look of DITA Documents in Author Mode Using the Styles Menu..............................3027

Working with Images in DITA Topics... 3029

Adding Video, Audio, and Embedded HTML Resources in DITA Topics..3032

Working with Image Maps in DITA...3035

Adding Tables in DITA Topics...3042

Adding MathML Equations in DITA Topics.. 3055

Adding LaTeX Equations in DITA Topics... 3056

DITA Questions and Answers Topic Type..3057

DITA Topic Author Mode Actions...3057

Working with Markdown Documents in DITA..3080

Contents | xxiii

Working with DITA-Compatible Documents.. 3083

Working with Keys in DITA... 3084

Working with a Glossary of Terms in DITA... 3086

Reusing DITA Content... 3089

Reusing DITA Topics in Multiple Maps.. 3092

Working with Content References.. 3093

Working with Code References...3109

Working with the Conref Push Mechanism... 3110

Working with Reusable Components... 3112

Working with Variable Text in DITA.. 3114

Working with DITA 1.3 Key Scopes.. 3116

Working with DITA 1.3 Branch Filtering... 3118

DITA Reusable Components View..3119

Linking in DITA...3130

Hierarchical Linking in DITA Maps... 3131

Linking in DITA Topics...3131

Linking with Relationship Tables in DITA...3137

Content Completion in DITA... 3139

Publishing DITA Output...3140

Built-in DITA Map Transformation Scenarios.. 3141

Built-in DITA Topic Transformation Scenarios...3165

Running a DITA Transformation Scenario..3166

Creating or Editing a DITA-OT Transformation..3166

Customizing DITA Transformations... 3181

Publishing with a DITA-OT Project File.. 3186

Dynamic Word, Excel, OpenAPI, HTML, Markdown to DITA Conversion..3187

Troubleshooting DITA Transformation Problems..3189

DITA Profiling / Conditional Text..3196

Creating and Editing Profiling Attributes in DITA.. 3197

Applying Profiling Attributes in DITA..3200

Creating and Editing Profiling Condition Sets in DITA.. 3203

Applying Profiling Condition Sets in DITA..3205

Showing and Filtering Profiled Content in DITA.. 3207

Contents | xxiv

Customizing Colors and Styles for Rendering Profiling in Author Mode... 3210

Conditional Profiling Attribute Groups... 3212

Customizing Profiling Values with a Subject Scheme Map..3214

Filtering Profiling Values with a DITAVAL File... 3219

Styling the Rendering of Profiled Content Using a DITAVAL File... 3221

Publishing Profiled DITA Content... 3222

Conditional Processing to Generate Multiple Deliverables...3223

DITA Open Toolkit Support... 3223

DITA-OT Plugins... 3223

Using an External DITA Open Toolkit in Oxygen XML Editor.. 3234

DITA Open Toolkit Project...3234

DITA Specialization Support... 3240

Integrating a DITA Specialization... 3240

Editing DITA Map Specializations...3242

Editing DITA Topic Specializations...3243

Translating DITA Projects Overview...3243

Main Files Support in DITA...3245

DITA Referenced/Dependent Resources View...3247

Search and Rename Actions for IDs in DITA...3250

Metadata...3251

Migrating MS Office Documents to DITA.. 3252

Migrating Various Document Formats to and from DITA...3254

How to Count Words in DITA Topics or Maps..3256

DITA 1.3 Support... 3257

DITA 2.0 Support... 3259

Chapter 23. Scripting Oxygen... 3260

DITA Validate and Check For Completeness.. 3260

Transform... 3261

Validate... 3262

XML Refactoring.. 3265

DITA Translation Package Builder..3266

Batch Converter... 3268

Compile Framework Script... 3270

Contents | xxv

XSLT Stylesheets Documentation.. 3271

XML Schema Documentation...3271

JSON Schema Documentation...3272

OpenAPI Documentation...3274

WSDL Documentation (Deprecated).. 3276

XML Instance Generator... 3276

Flatten XML Schema...3277

Compare Directories..3278

Compare Files.. 3283

Merge Files with Change Tracking Highlights...3287

Merge Directories with Change Tracking Highlights.. 3289

Format and Indent Files..3292

Chapter 24. Glossary...3294

Active Cell...3294

Alternate CSS Style..3294

Anchor...3294

Apache Ant...3294

Block Element.. 3294

Bookmap...3294

Callout...3295

Canonicalize... 3295

Content Completion Assistant..3295

Dockable... 3295

Document Fragment..3296

Document Type Association...3296

DITA Map..3296

DITA Open Toolkit..3296

DITA-OT-DIR.. 3296

Foldable Element... 3297

Framework..3297

Global Options... 3297

IDML..3297

Inline Element...3297

Contents | xxvi

Java Archive...3297

Key Space...3298

Keystore.. 3298

Main CSS Style.. 3298

Main File... 3298

Perspective...3299

Plugin.. 3299

Pretty-Print..3299

Project Options.. 3300

QName.. 3300

Quick Fix/Assist...3300

Quick Fix...3300

Root Map..3301

Space-Preserved Element... 3301

Subject Scheme Map.. 3301

Track Changes... 3301

WebHelp Output Directory.. 3302

Working Set.. 3302

XML Catalog...3302

Index..a

Copyright.. bn

1.
Introduction
Welcome to the User Manual of Oxygen XML Editor 27.1.

Oxygen XML Editor is a cross-platform application designed to accommodate all of your XML editing,

authoring, developing, and publishing needs. It is the best XML editor available for document development

using structured mark-up languages such as XML, XSD, Relax NG, XSL, DTD. It is a comprehensive solution

for authors who want to edit XML documents visually, with or without extensive knowledge about XML and

XML-related technologies. The WYSIWYG-like editor is driven by CSS stylesheets associated with the XML

documents and offers many innovative, user-friendly authoring features that make XML authoring easy and

powerful.

It offers developers and authors a powerful Integrated Development Environment and the intuitive

Graphical User Interface of Oxygen XML Editor is easy to use and provides robust functionality for content

editing, project management, and validation of structured mark-up sources. Coupled with XSLT and FOP

transformation technologies, Oxygen XML Editor offers support for generating output to multiple target

formats, including: PDF, PS, TXT, HTML, JavaHelp, WebHelp, and XML.

This user guide is focused on describing features, functionality, the application interface, and to help you

quickly get started. It also includes a vast amount of advanced technical information and instructional topics

that are designed to teach you how to use Oxygen XML Editor to accomplish your tasks. It is assumed that

you are familiar with the use of your operating system and the concepts related to XML technologies and

structured mark-up.

2.
Getting Started
This section provides a variety of resources to help you get the most out of the application. Typically, the first

step of getting started with Oxygen XML Editor would be to install the software. For detailed information about

that process, see the Installation chapter (on page 87).

After installation, when you launch Oxygen XML Editor for the first time, you are greeted with a Welcome

dialog box. It presents upcoming events, useful video demonstrations, helpful resources, the tip of the day, and

also gives you easy access to recently used files and projects and to create new ones.

Figure 1. Welcome Dialog Box

If you do not want it to be displayed every time you launch Oxygen XML Editor, deselect the Show at startup

option in the bottom-left corner of the dialog box. To display it any time, go to Help > Welcome.

What is Oxygen XML Editor
Oxygen XML Editor is the best XML editor available and is a complete XML development and authoring

solution. It is designed to accommodate a large number of users, ranging from beginners to XML experts. It

is the only XML tool that supports all of the XML schema languages and provides a large variety of powerful

tools for editing and publishing XML documents.

Oxygen XML Editor 27.1 | 2 - Getting Started | 29

You can use Oxygen XML Editor to work with most XML-based standards and technologies. It is a cross-

platform application available on all the major operating systems (Windows, macOS, Linux, Solaris) and can

be used either as a standalone application or as an Eclipse plugin.

For a list of many of the features and technologies that are included in Oxygen XML Editor, see the Oxygen

Website.

Getting Familiar with the Interface
Oxygen XML Editor includes several perspectives (on page 3299) and editing modes (on page 363) to help

you accomplish a wide range of tasks. Each perspective and editing mode also includes a large variety of

helper views, menu actions, toolbars, and contextual menu functions.

There are various ways that you can configure the layout of the views or editors (on page 370), and you can

customize the toolbars (on page 375).

Regardless of the perspective (on page 3299) or editing mode that you are working with, the default layout

consists of the following areas:

Menus

Menu-driven access to all the features and functions available in Oxygen XML Editor. Most of

the menus are common for all types of documents, but Oxygen XML Editor also includes some

context-sensitive and framework-specific menus and actions that are only available for a specific

context or type of document.

Toolbars

Easy access to common and frequently used functions. Each icon is a button that acts as a

shortcut to a related function. Some of the toolbars are common for all perspectives, editing

modes, and types of documents, while others are specific to the particular perspective or mode.

Some toolbars are also framework-specific, depending on the type of document that is being

edited. All the toolbars can be configured (on page 375) to suit your specific needs.

Helper Views

Oxygen XML Editor includes a large variety of dockable (on page 3295) views to assist you with

editing, viewing, searching, validating, transforming, and organizing your documents. Many of

the views also contain useful contextual menu actions, toolbar buttons, or menus. The most

commonly used views for each perspective and editing mode are displayed by default and you

can choose to display others to suit your specific needs. The layout of the views can also be

configured (on page 370) according to your preferences.

Editor Pane

The main editing area in the center of the application. Each editing mode provides a main editor

pane where you spend most of your time reading, editing, applying markup, and validating your

documents. The editor pane in each editing mode also includes various contextual menu actions

and other features to help streamline your editing tasks. Each file that has been opened has a

https://www.oxygenxml.com/#features
https://www.oxygenxml.com/#features

Oxygen XML Editor 27.1 | 2 - Getting Started | 30

tab at the top of the editing pane and there are several ways to switch between tabs or move

them (on page 404).

Perspectives

Oxygen XML Editor includes several different perspectives (on page 354) that you can use to

work with your documents. The Editor perspective is the most commonly used perspective used

for displaying and editing the content of your XML documents, and it is the default perspective

when you start Oxygen XML Editor for the first time. Oxygen XML Editor also includes a

Database perspective that allows you to manage databases and their connections and a few

debugging perspectives that allow you to detect problems in XSLT or XQuery transformations.

Status Bar

The status bar at the bottom of the application contains some useful information when you are

working with documents. It includes the following information, in the order it is displayed from

left to right:

• The path of the current document.

• The Unicode value (on page 475) for the character directly to the right of the current

cursor position.

• The status of the current document. The status of Modified is displayed for documents

that have not yet been saved. Otherwise, this section is left blank.

• In Text editing mode, the current line and character position is displayed.

• If the Check for notifications option (on page 134) is selected, this section will show

you when new messages have been received. The types of messages include the addition

of new videos on the Oxygen XML Editor website, the announcement of upcoming

webinars and conferences where the Oxygen XML Editor team will participate, and more.

• The memory consumption, including the memory used by the application and the

maximum amount that is allocated to the application.

• If the Show memory status option (on page 136) is selected, a Free unused memory

icon is displayed in the bottom-right corner and you can use this icon to free up unused

memory.

Supported Document Types
You can use the main editing pane in Oxygen XML Editor to edit a large variety of document types.

The supported document types include the following:

• - XML documents

• - XSLT stylesheets

• - XML Schema

• - DTD (Document Type Definition) schemas

• - RELAX NG full syntax schemas

• - RELAX NG compact syntax schemas

Oxygen XML Editor 27.1 | 2 - Getting Started | 31

• - NVDL (Namespace-based Validation Dispatching Language) schemas

• - XSL:FO documents

• - XQuery documents

• - WSDL documents (Deprecated)

• - Schematron documents

• - JavaScript documents

• - Python documents

• - CSS documents

• - LESS documents

• - XProc scripts

• - SQL documents

• - JSON documents

• - JSON Schema documents

• - YAML documents

• - Ant build scripts

• - Markdown documents

• Additional supported document types include: Text, Java, Properties, Batch, Shell, PowerShell,

Dockerfile, and PHP.

Resources to Help You Get Started Using Oxygen XML Editor
Configuring Oxygen XML Editor

There are numerous ways that you can configure Oxygen XML Editor to accommodate your specific needs.

See the Configuring Oxygen section (on page 132) for details on the various ways that you can configure the

application and its features.

Video Tutorials and Webinars

The Oxygen XML Editor website includes numerous video demonstrations and webinars that present many of

the features that are available in Oxygen XML Editor and show you how to complete specific tasks or how to

use the various features.

Go to the Oxygen Videos page to see the list of video tutorials.

Go to the Oxygen Events page to see all the upcoming and past webinars, conferences, and other events.

Oxygen XML Editor Documentation

The Oxygen XML Editor documentation includes a plethora of sections and topics to provide you with a variety

of information, ranging from basic authoring tasks to advanced developer techniques. You can, of course,

search through the documentation using standard search mechanisms, but you can also place the cursor in

any particular position in the interface and use the F1 key to open a dialog box that presents a section in the

https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/events_programme.html
https://www.oxygenxml.com/events_programme.html

Oxygen XML Editor 27.1 | 2 - Getting Started | 32

documentation that is appropriate for the context of the current cursor position. Aside from the other topics

in this Getting Started section, the following are links to other sections of the documentation that might be

helpful for your specific needs:

• Text Editing Mode Section (on page 363) - Provides information about the Text editor.

• Author Editing Mode Section (on page 364) - Provides information about the visual WYSIWYG-like

Author editing mode.

• XML Schema Diagram Editor (on page 365) - Provides information about the schema design mode.

• Editing Specific Document Types Chapter (on page 528) - Includes information about editing

numerous different types of documents.

• DITA Authoring Chapter (on page 2939) - Provides information about using DITA to edit and structure

your content.

• Publishing Chapter (on page 1472) - Provides information about the various ways that you can publish

content.

• Importing Data Chapter (on page 2197) - Provides information about importing data from text files,

MS Excel files, database data, and HTML files.

• Tools Chapter (on page 2628) - Details about the various built-in tools that are available in Oxygen XML

Editor.

• Add-ons Chapter (on page 2627) - Information about how to extend the functionality of Oxygen XML

Editor through add-ons.

Sample Documents

Your installation of Oxygen XML Editor includes a large variety of sample documents and projects that you

can use as templates to get started and to experiment with the various features and technologies. They are

located in the samples folder that is located in the installation directory of Oxygen XML Editor. You will find

files and folders for various types of documents, including the following:

• Sample project file (sample.xpr) - A sample project file that will allow you to experiment with how

projects can be structured and used. When you open this project file, you will be able to see all the

sample files and folders in the Project view (on page 414).

• Sample files (personal.xml, etc.) - A collection of interrelated sample files that will allow you to

experiment with the structure and relationship between files, stylesheets, and schemas.

• Various document type folders - The various folders contain sample files for numerous document

types, such as CSS, DITA, DocBook, ePub, TEI, XHTML, and many others.

Other Resources

The following list includes links to various other resources that will help you get started using the features of

Oxygen XML Editor:

Oxygen XML Editor 27.1 | 2 - Getting Started | 33

• See the Oxygen XML Editor Blog Site for a large variety of current and archived blogs regarding

numerous features, requests, and instructional topics.

• Take advantage of the Oxygen XML Editor Forum to see various announcements and learn more about

specific issues that other users have experienced.

• If you are using DITA, see the incredibly helpful DITA Style Guide Best Practices for Authors.

• To learn about the WebHelp features in Oxygen XML Editor, see the Publishing DITA to WebHelp section

of the website.

• For more information about various additional tools that are integrated into Oxygen XML Editor, see the

Tools section (on page 2628).

• See the External Resource Page for links to various other helpful resources, such as discussion lists,

external tutorials, and more.

• See the Oxygen SDK section for details about the SDK that allows you to extend and develop Oxygen

XML Editor frameworks (on page 3297) and plugins (on page 3299), and to integrate Eclipse plugins.

• For a list of new features that were implemented in the latest version of Oxygen XML Editor, see the

What's New Section on the website.

• You can select the Tip of the Day (on page 53) action in the Help menu (on page 50) to display a

dialog box that includes a variety of tips for using Oxygen XML Editor.

• You can select Show Dynamic Help view (on page 51) from the Help menu (on page 50) to

dynamically opens a topic that is relevant to the focused editor, view, or dialog box.

Your First Document or Project
This section includes several topics that will help you get started with your first document or project.

Your First XML Document

To create your first XML document, select File > New or click the New button on the toolbar. The New

document wizard (on page 378) is displayed:

http://blog.oxygenxml.com/
http://blog.oxygenxml.com/
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/dita/styleguide/index.html
https://www.oxygenxml.com/xml_webhelp.html
https://www.oxygenxml.com/external_resources.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/xml_editor/whats_new.html

Oxygen XML Editor 27.1 | 2 - Getting Started | 34

Figure 2. New Document Wizard

You can either create a new XML document from scratch by choosing one of the available types in the wizard.

You can also create one from a template by choosing a template from the Global templates or Framework

templates folders. If you are looking for a common document type, such as DITA or DocBook, you can

find templates for these document types in the Framework templates folder. If your company has created

its own templates, you can also find them there. After you use this dialog box to create a few documents,

those document types will appear in the Recently used folder, which allows you to easily create other new

documents of those types.

For some document types, you may find a lot of different templates. For example, there are numerous

templates for DocBook documents, and DITA topic types and maps. Choose the template that best meets

your needs.

Writing Your First Document

Depending on the type of document you choose, the Oxygen XML Editor interface changes to support editing

that document type. This may include new menus, toolbar buttons, and items in the contextual menus.

Also, depending on the type of document you choose, Oxygen XML Editor may open your document in Text

(on page 363) or Author (on page 364) mode. Text mode shows the raw XML source file, while Author

mode shows a graphical view of the document.

The availability of Author mode for your document type depends on the type you choose and if there is a CSS

stylesheet available to create the Author mode. Oxygen XML Editor includes default Author mode views for

most of the document types it supports. If your company has created its own document types, Author mode

Oxygen XML Editor 27.1 | 2 - Getting Started | 35

stylesheets may have also been created for that type. However, if you create a plain XML file, or one based on

a schema that is not included in the Oxygen XML Editor built-in support, you need to edit it in Text mode or

create your own Author mode CSS (on page 2417) for it.

You can switch back and forth between Author mode and Text mode at any time by clicking the buttons at the

bottom left of the editor window. You do not lose any formatting when switching from Author to Text mode.

Text and Author modes are just different views for the same XML document.

There is also a Grid mode (on page 364) available that displays all content in an XML document as a

structured grid of nested tables. This is useful for certain kinds of documents, particularly those that are

structured like databases. You can also use it when you want to display XML content in a table-like manner

(for example, if you need to extract XML content to a spreadsheet (on page 600)).

If you use Author mode, you might find that it is similar to word processors that you are used to. Likewise, the

Text mode is similar to many other typical text editors. If you are new to XML, the biggest difference is that

XML documents have a particular structure that you have to follow. Oxygen XML Editor assists you with a

continuous validation of the XML markup.

Structuring Your First Document

Each XML document type has a particular structure that you have to follow as you write and edit the

document. Some document types give you a lot of choices, while others give you very few. In either case, you

need to make sure that your document follows the particular structure for the document type you are creating.

This means:

• At any given location in the document, there are only certain XML elements allowed. Oxygen XML Editor

helps you determine which elements are allowed. In Author mode, when you press Enter, Oxygen XML

Editor assumes that you want to enter a new element and shows you a list of elements that can be

created in this location. Keep typing until the element you want is highlighted and press Enter to insert

the element. If you want to view the overall structure of a document and see what is allowed (and

where), you can use the Model view (on page 557) (Window > Show View > Model).

• When you create certain elements, you may find that your text gets a jagged red underline and you get a

warning that your content is invalid. This is usually because the element you have just created requires

certain other elements inside of it. Your document will be invalid until you create those elements.

Oxygen XML Editor helps you with this. If there is only one possible element that can go inside the

element you just created, Oxygen XML Editor creates it for you. However, if there is more than one

possibility, you have to create the appropriate elements yourself. In many cases, Oxygen XML Editor

presents XML Quick Fixes (on page 828) that help you resolve errors by offering proposals to quickly

fix problems such as missing required attributes or invalid elements.

Editing Your First Document

Once you have completed the first draft of your document, you may need to edit it. As with any editor, Oxygen

XML Editor provides the normal cut, copy, and paste options as well as drag and drop editing. However, when

Oxygen XML Editor 27.1 | 2 - Getting Started | 36

you are editing an XML document, you have to make sure that your edits respect the structure of the XML

document type. In fact, you are often editing the structure as well as the content of your document.

Oxygen XML Editor provides many tools to help you edit your structure and to keep your structure valid while

editing text.

The Document Breadcrumbs

Across the top of the editor window, there is a set of breadcrumbs that shows you exactly

where the insertion point is in the structure of the document. You can click any element in the

breadcrumbs to select that entire element in the document.

Showing Tags

To see exactly where you are in the structure of the document, you can show the tags graphically

in the Author view. There are several levels of tag visibility that you can choose using the

Tags Display Mode drop-down menu (on page 607) on the toolbar (the button may look

a little different than this, as it changes to reflect the level of tags currently displayed).

Outline View

The Outline view (on page 551) shows you the structure of your document in outline format.

You can use it to select elements, or to move elements around in the document.

Figure 3. Outline View

Oxygen XML Editor 27.1 | 2 - Getting Started | 37

You can configure the Outline view to determine what is shown, such as element names,

attributes, and comments. Certain choices may work better for particular document types. You

can also filter the Outline view to show only elements with a certain name.

Figure 4. Outline View Filtered to only Show Element Names

Cut and Paste, Drag and Drop

You can cut and paste or drag and drop text, just as you would in any other editor. However,

when you do this in Author view, it is important to remember that you are actually moving blocks

of XML. When you cut and paste or drag and drop a block of XML, the result has to be valid both

where the content is inserted, and where it is removed from.

A big part of doing this correctly is to make sure that you pick up the right block of text in the

first place. Using the breadcrumbs or Outline view, or showing tags and using them to select

content, can help ensure that you are selecting the right chunk of XML.

If you do try to paste or drop a chunk of XML somewhere that is not valid, Oxygen XML Editor

warns you and tries to suggest actions that make it valid (such as by removing surrounding

elements from the chunk you are moving, by creating a new element at the destination, or by

inserting it in a nearby location).

If you are using Author mode, you can also switch to Text mode to see exactly which bits of XML

you are selecting and moving.

Refactoring actions

You can perform many common structure edits, such as renaming an element or wrapping

text in an element, using the actions in the Refactoring menu of the contextual menu (or the

Document > Markup menu). More advanced refactoring operations are also available using the

XML Refactoring tool (on page 856) that is available in the Tools menu.

Validating Your First Document

Validation is the process of making sure that an XML document abides by the rules of its schema. If Oxygen

XML Editor knows how to find the schema, it validates the document for you as you type. Oxygen XML Editor

finds the schema automatically for most of the document types created from templates. However, in some

cases, you may have to tell it how to find the schema (on page 790).

Oxygen XML Editor 27.1 | 2 - Getting Started | 38

When Oxygen XML Editor validates as you type, there is a small bar at the right edge of the editor that shows

you if the document is invalid and where errors are found. If the indicator at the top of that bar is green, your

document is valid. If the document is invalid, the indicator turns red and a red flag shows you where the errors

are found. Click that flag to jump to the error. Remember that sometimes your document is invalid simply

because the structure you are creating is not yet complete.

In addition to problems with the validity of the XML document itself, Oxygen XML Editor also reports warnings

for a number of conditions, such as if your document contains a cross reference that cannot be resolved, or

if Oxygen XML Editor cannot find the schema specified by the document. The location of these warnings is

marked in yellow on the validation bar. If the document contains warnings, but no errors, the validity indicator

turns yellow.

You can also validate your document at any time by selecting the Validate action from the Validation

toolbar drop-down menu or the Document > Validate menu. When you validate in this manner, if errors are

found, the validation result opens in a new pane at the bottom of the editor that shows each validation error on

a separate line. Clicking the error takes you to the location in your document where the error was detected.

Note:

Be aware that the problem is sometimes in a different location from where the validator detects the

error. To get more information about a validation error, right-click a validation error message, and

select Show Message.

Proofing Your First Document

Oxygen XML Editor includes an automatic (as-you-type) spell checking feature (on page 469), as well as a

manual spell checking action. To check the spelling of your document manually, use the Check Spelling

action on the toolbar or from the Edit menu.

Transforming Your First Document

An XML document must be transformed to be published. Transformations are specific to the particular type

of document you have created. For example, a DITA transformation cannot be used on a DocBook file, or

vice versa. A single document type may have many multiple transformations that produce different kinds of

outputs. For some document types, such a DITA, many different content files may be combined together by

a transformation. You need to locate and launch a transformation that is appropriate for your document type

and the kind of output you want to generate.

Oxygen XML Editor uses transformation scenarios (on page 1472) to control the transformation process.

Depending on the document type you have created, there may be several transformation scenarios already

configured for your use. This may include the default transformation scenarios supplied by Oxygen XML Editor

or ones created by your organization.

To see the list of transformations available for your document, select the Apply Transformation

Scenario(s) action from the toolbar or the Document > Transformation menu. A list of available

Oxygen XML Editor 27.1 | 2 - Getting Started | 39

transformation scenarios is displayed. Choose one or more scenarios to apply, and click Apply associated.

Exactly how your transformed content appears depends on how the transformation scenario is configured.

Getting Started with DITA

The information in this topic is meant to be a very basic starting point for those who are just getting started

using DITA in Oxygen XML Editor. Oxygen XML Editor makes it easy to create, edit, manage, and publish DITA

content, but it requires at least some basic DITA knowledge. To truly get the most out of Oxygen XML Editor

and all of its DITA-related features, you should explore resources in the online DITA community to acquire

knowledge of its concepts and uses.

Understanding DITA Topics

It is important to understand the role that a DITA topic plays in a DITA project. A DITA topic is not associated

with a single published document. It is a separate entity that can potentially be included in many different

books, help systems, or websites. Therefore, when you write a DITA topic you are not writing a book, a help

system, or a website. You are writing an individual piece of content. This affects how you approach the writing

task and how Oxygen XML Editor works to support you as you write.

Most of your topics are actually related to other topics, and those relationships can affect how you write and

handle things such as links and content reuse. Oxygen XML Editor helps you manage those relationships.

Depending on how your topics are related, you can use the tools provided in Oxygen XML Editor, along with the

features of DITA, in a variety of ways.

Creating a DITA Topic in Oxygen XML Editor

To create a DITA topic (on page 3015):

1. Select File > New or click the New button on the toolbar.

Step Result: The New Document Wizard (on page 378) is displayed:

Oxygen XML Editor 27.1 | 2 - Getting Started | 40

Figure 5. New DITA Document Wizard

2. Go to Framework templates > DITA > topic and select the type of topic that you want to create.

Note:

If your organization has created DITA customizations, the appropriate template files may be

in another location, and various types of topics may be provided for your use. Check with the

person who manages your DITA system to see if you should be using templates from another

directory.

3. Select a file path where it will be saved. You can also optionally specify a title.

4. Click Create.

Result: Your document is opened in the editor. Eventually, you will need to add a reference to it in your DITA

map (on page 42).

Your DITA topic is an XML document, thus all the editing features that Oxygen XML Editor provides for editing

XML documents (on page 33) also apply to DITA topics. Oxygen XML Editor also provides additional

Oxygen XML Editor 27.1 | 2 - Getting Started | 41

specific DITA-related support for working with DITA topics (on page 3013), their associated DITA maps (on

page 2948), and for creating DITA output (on page 3140).

Role of Maps

The basic method that DITA uses to express the relationship between topics is through a DITA map (on page

3296). Other relationships between topics, such as cross references, generally need to be made between

topics in the same root map. DITA uses maps to determine which topics are part of any output that you

create. While customized DITA solutions can use other mechanisms, generally DITA is not used as a way to

publish individual topics. Output is created from a map and includes all the topics referenced by the map.

A publication is not always represented by a single map. For instance, if you are writing a book, you might

use a submap to create each chapter and then organize the chapters in a main root map to create the book.

This helps you to manage your content, offers the possibility of reusing submaps, and segregates content to

support multiple people working on the same project.

Creating a Map in Oxygen XML Editor

To create a map (on page 2967):

1. Select File > New or click the New button on the toolbar.

2. Go to Framework templates > DITA Map > map and select the type of map you want to create.

3. Choose whether you want to open the map in the Editor or in the DITA Maps Manager (on page 2950).

Usually, opening it in the DITA Maps Manager is the best choice. The DITA Maps Manager presents a

view of the DITA map that is similar to a table of contents.

Figure 6. DITA Maps Manager View

Oxygen XML Editor 27.1 | 2 - Getting Started | 42

Adding Existing Topics to a Map in Oxygen XML Editor

There are several ways to add a topic reference to a map (on page 2971). Perhaps the easiest method is to

add a reference to a topic that is already open in the editor:

1. Open the DITA topic in the main editing window.

2. Right-click the DITA map in the DITA Maps Manager view (on page 2950) and choose Reference to the

currently edited file from the Append Child, Insert Before, or Insert After submenu.

Step Result: This opens the Insert Reference dialog box (on page 2976) with all of the required fields

already filled in for you.

Figure 7. Insert Reference Dialog Box

3. You can fill in additional information in the various tabs in this dialog box or add it to the map later.

4. Select Insert and close to add a reference to your topic in the map.

5. Save the DITA map.

Adding New Topics to a Map in Oxygen XML Editor

As you add topics to your map, you may want to create a new topic as a child or sibling of another topic. This

is usually done at the map level.

To add a new topic to a map (on page 2971), follow these steps:

Oxygen XML Editor 27.1 | 2 - Getting Started | 43

1. In the DITA Maps Manager (on page 2950), right-click the node in the current map where you want to

add the new topic.

2. Select one of the following actions:

◦ Append Child > New - Select this action to insert the new topic as a child of the selected node.

This action opens a New file dialog box (on page 3016) that allows you to select the type of

document and assists you with naming it. After you have configured your new topic, click Create.

◦ Insert Before > New - Select this action to insert the new topic as a sibling to the current node,

before it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Insert After > New - Select this action to insert the new topic as a sibling to the current node,

after it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Duplicate - Select this action to create a copy of the selected topic and insert it as a sibling. This

action opens a dialog box that allows you to choose the file name and location for the newly

created copy of the topic. After you have selected the name and path for your new topic, click

OK.

Note:

The value of the root ID is generated taking the Use the file name as the value of the

root ID attribute option from the DITA > Topics preferences page (on page 283) into

account. When the option is deselected, a unique ID is generated.

Step Result: The new topic is now referenced (as a <topicref>) in the DITA map at the location where

you inserted it and the new topic is opened in the editor.

3. Save the DITA map.

You can also change the order and nesting of topics in the DITA Maps Manager view by doing either of the

following:

• Select the topic to move while holding down the Alt key and use the arrow keys to move it around.

• Use the mouse to drag and drop the topic to the desired location.

The way your parent and child topics are organized in any particular output depends on both the configuration

of those topics in the map and the rules of the output transformation that is applied to them. Do not assume

that your topics must have the same organization for all output types. The map defines the organization of the

topics, not the topics themselves. It is possible to create a variety of maps, each with different organization

and configuration options to produce a variety of outputs.

Oxygen XML Editor 27.1 | 2 - Getting Started | 44

Adding Submaps in Oxygen XML Editor

If you have a large set of information, such as a long book or extensive help system, a single map can become

long and difficult to manage. To make it easier to manage, you can break up the content into smaller submaps

(on page 2968). A submap might represent a chapter of a book, a section of a user manual, or a page on a

website. To build a publication out of these smaller maps, you must add them to a map that represents the

overall publication.

To add a child map to the current map (on page 2968):

1. Right-click the parent DITA map in the DITA Maps Manager view (on page 2950) and choose Append

child > Map reference.

Step Result: This opens the Insert Reference dialog box (on page 2976) with all of the required fields

already filled in for you.

2. You can fill in additional information in the various tabs in this dialog box or add it to the map later.

3. Select Insert and close to add a reference to your submap in the main map.

4. Save the main DITA map.

Validating a Map in Oxygen XML Editor

Just as it is with your individual topics, it is important to validate your maps (on page 2995). Oxygen XML

Editor provides a validation function for DITA maps that does more than simply validating that the XML is well-

formed. It also does the following:

• Validates all of the relationships defined in the maps.

• Validates all of the files that are included in the map.

• Validates all of the links that are expressed in the files.

Validating the map that describes your entire publication validates all the files that make up the publication

and all of the relationships between them.

To validate a map:

1. Click the Validate and Check for Completeness button in the DITA Maps Manager view (on page

2950).

Step Result: This opens the DITA Map Completeness Check dialog box (on page 2996).

2. Select any of the various options you want to check.

3. Click Check to run the validation process.

Publishing Your Topics in Oxygen XML Editor

As noted previously, in DITA standards you usually do not publish output from an individual topic. Instead,

you create published output (on page 3140) by running a DITA transformation on a map. This collects all

the topics that are referenced in the map, organizes them, and produces output in a particular format. By

Oxygen XML Editor 27.1 | 2 - Getting Started | 45

default, Oxygen XML Editor uses the transformations provided by the DITA Open Toolkit for publishing to

various output formats (such as PDF, WebHelp or EPUB). Your organization may have created various custom

transformations or modified the built-in DITA Open Toolkit transformations. In either case, Oxygen XML Editor

manages them by using transformation scenarios.

To publish output for a map:

1. Click the Configure Transformation Scenario(s) button in the DITA Maps Manager view (on page

2950).

Step Result: This opens the Configure Transformation Scenario(s) dialog box (on page 1616).

Figure 8. Configure Transformation Scenarios Dialog Box

2. Select the appropriate transformation depending on the type of output you desire.

3. To change or view the configuration or storage options for a transformation scenario, select the

transformation and click Edit.

4. Click Apply associated.

Result: Depending on the configuration of the transformation scenario, when the transformation is finished,

your output may automatically be opened in the appropriate application.

Oxygen XML Editor 27.1 | 2 - Getting Started | 46

DITA Projects

Once you have a basic understanding of DITA and how to work with DITA topics and maps, you probably want

to create a DITA project to organize and manage your planned content/resources (on page 410). Oxygen

XML Editor includes a Project view (on page 414) that helps you organize your projects and offers a variety

of helpful project-related features and makes it easy to share your projects with other members of your team.

Tip:

There are several sample project templates available for DITA users that can be used as a starting

point or for inspiration. These sample project templates are found in the Framework templates > DITA

folder in the New Project wizard: (on page 411)

• Sample DITA Project - This is a basic DITA project meant to help new users see how a DITA

project is structured.

• Startup DITA Project - This is a startup DITA project that imposes a custom set of options

(e.g. spell check settings and custom dictionaries), a custom DITA framework extension (e.g.

custom new file templates. custom actions, custom CSS used for visual editing) and a folder

structure for a DITA project according to best practices. Once created, the project contains a

Readme.html file that explains all customizations and their benefits. If you plan to start your

own DITA project using a version control system (such as Git), you can use this startup DITA

project template to customize various aspects of DITA editing and share them with your team.

Resources

For more information about getting started with DITA and how to work with DITA in Oxygen XML Editor, see

our compiled collection of DITA-related webinars that are meant to help you with your journey into working

with DITA: Webinars: Working with DITA in Oxygen.

Related information

DITA Authoring (on page 2939)

Editing XML Documents in Author Mode (on page 601)

https://www.oxygenxml.com/dita/1.3/specs/

Webinars: Working with DITA in Oxygen

Doctales - DITA Introduction

Creating a New Project

Oxygen XML Editor allows you to organize your XML-related files into projects. This helps you manage and

organize your files and also allows you to perform batch operations (such as validation and transformation)

over multiple files. You can also share your project settings and transformation/validation scenarios (on page

427) with other users. Use the Project view (on page 414) to manage projects, and the files and folders

contained within.

https://www.oxygenxml.com/working_with_dita_in_oxygen.html
https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/working_with_dita_in_oxygen.html
https://stefan-jung.org/dita-introduction/

Oxygen XML Editor 27.1 | 2 - Getting Started | 47

Creating a New Project

To create a new project, select New Project from the Project menu, the New menu in the contextual menu,

or the drop-down menu at the top-left of the Project view.

This opens a new project wizard:

Figure 9. New Project Wizard

Tip:

There are several sample project templates available for DITA users that can be used as a starting

point or for inspiration. These sample project templates are found in the Framework templates > DITA

folder in the New Project wizard: (on page 411)

• Sample DITA Project - This is a basic DITA project meant to help new users see how a DITA

project is structured.

• Startup DITA Project - This is a startup DITA project that imposes a custom set of options

(e.g. spell check settings and custom dictionaries), a custom DITA framework extension (e.g.

custom new file templates. custom actions, custom CSS used for visual editing) and a folder

structure for a DITA project according to best practices. Once created, the project contains a

Readme.html file that explains all customizations and their benefits. If you plan to start your

own DITA project using a version control system (such as Git), you can use this startup DITA

project template to customize various aspects of DITA editing and share them with your team.

With the exception of the Default project template, which is a pseudo-template and does not exist on the

local disk (it is used only to create a new .xpr file), project templates are actually ZIP archives (with a .zxpr

Oxygen XML Editor 27.1 | 2 - Getting Started | 48

extension) and are stored within the file template directory structure (for example, frameworks\dita

\templates\sample-project\Sample DITA Project.zxpr).

Tip:

Archives with a .zxpr extension can be edited in the Archive Browser view (on page 2118).

After selecting a project template, you can specify the following:

Project file name

Specifies the name of the new project file. Oxygen XML Editor provides a default proposal for the

file name based on the following rules:

• If there is an .xpr file inside the archive, its name is used.

• Otherwise, the name of the template is used.

Project directory

Specifies the directory where the archive content will be extracted.

Note:

The archive should not contain an extra single folder as the root. For the Project

directory path to work properly, the archive must have the .xpr file on the first level,

along with the other resources (files and folders).

Once you are done, click the Create button to begin the creation process. Oxygen XML Editor extracts the

content from the archive inside the path specified in the Project directory field.

Editor Variables in Project Templates

By default, the editor variables inside project resources created from a project template are not resolved.

To start having them resolved, the project template must be customized (on page 388) by using the

expandEditorVariablesIncludeFilter property. This filter determines the resources where the editor

variables will be resolved. If you need to exclude a subset of resources from the set specified by the

expandEditorVariablesIncludeFilter property, the expandEditorVariablesExcludeFilter property can be used.

Note:

Usually, project files (*.xpr), framework files (*.framework), and framework extension scripts (*.exf)

should be excluded from the editor variable resolving process.

The values of the inclusion and exclusion filters can be file paths relative to the project directory that can use

wildcards or simply wildcards. Each filter can have multiple values, separated by spaces.

Possible filter values:

Oxygen XML Editor 27.1 | 2 - Getting Started | 49

• ./* - Matches all resources from the first level in the project directory.

• * or ./** - Matches all resources on all levels inside the project directory.

• dir1/dir2/*.dita - Matches all .dita files from [PROJECT_DIR]/dir1/dir2, but not from

subdirectories of dir2.

• dir1/dir2/**/*.dita - Matches all .dita files from [PROJECT_DIR]/dir1/dir2, including those

from subdirectories of dir2.

• dir1/**/* - Matches all resources on all levels inside [PROJECT_DIR]/dir1.

• dir1/article1.xml, dir2/article2.xml - Matches only the two .xml files.

• ./**/*_suffix.md, ./**/prefix_*.html - Matches all .md files with names that end with _suffix and all

.html files with names that start with prefix_.

Adding Items to the Project

To add items to the project, select any of the following actions that are available when invoking the contextual

menu in the Project view:

New > File

Opens a New file dialog box that helps you create a new file and adds it to the project structure.

New > Folder

Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to

the structure of the project.

The project itself is considered a logical folder. You can add a logical folder, or content to a logical folder, by

using one of the following actions that are available in the contextual menu, when invoked from the project

root:

New > Logical Folder

Creates a logical folder in the tree structure (the icon is a magenta folder on macOS -).

New > Logical Folders from Web

Replicates the structure of a remote folder accessible over SFTP/WebDAV, as a structure of

logical folders. The newly created logical folders contain the file structure of the folder it points

to.

Add Folder

Adds a link to a physical folder, whose name and content mirror a real folder that exists in the

local file system (the icon of this action is different on macOS -).

Add Files

Adds links to files on the local file system.

Add Edited File

Adds a link to the currently edited file in the project.

Oxygen XML Editor 27.1 | 2 - Getting Started | 50

Using Linked Folders (Shortcuts)

Another easy way to organize your XML working files is to place them in a directory and then to create

a corresponding linked folder in your project. If you add new files to that folder, you can simply use the

Refresh (F5) action from the project contextual menu and the Project view (on page 414) will display

the existing files and subdirectories. If your files are scattered among several folders, but represent the same

class of files, you might find it useful to combine them in a logical folder.

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer

(macOS Finder) to the project tree, or by selecting Add Folder in the contextual menu from the project root.

Linked folders are displayed in the Project view (on page 414) with bold text. To create a file inside a linked

folder, select the New > File action from the contextual menu. The linked files presented in the Project view

(on page 414) are marked with a special icon.

Note:

Files may have multiple instances within the folder system, but cannot appear twice within the same

folder.

For more information on managing projects and their content, see Project View (on page 414).

For more details about how you can share projects with other users, see Sharing a Project - Team

Collaboration (on page 427).

Related information

Using Projects to Group Documents (on page 410)

Getting Help
If you run into specific problems while using Oxygen XML Editor you can take advantage of a variety of

support related resources. Those resources include the following:

• The Oxygen XML Editor Support Section of the Website

• The Oxygen XML Editor Forum

• The Oxygen XML Editor Video Tutorials

• The Common Problems and Solutions Section of the User Manual (on page 2908)

• The Online Technical Support Form

The application also includes various specific help-related resources in the Help menu.

Help Menu

The Oxygen XML Editor Help menu provides various resources to assist you with your tasks.

This menu includes the following actions or options:

Welcome

https://www.oxygenxml.com/support.html
https://www.oxygenxml.com/support.html
https://www.oxygenxml.com/support.html
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/techSupport.html

Oxygen XML Editor 27.1 | 2 - Getting Started | 51

This option opens the Welcome screen that includes some resources to assist you with using

Oxygen XML Editor.

Help (F1)

Use this action (or the F1 key) to open a dialog box that presents a section in the User Manual

that is appropriate for the context of the current cursor position. If the Use online help option is

selected, this action will open the User Manual in an online mode.

Show Dynamic Help view

Use this action to open a view that loads the latest online WebHelp version of the Oxygen XML

Editor User Manual, and dynamically opens a topic that is relevant to the focused editor, view, or

dialog box.

You can also open the Dynamic Help view by selecting it from the Window > Show View menu.

Download User Manual

Opens the appropriate HTML page for downloading the Oxygen XML Editor User Manual. This

action is helpful if your internet access is restricted and you need to access the user guide.

Install new add-ons

Opens a dialog box that allows you to install new add-ons (on page 3299) to extend the

functionality of Oxygen XML Editor.

Attention:

To ensure safety, when using an add-on site, make sure it is reputable and trustworthy.

Do not install add-ons that are unsigned or from sources that you do not fully trust.

Check for add-ons updates

Opens a dialog box that allows you to check for updates on installed add-ons (on page 3299).

Manage add-ons

Opens a dialog box that allows you to manage installed add-ons (on page 3299).

Check for a New Version

Use this action to view information about the latest version of Oxygen XML Editor.

Check for notifications

Use this action to have the application check Oxygen's website for news and events that will be

displayed in a dialog box.

Browse Oxygen Website

Opens the Oxygen XML Editor website in your default internet browser.

Register

If you encounter problems with your Oxygen XML Editor license, you can use this option to open

a dialog box that provides options for obtaining or using a license key.

Oxygen XML Editor 27.1 | 2 - Getting Started | 52

Lock/Unlock floating license

If you are using a Floating License, you can lock it so that it does not get released to the pool (on

page 110) unless you or the system administrator unlocks it.

Report problem

You can use this option to open a dialog box that allows you to write the description of a

problem that was encountered while using the application. You can also select additional

information to be sent to the technical support team in the five tabs:

• General info - You can edit your contact details in case you want to be contacted for

further details or to be notified of a resolution.

• Class Loader URLs - You can choose whether or not to include the listed Class Loader

URLs with your report.

• System properties - You can choose whether or not to include the listed system property

details with your report.

Tip:

You are able to change the URL where the reported problem is sent by using the

com.oxygenxml.report.problems.url system property. The report is sent in XML

format through the report parameter of the POST HTTP method.

• Plugins - You can choose whether or not to include details about your installed plugins

(on page 3299) with your report.

• Frameworks - You can choose whether or not to include details about your installed

frameworks (on page 3297) with your report.

Support Center

Use this option to open the Oxygen XML Editor Support Section of the Website.

Support Tools > Clipboard Inspector

Opens a dialog box that displays extensive details of all the transferable objects from the

clipboard. This is helpful if you experience problems while copying content from other

applications and pasting it into Oxygen XML Editor. You can use the Copy button to copy all of

this data and then paste it into an email to be sent to the Oxygen support team.

Support Tools > Randomize XML text content

Use this action when you need to send samples to the Oxygen support team and you want to

keep the text content confidential. It opens a dialog box that allows you to select the resources

that will have the text content randomized. You can then save the resources and send them

to the Oxygen support team without fear of compromising sensitive or private data. For more

information, see Randomize XML Text Content (on page 53).

https://www.oxygenxml.com/support.html
https://www.oxygenxml.com/support.html

Oxygen XML Editor 27.1 | 2 - Getting Started | 53

Warning:

Before using this action, it is highly recommended that you copy the XML resources to

be processed, save them in a separate folder, and then process this operation on the

copies instead of the original files. Otherwise, you may lose your original content.

Tip of the Day

Opens a dialog box that offers tips for using Oxygen XML Editor.

About

Use this option to open a dialog box that contains information about Oxygen XML Editor and the

installed version. This dialog box includes the following tabs:

• Copyright - This tab contains general information about the product and the version of the

product you are using, along with contact details and the SGN number. Details regarding

the memory usage are also presented at the bottom of the dialog box.

• Libraries - This tab presents the list of third-party libraries that Oxygen XML Editor uses.

To view the End-User Licence Agreement of each library, double-click it.

• Frameworks - This tab contains a list with the frameworks (on page 3297) that are

bundled with Oxygen XML Editor.

• System Properties - This tab contains a list with system properties and their values. The

contextual menu allows you to select and copy the properties.

Related information

Details to Submit in a Request for Technical Support Using the Online Form (on page 2918)

Randomize XML Text Content

Oxygen XML Editor includes an action that randomizes the text content of an XML document. This action

is available in the Help > Support Tools menu. It is helpful if you need to send XML samples to the Oxygen

support team and you want to keep the text content confidential. It opens a dialog box that allows you to

select the resources that will have the text content randomized. You can then save the resources and send

them to the Oxygen support team without fear of compromising sensitive or private data.

Warning:

Before using this action, it is highly recommended that you copy the XML resources to be processed,

save them in a separate folder, and then perform this operation on the copies instead of the original

files. Otherwise, you may lose your original content.

Oxygen XML Editor 27.1 | 2 - Getting Started | 54

Figure 10. Randomize XML Text Content Dialog Box

The Randomize XML Text Content dialog box includes the following options:

Scope

Allows you to select the set of files whose text content will be randomized by the operation. You

can select from predefined resource sets (such as the current file, your whole project, the current

DITA map (on page 3296) hierarchy for DITA projects, etc.) or you can define your own set of

resources by creating a working set (on page 3302).

Filters

This section includes the following options:

• Include files - Allows you to filter the selected resources by using a file pattern. For

example, to restrict the operation to only analyze build files you could use build*.xml for

the file pattern.

• Restrict only to known XML file types - When selected, only resources with a known XML

file type will be affected by the operation.

• Look inside archives - When selected, the resources inside archives will also be affected.

Frequently Used Shortcut Keys
Oxygen XML Editor includes numerous shortcut keys that are assigned to actions to help you edit content.

All the shortcuts that are assigned to actions are displayed in the table in the Menu Shortcut Keys preference

page (on page 304).

Oxygen XML Editor 27.1 | 2 - Getting Started | 55

For information about how to assign or configure shortcut keys, see How to Assign a Shortcut Key or Edit an

Existing Shortcut (on page 306).

Table 1. Frequently Used Shortcut Keys in Oxygen XML Editor

Action
Windows/Lin

ux Shortcut Keys
macOS Shortcut Keys

Description of De

fault Assigned Action

Attribute

Editor

Alt + Enter Option + Enter Opens the in-place attribute editor

Beginning Ctrl + Home Command + Home Navigates to the begin

ning of the document

Check

Spelling

F7 F7 Opens the spell

checking dialog box

Check

Well-

Formed

ness

Ctrl + Shift + W Command + Shift + W Check well-formedness

of current document

Config

ure Trans

formation

Ctrl + Shift + C Command + Shift + C Opens the Configure Transfor

mation Scenario dialog box

Content

Comple

tion /

New Line

Enter Enter
• Author mode - Opens the

content completion window

• Text mode - Moves

cursor to the next line

Content

Comple

tion (Text

Mode)

Ctrl + Space Command + Space Opens the content comple

tion window in Text mode

Create

Book

mark #

Ctrl + Shift + 1-9 Command + Shift + 1-9 Create bookmarks

numbered 1 through 9

Create

Next Book

mark

F9 F9 Create bookmark numbered

whatever is next in sequence

Delete

Next Word

Ctrl + Delete Command + Delete Deletes the next

word or whitespace

Oxygen XML Editor 27.1 | 2 - Getting Started | 56

Table 1. Frequently Used Shortcut Keys in Oxygen XML Editor (continued)

Action
Windows/Lin

ux Shortcut Keys
macOS Shortcut Keys

Description of De

fault Assigned Action

Delete Pre

vious Word

Ctrl + Backspace Command + Backspace Deletes the previous

word or whitespace

Delete

Tags

Alt + Shift + X Command + Option + X Deletes the start and end

tag of the current element

Duplicate

Lines

Up (Text

Mode)

Ctrl + Shift + UpArrow Option + Shift + UpArrow Duplicates the selected lines

(or current line) and inserts it

above the current selection/line

Duplicate

Lines

Down (Text

Mode)

Ctrl + Shift + DownArrow Option + Shift + DownArrow Duplicates the selected lines (or

current line) and inserts it be

low the current selection or line

End Ctrl + End Command + End Navigates to the end

of the document

Exit Ctrl + Q Command + Q Exit the application

Find Ctrl + F Command + F Opens Find/Replace dialog box

Find Next F3 Command + G Finds next occurrence of

the last searched term

Find Pre

vious

Shift + F3 Command + Shift + G Finds previous occurrence

of the last searched term

Go To

Bookmark

Ctrl + 1-9 Command + 1-9 Go to specific bookmark

Go To De

finition

Shift + Ctrl + Enter Shift + Command + Enter Go to the definition of the selected

item in the associated schema.

Help F1 F1 Opens help documentation

Insert

Para / For

mat Indent

Ctrl + Shift + P Command + Shift + P
• Author mode - Inserts

a paragraph at the

cursor position

• Text mode - Formats and

indents current document

Oxygen XML Editor 27.1 | 2 - Getting Started | 57

Table 1. Frequently Used Shortcut Keys in Oxygen XML Editor (continued)

Action
Windows/Lin

ux Shortcut Keys
macOS Shortcut Keys

Description of De

fault Assigned Action

Move

Tab Left

Ctrl + Alt + Comma Ctrl + Option + Comma Moves the current file tab

one position to the left

Move

Tab Right

Ctrl + Alt + Period Ctrl + Option + Period Moves the current file tab

one position to the right

Move Node

Down

(Author)

Alt + DownArrow Option + DownArrow Moves the selected XML

node down in Author mode

Move Node

Down

(Text)

Ctrl + Alt + DownArrow Command + Op

tion + DownArrow

Moves the selected XML

node down in Text mode

Move

Node Up

(Author)

Alt + UpArrow Option + UpArrow Moves the selected XML

node up in Author mode

Move Node

Up (Text)

Ctrl + Alt + UpArrow Command + Op

tion + UpArrow

Moves the selected XML

node up in Text mode

New File Ctrl + N Command + N Opens wizard for cre

ating new documents

Next Word Ctrl + RightArrow Command + RightArrow Navigates to next word

Open/Find

Resource

Ctrl + Shift + R Command + Shift + R Opens the Open/Find

Resource dialog box

Previous

Word

Ctrl + LeftArrow Command + LeftArrow Navigates to previous word

Print

Preview

Ctrl + P Command + P Opens the print preview

(page setup) dialog box

Quick

Assist

Alt + 1 Command + Option + 1 Opens Quick Assist menu if ac

tions are available in the current

context (usually indicated with

a bulb icon in the left stripe)

Quick Find Alt + Shift + F Option + Shift + F Opens the Quick Find mecha

nism at the bottom of the editor

Redo Ctrl + Y (Windows) -

Ctrl + Shift + Z (Linux)

Command + Shift + Z Redo last editing action

Oxygen XML Editor 27.1 | 2 - Getting Started | 58

Table 1. Frequently Used Shortcut Keys in Oxygen XML Editor (continued)

Action
Windows/Lin

ux Shortcut Keys
macOS Shortcut Keys

Description of De

fault Assigned Action

Refresh F5 F5 Refresh

Remove

Bookmarks

Ctrl + F7 Command + F7 Removes all bookmarks

Reopen

Last

Closed

Editor

Ctrl + Alt + T Command + Option + T Reopens the editor tab that

was closed most recently

Reset

Zoom

Ctrl + NumPad0 Command + NumPad0 Resets zoom (default font size)

Save Ctrl + S Command + S Saves current document

Save All Ctrl + Shift + S Command + Shift + S Saves all open files

Scroll

Down

Ctrl + DownArrow Command + DownArrow Scrolls the editor down

Scroll Up Ctrl + UpArrow Command + Up Arrow Scrolls the editor up

Select Con

tent of

Element

Alt + [Mouse Triple Click] Option + [Mouse

Triple Click]

Selects the content of an

element in Author mode.

Shift Left Shift + Tab Shift + Tab
• Author mode - Moves

the cursor to the

previous XML node

• Text mode - Shifts

content to the left

Shift Right Tab Tab
• Author mode - Moves cur

sor to the next XML node

• Text mode - Shifts

content to the right

Split El

ement

Alt + Shift + D Ctrl + Option + D Splits the element

the cursor position

Surround

With

Ctrl + E Command + E Surrounds selected con

tent with specified tag

Oxygen XML Editor 27.1 | 2 - Getting Started | 59

Table 1. Frequently Used Shortcut Keys in Oxygen XML Editor (continued)

Action
Windows/Lin

ux Shortcut Keys
macOS Shortcut Keys

Description of De

fault Assigned Action

Switch

Tabs

Ctrl + Tab / Ctrl

+ Shift + Tab

Command + Tab / Com

mand + Shift + Tab

Switches between open tabs

Transform Ctrl + Shift + T Command + Shift + T Opens a dialog box for select

ing a transformation scenario

Underline /

Open URL

Ctrl + U Command + U
• Underlines selected con

tent (in the main editor)

• Opens the URL (when focus

is outside the main editor)

Undo Ctrl + Z Command + Z Undo last editing action

Zoom In Ctrl + NumPad+ Command + NumPad+ Zooms in (increase font size)

Zoom Out Ctrl + NumPad- Command + NumPad- Zooms out (decrease font size)

Troubleshooting:

If you encounter problems with keyboard shortcuts not working as expected, see Keyboard Shortcuts

Result in Unexpected Behavior (on page 2930) or Keyboard Shortcuts Do Not Work At All (on page

2930).

Accessibility Support in Oxygen
The Oxygen team is dedicated to developing software products that are usable for everyone, including those

with physical challenges and disabilities. Oxygen XML Editor is designed to adhere to the U.S. Government

Section 508 accessibility standards: https://www.oxygenxml.com/xml_editor/section508.html.

Adjusting Fonts and Colors

If you have low vision, go to Options > Preferences > Appearance > Fonts where you can adjust the font styles

and sizes used in the entire application, both for the editing areas and UI labels. If you have color blindness,

you can also adjust most of the colors used in Oxygen XML Editor by going to Options > Preferences >

Appearance and changing the current color theme. You can also search for other color-related settings in the

Preferences dialog box.

Installing Oxygen XML Editor

Installation kits for Windows and Linux are made using the Install4j product. If you have problems navigating

the Install4j installation wizard, you can run the installation from a command-prompt application using the -c

flag (on page 90) like this:

https://www.oxygenxml.com/xml_editor/section508.html

Oxygen XML Editor 27.1 | 2 - Getting Started | 60

C:\Users\your_user_name\Downloads\oxygenAuthor-64bit.exe -c

Screen Reader Software (Windows OS)

If you are using a text-to-speech narrator, Oxygen XML Editor supports this since it is a Java application and it

is periodically tested on Windows using both the NVDA and JAWS screen readers on the Windows operating

system.

Using the JAWS Screen Reader (Windows)

The JAWS (Job Access With Speech) screen reader can be downloaded from: http://

www.freedomscientific.com/Products/Blindness/JAWS.

For JAWS to work, you need to enable the Java access bridge in Oxygen XML Editor: http://docs.oracle.com/

javase/7/docs/technotes/guides/access/enable_and_test.html.

To enable the Java access bridge:

1. Since Oxygen XML Editor comes bundled with its own Java VM, you need to open a command-prompt

application and use the cd command to go to the Oxygen XML Editor installation directory (for example,

in Windows, it would be something like this:

cd C:\Program Files\Oxygen XML Editor 21.1

2. Then run the following command:

jre\bin\jabswitch -enable

3. Press Enter and you should receive a notification that the access bridge has been enabled.

Once the Java access bridge is enabled and as long as the JAWS narrator is active, when Oxygen XML Editor

starts, the narrator will start reading content from Oxygen XML Editor and you can interact with the application

and read menus, content from open XML documents, and UI components from dialog boxes and side views.

Using the NVDA Screen Reader (Windows)

The NVDA screen reader can be downloaded for free from: https://www.nvaccess.org/.

For NVDA to work, you need to enable the Java access bridge in Oxygen XML Editor: http://docs.oracle.com/

javase/7/docs/technotes/guides/access/enable_and_test.html.

To enable the Java access bridge:

1. Since Oxygen XML Editor comes bundled with its own Java VM, you need to open a command-prompt

application and use the cd command to go to the Oxygen XML Editor installation directory (for example,

in Windows, it would be something like this:

cd C:\Program Files\Oxygen XML Editor 21.1

2. Then run the following command:

http://www.freedomscientific.com/Products/Blindness/JAWS
http://www.freedomscientific.com/Products/Blindness/JAWS
http://docs.oracle.com/javase/7/docs/technotes/guides/access/enable_and_test.html
http://docs.oracle.com/javase/7/docs/technotes/guides/access/enable_and_test.html
https://www.nvaccess.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/access/enable_and_test.html
http://docs.oracle.com/javase/7/docs/technotes/guides/access/enable_and_test.html

Oxygen XML Editor 27.1 | 2 - Getting Started | 61

jre\bin\jabswitch -enable

3. Press Enter and you should receive a notification that the access bridge has been enabled.

Once the Java access bridge is enabled and as long as the NVDA narrator is started, when Oxygen XML Editor

starts, the narrator will start reading content from Oxygen XML Editor and you can interact with the application

and read menus, content from open XML documents, and UI components from dialog boxes and side views.

Important:

If after these steps the narrator still does not read anything from a started Oxygen XML

Editor application, please go to the folder C:\Windows\SysWOW64\ and make sure the library

WindowsAccessBridge-32.dll is present there. If it is not present, try to search online, download the

library file and copy it to the folder. Then restart Oxygen XML Editor.

Besides the main editing area, Oxygen XML Editor also has side views (for example, the Attributes, Outline,

Elements views) that help with editing the XML content. NVDA versions 2020.1 and older have a registered

bug that makes the narrator read content from the side views when editing in the main editing area. Because

of this problem, when using NVDA versions 2020.1 or older, the following workflow is suggested:

1. Start Oxygen XML Editor.

2. Go to the Window menu and select Maximize Editing Area (or hold Alt, then W, then M). This action will

hide all side views and allow you to properly edit in the main editing area.

3. Whenever you want to open a side view, go to Window > Show View (or hold Alt, then W, then S) and

choose the view you want to open. For example, to show the Elements view, you can hold Alt, then W,

then S, then E.

4. When you are done using the side view, go to the Window menu and select Hide current view (or hold

Alt, then W, then H) to hide the side view and return the focus to the main editing area.

Hints for the Visually Impaired

Here are a few hints for using Oxygen XML Editor if you are visually impaired:

• The top main menu contains actions to open, save, and close documents, switch between open

documents, or switch between the various editing modes for XML documents that are already open.

All actions in the main menu bar should have mnemonics making it possible to memorize various

shortcuts. For example, using the alt-w-s-e shortcut should open the Window menu, open the Show

view submenu from it and show the Elements view,

◦ The File menu contains actions to open, save, or close the currently edited XML document.

◦ The Edit menu contains actions to undo/redo or cut/copy/paste content. They also have the

usual shortcuts that can be used instead of directly invoking the actions from the menu.

◦ The Find menu contains an action to show the Find/Replace dialog box. Sometimes the JAWS

narrator overloads the CTRL+F shortcut and presents its own find/replace window but the

Oxygen XML Editor Find/Replace dialog box provides the ability to perform complex find/replace

operations in the open file.

https://github.com/nvaccess/nvda/issues/5989
https://github.com/nvaccess/nvda/issues/5989

Oxygen XML Editor 27.1 | 2 - Getting Started | 62

◦ In the Options menu, you have access to the Preferences dialog box that contains global

application settings and access to the Menu Shortcut Keys table where you can configure

shortcuts for the most commonly used actions.

◦ The Window menu includes actions to switch between open XML documents. Also, you can use

the Show view submenu to open a particular side view and move the focus to that view.

• An open XML document can be edited with accessibility support either in the Text editing mode (where

the XML tags are accessible in the edited content) or in the visual Author editing mode (where the XML

tags are hidden and only the text content is shown). You can switch between these editing modes by

using the Document > Edit Mode menu.

◦ Text mode provides access to the entire source document with all of its XML content, just like

you have in any text editing application.

Pressing the < key will present a list of available XML elements (on page 3295). If you do not

want to choose from the list whenever you want to insert an XML element, you have two choices:

▪ After the list of available XML elements is shown, you can press the ESC key to close it

and continue to manually insert the XML tag.

▪ You can disable the content completion list from the Options > Preferences > Editor /

Content Completion page by deselecting Enable Content Completion. After the content

completion is disabled, you can force it to be displayed by using the Ctrl+Space keyboard

shortcut.

In addition, using the Window > Show view submenu, you can change focus to the Attributes,

Elements, or Outline view. The Attributes view presents the existing and possible attributes

that can be inserted in an XML tag. The Elements view shows you the list of XML elements

that can be inserted at the cursor position (also, pressing F2 on a selected element presents its

annotation). The Outline view shows the current path in the XML structure.

◦ Author mode is useful for reviewing written XML content because it has support for change

tracking and for adding comments. Editing in the Author visual editing mode, you have access to

only the text content in the XML document.

Pressing Shift+F2 will read the current element context where the cursor is located. Pressing

Ctrl+Shift+F3 will read the current element context and the entire path in the XML structure

where the cursor is located. You can also use the Outline view to better understand the XML

structure.

In the Author editing mode, you can also use the Attributes and Elements views similar to using

them in the Text editing mode. Pressing Enter in the Author visual editing mode can also be

used to present a list of allowed elements at the current position.

Screen Reader Software (macOS)

On macOS, the application can be used with VoiceOver but is not rigorously tested with it. Because of

processing limitations of the VoiceOver application, various limitations may be encountered. To avoid

Oxygen XML Editor 27.1 | 2 - Getting Started | 63

blocking the application, when tree-structure user interface controls are used (e.g. the Project or Outline view),

if a node in the tree contains more than 500 child nodes, only the first 500 child nodes are accessible to the

screen reader.

Oxygen XML Editor VPAT Accessibility Conformance Report

A Voluntary Product Accessibility Template (VPAT) is a document that explains how information and

communication technology (ICT) products such as software, hardware, electronic content, and support

documentation meet (conform to) the Revised 508 Standards for IT accessibility. VPAT documents help

Federal agency contracting officials and government buyers to assess ICT for accessibility when doing market

research and evaluating proposals.

This document provides information about how Oxygen XML Editor addresses the accessibility requirements

defined in the international standards.

International Edition

VPAT® Version 2.3 – April 2019

Name of Product/Version

Oxygen XML Editor 27.1

Product Description

Oxygen XML Editor is a cross-platform application designed to accommodate all of your XML

editing, authoring, developing, and publishing needs.

Date

March 2023

Contact Information

support@oxygenxml.com

Notes

Oxygen XML Editor has been designed and enhanced to adhere to the U.S. Government Section

508 accessibility standards and the Web Content Accessibility Guidelines (WCAG). For details,

see Accessibility (on page 59).

Evaluation Methods Used:

The following applications were used for testing Oxygen XML Editor:

• NVDA assistive technology

• JAWS assistive technology

Applicable Standards/Guidelines

This report covers the degree of conformance for the following accessibility standards/guidelines:

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.w3.org/TR/WCAG21/

Oxygen XML Editor 27.1 | 2 - Getting Started | 64

Standard/Guideline Included In Report

Web Content Accessibility Guidelines 2.0
Level A - Yes

Level AA - Yes

Level AAA - No

Web Content Accessibility Guidelines 2.1
Level A - Yes

Level AA - Yes

Level AAA - No

Revised Section 508 standards published January 18, 2017 and corrected January

22, 2018

Yes

EN 301 549 Accessibility requirements suitable for public procurement of ICT prod

ucts and services in Europe - V2.1.2 (2018-08)

No

Terms

The terms used in the Conformance Level information are defined as follows:

• Supports: The functionality of the product has at least one method that meets the criterion without

known defects or meets with equivalent facilitation.

• Partially Supports: Some functionality of the product does not meet the criterion.

• Does Not Support: The majority of product functionality does not meet the criterion.

• Not Applicable: The criterion is not relevant to the product.

• Not Evaluated: The product has not been evaluated against the criterion. This can be used only in

WCAG 2.0 Level AAA.

WCAG 2.x Report

Tables 1 and 2 also document conformance with:

Revised Section 508: Chapter 5 – 501.1 Scope, 504.2 Content Creation or Editing, and Chapter 6 – 602.3

Electronic Support Documentation.

Note:

When reporting on conformance with the WCAG 2.x Success Criteria, they are scoped for full pages,

complete processes, and accessibility-supported ways of using technology as documented in

theWCAG 2.0 Conformance Requirements.

http://www.w3.org/TR/2008/REC-WCAG20-20081211
https://www.w3.org/TR/WCAG21
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/02.01.02_60/en_301549v020102p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/02.01.02_60/en_301549v020102p.pdf
https://www.w3.org/TR/WCAG20/#conformance-reqs

Oxygen XML Editor 27.1 | 2 - Getting Started | 65

Table 1: Success Criteria, Level A

Criteria Conformance Level Remarks and Explanations

1.1.1 Non-text Content (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Text alternatives are provided for non-

text content.

1.2.1 Audio-only and Video-only (Prere

corded) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Not Applicable The product does not play audio and

video content to end users.

1.2.2 Captions (Prerecorded) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Not Applicable The product does not provide pre-

recorded media that requires cap

tions.

1.2.3 Audio Description or Media Alterna

tive (Prerecorded) (Level A)

Also applies to:

Revised Section 508

Not Applicable The product does not provide pre-

recorded media that requires alternate

descriptions.

http://www.w3.org/TR/WCAG20/#text-equiv-all
http://www.w3.org/TR/WCAG20/#media-equiv-av-only-alt
http://www.w3.org/TR/WCAG20/#media-equiv-av-only-alt
http://www.w3.org/TR/WCAG20/#media-equiv-captions
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc

Oxygen XML Editor 27.1 | 2 - Getting Started | 66

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

1.3.1 Info and Relationships (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports
Information, structure, and relation

ships conveyed through presentation

can be programmatically determined

or are available in text, with excep

tions that include:

• Grid editing mode.

• Schema Design editing mode.

• The editing of profiling attribut

es using the Edit profiling at

tributes and Insert/Edit Topic

Reference dialog boxes.

• The editing of a DITA map in

the Author editing mode.

1.3.2 Meaningful Sequence (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
The product presents content in a

meaningful sequence.

Authors should use Unicode right-to-

left mark (RLM) or left-to-right mark

(LRM) to mix text direction inline.

1.3.3 Sensory Characteristics (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product provides textual identifi

cation for understanding and operat

ing content.

1.4.1 Use of Color (Level A)
Supports Color is not used as the only visual

means of conveying information, in

http://www.w3.org/TR/WCAG20/#content-structure-separation-programmatic
http://www.w3.org/TR/WCAG20/#content-structure-separation-sequence
http://www.w3.org/TR/WCAG20/#content-structure-separation-understanding
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-without-color

Oxygen XML Editor 27.1 | 2 - Getting Started | 67

Criteria Conformance Level Remarks and Explanations

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

dicating an action, prompting a re

sponse, or distinguishing a visual ele

ment.

1.4.2 Audio Control (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Not Applicable There is no sound that plays automati

cally by default.

2.1.1 Keyboard (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Most of the content is operable

through a keyboard interface, with ex

ceptions that include:

• Some toolbars in the applica

tion not being accessible via a

keyboard.

• Combo boxes and buttons lo

cated inside the table from the

dialog box used to create or ed

it a validation scenario.

2.1.2 No Keyboard Trap (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports
The product does not usually have

user interface elements that trap the

keyboard focus. Exceptions include

some trees located in side views and

dialog boxes.

http://www.w3.org/TR/WCAG20/#visual-audio-contrast-dis-audio
http://www.w3.org/TR/WCAG20/#keyboard-operation-keyboard-operable
http://www.w3.org/TR/WCAG20/#keyboard-operation-trapping

Oxygen XML Editor 27.1 | 2 - Getting Started | 68

Criteria Conformance Level Remarks and Explanations

2.1.4 Character Key Shortcuts (Level A

2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Not Applicable The product does not include charac

ter key shortcuts.

2.2.1 Timing Adjustable (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Not Applicable The product does not include time lim

its.

2.2.2 Pause, Stop, Hide (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Side views update their content auto

matically as a result of the user inter

action with the open documents. They

can be hidden or this functionality can

be inhibited. The product does not in

clude other elements that automati

cally move, blink, or scroll.

2.3.1 Three Flashes or Below Threshold

(Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not have content

that flashes more than three times in

any one second.

2.4.1 Bypass Blocks (Level A)

Also applies to:

Not Applicable The application does not contain

blocks of repeated content.

https://www.w3.org/TR/WCAG21/#character-key-shortcuts
http://www.w3.org/TR/WCAG20/#time-limits-required-behaviors
http://www.w3.org/TR/WCAG20/#time-limits-pause
http://www.w3.org/TR/WCAG20/#seizure-does-not-violate
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-skip

Oxygen XML Editor 27.1 | 2 - Getting Started | 69

Criteria Conformance Level Remarks and Explanations

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

2.4.2 Page Titled (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Each side view and dialog box in the

application has a title.

2.4.3 Focus Order (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Focusable components receive focus

in an order that preserves meaning

and operability.

2.4.4 Link Purpose (In Context) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
The purpose of each link can be deter

mined from the link text alone or from

the link text together with its program

matically-determined link context.

2.5.1 Pointer Gestures (Level A 2.1 only)

Also applies to:

Not Applicable The product does not have function

ality that requires multi-point or path-

based gestures.

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-title
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-focus-order
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-refs
https://www.w3.org/TR/WCAG21/#pointer-gestures

Oxygen XML Editor 27.1 | 2 - Getting Started | 70

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

2.5.2 Pointer Cancellation (Level A 2.1

only)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports Almost all pointer operations in the

product are activated on Up events.

Exceptions may include selection

changes in the dialog box for new files

and in the side views.

2.5.3 Label in Name (Level A 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The names of the user interface com

ponents contain the text that is pre

sented visually.

2.5.4 Motion Actuation (Level A 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Not Applicable The product does not contain func

tionality that can be operated by de

vice or user motion.

3.1.1 Language of Page (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Does Not Support The product does not report the de

fault language for each open docu

ment.

3.2.1 On Focus (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports No changes of context occur when

any component receives focus.

https://www.w3.org/TR/WCAG21/#pointer-cancellation
https://www.w3.org/TR/WCAG21/#label-in-name
https://www.w3.org/TR/WCAG21/#motion-actuation
http://www.w3.org/TR/WCAG20/#meaning-doc-lang-id
http://www.w3.org/TR/WCAG20/#consistent-behavior-receive-focus

Oxygen XML Editor 27.1 | 2 - Getting Started | 71

Criteria Conformance Level Remarks and Explanations

3.2.2 On Input (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Changing the setting of any user inter

face component does not automati

cally cause a change of context.

3.3.1 Error Identification (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Product shows error messages when

user input is invalid.

3.3.2 Labels or Instructions (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Most input areas in the product pro

vide labels and instructions. Excep

tions include the content completion

windows in the Text, Grid, Author, and

schema Design modes.

4.1.1 Parsing (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports All labels presenting HTML content in

the product have valid HTML content.

http://www.w3.org/TR/WCAG20/#consistent-behavior-unpredictable-change
http://www.w3.org/TR/WCAG20/#minimize-error-identified
http://www.w3.org/TR/WCAG20/#minimize-error-cues
http://www.w3.org/TR/WCAG20/#ensure-compat-parses

Oxygen XML Editor 27.1 | 2 - Getting Started | 72

Criteria Conformance Level Remarks and Explanations

4.1.2 Name, Role, Value (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Almost all visual components in the

product have identifiable names and

roles with exceptions that include:

• Grid editing mode.

• Schema Design editing mode.

Table 2: Success Criteria, Level AA

Criteria Conformance Level Remarks and Explanations

1.2.4 Captions (Live) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Not Applicable The product does not contain live au

dio content.

1.2.5 Audio Description (Prerecorded)

(Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Not Applicable The product does not provide prere

corded video content that requires au

dio description.

1.3.4 Orientation (Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports Content does not restrict its view and

operation to a single display orienta

tion.

http://www.w3.org/TR/WCAG20/#ensure-compat-rsv
http://www.w3.org/TR/WCAG20/#media-equiv-real-time-captions
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc-only
https://www.w3.org/TR/WCAG21/#orientation

Oxygen XML Editor 27.1 | 2 - Getting Started | 73

Criteria Conformance Level Remarks and Explanations

1.3.5 Identify Input Purpose (Level AA

2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Not Applicable The content does not contain input

fields that collect information about

the user.

1.4.3 Contrast (Minimum) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The product has sufficient contrast

between the foreground and back

ground colors, with few exceptions, in

cluding:

• Change tracking content in the

document for some of the au

thor colors.

• Change tracking content in

some review panel items, when

the item is selected.

• Placeholders shown in empty

elements.

• Comments marked as done.

1.4.4 Resize text (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports
In most situations, text in the main

editing area, side views, and dialog

boxes can be resized to reasonable di

mensions by increasing the font with

out loss of content or functionality

and without using assistive technolo

gy.

Sizes of certain text components can

not be increased.

1.4.5 Images of Text (Level AA)

Also applies to:

Revised Section 508

Supports The few buttons with icons containing

text characters also provide text alter

natives.

https://www.w3.org/TR/WCAG21/#identify-input-purpose
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-contrast
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-scale
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-presentation

Oxygen XML Editor 27.1 | 2 - Getting Started | 74

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

1.4.10 Reflow (Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports
The majority of the user interface con

trols can be presented without loss of

information or functionality, and with

out requiring scrolling in two dimen

sions. In the editor area, the text will

re-flow depending on the editor mode

(Text/Grid/Author/Design) and both

horizontal and vertical scrolls may be

needed.

1.4.11 Non-text Contrast (Level AA 2.1

only)

Also applies to:

Revised Section 508 – Does not apply

Supports
User interface components and states

have sufficient contrast against adja

cent colors.

1.4.12 Text Spacing (Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports There is no loss of content or func

tionality occurs by setting line height

(line spacing), spacing following para

graphs, letter spacing, and word spac

ing.

1.4.13 Content on Hover or Focus (Level

AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports
The tooltips for most user interface

simple components (buttons) are not

hoverable and persistent.

2.4.5 Multiple Ways (Level AA)

Also applies to:

Revised Section 508

Supports
There are multiple ways to navigate

between the open documents.

https://www.w3.org/TR/WCAG21/#reflow
https://www.w3.org/TR/WCAG21/#non-text-contrast
https://www.w3.org/TR/WCAG21/#non-text-contrast
https://www.w3.org/TR/WCAG21/#text-spacing
https://www.w3.org/TR/WCAG21/#content-on-hover-or-focus
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-mult-loc

Oxygen XML Editor 27.1 | 2 - Getting Started | 75

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

2.4.6 Headings and Labels (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
Headings and labels describe the top

ic or purpose.

2.4.7 Focus Visible (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports
The product has a visible indication

of focus for almost all user interface

controls (buttons, text fields, combo

boxes, etc.) Exceptions include:

• Combo boxes located in the DI

TA Maps Manager and Share

Point Browser view.

• Filtering buttons located in the

Templates tab from the New/

Edit scenario and the DITA

Reusable Components view.

• Tab buttons located in the

Insert/Edit Topic Reference di

alog box.

3.1.2 Language of Parts (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Does Not Support
The language of parts is not specified.

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-descriptive
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-focus-visible
http://www.w3.org/TR/WCAG20/#meaning-other-lang-id

Oxygen XML Editor 27.1 | 2 - Getting Started | 76

Criteria Conformance Level Remarks and Explanations

3.2.3 Consistent Navigation (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Supports The product has a consistent naviga

tion mechanism.

3.2.4 Consistent Identification (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Supports
The product components are identi

fied consistently.

3.3.3 Error Suggestion (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product provides suggestions for

the input error if there are any avail

able.

3.3.4 Error Prevention (Legal, Financial,

Data) (Level AA)

Also applies to:

Revised Section 508

Not Applicable The product does not process legal

commitments or financial transac

tions or modify user-controllable data.

http://www.w3.org/TR/WCAG20/#consistent-behavior-consistent-locations
http://www.w3.org/TR/WCAG20/#consistent-behavior-consistent-functionality
http://www.w3.org/TR/WCAG20/#minimize-error-suggestions
http://www.w3.org/TR/WCAG20/#minimize-error-reversible
http://www.w3.org/TR/WCAG20/#minimize-error-reversible

Oxygen XML Editor 27.1 | 2 - Getting Started | 77

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

4.1.3 Status Messages(Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Not Applicable The product does not contain status

messages as defined by this criterion.

Table 3: Success Criteria, Level AAA

Criteria Conformance Level Remarks and Explanations

1.2.6 Sign Language (Prerecorded) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.7 Extended Audio Description (Prere

corded) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.8 Media Alternative (Prerecorded)

(Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.9 Audio-only (Live) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.3.6 Identify Purpose (Level AAA 2.1 on

ly)

Revised Section 508 – Does not apply

Not Evaluated

1.4.6 Contrast Enhanced (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

https://www.w3.org/TR/WCAG21/#status-messages
http://www.w3.org/TR/WCAG20/#media-equiv-sign
http://www.w3.org/TR/WCAG20/#media-equiv-extended-ad
http://www.w3.org/TR/WCAG20/#media-equiv-extended-ad
http://www.w3.org/TR/WCAG20/#media-equiv-text-doc
http://www.w3.org/TR/WCAG20/#media-equiv-live-audio-only
https://www.w3.org/TR/WCAG21/#identify-purpose
https://www.w3.org/TR/WCAG21/#identify-purpose
http://www.w3.org/TR/WCAG20/#visual-audio-contrast7

Oxygen XML Editor 27.1 | 2 - Getting Started | 78

Criteria Conformance Level Remarks and Explanations

1.4.7 Low or No Background Audio (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.8 Visual Presentation (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.9 Images of Text (No Exception) Con

trol (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.1.3 Keyboard (No Exception) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.3 No Timing (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.4 Interruptions (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.5 Re-authenticating (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.6 Timeouts (Level AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

2.3.2 Three Flashes (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.3.3 Animation from Interactions (Level

AAA 2.1 only)

Not Evaluated

http://www.w3.org/TR/WCAG20/#visual-audio-contrast-noaudio
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-visual-presentation
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-images
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-images
http://www.w3.org/TR/WCAG20/#keyboard-operation-all-funcs
http://www.w3.org/TR/WCAG20/#time-limits-no-exceptions
http://www.w3.org/TR/WCAG20/#time-limits-postponed
http://www.w3.org/TR/WCAG20/#time-limits-server-timeout
https://www.w3.org/TR/WCAG21/#timeouts
http://www.w3.org/TR/WCAG20/#seizure-three-times
https://www.w3.org/TR/WCAG21/#animation-from-interactions

Oxygen XML Editor 27.1 | 2 - Getting Started | 79

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

2.4.8 Location (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.4.9 Link Purpose (Link Only) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.4.10 Section Headings (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.5.5 Target Size (Level AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

2.5.6 Concurrent Input Mechanisms (Lev

el AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

3.1.3 Unusual Words (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.4 Abbreviations (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.5 Reading Level (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.6 Pronunciation (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.2.5 Change on Request (Level AAA)
Not Evaluated

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-location
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-link
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-headings
https://www.w3.org/TR/WCAG21/#target-size
https://www.w3.org/TR/WCAG21/#concurrent-input-mechanisms
http://www.w3.org/TR/WCAG20/#meaning-idioms
http://www.w3.org/TR/WCAG20/#meaning-located
http://www.w3.org/TR/WCAG20/#meaning-supplements
http://www.w3.org/TR/WCAG20/#meaning-pronunciation
http://www.w3.org/TR/WCAG20/#consistent-behavior-no-extreme-changes-context

Oxygen XML Editor 27.1 | 2 - Getting Started | 80

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

3.3.5 Help (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.3.6 Error Prevention (All) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

Revised Section 508 Report

N/A

Chapter 3: Functional Performance Criteria (FPC)

Criteria Conformance Level Remarks and Explanations

302.1 Without Vision
Partially Supports

Much of the product is operable with

out vision. As noted in 1.3.1 Info and

Relationships, some structural and

hierarchical information is not com

municated to screen readers. Also, as

noted in 2.1.1 Keyboard, some com

ponents are not accessible via key

board.

302.2 With Limited Vision Supports
The product is operable with limited vi

sion.

302.3 Without Perception of Color
Supports Color is not used as the only visual

means of conveying information, in

dicating an action, prompting a re

sponse, or distinguishing a visual ele

ment.

302.4 Without Hearing
Supports The product does not require hearing

for use.

302.5 With Limited Hearing
Supports The product does not require hearing

for use.

http://www.w3.org/TR/WCAG20/#minimize-error-context-help
http://www.w3.org/TR/WCAG20/#minimize-error-reversible-all

Oxygen XML Editor 27.1 | 2 - Getting Started | 81

Criteria Conformance Level Remarks and Explanations

302.6 Without Speech
Supports The product does not require speech

for use.

302.7 With Limited Manipulation
Partially Supports Most content of the product is opera

ble for users with limited manipulation

who rely on keyboard access. As not

ed in 2.1.1 Keyboard, some compo

nents are not accessible via keyboard.

302.8 With Limited Reach and Strength
Supports The product is functional with limited

reach and limited strength. It supports

operating system tools such as Sticky

Keys and FilterKeys.

302.9 With Limited Language, Cognitive,

and Learning Abilities

Partially Supports The product is operable by users with

limited language, cognitive, and learn

ing abilities. To accommodate users

with limited cognition, the UI provides

icons, text, or a combination of both,

for controls. It provides the ability to

change the interface language to 6

languages.

Chapter 4: Hardware

Notes: Not Applicable - Oxygen XML Editor is not a hardware product.

Chapter 5: Software

501 General

Criteria Conformance Level Remarks and Explanations

501.1 Scope – Incorporation of WCAG 2.0

AA

See WCAG 2.x section

(on page 64)

See information in WCAG section

502 Interoperability with Assistive Technology

Criteria Conformance Level Remarks and Explanations

502.2.1 User Control of Accessibility Fea

tures

Not Applicable The product is not platform software.

Oxygen XML Editor 27.1 | 2 - Getting Started | 82

Criteria Conformance Level Remarks and Explanations

502.2.2 No Disruption of Accessibility Fea

tures

Supports The product does not disrupt platform

features that are defined in the plat

form documentation as accessibility

features.

502.3 Accessibility Services

Criteria Conformance Level Remarks and Explanations

502.3.1 Object Information Partially Supports Most of the object information can

be programmatically determined. As

noted in 1.3.1 Info and Relationships,

the content from the Grid and schema

Design editing modes is not exposed

programmatically.

502.3.2 Modification of Object Information
Partially Supports States and properties that can be set

by the user can be set programmati

cally. As noted in 1.3.1 Info and Rela

tionships, there are few exceptions.

502.3.3 Row, Column, and Headers
Partially Supports The insert table feature in the editing

area of the product does not commu

nicate information about the headers.

Row and column information is pre

sented in a way that can be used by

assistive technology.

502.3.4 Values
Partially Supports The current values of an object can

be programmatically determined. As

noted in 1.3.1 Info and Relationships,

there are few exceptions. The con

tent from the Grid and schema De

sign editing modes is not exposed

programmatically.

502.3.5 Modification of Values
Partially Supports

Values that can be set by the user are

capable of being set programmatical

ly. As noted in 1.3.1 Info and Relation

ships, there are few exceptions. The

content from the Grid and schema De

Oxygen XML Editor 27.1 | 2 - Getting Started | 83

Criteria Conformance Level Remarks and Explanations

sign editing modes cannot be set pro

grammatically.

502.3.6 Label Relationships
Partially Supports

Information, structure, and relation

ships conveyed through presentation

can be programmatically determined

or are available in text. As noted in

1.3.1 Info and Relationships, there are

few exceptions.

502.3.7 Hierarchical Relationships
Partially Supports

The hierarchical relationships are, in

general, accessible programmatical

ly, but as noted in 1.3.1 Info and Rela

tionships, there are few exceptions.

502.3.8 Text
Partially Supports The content of text objects, text at

tributes, and the boundary of text ren

dered to the screen is programmati

cally determinable. As noted in 1.3.1

Info and Relationships, there are few

exceptions, including the text from the

Grid and schema Design modes.

502.3.9 Modification of Text
Partially Supports Text can be set programmatically, in

cluding through assistive technolo

gy. Text in the editor can be modified

using the keyboard. As noted in 1.3.1

Info and Relationships, the text con

tent from the Grid and schema Design

editing modes cannot be accessed

programmatically.

502.3.10 List of Actions
Supports Actions that can be executed on an

object can be determined program

matically from the context menu or

content completion menu.

502.3.11 Actions on Objects
Supports Actions on objects can performed by

users, including those using assistive

technologies.

502.3.12 Focus Cursor
Partially Supports The focus location, selection state,

and text insertion point information

Oxygen XML Editor 27.1 | 2 - Getting Started | 84

Criteria Conformance Level Remarks and Explanations

can be determined programmatical

ly. As noted in 1.3.1 Info and Relation

ships, the content from the Grid and

schema Design editing modes is not

exposed programmatically.

502.3.13 Modification of Focus Cursor
Partially Supports The focus location, selection state

and text insertion can be controlled

programmatically or through the key

board. As noted in 1.3.1 Info and Re

lationships, the content from the Grid

and schema Design editing modes

cannot be accessed programmatical

ly.

502.3.14 Event Notification
Supports

The changes in states and other prop

erties are communicated through no

tifications that are communicated to

assistive technology.

502.4 Platform Accessibility Features
Not Applicable This product is not platform software.

503 Applications

Criteria Conformance Level Remarks and Explanations

503.2 User Preferences
Partially Supports The product permits some of the user

preferences from platform settings.

Exceptions include

• Cursor thickness is not modi

fied in Text, Author, and Grid

editing modes.

• Some elements may not use

the platform font size.

The product provides custom pref

erences for changing the color, font

type, and font size.

503.3 Alternative User Interfaces
Not Applicable The application does not provide an

alternative user interface that func

tions as assistive technology.

Oxygen XML Editor 27.1 | 2 - Getting Started | 85

503.4 User Controls for Captions and Audio Description

Criteria Conformance Level Remarks and Explanations

503.4.1 Caption Controls
Not Applicable The product does not provide con

trols for volume adjustment.

503.4.2 Audio Description Controls
Not Applicable The product does not provide con

trols for program selection.

504 Authoring Tools

Criteria Conformance Level Remarks and Explanations

504.2 Content Creation or Editing (if not

authoring tool, enter “not applicable”)

See the WCAG 2.x sec

tion (on page 64)

See information in WCAG section

504.2.1 Preservation of Information Pro

vided for Accessibility in Format Conver

sion

Partially Supports For the main XML vocabulary support

ed in the application (DITA), the ac

cessibility information is preserved

in the generated main formats (Web

Help, PDF).

504.2.2 PDF Export
Supports The product is capable of publishing

PDF files that conform to PDF/UA-1.

504.3 Prompts
Partially Supports For DITA documents, there is an op

tional Schematron that performs ac

cessibility checks on the content and

prompts the authors whenever it de

tects errors.

504.4 Templates
Does Not Support The product does provide several

templates. However, these templates

offer only minimal structure and do

not mark content in ways that pro

mote following the WCAG success

criteria. The existing templates can be

customized.

Chapter 6: Support Documentation and Services

601.1 Scope

602 Support Documentation

Oxygen XML Editor 27.1 | 2 - Getting Started | 86

Criteria Conformance Level Remarks and Explanations

602.2 Accessibility and Compatibility Fea

tures

Partially Supports The documentation of the product

lists and explains the accessibility and

compatibility features of the product.

602.3 Electronic Support Documentation Partially Supports The self-service documentation is

generated with Oxygen XML Web

Help. You can find its VPAT statement

here.

602.4 Alternate Formats for Non-Electron

ic Support Documentation

Not Applicable Documentation is not provided in non-

electronic formats.

603 Support Services

Criteria Conformance Level Remarks and Explanations

603.2 Information on Accessibility and

Compatibility Features

Supports The support services cover the acces

sibility features.

603.3 Accommodation of Communication

Needs

Supports Support is provided over a variety of

channels including email and phone.

Legal Disclaimer

This report describes Oxygen XML Editor ability to support the stated VPAT Standards/Guidelines, subject

to Syncro Soft's interpretation of the same. This accessibility report is provided for informational purposes

only, and the contents hereof are subject to change without notice. SYNCRO SOFT MAKES NO WARRANTIES,

EXPRESS OR IMPLIED, IN THIS DOCUMENT. For more information regarding the accessibility status, please

contact us at sales@oxygenxml.com.

© 2020 Syncro Soft SRL. All rights reserved.

https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-vpat.html

3.
Installation
Oxygen XML Editor is available on Windows, Linux, and macOS and there are a variety of methods and options

for installing and running Oxygen XML Editor on your system or server. This section also includes information

about registering, transferring, or releasing licenses, upgrading, installing add-ons, and uninstalling.

Choosing How Oxygen XML Editor Runs

You can install Oxygen XML Editor to run in several ways:

• As a desktop application (running standalone or as an Eclipse plugin) on Windows, Linux, or macOS.

• As a desktop application (running standalone or as an Eclipse plugin) on a Unix or Linux server or on

Windows Terminal Server.

Choosing an Installer

You also have a choice of several different installers:

• The native installer for your platform (Windows, Linux, or macOS).

• On Windows and Linux, the native installer can also run in unattended mode.

Choosing a License Option

You must obtain and register a license (on page 105) to run Oxygen XML Editor.

You can choose from two types of licenses:

• A named-user license, which can be used by a single person on multiple computers.

• A floating license, which can be used by different people at different times. Only one person can use a

floating license at a time.

Upgrading, Transferring, and Uninstalling.

You can also upgrade (on page 124) Oxygen XML Editor, transfer a license (on page 107), or uninstall (on

page 131) Oxygen XML Editor.

Getting Help With Installation

If you need help, email support at: support@oxygenxml.com.

Oxygen XML Editor 27.1 | 3 - Installation | 88

Installing Oxygen XML Editor on Windows
System Requirements

Operating Systems

The product has been fully tested on Windows versions 10 and 11. The latest version of Oxygen

XML Editor might work on other versions of Windows, but they have not been officially tested.

CPU

• Minimum - Intel/AMD Dual-core class CPU, 2 GHz

• Recommended - Quad-core class processor

Memory

• Minimum - 3 GB of RAM

• Recommended - 8 GB of RAM

Storage

• Minimum - 1 GB free disk space

• Recommended - 2 GB free disk space

Java

Oxygen XML Editor only officially supports Java Virtual Machines with version 17 from Oracle

or Eclipse Adoptium. If you use the native Windows installer, Oxygen XML Editor will be installed

with its own copy of Java with the specific update version that has been thoroughly tested.

All Platforms Package

If you use the all platforms package, your system must have a compatible Java 17

virtual machine installed. To see the exact Java update version that is supported,

go to www.oxygenxml.com, navigate to the Download page for the particular

product you are installing, and click on the tab for your particular platform.

Note:

Oxygen XML Editor may work with other versions of Java, but since

Oxygen XML Editor has only been thoroughly tested with specific versions,

there is no guarantee that it will be stable with any other Java version.

Oxygen XML Editor uses the following rules to determine which installed version of

Java to use:

https://www.oxygenxml.com

Oxygen XML Editor 27.1 | 3 - Installation | 89

1. If you install using the native Windows installer, which installs a version of

Java as part of the Oxygen XML Editor installation, the version in the jre

subdirectory of the installation directory is used.

2. Otherwise, if the Windows environment variable JAVA_HOME is set, Oxygen

XML Editor uses the Java version pointed to by this variable.

3. Otherwise, the version of Java pointed to by your PATH environment variable

is used.

If you run Oxygen XML Editor using the batch file, oxygen.bat, you can edit the

batch file to specify a particular version to use.

Windows Installer

To install Oxygen XML Editor using the Windows installer, follow these steps:

1. Make sure that your system meets the system requirements (on page 88).

2. Download the Windows installer.

3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on

the download page.

4. Run the installer and follow the instructions in the installation program.

5. Start Oxygen XML Editor using one of the following methods:

◦ Use one of the shortcuts created by the installer.

◦ Run oxygen.bat, which is located in the installation directory.

6. To license your copy of Oxygen XML Editor, go to Help > Register and enter your license information

(on page 105).

Windows Unattended Installation

You can run the installation in unattended mode by running the installer from the command line with the -q

parameter. By default, running the installer in unattended mode installs Oxygen XML Editor with the default

options and does not overwrite existing files. You can change various options for the unattended installer

using the installer command-line parameters.

Windows Installer Command-Line Reference

The Oxygen XML Editor installer for Windows supports a variety of command-line parameters:

-q

Instructs the installer to run in unattended mode. The installer will not prompt the user for input

during the install. Default settings will be used for all options unless a response.varfile (on

page 92) is specified using the -varfile option.

-overwrite

https://www.oxygenxml.com/download.html
http://en.wikipedia.org/wiki/Md5sum

Oxygen XML Editor 27.1 | 3 - Installation | 90

In unattended mode, the installer does not overwrite files with the same name if a previous

version of the Oxygen XML Editor is installed in the same folder. The -overwrite parameter added

after the -q parameter forces the overwriting of these files.

-console

Displays a console during an unattended installation.

Note:

If you want the installer to run in the foreground, you need to use the start /wait

command (for example, start /wait oxygen.exe -q -console). Otherwise, it will run in

the background.

-varfile

Specifies the location of a response.varfile (on page 92), normally to be used during an

unattended installation.

-c

Allows users to configure the installation by inputting answers to installation questions in the

command line.

Tip:

Using this parameter is the best way to use the installer for people who are visually

impaired.

-V[variable name]=[variable value]

This command-line parameter can be used to define any of the variables listed below to be used

by an installation.

EXAMPLE:

oxygen.exe -q -overwrite -console -VautoVersionChecking=false

Command-Line Variables for Preconfiguring License Server Details

For organizations that use a license server to manage user licenses, the Oxygen XML Editor installer also

supports the following command-line variables used for preconfiguring license server details:

autoVersionChecking

Used for automatic version checking. Possible values are true (default) or false.

backup.license.servlet.url

Specifies the URL of the backup HTTP license server.

backup.license.servlet.user.name

Specifies the user name for the backup HTTP license server.

Oxygen XML Editor 27.1 | 3 - Installation | 91

backup.license.servlet.password

Specifies the password for the backup HTTP license server, in clear form (will be stored

encrypted).

backup.license.servlet.password.encrypted

Specifies the password for the HTTP license server, in encrypted form. Can be

obtained from an entry with the same name in an existing license.xml file (found in:

[user_home_directory]\AppData\Roaming\com.oxygenxml).

downloadResources

Used to download resources (links to video demonstrations, webinars, and upcoming events)

from https://www.oxygenxml.com to populate the application welcome screen. Possible values

are true (default) or false.

license.servlet.url

Specifies the URL of the HTTP license server.

license.servlet.user.name

Specifies the user name for the HTTP license server.

license.servlet.password

Specifies the password for the HTTP license server, in clear form (will be stored encrypted).

license.servlet.password.encrypted

Specifies the password for the HTTP license server, in encrypted form. Can be

obtained from an entry with the same name in an existing license.xml file (found in:

[user_home_directory]\AppData\Roaming\com.oxygenxml).

reportProblem

Used to report a problem encountered while using Oxygen XML Editor. Possible values are true

(default) or false.

EXAMPLE:

oxygen.exe "-Vlicense.servlet.url=http://main.licenseserver:8080/oXygenLicenseServlet/license-servlet"

 "-Vlicense.servlet.user.name=user" "-Vlicense.servlet.password=mypass"

 "-Vbackup.license.servlet.url=http://backup.licenseserver:8080/oXygenLicenseServlet/license-servlet"

 "-Vbackup.license.servlet.user.name=user" "-Vbackup.license.servlet.password=mypass"

Note:

For information about deploying and registering floating licenses for multiple users, see Registering

Floating Licenses for Multiple Users (on page 111).

https://www.oxygenxml.com

Oxygen XML Editor 27.1 | 3 - Installation | 92

Windows Installer response.varfile

The Oxygen XML Editor installer for Windows also creates a file called response.varfile, which records

the choices that the user made when running the installer interactively. The generated response file is found in

the [OXYGEN_INSTALL_DIR]/.install4j folder. You can use the response.varfile to set the options

for an unintended install (on page 89). For more information about the response.varfile format, see

install4j site.

Variables (can be used in the response.varfile or from the command line)

The following variables are supported in the response.varfile (or from the command line):

autoVersionChecking

Used for automatic version checking. Possible values are true (default) or false.

checkNotifications

Used to control checking for application-related news and events. Possible values

are true (default) or false.

downloadResources

Used to download resources (links to video demonstrations, webinars, and

upcoming events) from https://www.oxygenxml.com to populate the application

welcome screen. Possible values are true (default) or false.

reportProblem

Used to report a problem encountered while using Oxygen XML Editor. Possible

values are true (default) or false.

installAddons

Set to false to prohibit the application from allowing the end user to install add-

ons.

installAIPositronAddons

Set to false to prohibit the application from allowing the end user to install any of

the AI Positron Assistant add-ons.

Installing Oxygen XML Editor on macOS
System Requirements

Operating system

The product has been fully tested on macOS 13 (Ventura), 14 (Sonoma), and 15 (Sequoia). The

latest version of Oxygen XML Editor might work on older versions of macOS, but they have not

been officially tested.

CPU

http://resources.ej-technologies.com/install4j/help/doc/index.html#install4j.helptopics.installers.responseFile
https://www.oxygenxml.com

Oxygen XML Editor 27.1 | 3 - Installation | 93

• Minimum - Intel-based Dual-core Mac, 2 GHz

• Recommended - Apple M1 or newer

Memory

• Minimum - 4 GB of RAM

• Recommended - 8 GB of RAM

Storage

• Minimum - 1 GB free disk space

• Recommended - 2 GB free disk space

macOS Installation

To install Oxygen XML Editor on macOS, follow these steps:

1. Download the macOS installation package (oxygen.dmg).

2. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on

the download page.

3. Double-click the oxygen.dmg disk image file to mount it.

4. Drag/Copy the Oxygen XML Editor folder to your /Applications folder (or another location if you

wish).

Warning:

If you receive a warning that an Oxygen XML Editor installation folder already exists in

the Applications folder, do not attempt to merge the two installations. Instead, move the

old installation folder to the trash bin before installing the application. If you are prompted to

Replace the old folder, cancel the installation, move the old folder to the trash bin, and restart

the installation process.

Important:

Do not copy the files/folders from within the Oxygen XML Editor folder (always copy the

folder itself), otherwise you will omit invisible files/folders and the application may no longer

start.

5. Start Oxygen XML Editor, using one of the following methods:

◦ Double-click Oxygen XML Editor.app.

◦ Run sh oxygen.sh in the command-line interface.

6. To license your copy of Oxygen XML Editor, go to Help > Register to enter your license key (on page

105).

https://www.oxygenxml.com/download.html
http://en.wikipedia.org/wiki/Md5sum

Oxygen XML Editor 27.1 | 3 - Installation | 94

macOS Unattended Installation

To install Oxygen XML Editor on macOS in unattended mode, follow these steps:

1. Download the macOS installation package (oxygen.dmg).

2. Mount the oxygen.dmg file in the command line.

hdiutil attach oxygen.dmg|oxygenAuthor.dmg|oxygenDeveloper.dmg

3. Copy the oxygen folder for the particular version from the mounted volume to the Applications

folder (or another folder where you want to install it), as in the following example:

cp -aR "/Volumes/Oxygen XML Editor 27.1/Oxygen XML Editor" /Applications/|

4. Eject the mounted disc image:

hdiutil detach "/Volumes/Oxygen XML Editor 27.1"|

Note:

For information about deploying and registering floating licenses for multiple users, see Registering

Floating Licenses for Multiple Users (on page 111).

Installing Oxygen XML Editor on Linux
System Requirements

Operating System

The product has been fully tested on Ubuntu 22.04. The latest version of Oxygen XML Editor

might work on other flavors/versions of Linux, but they have not been officially tested.

CPU

• Minimum - Intel/AMD Dual-core class CPU, 2 GHz

• Recommended - Quad-core class processor

Memory

• Minimum - 3 GB of RAM

• Recommended - 8 GB of RAM

Storage

• Minimum - 1 GB free disk space

• Recommended - 2 GB free disk space

Java

https://www.oxygenxml.com/download.html

Oxygen XML Editor 27.1 | 3 - Installation | 95

Oxygen XML Editor only officially supports Java Virtual Machines with version 17 from Oracle or

Eclipse Adoptium. If you use the Linux installer, Oxygen XML Editor will be installed with its own

copy of Java with the specific update version that has been thoroughly tested.

All Platforms Package

If you use the all platforms package, your system must have a compatible Java 17

virtual machine installed. To see the exact Java update version that is supported,

go to www.oxygenxml.com, navigate to the Download page for the particular

product you are installing, and click on the tab for your particular platform.

Note:

Oxygen XML Editor may work with other versions of Java, but since

Oxygen XML Editor has only been thoroughly tested with specific versions,

there is no guarantee that it will be stable with any other Java version.

Attention:

Oxygen XML Editor does not work with the GNU libgcj Java Virtual

Machine.

Oxygen XML Editor uses the following rules to determine which installed version of

Java to use:

1. If you used the Linux installer, which installs a version of Java as part of the

Oxygen XML Editor installation, the version in the jre subdirectory of the

installation directory is used.

2. Otherwise, if the Linux environment variable JAVA_HOME is set, Oxygen XML

Editor uses the Java version pointed to by this variable.

3. Otherwise, the version of Java pointed to by your PATH environment variable

is used.

You can also change the version of the Java Virtual Machine that runs Oxygen XML

Editor by editing the script file, oxygen.sh.

X.org

The version of Java bundled with Oxygen XML Editor requires X.org (Wayland is not supported).

Linux Installer

To install Oxygen XML Editor using the Linux installer, follow these steps:

1. Make sure that your system meets the system requirements (on page 94).

2. Download the Linux installer.

3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on

the download page.

https://www.oxygenxml.com
https://www.oxygenxml.com/download.html
http://en.wikipedia.org/wiki/Md5sum

Oxygen XML Editor 27.1 | 3 - Installation | 96

4. Run the installer and follow the instructions in the installation program.

Note:

For example, open a shell, cd to the installation directory, and at the prompt type sh ./

oxygen-32bit.sh or sh ./oxygen-64bit.sh, depending on which installer you

downloaded.

Warning:

If you are running the installer as root and your Linux distribution uses Wayland (such as

Ubuntu 17.10 or Fedora 25), before running the installer, the local user must first allow the root

user to access the X server by running the following command (as the local user):

xhost +SI:localuser:root

5. Start Oxygen XML Editor using one of the following methods:

◦ Use the oxygen shortcut created by the installer.

Note:

For Ubuntu 17.10 (or later), a security dialog box will appear the first time you start the

application where you need to select Trust and Launch to continue. This dialog box will

not appear on subsequent launches.

◦ From a command line, type sh oxygen.sh. This file is located in the installation folder.

6. To license your copy of Oxygen XML Editor go to Help > Register and enter your license information (on

page 105).

Linux Unattended Installation

You can run the installation in unattended mode by running the installer from the command line with the -q

parameter. By default, running the installer in unattended mode installs Oxygen XML Editor with the default

options and does not overwrite existing files. You can change various options for the unattended installer

using the installer command-line parameters.

Linux Installer Command-Line Reference

The Oxygen XML Editor installer for Linux supports a variety of command-line parameters:

-q

Instructs the installer to run in unattended mode. The installer will not prompt the user for input

during the install. Default settings will be used for all options unless a response.varfile (on

page 98) is specified using the -varfile option.

-overwrite

Oxygen XML Editor 27.1 | 3 - Installation | 97

In unattended mode, the installer does not overwrite files with the same name if a previous

version of the Oxygen XML Editor is installed in the same folder. The -overwrite parameter added

after the -q parameter forces the overwriting of these files.

-console

Displays a console during the installation.

-varfile

Specifies the location of a response.varfile (on page 98), normally to be used during an

unattended installation.

-V

Used to define a variable parameter (on page 98) to be used by an installation.

EXAMPLE:

oxygen.sh -q -overwrite -console -VautoVersionChecking=false

Command-Line Variables for Preconfiguring License Server Details

For organizations that use a license server to manage user licenses, the Oxygen XML Editor installer also

supports the following command-line variables used for preconfiguring license server details:

autoVersionChecking

Used for automatic version checking. Possible values are true (default) or false.

backup.license.servlet.url

Specifies the URL of the backup HTTP license server.

backup.license.servlet.user.name

Specifies the user name for the backup HTTP license server.

backup.license.servlet.password

Specifies the password for the backup HTTP license server, in clear form (will be stored

encrypted).

backup.license.servlet.password.encrypted

Specifies the password for the HTTP license server, in encrypted form. Can be

obtained from an entry with the same name in an existing license.xml file (found in:

[user_home_directory]\AppData\Roaming\com.oxygenxml).

downloadResources

Used to download resources (links to video demonstrations, webinars, and upcoming events)

from https://www.oxygenxml.com to populate the application welcome screen. Possible values

are true (default) or false.

license.servlet.url

Specifies the URL of the HTTP license server.

https://www.oxygenxml.com

Oxygen XML Editor 27.1 | 3 - Installation | 98

license.servlet.user.name

Specifies the user name for the HTTP license server.

license.servlet.password

Specifies the password for the HTTP license server, in clear form (will be stored encrypted).

license.servlet.password.encrypted

Specifies the password for the HTTP license server, in encrypted form. Can be

obtained from an entry with the same name in an existing license.xml file (found in:

[user_home_directory]\AppData\Roaming\com.oxygenxml).

reportProblem

Used to report a problem encountered while using Oxygen XML Editor. Possible values are true

(default) or false.

EXAMPLE:

oxygen.sh "-Vlicense.servlet.url=http://main.licenseserver:8080/oXygenLicenseServlet/license-servlet"

 "-Vlicense.servlet.user.name=user" "-Vlicense.servlet.password=mypass"

 "-Vbackup.license.servlet.url=http://backup.licenseserver:8080/oXygenLicenseServlet/license-servlet"

 "-Vbackup.license.servlet.user.name=user" "-Vbackup.license.servlet.password=mypass"

Note:

For information about deploying and registering floating licenses for multiple users, see Registering

Floating Licenses for Multiple Users (on page 111).

Linux Installer response.varfile

The Oxygen XML Editor installer for Linux also creates a file called response.varfile, which records the

choices that the user made when running the installer interactively. The generated response file is found in

the [OXYGEN_INSTALL_DIR]/.install4j folder. You can use the response.varfile to set the options

for an unintended install (on page 96). For more information about the response.varfile format, see

install4j site.

Variable Parameters (can be used in the response.varfile or from the command line)

The following variable parameters are supported in the response.varfile (or from the

command line):

autoVersionChecking

Used for automatic version checking. Possible values are true (default) or false.

checkNotifications

Used to control checking for application-related news and events. Possible values

are true (default) or false.

reportProblem

http://resources.ej-technologies.com/install4j/help/doc/index.html#install4j.helptopics.installers.responseFile

Oxygen XML Editor 27.1 | 3 - Installation | 99

Used to report a problem encountered while using Oxygen XML Editor. Possible

values are true (default) or false.

downloadResources

Used to download resources (links to video demonstrations, webinars, and

upcoming events) from https://www.oxygenxml.com to populate the application

welcome screen. Possible values are true (default) or false.

installAddons

Set to false to prohibit the application from allowing the end user to install add-

ons.

installAIPositronAddons

Set to false to prohibit the application from allowing the end user to install any of

the AI Positron Assistant add-ons.

Installing Oxygen XML Editor on Windows Server
System Requirements

Operating systems

Windows Server 2012 or Windows Server 2012 R2

CPU

• Minimum - Intel/AMD Dual-core class CPU, 2 GHz

• Recommended - Quad-core class processor

Memory

• Minimum values per user - 1 GB of RAM

• Recommended values per concurrent user - 2 GB of RAM

Storage

• Minimum - 1 GB free disk space

• Recommended - 2 GB free disk space

Java

Oxygen XML Editor only officially supports Java Virtual Machines with version 17 from Oracle

or Eclipse Adoptium. If you use the native Windows installer, Oxygen XML Editor will be installed

with its own copy of Java with the specific update version that has been thoroughly tested.

All Platforms Package

https://www.oxygenxml.com

Oxygen XML Editor 27.1 | 3 - Installation | 100

If you use the all platforms package, your system must have a compatible Java 17

virtual machine installed. To see the exact Java update version that is supported,

go to www.oxygenxml.com, navigate to the Download page for the particular

product you are installing, and click on the tab for your particular platform.

Note:

Oxygen XML Editor may work with other versions of Java, but since

Oxygen XML Editor has only been thoroughly tested with specific versions,

there is no guarantee that it will be stable with any other Java version.

Oxygen XML Editor uses the following rules to determine which installed version of

Java to use:

1. If you install using the native Windows installer, which installs a version of

Java as part of the Oxygen XML Editor installation, the version in the jre

subdirectory of the installation directory is used.

2. Otherwise, if the Windows environment variable JAVA_HOME is set, Oxygen

XML Editor uses the Java version pointed to by this variable.

3. Otherwise, the version of Java pointed to by your PATH environment variable

is used.

If you run Oxygen XML Editor using the batch file, oxygen.bat, you can edit the

batch file to specify a particular version to use.

Windows Installer

To install Oxygen XML Editor using the Windows installer, follow these steps:

1. Make sure that your system meets the system requirements (on page 99).

2. Download the Windows installer.

3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on

the download page.

4. Run the installer and follow the instructions in the installation program.

5. Start Oxygen XML Editor using one of the following methods:

◦ Use one of the shortcuts created by the installer.

◦ Run oxygen.bat, which is located in the installation directory.

6. To license your copy of Oxygen XML Editor go to Help > Register and enter your license information (on

page 105).

https://www.oxygenxml.com
https://www.oxygenxml.com/download.html
http://en.wikipedia.org/wiki/Md5sum

Oxygen XML Editor 27.1 | 3 - Installation | 101

Configuring Windows Terminal Server

1. Install Oxygen XML Editor on the server and make its shortcuts available to all users.

2. Make sure you allocate sufficient memory to Oxygen XML Editor by adding the -Xmx parameter either

in the .bat startup script (on page 350), or in the .vmoptions configuration file (on page 352) (if you

start it from an executable launcher).

Installing Oxygen XML Editor on a Linux / UNIX Server
System Requirements

Operating system

The product has been fully tested on Ubuntu 22.04. The latest version of Oxygen XML Editor

might work on other flavors/versions of Linux, but they have not been officially tested.

CPU

• Minimum - Intel/AMD Dual-core class CPU, 2 GHz

• Recommended - Quad-core class processor

Memory

• Minimum - 3 GB of RAM

• Recommended - 8 GB of RAM

Storage

• Minimum - 1 GB free disk space

• Recommended - 2 GB free disk space

Java

Oxygen XML Editor only officially supports Java Virtual Machines with version 17 from Oracle or

Eclipse Adoptium. If you use the Linux installer, Oxygen XML Editor will be installed with its own

copy of Java with the specific update version that has been thoroughly tested.

All Platforms Package

If you use the all platforms package, your system must have a compatible Java 17

virtual machine installed. To see the exact Java update version that is supported,

go to www.oxygenxml.com, navigate to the Download page for the particular

product you are installing, and click on the tab for your particular platform.

https://www.oxygenxml.com

Oxygen XML Editor 27.1 | 3 - Installation | 102

Note:

Oxygen XML Editor may work with other versions of Java, but since

Oxygen XML Editor has only been thoroughly tested with specific versions,

there is no guarantee that it will be stable with any other Java version.

Attention:

Oxygen XML Editor does not work with the GNU libgcj Java Virtual

Machine.

Oxygen XML Editor uses the following rules to determine which installed version of

Java to use:

1. If you used the Linux installer, which installs a version of Java as part of the

Oxygen XML Editor installation, the version in the jre subdirectory of the

installation directory is used.

2. Otherwise, if the Linux environment variable JAVA_HOME is set, Oxygen XML

Editor uses the Java version pointed to by this variable.

3. Otherwise, the version of Java pointed to by your PATH environment variable

is used.

You can also change the version of the Java Virtual Machine that runs Oxygen XML

Editor by editing the script file, oxygen.sh.

Linux Installer

To install Oxygen XML Editor using the Linux installer, follow these steps:

1. Make sure that your system meets the system requirements (on page 101).

2. Download the Linux installer.

3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on

the download page.

4. Run the installer and follow the instructions in the installation program.

Note:

For example, open a shell, cd to the installation directory, and at the prompt type sh ./

oxygen-32bit.sh or sh ./oxygen-64bit.sh, depending on which installer you

downloaded.

5. Start Oxygen XML Editor using one of the following methods:

https://www.oxygenxml.com/download.html
http://en.wikipedia.org/wiki/Md5sum

Oxygen XML Editor 27.1 | 3 - Installation | 103

◦ Use the oxygen shortcut created by the installer.

◦ From a command line, type sh oxygen.sh. This file is located in the installation folder.

6. To license your copy of Oxygen XML Editor go to Help > Register and enter your license information (on

page 105).

Unix/Linux Server Configuration

1. Install Oxygen XML Editor on the server and make sure the oxygen.sh script is executable and the

installation directory is in the PATH of the users that need to use the application.

2. Make sure you allocate sufficient memory to Oxygen XML Editor by setting an appropriate value for the

-Xmx parameter in the .sh startup script.

Note:

The default value of the -Xmx parameter is about a quarter of the maximum internal memory

available on the machine. To avoid performance issues with large documents (on page 2909),

you may need to adjust it.

3. Make sure the X server processes located on the workstations allow connections from the server host.

For this, use the xhost command.

4. Start telnet (or ssh) on the server host.

5. Start an xterm process with the display parameter set on the current workstation. For example: xterm

-display workstationip:0.0.

6. Start Oxygen XML Editor by typing sh oxygen.sh from the command line. This file is located in the

installation folder.

Site-Wide Deployment
If you are deploying Oxygen XML Editor for a group, there are various things you can do to customize Oxygen

XML Editor for your users and to make the deployment more efficient.

Creating custom default options

You can create a custom set of default options (on page 319) for Oxygen XML Editor. These

will become the default options for each of your users, replacing the normal default settings.

Users can still set options to suit themselves in their own copies of Oxygen XML Editor, but if

they choose to reset their options to defaults, the custom defaults that you set will be used.

Creating default project files

Oxygen XML Editor project files (on page 410) are used to configure a project. You can create

and deploy default project files (on page 410) for your projects so that your users will have a

preconfigured project file to begin work with.

Shared project files

Oxygen XML Editor 27.1 | 3 - Installation | 104

Rather than each user having their own project file, you can create and deploy shared project

files (on page 427) so that all users share the same project configuration and settings and

automatically inherit all project changes.

Using the unattended installer

You can speed up the installation process by using the unattended installer for Windows (on

page 89) or Linux (on page 96) installs.

Using floating licenses

If you have a number of people using Oxygen XML Editor on a part-time basis or in different

time zones, you can use a floating license (on page 109) so that multiple people can share a

license.

Licensing
This section contains information about licensing Oxygen XML Editor, including details about the types of

licenses that are available, managing licenses, using a license server to manage licences for an organization,

and information about managing license servers.

Installing a License Server to Manage Licenses

If you are using floating licenses or a large number of user-based licenses (20 or more) for Oxygen XML

Editor/Author/Developer, you must set up an Oxygen License Server (on page 112).

Registering License Keys

To help you comply with the Oxygen EULA (terms of licensing), all floating or named-user licenses must be

registered. This means that the license key will be locked to a particular license server deployment and no

multiple uses of the same license key are possible.

During the activation process, a code that uniquely identifies your deployment of the license server is sent to

the Oxygen servers. The servers will then sign the license key.

Splitting or Combining License Keys to Work with Your License Servers

A license server can only manage one license key. If you have multiple license keys for the same version of

Oxygen XML Editor/Author/Developer and you want to have all of them managed by the same server, or if you

have a multiple-user floating license and you want to split it between two or more license servers, contact the

Oxygen support team and ask for a new license key.

You can obtain a license key for Oxygen XML Editor in one of the following ways:

• You can purchase one or more licenses from the Oxygen XML Editor website at https://

www.oxygenxml.com/buy.html or through one of the authorized resellers. A license key will be sent to

you by email.

• If your company or organization has already purchased licenses, contact your license administrator to

obtain a license key or configuration details to connect to a license server.

https://www.oxygenxml.com/contact.html
https://www.oxygenxml.com/contact.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/resellers.html

Oxygen XML Editor 27.1 | 3 - Installation | 105

• If you purchased a subscription and you received a registration code, you can use it to obtain a license

key from https://www.oxygenxml.com/registerCode.html. A license key will be sent to you by email.

• If you want to evaluate the product, you can obtain a trial license key for 30 days from the Oxygen XML

Editor website at https://www.oxygenxml.com/register.html.

License Types

Oxygen XML Editor is not free software. To activate and use Oxygen XML Editor, you need a license.

The following license types are available:

• A Named-User License (on page 106) may be used by a single Named User on one or more

computers. Named-user licenses are not transferable to a new Named User. If you order multiple

named-user licenses, you will receive a single license key good for a specified number of named users.

It is your responsibility to keep track of the named users that each license is assigned to.

• A Floating License (on page 109) may be used by any user on any machine. However, the total

number of copies of Oxygen XML Editor in use at one time must not be more than the number of

floating licenses available. A user who runs two different distributions of Oxygen XML Editor (for

example, Standalone and Eclipse Plugin) at the same time on the same computer, consumes a single

floating license.

• A Subscription license that allows you to use the application for a specific period of time (either 6

months or 1 year). This type of license is user-based and is covered by a Support and Maintenance

Pack, which means that during the subscription period you will get free upgrades to all major and minor

releases and priority technical support.

• A special Academic Group License (Classroom, Department, or Site license) may be used by students

and teachers in academic institutions. These licenses provide a cost effective way of getting access to

Oxygen XML Editor for learning purposes.

For demonstration and evaluation purposes, a time-limited license is available upon request at https://

www.oxygenxml.com/register.html. This license is supplied at no cost for a period of 30 days from the date of

issue. During this period, the software is fully functional, enabling you to test all its functionality. To continue

using the software after the trial period, you must purchase a permanent license.

For definitions and legal details of the license types, consult the End-User License Agreement available at

https://www.oxygenxml.com/eula.html.

Named-User Licenses

A Named-User License can be used by a single Named User on one or more computers. Named-user licenses

cannot be transferred to another named user. If you purchase multiple named-user licenses, you will receive a

single license key that is valid for a specified number of named users. It is your responsibility to keep track of

which named users are assigned to each license.

https://www.oxygenxml.com/registerCode.html
https://www.oxygenxml.com/register.html
https://www.oxygenxml.com/register.html
https://www.oxygenxml.com/register.html
https://www.oxygenxml.com/eula.html

Oxygen XML Editor 27.1 | 3 - Installation | 106

Registering a Named-User License

To register a Named-User License on a machine owned by the Named User, follow these steps:

1. Purchase a license from the Oxygen XML Editor website. You will receive an email that contains your

license key.

2. Save a backup copy of your email message that contains the new license key.

3. Start Oxygen XML Editor.

If this is a new installation of Oxygen XML Editor, the registration dialog box is displayed. If the

registration dialog box is not displayed, go to Help > Register.

Figure 11. License Registration Dialog Box

4. Select Use a license key as the licensing method.

Note:

If your license key has 20 or more licenses, you must use a license server (on page 104)

instead.

5. Paste your license key into the registration dialog box. The license key is composed of nine lines of text

between two text markers.

6. Click OK.

Related information

Oxygen XML Editor End-User License Agreement

https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/eula.html

Oxygen XML Editor 27.1 | 3 - Installation | 107

Transferring a License Key

If you want to transfer your Oxygen XML Editor license key to another computer (for example, if you are

disposing of your old computer or transferring it to another person), you must first unregister your license. You

can then register your license on the new computer in the normal way.

To unregister a license, prior to transferring it, follow this procedure:

1. Go to Help > Register.

The license registration dialog box is displayed.

2. Make sure the Use a license key option is selected.

3. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.

4. Click the Remove button at the bottom-right corner of the dialog box.

A confirmation message is displayed asking if you want to remove your license key.

5. Select between:

◦ Yes - Removes your license key from your user account on the current computer.

◦ No - Falls back to your previous license key, if applicable.

Subscription Licenses

A Subscription license that allows you to use the application for a specific period of time (either 6 months or 1

year). This type of license is user-based and is covered by a Support and Maintenance Pack, which means that

during the subscription period you will get free upgrades to all major and minor releases and priority technical

support.

Registering a Subscription License

To register a Subscription License, follow these steps:

1. Purchase a license from the Oxygen XML Editor website. You will receive an email that contains your

license key.

2. Save a backup copy of your email message that contains the new license key.

3. Start Oxygen XML Editor.

If this is a new installation of Oxygen XML Editor, the registration dialog box is displayed. If the

registration dialog box is not displayed, go to Help > Register.

https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/buy.html

Oxygen XML Editor 27.1 | 3 - Installation | 108

Figure 12. License Registration Dialog Box

4. Select Use a license key as the licensing method.

Note:

If your license key has 20 or more licenses, you must use a license server (on page 104)

instead.

5. Paste your license key into the registration dialog box. The license key is composed of nine lines of text

between two text markers.

6. Click OK.

Related information

Oxygen XML Editor End-User License Agreement

Automatic Subscription Renewal

The Oxygen License Server has a mechanism that tries to detect when you purchase a renewal of your current

subscription and automatically updates the license key.

To determine that a license key you purchased is a renewal of the license key you have currently installed in

the License Server, it uses the Previous order reference number if you inserted it in the checkout process.

This automatic renewal mechanism makes an HTTP request to https://oxygenxml.com/

subscription_management/check_renewal.php and passes the following as parameters:

https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/eula.html

Oxygen XML Editor 27.1 | 3 - Installation | 109

• The SGN field of the existing license key.

• The server signature that uniquely identifies the License Server installation.

This request is made by the License Server automatically (or manually by pressing the Check now link).

This mechanism can be disabled by deselecting the Automatically check for subscription renewal checkbox.

Floating Licenses

The floating license type is commonly used by organizations that have a large number of infrequent users who

do not require simultaneous access to the application. Instead of each user having their own individual license

key, a pool of licenses is available for use on demand, one at a time.

To use floating licenses, a license server is required and the license key needs to be activated. Your system

administrator will most likely be responsible for setting up the license server (on page 112). Then you

will need to request a floating license from the server (on page 109). This process is designed to ensure

compliance with the Oxygen End-User License Agreement (EULA). This means that the license key will be

locked to a particular license server deployment, and the same license key cannot be used with any other

license server.

For information about releasing and returning a floating license to the pool for other users, see Releasing a

Floating License (on page 110).

For information about reserving (or locking) a floating license so that it does not get returned to the pool, see

Reserving a Floating License (on page 111).

Requesting a Floating License from a License Server

How to Request a Floating License

To request a floating license from an HTTP license server, follow this procedure:

1. Contact your server administrator to make sure the license server has already been set up and get

network address and login details for the license server.

2. Start Oxygen XML Editor.

3. Go to Help > Register.

Step Result: The license registration dialog box is displayed.

4. Choose Use a license server as licensing method.

5. Select HTTP/HTTPS Server as server type.

6. In the URL field, enter the address of the license server. The URL address has the following format:

http://hostName:port/oXygenLicenseServlet/license-servlet.

7. Complete the User and Password fields.

8. Click the OK button.

Oxygen XML Editor 27.1 | 3 - Installation | 110

Result: If a floating license is available, it is registered in Oxygen XML Editor. To display the license details,

open the About dialog box from the Help menu. If a floating license is not available, you will get a message

listing the users currently using floating licenses.

How to Register Floating Licenses for Multiple Users

If you are an administrator and you want to register floating licenses for multiple users without having to open

Oxygen XML Editor on each machine to manually configure the registration details one by one, you can use the

following procedure:

1. Reset the registration details in Oxygen XML Editor:

a. Go to Help > Register.

b. Click OK without entering any information in this dialog box.

c. Click Reset and restart the application.

2. Register the license using one of the floating license registration procedures (on page 109).

Step Result: A license.xml file is created.

3. Copy the license.xml file from the preferences directory (on page 133) and place it in the

installation folder on each machine to be registered.

Related information

Installing License Servers (on page 112)

Releasing a Floating License

The floating license you are using will be released and returned to the pool if any of the following occur:

• The connection with the license server is lost.

• You exit the application running on your machine, and no other copies of Oxygen XML Editor running on

your machine are using your floating license.

• You register a Named User license with your copy of Oxygen XML Editor, and no other copies of Oxygen

XML Editor running on your machine are using your floating license.

• Your computer idles for more than 2 hours.

• Your system administrator manually revokes the license (on page 119).

Tip:

To prevent your floating license from being released, you can use the Lock floating license action

available in the Help menu. You can use the same action to unlock the license. Note that your system

administrator can also unlock your license (on page 119).

To release a floating license on demand, follow these steps:

Oxygen XML Editor 27.1 | 3 - Installation | 111

1. Go to Help > Register.

The license registration dialog box is displayed.

2. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.

3. Make sure the Use a license key option is selected.

4. Click OK.

A dialog box is displayed asking if you want to reset your license key.

5. Select between:

◦ Use the last one - Falls back to your previous license key. Use this option if you want to release a

floating license and revert to a Named User license.

◦ Reset - Removes your license key from your user account on the current computer.

The Reset button erases all the licensing information. To complete the reset operation, close and

restart Oxygen XML Editor.

Reserving a Floating License

There may be times when you need to reserve or lock a floating license. For example, you could lock a floating

license if you want to use your floating license offline while traveling.

To reserve/lock a floating license, follow these steps:

1. Important: The license server must be configured by the server administrator to allow license locking.

See License Server Management and Statistics - Configuration (on page 118).

2. Select Lock floating license from the Help menu.

3. Click OK.

Your floating license is now locked. You can use the same action to unlock the license or you can

contact your system administrator to unlock it.

Note:

A locked floating license uses one license from the license pool for the entire period it remains

locked.

Registering Floating Licenses for Multiple Users

If you are an administrator and you want to register floating licenses for multiple users without having to open

Oxygen XML Editor on each machine to manually configure the registration details one by one, you can use the

following procedure:

1. Reset the registration details in Oxygen XML Editor:

a. Go to Help > Register.

b. Click OK without entering any information in this dialog box.

c. Click Reset and restart the application.

2. Register the license using one of the floating license registration procedures (on page 109).

Oxygen XML Editor 27.1 | 3 - Installation | 112

Step Result: A license.xml file is created.

3. Copy the license.xml file from the preferences directory (on page 133) and place it in the

installation folder on each machine to be registered.

Related information

Requesting a Floating License from a License Server (on page 109)

Installing License Servers (on page 112)

Installing License Servers

If you are using floating licenses or a large number of user-based licenses (20 or more) for Oxygen XML

Editor/Author/Developer, you must set up an Oxygen License Server.

The HTTP License Server is available in several distributions, tailored for covering various deployment

configurations:

• Windows installer - Easy-to-use Windows installation wizard. Requires elevated permissions to run it.

• All-platform distribution - Script-based deployment that does not require elevated permissions to run it.

Provides scripts for Windows, macOS, and Linux.

• Web Archive (WAR) distribution - Provides more flexibility in your deployment configuration, but it

requires an existing HTTP server (such as Apache Tomcat).

HTTP License Server System Requirements

Table 2. Minimum Requirements

Hardware Specification

CPU 1 core

RAM 512 MB/Linux OS, 1 GB/Windows OS (256 MB avail

able memory)

Hard Disk Space 500 MB

Network Requirements Network interfaces stay unchanged (static MAC ad

dresses) after activation

Server OS Requirements
• Linux

• Windows (Server 2022 is supported)

Antivirus and Firewall Requirements Allow access to the configured TCP port (default

8080)

Oxygen XML Editor 27.1 | 3 - Installation | 113

Note:

Oxygen XML Editor/Author/Developer version 17 or higher requires a license server version 17 or

higher. License servers version 20.1 or higher can be used with any version of a floating or named-

user license key.

Restriction:

The floating license server does not work with Docker containers.

License Activation

The activation process involves binding your license key to a unique license server deployment. Once the

process is complete, you cannot activate the license key with another license server deployment.

To activate the license key directly from License Server's UI, you need to access it from a browser with internet

access.

Note:

During this process, the activation signature, provided license key, and any configured public URLs are

sent to oxygenxml.com.

Activation Signature

The default signature calculation is " Use machine signature (MAC, etc.) " where the activation signature of the

License Server instance is computed from various machine IDs.

The Use the public URL of the License Server option offers a more flexible activation signature, as you can

choose where you provide the exact URL that Oxygen applications will use to request a license (the URL

should be in the format of: http(s)://my-domain:port/context-name/license-servlet). This

reduces number of machine IDs used to compute the activation signature.

Note:

The public server URL does not have to be accessible from outside your network. It should not be a

local URL (e.g. localhost and 127.0.0.1) as they are not supported.

Manual License Activation Procedure

If you cannot access the License Server administration page from a browser that has internet access

(therefore, the license cannot be activated automatically during the installation), you can manually activate the

license by following these steps:

1. Access the HTTP license server management page in a web browser.

2. Copy the machine signature code.

Oxygen XML Editor 27.1 | 3 - Installation | 114

Note:

The machine signature is displayed on the page as long as the license key has not yet been

activated. If you are trying to update/replace an already activated license key, the machine

signature can be found by clicking on Remove/Replace License, then selecting Replace on the

next page.

3. Go to the activation page at: http://www.oxygenxml.com/activation/.

4. Enter or paste the machine signature code and the license key, then click Activate.

Step Result: The activated license key is displayed on-screen.

5. Copy the activated license key and paste it in the license registration page of the HTTP server.

Preconfiguring License Server Details When Installing Oxygen XML Editor

It is possible to install Oxygen XML Editor with the license server details preconfigured. For more information,

see:

• Windows: Windows Installation: Command-Line Parameters for Preconfiguring License Server Details

(on page 90).

• Linux: Linux Installation: Command-Line Parameters for Preconfiguring License Server Details (on page

97).

Backup License Server Information

If you want to use a backup license server, the setup instructions are the same as the procedures for a main

license server, but it requires its own separate license key. Contact the Oxygen support team to find out more

details about the backup license pricing and availability.

Related information

Troubleshooting: Server Signature Mismatch Errors (on page 123)

Installing the License Server Distribution for Windows

1. Download the HTTP license server installer from the HTTP License Server website.

2. Run the installer and follow the on-screen instructions.

3. You must configure two sets of credentials:

a. Administrator credentials - Used for accessing the Oxygen license server administrative

interface.

b. Standard user credentials - Used by an Oxygen application to connect to the license server.

http://www.oxygenxml.com/activation/
https://www.oxygenxml.com/support.html
https://www.oxygenxml.com/license_server.html

Oxygen XML Editor 27.1 | 3 - Installation | 115

4. You can choose to change the default 8080 port the server runs on. If you need to change the port after

the installation, you can edit the following vmoptions file: oXygen HTTP License Server\Windows

Service\oXygenHTTPLicenseServer.vmoptions.

5. Optionally, you can choose to install the server as a Windows service. In this case, you can choose the

name of the Windows service.

Tip:

In case you run into issues, the license server log file is located in:

[Installation_Directory]\work\logs\oXygenLicenseServlet.log.

Installing the License Server All-Platform Distribution

1. [Prerequisite] Java 11 or later must be installed.

2. Download the HTTP license server all-platform archive from the HTTP License Server website.

3. Unpack the archive.

4. Run the license server scripts suitable for your operating system (licenseServer.bat for Windows

or licenseServer.sh for Linux and macOS).

Note:

To specify a port other than the default 8080, you can pass a new port number as an argument

to the scripts (for example, licenseServer.bat 8082). You can also change the port by

editing the vmoptions file located at oXygen HTTP License Server\Windows Service

\oXygenHTTPLicenseServer.vmoptions.

5. On the first run, you are prompted to set two sets of credentials:

a. Administrator credentials - Used for accessing the Oxygen license server administrative

interface.

b. Standard user credentials - Used by an Oxygen application to connect to the license server.

Tip:

If you want to manually install, start, stop, or uninstall the server as a Windows service,

run the following scripts from a command line as an Administrator:

▪ installWindowsService.bat [serviceName] - Installs

the server as a Windows service with the name serviceName. The

parameters for the license key folder and the server port can be set in the

oXygenLicenseServer.vmoptions file.

▪ startWindowsService.bat [serviceName] - Starts the Windows service.

▪ stopWindowsService.bat [serviceName] - Stops the Windows service.

▪ uninstallWindowsService.bat [serviceName] - Uninstalls the Windows

service.

https://www.oxygenxml.com/license_server.html

Oxygen XML Editor 27.1 | 3 - Installation | 116

If you do not provide the serviceName argument, the default name oXygenLicenseServer

is used.

If the license server is installed as a Windows service, the error messages are redirected

to the errLicenseServer.log file in oXygen HTTP License Server\work

\Windows Service folder.

Installing the License Server WAR Distribution

1. Make sure that you have Java Servlet Container installed on the server you have selected to be the

license server. Apache Tomcat 5.5 through 9.x is recommended (available at http://tomcat.apache.org).

Tomcat 9.x is officially supported.

Note:

Tomcat 10.x and later will not work with the license server.

Important:

By default, the license server stores the statistics database and other data in the Java

Servlet Container's temporary directory. If you are not using Apache Tomcat, this directory

may be deleted when the server is stopped or restarted. However, you can set the

oxygen.license.server.work.dir system property to specify a different path for the directory

where the database is stored.

2. Download the HTTP license server Web Archive (.war) from the HTTP License Server website.

3. Configure three user roles in your installation of the Java Servlet Container (such as Apache Tomcat):

a. One user with the role user, used by an Oxygen application to connect to the license server. In

the subsequent example, this user name is John.

b. Another user with the role admin, used for accessing the HTTP License Server administrative

interface and the management interface. In the subsequent example, this user name is Mary.

c. Another user with the role manager-gui, used for accessing the Apache Tomcat Web Application

Manager. In the subsequent example, this user name is tomcat.

For example, in Apache Tomcat, a typical way to achieve this is to edit the tomcat-users.xml file

from your Tomcat installation (if using a Tomcat zip/tar.gz distribution, by default this configuration

file is found in the /TomcatInstallFolder/conf/ directory). After adding the three users, the

configuration file might look like this:

<tomcat-users xmlns="http://tomcat.apache.org/xml"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"

 version="1.0">

 <!-- ... other user and role definitions ... -->

http://tomcat.apache.org
https://www.oxygenxml.com/license_server.html

Oxygen XML Editor 27.1 | 3 - Installation | 117

 <role rolename="user"/>

 <role rolename="admin"/>

 <role rolename="manager-gui"/>

 <user username="John" password="user_pass" roles="user"/>

 <user username="Mary" password="admin_pass" roles="admin"/>

 <user username="tomcat" password="s3cret" roles="manager-gui"/>

</tomcat-users>

4. Deploy the WAR file.

For example, in Apache Tomcat, go to the Web Application Manager page and log in with the user you

configured with the manager-gui role (tomcat in the example above). In the WAR file to deploy section,

choose the WAR file and click the Deploy button. The oXygenLicenseServlet application is now up and

running, but the license key is not yet registered.

5. Go to the HTTP License Server administration page. By default, the address of this page is http://

<server-address>/oXygenLicenseServlet. In Apache Tomcat, you can also open this page by clicking the

oXygenLicenseServlet link in the manager page.

You need to authenticate with the user configured with the manager-gui role (tomcat in the example

above).

6. Activate the license key. This process involves binding your license key to your license server

deployment. The browser used in the activation process needs to have Internet access.

Note:

If you cannot access the internet during the deployment, you can manually activate the license

key.

Once the process is completed you cannot activate the license on another license server. Follow these

steps to activate the license:

a. Paste your license key into the form and click Register/Activate.

Step Result: You will be redirected to an online form hosted on the Oxygen website. This form

is pre-filled with an activation code that uniquely identifies your license server deployment, and

your license key.

b. Click Register/Activate.

If the activation process is successfully completed, your license server is running. Follow the on-

screen instructions to configure the Oxygen XML Editor client applications.

Oxygen XML Editor 27.1 | 3 - Installation | 118

7. The application's log file location is specified by the log4j.appender.R2.File property from the WEB-

INF/lib/log4j.properties configuration file.

For example, in Apache Tomcat, the configuration file is located at: TomcatInstallDir/webapps/

oXygenLicenseServlet/WEB-INF/lib/log4j.properties and the default log file location is

TomcatInstallDir/logs/oxygenLicenseServlet.log.

Installing Multiple Instances of WAR Distribution on a Tomcat Web Server

For organizations that have multiple sets of licenses (for example, an integrator with multiple clients might

host a different license server for each client), use this procedure to install multiple instances of the Oxygen

License Servlet on a Tomcat web server:

1. Rename the license server WAR file according to your needs. For example, you could use the customer

name and a number (e.g. client23415).

2. Go to your Tomcat license server manager (e.g. http://my.tomcatserver.com:port/

manager/) and enter your credentials.

3. Scroll to WAR file to deploy and press Browse button.

4. Locate the WAR file from step 1 and press the Open button.

5. Press the Deploy button.

6. Check that the newly deployed license server is running (it must be in the Applications table).

Managing License Servers

This section includes information about managing the your license server.

License Server Management and Statistics Pages

A system administrator can manage and access information about the license server at: http://

hostName:port/oXygenLicenseServlet.

This page provides access to several statistics reports and management tasks. It also displays the current

status of the server and provides additional instructions for using the license server with Oxygen XML Editor/

Author/Developer.

This page includes the following links for accessing statistics or managing tasks:

• Current Allocated Licenses - Opens the Allocated License Report page (on page 119).

• Usage Statistics (Available only for floating licenses) - Opens the License Usage Statistics page (on

page 119).

• View License Key - Use this link to open a page where you can see details about the license key.

• Replace/Remove License Key - Use this link if you need to replace or remove the current license key (on

page 121).

• Configuration - Opens a page where you can configure notification settings and set up the mail server

used for sending emails whenever license requests from users are rejected. This page also contains

Oxygen XML Editor 27.1 | 3 - Installation | 119

a Allow users to lock licenses option. Enabling this option allows the users to lock/reserve a floating

license (on page 111).

• Users management (Available only for named-user licenses) - Opens a page where you can manage the

list of users who are entitled to use the license key.

• Allowed users list (Available only for named-user licenses) - Opens a page where you can see the

allowed users list (if one has already been configured), along with instructions for configuring one.

Allocated License Report Page

This report page provides a system administrator the ability to revoke or unlock current running instances of

licenses and includes the following information:

• License load - A graphical indicator that shows how many licenses are available.

• License server status - General information about the license server status, such as start time, license

counts, rejected and acknowledged requests, average usage time, license refresh and timeout intervals,

location of the license key, and the server version.

• Current running instances - Lists all currently acknowledged users, including user name, date and

time when the license was granted, IP and MAC address of the computer where Oxygen runs, and lock

status.

◦ Revoke - A system administrator can click on the Revoke icon next to a user name to release

that particular license and return it to the pool.

◦ Unlock - If a user has locked their license, the system administrator can also unlock it from this

page.

Note:

This report is also available in XML format at: http://hostName:port/oXygenLicenseServlet/license-

servlet/report-xml.

License Usage Statistics Page (Floating License Only)

This report page provides some usage statistics for the floating licenses. It is helpful for determining the

number of licenses that are needed and monitoring times when licenses are consumed. It includes the

following information:

• Maximum number of concurrent licenses - Shows the maximum number of floating licenses that can

be consumed at any given time.

• Concurrent license consumption per day - A chart that shows the peak number of licenses that were

consumed and the total number of users that were rejected, on a daily basis. This chart can be used to

detect the amount of concurrent licenses that are needed to avoid having rejected users.

Tip:

You can click on any bar to see the license consumption per hour for that particular day.

Oxygen XML Editor 27.1 | 3 - Installation | 120

Figure 13. Concurrent License Consumption per Day Chart

• Concurrent license consumption per hour - A chart that shows the peak number of licenses that were

consumed per hour throughout that particular month. This is useful for identifying the time of day when

the most licenses were consumed.

Figure 14. Concurrent License Consumption per Hour Chart

Users Management Page (Named-User License Only)

When a named-user license key is used, the license server allocates available licenses in the order they are

requested until the maximum number is reached. Any additional users attempting to obtain a license key will

be rejected.

This page provides access to the list of registered users and allows the server admin to:

• Revoke a user's right to use a license.

• Reactivate a previously deactivated user.

Oxygen XML Editor 27.1 | 3 - Installation | 121

Figure 15. Users List Management Page

Replacing or Removing a License Key in an HTTP License Server

The following procedure assumes that your HTTP license server contains a previously activated license key

and provides instructions for replacing it with another one or removing it completely.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a

new license key that accommodates a different number of users (on page 104).

Replacing a License Key

To replace a license key that is activated on your HTTP license server with a new one, follow these steps:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page

and log in using your admin credentials.

2. Click the Replace/Remove license key link. This will open a page that contains details about the license

currently in use.

3. Click the Replace button.

4. Paste the new license key in the displayed form.

5. Click Register/Activate. The browser used in the process needs to have Internet access.

Oxygen XML Editor 27.1 | 3 - Installation | 122

Step Result: You will be redirected to an online form hosted on the Oxygen website. This form is pre-

filled with an activation code that uniquely identifies your license server deployment and your license

key.

Note:

If you cannot access the online activation form, you can manually activate the license key (on

page 113).

Result: If the activation process is completed successfully, your license server is now running using the new

license key. You can click View license key to inspect the key currently used by the license server.

Removing a License Key

To remove a license key that is activated on your HTTP license server, follow these steps:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page

and log in using your admin credentials.

2. Click the Replace/Remove license key link. This will open a page that contains details about the license

currently in use.

3. Click the Remove button to begin the license deletion procedure.

4. Click the Remove button in the confirmation page.

Important:

The removal process is irreversible. Once the process is complete, you cannot restore the

license key.

Upgrading Your HTTP License Server

The goal of the following procedure is to help you minimize the downtime when you upgrade the HTTP

License Server to its latest version:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page.

If prompted for authentication, use the admin credentials.

2. Click the View license key link and copy the displayed license key to a file for later use.

3. Go to the Tomcat Web Application Manager page, log in with the user you configured with the admin

role, and Undeploy the license server.

4. Download the Web Archive (WAR) distribution of HTTP license server.

5. Deploy the downloaded license server.

6. Access the license server by following the link provided by the Tomcat Web Application Manager page.

If prompted for authentication, use the credentials configured for the admin user.

7. Paste your license key into the form and register it.

https://www.oxygenxml.com/license_server.html#floating_license_servlet

Oxygen XML Editor 27.1 | 3 - Installation | 123

Configuring a License Server to Only Allow Certain Users

A system administrator can configure the license server to only allow specific users to request a license. This

is available only for named-user licenses (not floating licenses) and is managed using an Allowed Users List.

To configure an Allowed Users List:

1. Create a text file named allowed-users.txt.

2. Enter the user name for each allowed user on a separate line.

3. Save the file in the license server work directory. You can go to the license server management page,

and under Management Tasks, click the Allowed users list link to open a page where you can see the

exact directory where it needs to be stored.

Note:

If the allowed-users.txt file is present but it is empty, all users are allowed to request a

license.

In the license server management page, there is a link to the Allowed users list under Management Tasks.

Also, in the Current Allocated Licenses page, there is a Show allowed users button. Both of them direct you to

a page where you can see the Allowed Users List (if one has already been configured), along with instructions

for configuring one. The list updates automatically between license requests every 30 seconds if the file is

changed.

Common Problems: License Server Errors

This section includes some common problems that may appear when setting up a license server.

Server Signature Mismatch Error

Problem

I receive an error indicating that the current license was already activated on a License Server or that the

License Server's Signature does not match.

During the license activation process, the license key becomes bound to a particular license server

deployment. This means that a code that uniquely identifies your license server deployment (called Server

Signature) is sent to the Oxygen servers, which in turn will sign the license key. The Server Signature is

computed from the list of network interfaces of the server where you deployed the license.

When starting the license server, if you receive an error stating that your Server Signature does not match,

there are several possible causes:

Possible Cause 1

The license key was moved to a new server that hosts your license server.

Oxygen XML Editor 27.1 | 3 - Installation | 124

Solution

Revert to your previous configuration.

Possible Cause 2

A new network interface was changed, added, or activated in the server that hosts your license server.

Note:

A specific example of when this could happen is if the Bluetooth or the WiFi module is activated/

deactivated.

Solution

If reverting is not possible, contact the Oxygen support team.

Possible Cause 3

The license server was restarted from a different location as the previous restart. For example, some server

configurations will have the Apache Tomcat server installed in a versioned folder (/usr/local/apache-

tomcat-V.V.V) with a symbolic link to the typical folder (/usr/local/tomcat). The server can be

restarted from either location, but it is recommended to always restart from the typical folder (/usr/local/

tomcat) and always restart from the same location.

Solution

The server simply needs to always be restarted from the same location.

Upgrading
From time to time, upgrades and patch versions of Oxygen XML Editor are released to provide enhancements

that fix problems and add new features.

By default, Oxygen XML Editor automatically checks for new versions at startup (or every 24 hours from

startup). If a newer version is detected, a dialog box will automatically be displayed that provides information

about the type of upgrade or update that is available. If a new patch of a new version is detected, the dialog

box will be displayed only when the new patch version includes a critical bug fix or when the license allows

upgrading to the new version.

To disable this check, open the Preferences dialog box (Options > Preferences) (on page 132), go to Global,

and deselect Automatic Version Checking.

To check for new versions manually, go to Help > Check for New Versions. This opens a dialog box that

displays information about whether or not a newer version is available.

https://www.oxygenxml.com/support.html

Oxygen XML Editor 27.1 | 3 - Installation | 125

Upgrading Oxygen XML Editor on Windows/Linux

What is Preserved During an Upgrade?

When you install a new version of Oxygen XML Editor, some data is preserved and some is overwritten. If there

is a previous version of Oxygen XML Editor already installed on your computer, it can coexist with the new one,

which means you do not have to uninstall it.

If you install over a previously installed version:

• All the files from its install directory will be removed, including any modification in framework (on page

3297) files, XSLT stylesheets, XML Catalogs (on page 3302), and templates.

• All global user preferences are preserved in the new version.

• All project preferences will be preserved in their project files.

• Any custom frameworks (on page 3297) that were stored outside the installation directory (as

configured in Document type associations > Locations (on page 148)) will be preserved and will be

found by the new installation.

If you install in a new directory:

• All the files from the old install directory will be preserved, including any modification in framework (on

page 3297) files, XSLT stylesheets, XML Catalogs (on page 3302), and templates. However, these

modifications will not be automatically imported into the new installation.

• All global user preferences are preserved in the new version.

• All project preferences will be preserved in their project files.

• Any custom frameworks (on page 3297) that were stored outside the installation directory (as

configured in Document type associations > Locations (on page 148)) will be preserved and will be

found by the new installation.

How to Upgrade Oxygen XML Editor on Windows or Linux

1. Upgrading to a new version might require a new license key. To check if your license key is compatible

with the new version, select Help > Check for New Version. Note that the application needs an Internet

connection to check the license compatibility.

2. Download and install the new version according to the instructions for your platform and the type of

installer you selected.

3. If you installed from an archive (as opposed to an executable installer) you may have to update any

shortcuts you have created or modify the system PATH to point to the new installation folder.

4. Restart Oxygen XML Editor.

5. If you require a new license for your upgrade, install it now according to the procedure for your platform

and the type of installer you selected.

Oxygen XML Editor 27.1 | 3 - Installation | 126

Upgrading Oxygen XML Editor on macOS

What is Preserved During an Upgrade?

When you install a new version of Oxygen XML Editor, first you need to remove or rename the old installation

directory. By renaming the directory, it can coexist with the new installation and the following data will be

preserved:

• All the files from the old install directory will be preserved, including any modification in framework (on

page 3297) files, XSLT stylesheets, XML Catalogs (on page 3302), and templates. However, these

modifications will not be automatically imported into the new installation.

• All global user preferences are preserved in the new version.

• All project preferences will be preserved in their project files.

• Any custom frameworks (on page 3297) that were stored outside the installation directory (as

configured in Document type associations > Locations (on page 148)) will be preserved and will be

found by the new installation.

How to Upgrade Oxygen XML Editor on macOS

1. Uninstall the current version of Oxygen XML Editor (on page 131) or rename the installation directory.

2. Upgrading to a new version might require a new license key. To check if your license key is compatible

with the new version, select Help > Check for New Version. Note that the application needs an Internet

connection to check the license compatibility.

3. Download and install the new version in an empty folder according to the instructions for your platform

and the type of installer you selected.

4. If you installed from an archive (as opposed to an executable installer) you may have to update any

shortcuts you have created or modify the system PATH to point to the new installation folder.

5. Restart Oxygen XML Editor.

6. If you require a new license for your upgrade, install it now according to the procedure for your platform

and the type of installer you selected.

Installing and Updating Add-ons
Oxygen XML Editor provides an add-on (on page 3299) mechanism that can automatically discover and

install frameworks (on page 2400) and plugins (on page 2557) from a remote location.

Note:

Frameworks that you install through the add-ons system are read-only.

Installing Add-ons

To install an add-on that is hosted on a remote update site, follow these steps:

Oxygen XML Editor 27.1 | 3 - Installation | 127

1. Go to Help > Install new add-ons.

2. In the displayed dialog box, enter or paste the update site that hosts the add-on in the Show add-

ons from field (or select it from the drop-down menu, if applicable). The default add-ons are hosted

on https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml. If you want to see a list

of all the default and sample add-ons that are available on the Oxygen remote update sites, choose

ALL AVAILABLE SITES from the drop-down menu. The add-ons list contains the name, status, update

version, Oxygen XML Editor version, and the type of the add-on (either framework, or plugin). A short

description of each add-on is presented under the add-ons list.

Note:

To see all the versions of the add-ons, deselect Show only compatible add-ons and Show only

the latest version of the add-ons. Incompatible add-ons are shown only to acknowledge their

presence on the remote update site, but you cannot install an incompatible add-on.

3. Choose the add-ons you want to install, click the Next button, then follow the on-screen instructions.

Note:

Accepting the license agreement of the add-on is a mandatory step in the installation process.

DANGER:

Installing from update sites other than the official Oxygen sites may cause security risks.

Please verify that all your installed third-party add-ons come from companies or individuals

that you have verified and that you implicitly trust. As a way to help with identifying possible

add-on security problems, Oxygen XML Editor issues warnings for unsigned plugins.

Note:

All add-ons are installed in the extensions directory inside the Oxygen XML Editor

preferences directory (on page 133).

Tip:

As an alternate approach, you can add an Install button to a web page that links to a URL that has the

syntax https://host/path/to/updateSite.xml?oxygenAddonId=addOnIDValue and drop the button into

the application's main editing area.

Managing Installed Add-ons

To manage the installed add-ons, follow these steps:

1. Go to Help > Manage add-ons

2. The displayed dialog box presents a list of your installed add-ons along with various information (such

as the installed version, the compatible Oxygen version, and more). The Status column will indicate if

Oxygen XML Editor 27.1 | 3 - Installation | 128

an update is available for a particular add-on. Also, you can click on the row for any particular add-on

that has an update available to see details for the update (displayed in the preview pane below the list

of add-ons).

3. To update an add-on, select the checkbox for the specific add-on, then click Update to update it (or

Uninstall to remove it). If there is a newer version of the add-on available, Oxygen XML Editor will

download the package and install it. Follow the on-screen instructions to complete the installation

process.

Note:

Accepting the license agreement of the add-on is a mandatory step in the installation process.

Checking for Add-on Updates

To check if there are available updates for the installed add-ons, go to Help > Check for add-ons updates. This

action displays updates that are compatible with the current Oxygen XML Editor version.

Preserving Installed Add-ons After Upgrading Oxygen to a New Version

After installing or upgrading to a new version of Oxygen XML Editor, when you re-start the application, a dialog

box will be displayed where you can decide which previously installed versions of add-ons should be imported

and used for the new version of the product.

After you make the decision to import previous add-ons to the new application version, add-ons installed

for previous versions remain present in the application settings folder and can still be used with those older

application versions. The application may advise you to cleanup your previously installed add-on by displaying

a dialog box where you can decide which previously installed versions of add-ons should be preserved or

removed. To remove all add-ons for a particular application version (to free up disk space), select it in the

main pane of the dialog box and click the Remove add-ons button.

Related information

Packing and Deploying Plugins as Add-ons (on page 2557)

Privacy Options
As an on-premise desktop application, Oxygen XML Editor does not store sensitive user data or user-specific

files on remote servers. The full Privacy Policy is available on the official Oxygen XML Editor web site.

Whenever it is started, the application may connect to its official web site (https://www.oxygenxml.com)

to provide notifications about new releases or new events. In the Global preferences page, there are some

checkboxes that can be disabled if you do not want this type of information retrieved:

Automatic Version Checking

If this option is selected, the application obtains information about new available versions from

the official Oxygen XML Editor web site. No specific information about the current installation is

passed to the Oxygen XML Editor web site during this process.

https://www.oxygenxml.com/privacy_policy.html

Oxygen XML Editor 27.1 | 3 - Installation | 129

Check for Oxygen-related events at startup

If this option is selected, the application obtains information about events that get displayed in

the Welcome screen. The types of downloaded events include information about the addition of

new videos on the website, announcements of upcoming webinars and conferences where the

Oxygen XML Editor team will participate, and more. No specific information about the current

installation is passed to the Oxygen XML Editor web site during this process.

Check for Oxygen-related notifications

If this option is selected, the application obtains information about other various notifications

that get displayed on the right side of the status bar (on page 369). No specific information

about the current installation is passed to the Oxygen XML Editor web site during this process.

Providing installation-specific details to the Oxygen XML Editor technical support team is also possible by

using the Help > Report problem action from the main menu. Also, if an unhandled/fatal error occurs in the

application, the user is presented with a Report problem dialog box and can choose to submit the error and

its context for analysis. The Report problem dialog box shows the exact specific details that are sent to the

Oxygen XML Editor technical support team and can be examined by the end user before being sent. No files or

confidential information are sent.

When the application is installed on Windows or Linux using the provided installation kit, the last installation

step allows you to click a Privacy Options link to choose which privacy-related settings should be disabled

before the application starts for the first time. The Privacy Options can also be disabled when performing an

unattended install. See instructions here: Windows Unattended Installation (on page 89).

Besides the settings already present in the Global preferences page, the Privacy Options dialog box contains

two extra settings:

Allow installing add-ons

If this option is not selected, the end user is not allowed to install add-ons in the application.

Allow installing "AI Positron Assistant" add-ons

If this option is not selected, the end user is not allowed to install any of the AI Positron

Assistant add-ons in the application.

Oxygen XML Editor 27.1 | 3 - Installation | 130

Figure 16. Installation - Privacy Policy Link

Figure 17. Installation -Privacy Options

Oxygen XML Editor 27.1 | 3 - Installation | 131

Uninstalling
How to Uninstall Oxygen XML Editor

CAUTION:

The following procedure will remove Oxygen XML Editor from your system. All data stored in the

installation directory will be removed, including any customizations or any other data you have

stored within that directory. Make a backup of any data you want to keep before proceeding.

1. Back up any data you want to keep from the Oxygen XML Editor installation folder.

2. Remove the application according to your operating system:

◦ Windows or Linux - Use the appropriate uninstaller shortcut provided with your OS.

◦ macOS - Manually delete the installation folder and all its contents.

3. If you want to remove the user preferences:

◦ Windows - Remove the directory: %APPDATA%\com.oxygenxml. Note that the AppData

directory is hidden. If you cannot locate it, type %APPDATA% and press ENTER in the File Explorer

address bar. (%APPDATA% expands to [user-home-dir]\AppData\Roaming).

◦ macOS - Remove the directory: Library/Preferences/com.oxygenxml of the user home

folder.

◦ On Linux, remove the directory: .com.oxygenxml from the user home directory.

Unattended Uninstall

The unattended uninstall procedure is available only on Windows and Linux.

Run the uninstaller executable from a command line with the -q parameter.

• Windows - The uninstaller executable is called uninstall.exe and is located in the Oxygen

installation directory.

• Linux - The uninstaller executable is called uninstall and is located in the Oxygen installation

directory.

4.
Configuring Oxygen XML Editor
This chapter presents all the user preferences and options that allow you to configure various features and

aspects of the application itself. It also includes information about storing and sharing options, importing and

exporting options or scenarios, customizing system properties, setting startup parameters, and the editor

variables (on page 333) that are available for customizing user-defined commands.

Preferences
You can configure Oxygen XML Editor options using the Preferences dialog box.

To open the preferences dialog box, go to Options > Preferences.

You can select the preference page you are interested in from the tree on the left of the Preferences dialog

box. You can filter the tree by using the filter text box and the following buttons are available to the right of the

text box:

• Expand All - Expands the structure of the tree to show all preference pages.

• Collapse All - Collapses the structure of the tree to show only the 1st level preference pages.

• Project-Level Options Only - If toggled on, it filters the tree to only show the preference pages that

are saved at project level (on page 322).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 133

Figure 18. Preferences Dialog Box

Click the icon or press F1 for help on any preferences page.

Some preference pages include an option to control how the options are stored, either as Global Options (on

page 322) or Project Options (on page 322).

Figure 19. Controlling the Storage of the Preferences

You can restore options to their default values by pressing the Restore Defaults button, available in each

preferences page.

Preferences Directory Location

A variety of resources (such as global options, license information, and history files) are stored in a

preferences directory (com.oxygenxml) that is in the following locations:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 134

• Windows (7, 8, 10) - [user_home_directory]\AppData\Roaming\com.oxygenxml

• macOS - [user_home_directory]/Library/Preferences/com.oxygenxml

• Linux/Unix - [user_home_directory]/.com.oxygenxml

Global Preferences

The global options cover various aspects of the overall operation of Oxygen XML Editor. To configure the

Global options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to Global.

The following options are available in the Global preferences page:

Automatic Version Checking

If this option is selected, Oxygen XML Editor will check for a new version on startup.

Check for Oxygen-related events at startup

If this option is selected, Oxygen XML Editor will check for various new event updates on the

Oxygen XML Editor website and if any new events are found, they will be presented at startup.

Check for notifications

If selected (default value), the application will check for various types of messages from the

Oxygen XML Editor website and they will be displayed in the status bar. The types of messages

include the addition of new videos on the website, the announcement of upcoming webinars and

conferences where the Oxygen XML Editor team will participate, and more.

Language

This option specifies the language used in the user interface. You can choose between English,

French, German, Dutch, Japanese, or Chinese. You must restart Oxygen XML Editor for the

change to take effect.

Other language

This option sets the language used in the user interface using an interface localization file.

For details about creating this file, see Localizing the User Interface (on page 348). You can

use this option to set the language of the user interface to a language that is not shipped with

Oxygen XML Editor.

Note:

If some interface labels are not rendered correctly after restarting the application, (for

example, Korean characters are not displayed correctly), make sure that your operating

system has the appropriate language pack installed (for example, the East-Asian

language pack).

Line separator

This option specifies the type of line separator to be used when saving files. Use System Default

to select the normal line separator for your OS. The other two possible selections are Unix-like

and Windows-like.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 135

Notes:

• This option is ignored if the Detect the line separator on file open option (on

page 135) is selected AND a line separator is automatically detected.

• When changing the selection in this option, the change does not affect an opened

file until you make a modification to the file and save it. At that point, all line

separators in the file will change to the type of line separator you chose in this

option.

Detect the line separator on file open

When this option is selected, the editor detects the line separator when a file is loaded and it

uses it when the file is saved. If this option is not selected, you can use the Line separator option

(on page 134) to choose the type of line separator to be used when saving files.

Tip:

To see the line separator type for the current file, you can use the Properties view

(Window > Show View > Properties).

Default Internet browser

This option sets the Web browser that Oxygen XML Editor will use to do the following:

• Open (X)HTML or PDF transformation results.

• Open a web page.

If you leave this setting blank, the system default browser will be used.

Open last edited files from project

When this option is selected, Oxygen XML Editor opens the files you had open the last time you

used a project whenever you open the application or switch to that project.

Load file content only when switching to its corresponding editor tab

When selected (default), files that were left open in the previous editing session

remain as placeholder tabs but the file content is loaded only when switching to

the corresponding editor tab. This helps to improve performance. If the option is

deselected, the previously open files are all re-loaded at startup.

Check opened files for file system changes

When this option is selected, Oxygen XML Editor checks the content of the all open editors to

see if they have been updated by another application. If the file has changed, Oxygen XML Editor

will ask you if you want to reload the file.

Auto update unmodified editors on file system changes

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 136

If this option is selected, Oxygen XML Editor automatically updates unmodified

editors if the edited file changes externally.

Beep on operation finished

When this option is selected, Oxygen XML Editor beeps when a validation or transform action

ends. Different tones are used for success and failure. The tones used may depend on the sound

settings in your operating system.

Show memory status

When this option is selected, the memory that Oxygen XML Editor uses is displayed in the status

bar. To free memory, click the Free unused memory button located at the right side of the

status bar. The memory status bar turns yellow or red when Oxygen XML Editor uses too much

memory. You can change the amount of memory available to Oxygen XML Editor by changing

the parameters of the application launcher (on page 350).

Order of switching between editor tabs

This option specifies the order for switching between open file tabs when using Ctrl + Tab

(Command + Tab on macOS) or Ctrl + Shift + Tab (Command + Shift + Tab on macOS) (on page

404). You can choose between:

• Recently used order - Switches to the most recently used tab.

• Visual order - Switches to the next tab in visual order.

File Chooser Dialog section

Use platform file chooser (Windows and macOS)

This option is selected by default and it specifies that the native file chooser is

used. You can deselect this option if you want the Java Swing file chooser to be

used instead. If Oxygen XML Editor encounters a problem while using the native

file manager, it will avoid using it again in the current session, even if this option is

selected.

Consider application bundles to be directories when browsing (macOS only)

This option is available only on the macOS platform. When selected,

the file browser dialog box allows you to browse inside an application

bundle, as in a regular folder. Otherwise, it is not allowed (the same

as the Finder application on macOS).

Show hidden files and directories

If this option is selected, Oxygen XML Editor shows system hidden files and folders

in the file browser dialog box and the folder browser dialog box.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 137

Tip:

On macOS, you need to press Command + Shift + Period in the file

browser to show hidden files.

File chooser opens

This option specifies the starting directory that the file browser dialog box (on

page 392) will open. You can choose between:

• Directory of the selected file - The file browser opens the folder where the

selected file is stored, depending on the current selection (for example, a file

could be selected from the Project view, DITA Maps Manager, main editing

pane, or another location within the application).

• Last visited directory - The file browser opens the last visited folder.

Appearance Preferences

This preferences page contains various options that allow you to change the appearance of the user interface

of Oxygen XML Editor. To configure the Appearance options, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Appearance.

The following options are available in the Appearance preferences page:

Look and Feel

This option allows you to change the graphic style (look and feel) of the user interface.

Depending on the operating system, you can choose between various predefined style options.

Theme

This option allows you to choose predefined color themes that will be applied over the entire

user interface. You can select between the following:

• Light (default theme in Windows)

• Classic (default theme in macOS)

Note:

In Windows, if a high contrast theme is detected and the Theme option is set

to Classic and the Look and Feel option (on page 137) is set to Default or

Windows, Oxygen XML Editor inherits the high contrast theme colors that are set

in the operating system.

• Graphite

You can also change various appearance-related options in other preference pages for the

selected theme by clicking on the various links in this section.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 138

Custom Themes

You can also create custom themes to share with others or use in other

installations of Oxygen XML Editor. To create a custom theme, follow these steps:

1. Select a Theme to use as a base.

2. Configure the desired options in any of the option pages listed in this

preferences page.

3. Click Export and specify a name for your custom theme. If you save the

theme to the default file path, your custom theme will immediately appear in

the Theme drop-down list. Otherwise, if you save it to another location, you

can use the Import button (on page 138) to make it appear in the drop-

down list.

Note:

In macOS (starting with Yosemite), if you choose Graphite for the Theme, it is

recommended that you select the Use dark menu and Dock option that is found in

System Preferences > General.

Theme preview area

Displays a preview of the current Theme selection (on page 137) (available for predefined

color themes).

Theme management section

Reset

Resets the theme to its default values (this option is available when the theme is

modified).

Rename

Changes the name of the theme (not available for default or predefined themes).

Delete

Removes the selected theme (not available for default or predefined themes).

Import

Allows you to import a color theme from an XML theme file. You can use this

option to load an exported custom theme (on page 138).

Export

Allows you to export the current color theme into an XML theme file that can then

be shared with others or imported into another installation of Oxygen XML Editor.

Configure icon saturation and brightness link

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 139

This link is available if you are using the Graphite theme (on page 137). It opens a dialog box

where you can configure the saturation and brightness for all the icons in Oxygen XML Editor.

Figure 20. Configure Icon Saturation and Brightness Dialog Box

Colors Preferences

Oxygen XML Editor allows you to configure the colors for frames, dialog boxes, controls, and commands. To

configure the Colors, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

Appearance > Colors.

Clicking the color button for any of the options opens a Choose color dialog box. It includes several tabs that

allow you to configure the color in numerous ways. This page allows you to select and configure the color for

the following:

Background Colors

Background

Background color for various general user interface items.

Components background

Background color for various components (such as text fields, views, tables, and

dialog boxes).

Components selection background

Background color for the current selections in certain components, such as some

views and panes.

Components inactive selection background

Background color for a selection in a view that is not the current focus.

Menus, toolbars and frame background

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 140

Background color for specific components such as menus, toolbars, and the

application frame.

Menus and toolbars selection background

(This option is not available for macOS) Background color for menu selections and

toolbar buttons.

View titles background

Background color for the titles of view and tabs.

Status bar background

Background color of the status bar at the bottom of the editor.

Foreground Colors

Foreground

Foreground color for various general user interface items.

Component selection foreground

Foreground color for the current selection.

Disabled foreground

Foreground color for various components that are not the current focus (such as

views other than the currently selected one).

Link foreground

Foreground color for links in views and dialog boxes.

View titles foreground

Foreground color for the title bar of views.

Status bar foreground

Foreground color for the text in the status bar at the bottom of the editor.

Other Colors

Borders and table grids

Color for certain borders and table grid lines.

Text component border

Color for the borders of text fields and drop-down lists.

View/Editor tabs border

Color for the borders of views and tabs.

Scroll bars, chevrons

Color for scroll bars (navigation bars) and chevrons (button to expand a non-visible

area).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 141

Separator

Color for the separators in toolbars, menus, and dialog boxes.

Note:

You must restart the application for your changes to be applied.

Fonts Preferences

Oxygen XML Editor allows you to choose the fonts to be used in the Text, Design, and Grid editor modes,

and fonts for the Author mode that are not specified in the associated CSS stylesheet. To configure the font

options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to Appearance >

Fonts.

The following options are available:

Editor

Specifies the font family, size, and weight to be used in the Text mode editor. To change the

current values, double-click the text field or click the Choose button. This opens a dialog box

where you can choose the font family, font size, and whether or not to bold the text. You can

enter or paste content in the Sample box to see a preview of how it will look in the application.

If you select the Show only the fonts that can render the sample text option and paste content

in the Sample box, the application detects fonts that can render the particular character set and

filters the fonts that can be selected accordingly.

Note:

On macOS, the default font, Monaco, cannot be rendered in bold.

Tip:

If you have recently installed fonts in Windows and they do not appear in the list of

available fonts, you need to make sure you install the fonts via the Install for all users

option instead of Install for me. For more details, see Fonts Installed in Windows Do Not

Appear in Fonts Preferences Page (on page 2925).

Author default font

Specifies the default font family, size, and weight to be used in Author mode. However, the

default font will be overridden by the fonts specified in any CSS file associated with the open

document. To change the current values, double-click the text field or click the Choose button.

This opens a dialog box where you can choose the font family, font size, and whether or not to

bold the text. You can enter or paste content in the Sample box to see a preview of how it will

look in the application. If you select the Show only the fonts that can render the sample text

option and paste content in the Sample box, the application detects fonts that can render the

particular character set and filters the fonts that can be selected accordingly.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 142

Schema default font

This option allows you to choose the font to be used in:

• The Design mode.

• Images with schema diagram fragments that are included in the HTML documentation

generated from an XML Schema.

To change the current values, double-click the text field or click the Choose button. This opens

a dialog box where you can choose the font family, font size, and whether or not to bold the

text. You can enter or paste content in the Sample box to see a preview of how it will look in the

application. If you select the Show only the fonts that can render the sample text option and

paste content in the Sample box, the application detects fonts that can render the particular

character set and filters the fonts that can be selected accordingly.

Text antialiasing

This option allows you to set the text anti-aliasing behavior:

• Default - Allows the application to use the setting of the operating system, if available.

• On - Sets the text anti-aliasing to pixel level.

• Off - Disables text anti-aliasing.

• Sub-pixel anti-aliasing modes, such as GASP, LCD_HRGB, LCD_HBGR, LCD_VRGB, and

LCD_VBGR.

Text components

Specifies the font family, size, and weight to be used in text boxes within the interface. This

same font influences the appearance of the content in the Project and DITA Maps Manager

views. To change the current values, double-click the text field or click the Choose button. This

opens a dialog box where you can choose the font family, font size, and whether or not to bold

the text. You can enter or paste content in the Sample box to see a preview of how it will look

in the application. If you select the Show only the fonts that can render the sample text option

and paste content in the Sample box, the application detects fonts that can render the particular

character set and filters the fonts that can be selected accordingly.

GUI

Specifies the font family, size, and weight to be used for user interface labels. To change the

current values, double-click the text field or click the Choose button. This opens a dialog box

where you can choose the font family, font size, and whether or not to bold the text. You can

enter or paste content in the Sample box to see a preview of how it will look in the application.

If you select the Show only the fonts that can render the sample text option and paste content

in the Sample box, the application detects fonts that can render the particular character set and

filters the fonts that can be selected accordingly.

View titles font

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 143

Specifies the font family, size, and weight to be used in the titles of the various views within the

interface. To change the current values, double-click the text field or click the Choose button.

This opens a dialog box where you can choose the font family, font size, and whether or not to

bold the text. You can enter or paste content in the Sample box to see a preview of how it will

look in the application. If you select the Show only the fonts that can render the sample text

option and paste content in the Sample box, the application detects fonts that can render the

particular character set and filters the fonts that can be selected accordingly.

Note:

You must restart the application for your changes to be applied.

Related information

Changing the Font Size in the Editor (on page 533)

Application Layout Preferences

Oxygen XML Editor offers various perspectives (on page 3299) and views that you can arrange in a variety of

layouts to suit your needs.

To configure the application layout options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Application Layout. The following options are available:

Select application layout

You can choose between the following three layouts:

Default

Uses the default layout for all perspectives (on page 3299). Any modification of

this layout (such as closing views, displaying views, or a new view arrangement) is

saved on exit and reloaded at start-up.

Predefined

Allows you to choose one of the predefined layouts.

• Advanced - All views are displayed.

• Author - An authoring-oriented layout that includes the following views:

Project (on page 414), Archive Browser (on page 2118), DITA Maps

Manager (on page 2950), Outline (on page 551), Attributes (on page

641), Model (on page 557), and Elements (on page 646).

• Basic - Only the Project view (on page 414) and Outline view (on page

551) are visible. Recommended when you edit XML content and you need

maximum screen space.

• Schema development - The Project (on page 414), Component

Dependencies (on page 1020), Referenced/Dependent Resources (on page

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 144

1017), Outline (on page 1013), Palette (on page 969), and Attributes (on

page 1015) views are displayed.

• XQuery development - The Project (on page 414), Outline (on page

1056), XSLT/XQuery Input (on page 923), XPath/XQuery Builder (on page

1057), and Transformation Scenarios (on page 1622) views are displayed.

• XSLT development - The Project (on page 414), Component

Dependencies (on page 928), Referenced/Dependent Resources (on page

925), Outline (on page 918), Attributes (on page 554), Model (on page

557), XSLT/XQuery Input (on page 923), XPath/XQuery Builder (on page

1057), and Transformation Scenarios (on page 1622) views are displayed.

Custom

Allows you to specify a custom layout to be used. You can save your preferred

layout using Window > Export Layout, then enter the location of the saved layout

file in this setting.

Reset layout at startup

When this option is selected, Oxygen XML Editor forgets any changes made to the layout during

a session and reloads the default layout the next time it is started. This is useful when you want

to keep a fixed layout from one session to another.

Remember layout changes for each project

When this option is selected, Oxygen XML Editor saves layouts individually for each project.

When you switch projects, the layout you last used for that project is loaded automatically.

Allow detaching of editors from main window

When this option is selected, you can drag and drop an editor window outside of the main

screen. This is useful especially when you are using two monitors and you want to view files side

by side.

Note:

If the main screen is maximized, you cannot drag and drop an editor outside of it.

View tab placement

Specifies whether the View tabs are located at the top or bottom of the window.

Editor tab placement

Specifies whether the Editor tabs are located at the top or bottom of the window.

The changes you make to any layout are preserved between working sessions. The predefined layout files are

saved in the preferences directory of Oxygen XML Editor.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 145

Resources

For more information about configuring the user interface of Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/anwjepfAdEk

Add-ons Preferences

You can use add-ons (on page 3299) to enhance the functionality of Oxygen XML Editor. To configure the

Add-ons options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to Add-

ons.

The following options are available in this preferences page:

Enable automatic updates checking

When this option is selected, Oxygen XML Editor will automatically search for available updates.

Add-on Sites URLs

This is a list of the URLs for the add-on sites. You can add, edit, and delete sites in this list by

using the buttons below the list.

Attention:

To ensure safety, when using an add-on site, make sure it is reputable and trustworthy.

Do not install add-ons that are unsigned or from sources that you do not fully trust.

Automatically install add-ons

You can use this section to specify required add-ons for a project. Then, when a user opens the

project, the specified add-ons will be automatically installed after prompting the user. You can

use Ctrl+Space to open a pop-up window with the list of detected add-ons that you can select to

be marked for automatic installation. You can also manually enter the add-on ID and multiple IDs

can be entered by separating with either a space or new line.

Project Level Settings Preferences

The Project Level Settings preference page allows you to decide whether various settings should be saved

in the project configuration file or in the global settings. Settings that are saved at project level can easily be

shared with others. To configure these options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Project Level Settings.

The following options can be toggled on or off to determine which settings will be saved at project level:

Allow validation scenario associations to be saved at project level

When this option is selected, the associations for custom validation scenarios (on page 803)

will be stored according to their storage location.

https://www.youtube.com/embed/anwjepfAdEk

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 146

• If you associate a scenario that is stored at the project or framework level, the association

will be saved at project level (in the project configuration file).

• If you associate a scenario at global level, it will be saved globally.

If this option is not selected, the association is not allowed to be saved at project level and will

be saved globally (even if the scenario is saved in the project file).

Allow transformation scenario associations to be saved at project level

When this option is selected, the associations for custom transformation scenarios (on page

1504) will be stored according to their storage location.

• If you associate a scenario that is stored at the project or framework level, the association

will be saved at project level (in the project configuration file).

• If you associate a scenario at global level, it will be saved globally.

If this option is not selected, the association is not allowed to be saved at project level and will

be saved globally (even if the scenario is saved in the project file).

Save current DITA root map at project level

When this option is selected, when you change the currently selected DITA context root map (on

page 2954), it will be saved in the project configuration file.

Save DITA media working sets at project level

When this option is selected, all configured working sets for DITA media resources (on page

3126) will be saved in the project configuration file.

Save DITA map validate and check for completeness settings at project level

When this is selected, the options chosen in the DITA Map Validate and Check for Completeness

dialog box (on page 2995) will be saved in the project configuration file.

Document Type Association Preferences

Oxygen XML Editor uses document type associations (on page 3296) to associate a document type (on page

1329) with a set of functionality provided by a framework (on page 3297). To configure the Document Type

Association options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

Document Type Association.

The following actions are available in this preferences page:

Discover more frameworks by using add-ons update sites

Click on this link to specify URLs for framework add-on update sites.

Document Type Table

This table presents the currently defined frameworks (on page 3297) (document type

associations (on page 3296)), sorted by priority and alphabetically. Each edited document type

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 147

has a set of association rules (on page 150) (used by the application to detect the proper

document type association to use for an open XML document).

Disable all

Disables all document types listed in the table.

New

Opens a Document type configuration dialog box (on page 148) that allows you to add a new

framework.

Edit

Opens a Document type configuration dialog box (on page 148) that allows you to edit an

existing framework.

Note:

If you try to edit an existing framework when you do not have write permissions to its

storage location, a dialog box will be shown asking if you want to extend it.

Duplicate

Opens a Document type configuration dialog box (on page 148) that allows you to duplicate

the configuration of an existing framework. This will create a snapshot of the framework in its

current form. It is merely a copy of the document type and will not evolve along with the base

document type as the Extend action does.

Extend

Opens a Document type configuration dialog box (on page 148) that allows you to extend an

existing framework. You can add or remove functionality starting from a base document type.

All of these changes will be saved as a patch. When the base document type is modified and

evolves (for example, from one application version to another) the extension will evolve along

with the base document type, allowing it to use the new actions added in the base document

type.

Delete

Deletes the selected framework (document type).

Enable DTD/XML Schema processing in document type detection

When this option is selected (default value), the matching process also examines the DTD/XML

Schema associated with the document. For example, the fixed attributes declared in the DTD for

the root element are also analyzed, if this is specified in the association rules. This is especially

useful if you are writing DITA customizations. DITA topics and maps are also matched by looking

for the @DITAArchVersion attribute of the root element. This attribute is specified as default in the

DTD and it is detected in the root element, helping Oxygen XML Editor to correctly match the

DITA customization.

Only for local DTDs/XML Schemas

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 148

When this option is selected (default value), only the local DTDs / XML Schemas will be

processed.

Enable DTD/XML Schema caching

When this option is selected (default value), the associated DTDs or XML Schema are cached

when parsed for the first time, improving performance when opening new documents with

similar schema associations.

Related information

Sharing a Framework (on page 2399)

Locations Preferences

Oxygen XML Editor allows you to change the location where frameworks (on page 3297) (document

types) are stored, and to specify additional framework directories. The Locations preferences page allows

you to specify the main frameworks folder location. You can choose between the Default directory

([OXYGEN_INSTALL_DIR]/frameworks) or a Custom specified directory. You can also change the current

frameworks folder location value using the com.oxygenxml.editor.frameworks.url system property set in

either the .vmoptions configuration files (on page 350) or in the startup scripts (on page 352).

A list of additional frameworks directories can also be specified. The application will look in each of those

folders for additional document type configurations to load. Use the Add, Edit and Delete buttons to manage

the list of folders.

A document type configuration (framework) can be loaded from the following locations:

• Internal preferences - The document type configuration is stored in the application Internal preferences

(on page 149).

• Additional framework directories - The document type configuration is loaded from one of the

specified Additional frameworks directories list.

• Add-ons - An add-on (on page 3299) can contribute a framework. You can manage the add-ons

locations in the Add-ons preferences page (on page 145).

• The frameworks folder - The main folder containing framework configurations.

All loaded document type configurations are first sorted by priority, then by document type name and then by

load location (in the exact order specified above). When an XML document is opened, the application chooses

the first document type configuration from the sorted list that matches the specific document.

All loaded document type configurations are first sorted by priority, then by document type.

Document Type Configuration Dialog Box

The Document Type Configuration dialog box allows you to create or edit a framework (on page 3297)

(document type). It is displayed when you use the New, Edit, Duplicate, or Extend buttons in the Document

Type Association preferences page (on page 146) (open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Document Type Association).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 149

Figure 21. Document Type Configuration Dialog Box

The configuration dialog box includes the following fields and sections:

Name

The name of the framework. This will be displayed as its name in the Document Type column in

the Document Type Association preferences page (on page 146).

Priority

Depending on the priority level, Oxygen XML Editor establishes the order that the existing

frameworks are evaluated to determine the type of a document you are opening. It can be

one of the following: Lowest, Low, Normal, High, or Highest. You can set a higher priority for

frameworks you want to be evaluated first.

Note:

The built-in document types are set to Low priority by default. Frameworks that have the

same priority are sorted alphabetically.

Description

The document type description displayed as a tooltip in the Document Type Association

preferences page (on page 146).

Storage

The location where the framework is saved. If you select the External storage option, the

framework is saved in a specified file with a mandatory extension (located in a subdirectory

of your current framework directory. If you select the Internal storage option, the framework

configuration data is saved in the Oxygen XML Editor internal options file (if Global Options (on

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 150

page 322) is selected) or in the current Oxygen XML Editor project xpr file (if Project Options

(on page 322) is selected).

Initial edit mode

Sets the default edit mode when you open a document for the first time: Editor specific, Text,

Author, Grid and Design (available for the W3C XML Schema editor). If the Editor specific option

is selected, the initial editing mode is determined based upon the document type. You can find

the mapping between editors and edit modes in the Edit modes preferences page. (on page

179) You can impose an initial mode for opening files that match the association rules of the

document type. For example, if the files are usually edited in the Author mode, you can set it in

the Initial edit mode combo box.

Note:

You can also customize the initial mode for a document type in the Edit modes

preferences page. Open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Edit modes.

Configuration Tabs

The bottom section of the dialog box includes various tabs where you can configure numerous

options for the framework.

Related information

Creating and Configuring Custom Frameworks (on page 2240)

Sharing a Framework (on page 2399)

Localizing Frameworks (on page 2340)

Association Rules Tab

To open the Association Rules tab of the Document type configuration dialog box, open the Preferences

dialog box (Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit,

Duplicate, or Extend button (on page 146), and click on the Association Rules tab.

In the Association rules tab, you can perform the following actions:

New

Opens the Document type rule dialog box allowing you to create association rules.

Edit

Opens the Document type rule dialog box allowing you to edit the properties of the currently

selected association rule.

Delete

Deletes the currently selected association rules from the list.

Move Up

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 151

Moves the selected association rule up one spot in the list.

Move Down

Moves the selected association rule down one spot in the list.

By combining multiple association rules you can instruct Oxygen XML Editor to identify the type of a

document. Oxygen XML Editor identifies the type of a document when the document matches at least one of

the association rules. This tab gives you access to a Document type rule dialog box that you can use to create

association rules that activate on any document matching all the criteria defined in the dialog box.

To create a new association rule, click the New button at the bottom of the Association Rules tab, or to

edit an existing rule, click the Edit button.

Figure 22. Document Type Rule Dialog Box

The Document type rule dialog box includes the following fields and options:

Namespace

Specifies the namespace of the root element from the association rules set (* (any) by default).

If you want to apply the rule only when the root element has no namespace, leave this field

empty (remove the ANY_VALUE string).

Root local name

Specifies the local name of the root element (* (any) by default).

File name

Specifies the name of the file (* (any) by default).

Public ID

Represents the Public ID of the matched document.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 152

Attribute Local name

Specifies the local name of the attributes for the root element (* (any) by default).

Attribute Namespace

Specifies the namespace of the attributes for the root element (* (any) by default).

Attribute Value

Specifies the value of the attributes for the root element (* (any) by default).

Java class

Presents the name of the Java class that is used to determine if a

document matches the rule. This Java class should implement the

ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher interface.

Tip:

You can use wildcards (? and *) or editor variables (on page 333) in the Document Type Rule dialog

box, and you can enter multiple values by separating them with a comma.

Schema Tab

In the Schema tab, you can specify a default schema for Oxygen XML Editor to use if a document does not

contain a schema declaration and no default validation scenario is associated with it.

To open the Schema tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Schema tab.

This tab includes the following options for defining a schema to be used if no schema is detected in the XML

file:

Schema type

Use this drop-down list to select the type of schema.

Schema URI

You can specify the URI of the schema file. You can specify the path by using the text field,

its history drop-down, the Insert Editor Variables (on page 333) button, or the browsing

actions in the Browse drop-down list.

Tip:

It is a good practice to store all resources in the framework directory and use the

${framework} editor variable (on page 340) to reference them. This is a recommended

approach to designing a self-contained document type that can be easily maintained

and shared between multiple users.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 153

Classpath Tab

The Classpath tab displays a list of folders and JAR (on page 3297) libraries that hold implementations

for API extensions, implementations for custom Author mode operations, various resources (such as

stylesheets), and framework (on page 3297) translation files. Oxygen XML Editor loads the resources looking

in the folders in the order they appear in the list (from top to bottom).

To open the Classpath tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Classpath tab.

The Classpath tab includes the following actions:

New

Opens a dialog box that allows you to add a resource to the table in the Classpath tab. You can

specify the path by using the text field, its history drop-down, the Insert Editor Variables (on

page 333) button, or the browsing actions in the Browse drop-down list.

Tip:

The path can also contain wildcards (for example, ${framework}/lib/*.jar).

Edit

Opens a dialog box that allows you to edit a resource in the Classpath tab. You can specify the

path by using the text field, its history drop-down, the Insert Editor Variables (on page 333)

button, or the browsing actions in the Browse drop-down list.

Tip:

The path can also contain wildcards (for example, ${framework}/lib/*.jar).

Delete

Deletes the currently selected resource from the list.

Move Up

Moves the selected resource up one spot in the list.

Move Down

Moves the selected resource down one spot in the list.

Use parent classloader from plugin with ID (on page 2556)

Use this option to specify the ID of a plugin (on page 3299). The current framework has access

to the classes loaded for the plugin.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 154

Related information

Extensions Tab (on page 175)

Author Tab (on page 154)

Localizing Frameworks (on page 2340)

Author Tab

The Author tab is a container that holds information regarding the CSS file used to render a document in the

Author mode, and regarding framework (on page 3297)-specific actions, menus, contextual menus, toolbars,

and content completion list of proposals.

To open the Author tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Author tab.

The options that you configure in the Author tab are grouped in subtabs.

CSS Subtab

The CSS subtab contains the CSS files that Oxygen XML Editor uses to render a document in the Author

mode. In this subtab, you can set main and alternate CSS files. When you are editing a document in the Author

mode, you can switch between these CSS files from the Styles drop-down menu on the Author Styles toolbar.

To open the CSS subtab, open the Preferences dialog box (Options > Preferences) (on page 132), go to

Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 146), click on the

Author tab, and then the CSS subtab.

The following actions are available in the CSS subtab:

New

Opens a dialog box that allows you to add a CSS file. You can specify the path by using the

text field, its history drop-down, the Insert Editor Variables (on page 333) button, or the

browsing actions in the Browse drop-down list.

Edit

Opens a dialog box that allows you to edit the current selection.

Delete

Deletes the currently selected CSS file.

Move Up

Moves the selected CSS file up in the list.

Move Down

Moves the selected CSS file down in the list.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 155

Enable multiple selection of alternate CSSs

Allows users to apply multiple alternate styles, as layers, over the main CSS style. This option is

selected by default for DITA document types.

If there are CSSs specified in the document then

You can choose between the following options for controlling how the CSS files that are set in

this subtab will be handled if a CSS is specified in the document itself:

• Ignore CSSs from the associated document type - The CSS files set in this CSS subtab

are overwritten by the CSS files specified in the document itself.

• Merge them with CSSs from the associated document type - The CSS files set in this CSS

subtab are merged with the CSS files specified in the document itself.

Related information

Associating a CSS with an XML Document (on page 2417)

Configuring and Managing Multiple CSS Styles for a Framework (on page 2254)

Actions Subtab

The Actions subtab of the Document Type Configuration dialog box contains a sortable table with all the

Author mode actions that are configured for the specific framework (on page 3297). Each action has a unique

ID, a name, a description, and a shortcut key.

To open the Actions subtab, open the Preferences dialog box (Options > Preferences) (on page 132), go to

Document Type Association, select your framework, use the Duplicate or Extend button to create an extension

of the framework (or the Edit button for an already extended framework), click on the Author tab, and then the

Actions subtab.

The following features are available in this subtab:

Export existing actions ()

It is possible to export existing actions to use them in other frameworks. Each exported action is

extracted from the framework configuration file and exported as an individual XML file.

To export actions, the Storage option (on page 149) in the top part of the Document

Type Configuration dialog box must be set to External and the external location must be a

subdirectory of your current framework directory.

The Export action is found by right-clicking an action or a selection of multiple actions (the

Export button is also located below the table of actions). If you choose to export a single

action, a resulting dialog box will allow you to select the destination path for the new XML

file that contains the configuration details of the action. If you export multiple actions, they

will automatically be saved as individual XML files inside a newly created folder (it will have

_externalAuthorActions at the end of the folder name) inside your current framework directory.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 156

Result: Exported actions will display the icon in the first column in the table.

Important:

The newly created files for the exported actions will not appear on disk until you click OK

several times to confirm your changes and exit the Preferences dialog box.

Tip:

If you want to create a new XML file for an action, there is a document template called

Author Actions in the New document wizard (on page 378) to help you get started.

Note:

You can add or edit the action files outside of Oxygen XML Editor, but you will need to

restart the application each time to reload the changes.

For more information, see Creating or Editing Actions Using an Individual XML File for Each

Action (on page 2258).

Open in editor ()

For exported actions, there is a Open in editor action in the contextual menu that will open

the file for that action in the main editor.

Create a new action ()

Use the New button (located underneath the table of actions) to open the Action dialog box

(on page 156) where you can configure a new action.

Duplicate an existing action ()

Use the Duplicate action (found in the contextual menu and underneath the table of actions)

to duplicate the selected action.

Edit an existing action ()

Use the Edit button (found in the contextual menu and underneath the table of actions) to

open the Action dialog box (on page 156) where you can edit the selected action.

Delete an existing action ()

Use the Delete button (found in the contextual menu and underneath the table of actions) to

delete the selected action.

Author Action Dialog Box

To edit an existing document type action or create a new one, open the Preferences dialog box (Options >

Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or Extend

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 157

button (on page 146), click on the Author tab, and then the Actions subtab. At the bottom of this subtab,

click New to create a new action, or Edit to modify an existing one.

Figure 23. Action Dialog Box

The following options are available in the Action dialog box:

ID

Specifies a unique action identifier.

Name

Specifies the name of the action. This name is displayed as a tooltip or as a menu item.

Tip:

You can use the ${i18n('key')} editor variable (on page 341) to allow for multiple

translations of the name.

Menu access key

In Windows, you can access menus by holding down Alt and pressing the keyboard key that

corresponds to the letter that is underlined in the name of the menu. Then, while still holding

down Alt, you can select submenus and menu action the same way by pressing subsequent

corresponding keys. You can use this option to specify the letter in the name of the action that

can be used to access the action.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 158

Description

A description of the action. This description is displayed as a tooltip when hovering over the

action.

Tip:

You can use the ${i18n('key')} editor variable (on page 341) to allow for multiple

translations of the description.

How to translate frameworks link

Use this link to see more information about Localizing Frameworks (on page 2340).

Large icon

Allows you to select an image for the icon that Oxygen XML Editor uses for the toolbar action.

Tip:

A good practice is to store the image files inside the framework directory and use

the ${frameworks} editor variable (on page 341) to make the image relative to the

framework location. If the images are bundled in a jar archive (for instance, along with

some Java operations implementation), it is convenient to reference the images by their

relative path location in the class-path.

Small icon

Allows you to select an image for the icon that Oxygen XML Editor uses for the contextual menu

action.

Note:

If you are using a Retina or HiDPI display, Oxygen XML Editor automatically searches

for higher resolution icons in the path specified in both the Large icon and Small icon

options. For more information, see Using Retina/HiDPI Icons for the Actions from a

Framework (on page 2292).

Shortcut key

This field allows you to configure a shortcut key for the action that you are editing. The +

character separates the keys.

Enable platform-independent shortcut keys

If this checkbox is selected, the shortcut that you specify in this field is platform-

independent and the following modifiers are used:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 159

• M1 represents the Command key on macOS, and the Ctrl key on other

platforms.

• M2 represents the Shift key.

• M3 represents the Option key on macOS, and the Alt key on other platforms.

• M4 represents the Ctrl key on macOS, and is undefined on other platforms.

Operations section

In this section of the Action dialog box, you configure the functionality of the action that you

are editing. An action has one or more operation modes. The evaluation of an XPath expression

activates an operation mode. The first selected operation mode is activated when you trigger

the action. The scope of the XPath expression must consist only of element nodes and attribute

nodes of the edited document. Otherwise, the XPath expression does not return a match

and does not fire the action. For more details see: Controlling Which Author Operations Gets

Executed Through XPath Expressions (on page 160).

The following options are available in this section:

Activation XPath

An XPath 2.0 expression that applies to elements and attributes. For more

details see: Controlling Which Author Operations Gets Executed Through XPath

Expressions (on page 160).

Operation

Specifies the invoked operation that can be a default operation (on page 2261) or

a custom operation (on page 2288).

Arguments

Specifies the arguments of the invoked operation. The Edit at the bottom of the

table allows you to edit the arguments of the operation.

Operation priority

Increases or decreases the priority of an operation. The operations are invoked in

the order of their priority. If multiple XPath expressions are true, the operation with

the highest priority is invoked.

• Add - Adds an operation.

• Remove - Removes an operation.

• Duplicate - Duplicates an operation.

Evaluate activation XPath expressions even in read-only contexts

If this checkbox is selected, the action can be invoked even when the cursor is placed in a read-

only location.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 160

Related information

Localizing Frameworks (on page 2340)

Controlling Which Author Operations Gets Executed Through XPath
Expressions

An Author mode action can have multiple operation modes, each one invoking an Author operation (on page

2261) with certain configured parameters. Each operation mode has an XPath 2.0 expression for activating it.

For each operation mode of an action, the application will check if the XPath expression is fulfilled (when it

returns a non-empty node set or a true result). Only the first operation whose XPath operation is fulfilled will be

executed.

The following special XPath extension functions are provided:

• oxy:allows-child-element() (on page 160) - Use this function to check whether or not an element is

valid child element in the current context, according to the associated schema.

• oxy:allows-global-element() (on page 162) - Use this function to check whether or not an element is a

valid global element for the current framework (on page 3297), according to the associated schema.

• oxy:current-selected-element() (on page 164) - Use this function to get the currently selected

element.

• oxy:selected-elements() (on page 164) - Use this function to get the selected elements.

• oxy:is-required-element() (on page 164) - Use this function to check if the element returned by the

given XPath expression is required (based on the rules declared in the schema).

• oxy:platform() (on page 165) - Use this function to get the current platform in cases where you want

to enable or disable an action depending on the platform. Possible values include: eclipse, standalone

and webapp.

oxy:allows-child-element() Function

The oxy:allows-child-element() function allows you to check whether or not an element that matches the

arguments of the function is valid as a child of the element at the current cursor position, according to the

associated schema. It is evaluated at the cursor position and has the following signature:

oxy:allows-child-element($childName, ($attributeName, $defaultAttributeValue, $contains?)?)

The following parameters are supported:

childName

The name of the element that you want to check if it is valid in the current context. Its value is a

string that supports the following forms:

• The child element with the specified local name that belongs to the default namespace.

oxy:allows-child-element("para")

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 161

The above example verifies if the <para> element (of the default namespace) is allowed in

the current context.

• The child element with the local name specified by any namespace.

oxy:allows-child-element("*:para")

The above example verifies if the <para> element (of any namespace) is allowed in the

current context.

• A prefix-qualified name of an element.

oxy:allows-child-element("prefix:para")

The prefix is resolved in the context of the element where the cursor is located. The

function matches on the element with the para local name from the previously resolved

namespace. If the prefix is not resolved to a namespace, the function returns a value of

false.

• A specified namespace-URI-qualified name of an element.

oxy:allows-child-element("{namespaceURI}para")

The namespaceURI is the namespace of the element. The above example verifies if the

<para> element (of the specified namespace) is allowed in the current context.

• Any element.

oxy:allows-child-element("*")

The above function verifies if any element is allowed in the current context.

Note:

A common use case of oxy:allows-child-element("*") is in combination with the

attributeName parameter.

attributeName

The attribute of an element that you want to check if it is valid in the current context. Its value is

a string that supports the following forms:

• The attribute with the specified name from no namespace.

oxy:allows-child-element("*", "class", " topic/topic ")

The above example verifies if an element with the @class attribute and the default value of

this attribute (that contains the topic/topic string) is allowed in the current context.

• The attribute with the local name specified by any namespace.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 162

oxy:allows-child-element("*", "*:localname", " topic/topic ")

• A qualified name of an attribute.

oxy:allows-child-element("*", "prefix:localname", " topic/topic ")

The prefix is resolved in the context of the element where the cursor is located. If the

prefix is not resolved to a namespace, the function returns a value of false.

defaultAttributeValue

A string that represents the default value of the attribute. Depending on the value of the next

parameter, the default value of the attribute must either contain this value or be equal to it.

contains

An optional boolean. The default value is true. For the true value, the default value of the

attribute must contain the defaultAttributeValue parameter. If the value is false, the two values

must be the same.

oxy:allows-global-element() Function

The oxy:allows-global-element() function allows you to check whether or not an element that matches the

arguments of the function is valid for the current framework (on page 3297), according to the associated

schema. It has the following signature:

oxy:allows-global-element($elementName, ($attributeName, $defaultAttributeValue, $contains?)?)

The following parameters are supported:

elementName

The name of the element that you want to check if it is valid in the current framework. Its value is

a string that supports the following forms:

• The element with the specified local name that belongs to the default namespace.

oxy:allows-global-element("para")

The above example verifies if the <para> element (of the default namespace) is allowed in

the current framework.

• The element with the local name specified by any namespace.

oxy:allows-global-element("*:para")

The above example verifies if the <para> element (of any namespace) is allowed in the

current framework.

• A prefix-qualified name of an element.

oxy:allows-global-element("prefix:para")

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 163

The prefix is resolved in the context of the framework. The function matches on the

element with the para local name from the previously resolved namespace. If the prefix is

not resolved to a namespace, the function returns a value of false.

• A specified namespace-URI-qualified name of an element.

oxy:allows-global-element("{namespaceURI}para")

The namespaceURI is the namespace of the element. The above example verifies if the

<para> element (of the specified namespace) is allowed in the current framework.

• Any element.

oxy:allows-global-element("*")

The above function verifies if any element is allowed in the current framework.

attributeName

The attribute of an element that you want to check if it is valid in the current framework. Its value

is a string that supports the following forms:

• The attribute with the specified name from no namespace.

oxy:allows-global-element("*", "class", " topic/topic ")

The above example verifies if an element with the class attribute and the default value of

this attribute (that contains the topic/topic string) is allowed in the current framework.

• The attribute with the local name specified by any namespace.

oxy:allows-global-element("*", "*:localname", " topic/topic ")

• A qualified name of an attribute.

oxy:allows-global-element("*", "prefix:localname", " topic/topic ")

The prefix is resolved in the context of the framework. If the prefix is not resolved to a

namespace, the function returns a value of false.

defaultAttributeValue

A string that represents the default value of the attribute. Depending on the value of the next

parameter, the default value of the attribute must either contain this value or be equal to it.

contains

An optional boolean. The default value is true. For the true value, the default value of the

attribute must contain the defaultAttributeValue parameter. If the value is false, the two values

must be the same.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 164

oxy:current-selected-element() Function

This function returns the fully selected element. If no element is selected, the function returns an empty

sequence.

Example: oxy:current-selected-element Function

oxy:current-selected-element()[self::p]/b

This example returns the elements that are children of the currently selected <p> element.

oxy:selected-elements() Function

This function returns the selected elements from Author mode.

Example: oxy:selected-elements Function

oxy:selected-elements()[self::para][@audience="novice"]

This example would activate an action when at least one of the selected elements is a <para> element with the

@novice attribute defined.

oxy:is-required-element() Function

This function checks if the element returned by the given XPath expression is required (based on the rules

declared in the schema). It has only one argument, an XPath expression, and the XPath expression must be

written in such a way that it returns a single element.

Example: oxy:is-required-element Function

oxy:is-required-element(.)

This example would check to see if the current element is required by the schema.

oxy:is-editable-element() Function

This function checks if the element returned by the given XPath expression is editable (content can be

inserted in it), meaning both that the entire XML file is editable and that the current context where the element

is placed is editable. For example, if the element is inside an xi:included section, it is not editable.

It only has one argument, an XPath expression, and the XPath expression must be written in such a way that it

returns a single element.

Example: oxy:is-editable-element Function

oxy:is-editable-element(ancestor-or-self::table)

This example would return true if the cursor is placed inside a table and it is editable or false if it is not

editable.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 165

oxy:platform() Function

This function returns the current platform. You can use this if you want to enable or disable an action

depending on the platform. The possible values are: standalone, eclipse, or webapp.

Example: oxy:platform Function

oxy:platform()="standalone"

This example would keep the action activated for the standalone distribution of Oxygen XML Editor, but

disable it for the Eclipse and Web Author distributions.

Menu Subtab

In the Menu subtab, you can configure which actions will appear in the framework (on page 3297)-specific

menu. The subtab is divided into two sections: Available actions and Current actions.

To open the Menu subtab, open the Preferences dialog box (Options > Preferences) (on page 132), go

to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 146), click on the

Author tab, and then the Menu subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along

with their icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen

XML Editor menu. To add an action in this section as a sibling of the currently selected action, use the Add

as sibling button. To add an image in this section as a child of the currently selected action, use the Add

as child button.

The following actions are available in the Current actions section:

Edit

Edits an item.

Remove

Removes an item.

Move Up

Moves an item up.

Move Down

Moves an item down.

Contextual Menu Subtab

In the Contextual menu subtab you configure what framework (on page 3297)-specific action the Content

Completion Assistant (on page 3295) proposes. The subtab is divided into two sections: Available actions

and Current actions.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 166

To open the Contextual Menu subtab, open the Preferences dialog box (Options > Preferences) (on page

132), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 146), click

on the Author tab, and then the Contextual Menu subtab.

Figure 24. Contextual Menu Subtab

The Available actions section presents a table that displays the actions defined in the Actions subtab, along

with their icon, ID, and name. The Current actions section contains the actions that are displayed in the

contextual menu for documents that belong to the edited framework.

The following actions are available in this subtab:

Add as sibling

Adds the selected action or submenu from the Available actions section to the Current actions

section as a sibling of the selected action.

Add as child

Adds the selected action or submenu from the Available actions section to the Current actions

section as a child of the selected action.

Edit

This option is available for container (submenu) items that are listed in the Current actions

section. It opens a configuration dialog box that allows you to edit the selected container

(submenu).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 167

Figure 25. Menu Action Configuration Dialog Box

The following options are available in this dialog box:

Name

Specifies the name of the action. This name is displayed as a tooltip or as a menu

item.

Tip:

You can use the ${i18n('key')} editor variable (on page 341) to allow for

multiple translations of the name.

Menu access key

In Windows, you can access menus by holding down Alt and pressing the keyboard

key that corresponds to the letter that is underlined in the name of the menu.

Then, while still holding down Alt, you can select submenus and menu action the

same way by pressing subsequent corresponding keys. You can use this option to

specify the letter in the name of the action that can be used to access the action.

Menu icon

Allows you to select an image for the icon that Oxygen XML Editor uses for the

container (submenu).

Promote items when in a table context

If this option is selected, when invoking the contextual menu from within a table,

all the actions in this container (submenu) will be promoted to the main level in the

contextual menu. Actions and submenus that are not promoted are still available in

the Other actions submenu when invoking the contextual menu within a table.

Remove

Removes the selected action or submenu from the Current actions section.

Move Up

Moves the selected item up in the list.

Move Down

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 168

Moves the selected item down in the list.

Toolbar Subtab

In the Toolbar subtab you configure what framework (on page 3297)-specific action the Oxygen XML Editor

toolbar holds. The subtab is divided into two sections: Available actions and Current actions.

To open the Toolbar subtab, open the Preferences dialog box (Options > Preferences) (on page 132), go

to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 146), click on the

Author tab, and then the Toolbar subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along

with their icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen

XML Editor toolbar when you work with a document belonging to the edited framework. To add an action in

this section as a sibling of the currently selected action, use the Add as sibling button. To add an action in

this section as a child of the currently selected action, use the Add as child button.

The following actions are available in the Current actions section:

Edit

Edits an item.

Remove

Removes an item.

Move Up

Moves an item up.

Move Down

Moves an item down.

Content Completion Subtab

In the Content Completion subtab you configure what framework (on page 3297)-specific the Content

Completion Assistant (on page 3295) proposes. The subtab is divided into two sections: Available actions

and Current actions.

To open the Content Completion subtab, open the Preferences dialog box (Options > Preferences) (on page

132), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 146), click

on the Author tab, and then the Content Completion subtab.

Available and Current Actions

The Available actions section presents a table that displays the actions defined in the Actions subtab, along

with their icon, ID, and name. The Current actions section holds the actions that the Content Completion

Assistant proposes when you work with a document that belongs to the edited framework.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 169

To add the selected available action as a sibling of the currently selected action in the Current actions section,

use the Add as sibling button. To add it as a child of the currently selected action, use the Add as child

button. To edit an existing action, select it and use the Edit button. To remove an existing action, use the

Remove button. You can also move items up and down the list using the Move Up or Move Down

buttons.

Adding an action (or editing an existing one) opens the Content Completion Item dialog box.

Figure 26. Content Completion Item Dialog Box

Use this dialog box to configure the action:

Action

Displays the name of the selected action.

Display name

You can use the drop-down menu to choose between displaying the action name or the replaced

element name, or you can enter another name to be displayed.

Replacement for

Use this section to replace an existing element with the configured action:

• Element name and Namespace - The name (and namespace, if needed) of the replaced

element. The original element no longer needs to be excluded using the Filter - Remove

content completion items table (on page 170).

• Display item only when element is allowed at cursor - The configured action is

contributed in the UI components selected in the Contribute to section only if the

associated schema allows the original element at the current location in the document.

This is equivalent to defining activation XPaths in the Author Action dialog box (on page

156) using the oxy:allows-child-element() XPath extension function. Activation XPaths

for the action are still checked when the action is invoked.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 170

Contribute to

Use this section to specify where to display the configured item in the interface:

• Content Completion Window - The configured item will appear in the Content Completion

Assistant (on page 3295).

• Elements View - The configured item will appear in the Elements view.

• Element Insert Menus - The configured item will appear in the Append Child, Insert

Before, or Insert After menus that are available in certain contextual menus (for example,

the contextual menu of the Outline view).

Filter Table

The Filter section presents a table that allows you to add elements to be filtered from the Content Completion

Assistant or from some specific helper views or menus. Use the Add button to add more filters to the table,

the Edit button to modify an existing item in the table, or the Remove button to remove a filtered item.

The Add and Edit buttons open a Remove item dialog box.

Figure 27. Remove Item Dialog Box

Use this dialog box to add or configure the elements that will be filtered:

Item name

Use this text field to enter the name of the element to be filtered. The drop-down list also

includes a few special content completion actions that can be filtered:

• <SPLIT> [elementName] - Filters split entries for elements that have the form Split

elementName or New elementName.

• <SPLIT> - Filters split entries for all elements.

• <ENTER> - Filters Insert New Line entries that appear in elements where whitespace is

significant.

The filter list can be used to remove only content completion items contributed by the schema

associated to the document and it does not remove actions added to the content completion

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 171

list via the framework configuration. The element name specified in the filter is not namespace

aware, it matches the name of the element defined in the associated schema exactly as it would

appear rendered in the content completion window.

Note:

If you try to insert an element in an invalid position (for example, using the content

completion assistant), the editor will attempt to make the insertion valid. This may mean

finding an alternate position for the insertion or splitting the element at the current

position. If a <SPLIT> entry is added in the filter list for an element, the editor will never

split that element.

Remove item from

You can choose to filter the element from any of the following:

• Content Completion Window - The element will not appear in the Content Completion

Assistant (on page 3295).

• Elements View - The element will not appear in the Elements view.

• Element Insert Menus - The element will not appear in the Append Child, Insert Before,

or Insert After menus that are available in certain contextual menus (for example, the

contextual menu of the Outline view).

• Entities View - The element will not appear in the Entities view (on page 559).

Related information

Customizing the Content Completion Assistant Using a Configuration File (on page 2302)

Templates Tab

The Templates tab specifies a list of directories where new document templates are located for this particular

framework. These directories, along with the document templates that are saved inside them, will appear

in the New Document wizard (on page 378) inside the Framework templates category according to your

framework and the directory path you specify in this tab.

To open the Templates tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Templates tab.

The Templates tab includes the following actions:

New

Opens a dialog box that allows you to specify the path to a directory that contains document

templates for this framework. You can specify the path by using the text field, its history drop-

down, the Insert Editor Variables (on page 333) button, or the browsing actions in the

Browse drop-down list.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 172

Tip:

The path can also contain wildcards. For example, using ${frameworkDir}/templates/*

would add all the template folders found inside the templates directory.

Edit

Opens a dialog box that allows you to edit the path of a directory that contains document

templates for this framework. You can specify the path by using the text field, its history drop-

down, the Insert Editor Variables (on page 333) button, or the browsing actions in the

Browse drop-down list.

Tip:

The path can also contain wildcards. For example, using ${frameworkDir}/templates/*

would add all the template folders found inside the templates directory.

Delete

Deletes the currently selected template directory from the list.

Move Up

Moves the selected template directory up one spot in the list.

Move Down

Moves the selected template directory down one spot in the list.

Related information

Creating New Document Templates (on page 387)

Customizing Document Templates (on page 388)

Sharing Custom Document Templates (on page 392)

Catalogs Tab

The Catalogs tab specifies a list of XML Catalogs, specifically for the edited framework (on page 3297), that

are added to list of catalogs that Oxygen XML Editor uses to resolve resources.

To open the Catalogs tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Catalogs tab.

You can perform the following actions:

Add

Opens a dialog box that allows you to add a catalog to the list. You can specify the path by using

the text field, its history drop-down, the Insert Editor Variables (on page 333) button, or the

browsing actions in the Browse drop-down list.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 173

Edit

Opens a dialog box that allows you to edit the path of an existing catalog.

Delete

Deletes the currently selected catalog from the list.

Move Up

Moves the selected catalog up one spot in the list.

Move Down

Moves the selected catalog down one spot in the list.

Transformation Tab

In the Transformation tab, you can configure the transformation scenarios associated with the particular

framework (on page 3297) you are editing. These transformation scenarios are presented in the Configure

Transformation Scenarios dialog box (on page 1616) when transforming a document and you can specify

which scenarios will be used by default for a particular document type.

To open the Transformation tab of the Document type configuration dialog box, open the Preferences dialog

box (Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate,

or Extend button (on page 146), and click on the Transformation tab.

The Transformation tab offers the following options:

Default checkbox

You can set one or more of the scenarios listed in this tab to be used as the default

transformation scenario when another specific scenario is not specified. The scenarios that are

set as default are rendered bold in the Configure Transformation Scenarios dialog box (on page

1616).

New

Opens the New scenario dialog box allowing you to create a new transformation scenario for the

particular document type (on page 1504).

Duplicate

Allows you to duplicate the configuration of an existing transformation scenario. It opens the

Edit scenario dialog box where you can configure the properties of the duplicated scenario (on

page 1615).

Edit

Opens the Edit scenario dialog box allowing you to edit the properties of the currently selected

transformation scenario (on page 1613).

Delete

Deletes the currently selected transformation scenario.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 174

Import scenarios

Imports transformation scenarios.

Export selected scenarios

Export transformation scenarios.

Move Up

Moves the selection to the previous scenario.

Move Down

Moves the selection to the next scenario.

Validation Tab

In the Validation tab, you can configure the validation scenarios associated with the particular framework (on

page 3297) you are editing. These validation scenarios are presented in the Configure Validation Scenarios

dialog box when validating a document and you can specify which scenarios will be used by default for a

particular document type.

Note:

If a main file is associated with the current file, the validation scenarios defined in the main file, along

with any Schematron schema defined in the default scenarios for that particular framework, are used

for the validation. These take precedence over other types of validation units defined in the default

scenarios for the particular framework. For more information on main files, see Contextual Project

Operations Using 'Main Files' Support (on page 430) or Modular Contextual XML Editing Using 'Main

Files' Support (on page 845).

To open the Validation tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Validation tab.

The Validation tab offers the following options:

Default checkbox

You can set one or more of the scenarios listed in this tab to be used as the default validation

scenario when another specific scenario is not specified in the validation process. The scenarios

that are set as default are rendered bold in the Configure Validation Scenarios dialog box.

New

Opens the New scenario dialog box allowing you to create a new validation scenario.

Duplicate

Allows you to duplicate the configuration of an existing validation scenario. It opens the Edit

scenario dialog box where you can configure the properties of the duplicated scenario.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 175

Edit

Opens the Edit scenario dialog box allowing you to edit the properties of the currently selected

validation scenario.

Delete

Deletes the currently selected validation scenario.

Import scenarios

Imports validation scenarios.

Export selected scenarios

Export validation scenarios.

Move Up

Moves the selected scenario up one spot in the list.

Move Down

Moves the selected scenario down one spot in the list.

Extensions Tab

The Extensions tab specifies implementations of Java interfaces used to provide advanced functionality to

the document type.

To open the Extensions tab of the Document type configuration dialog box, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Document Type Association, use the New, Edit, Duplicate, or

Extend button (on page 146), and click on the Extensions tab.

Libraries containing the implementations must be present in the classpath (on page 153) of your document

type. The Javadoc available at https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ contains details

about how each API implementation functions.

Document Templates Preferences

Oxygen XML Editor provides a variety of built-in document templates that make it easier to create new

documents in various formats. The list of available templates is presented in the New Document wizard (on

page 378) when you create a new document (New toolbar button or File > New).

You can also create your own templates (on page 387) and share them with others. You can store your

custom document templates in the existing templates folder in the Oxygen XML Editor installation directory

or store them in a custom directory. If you store them in a custom directory, you need to use this Document

Templates preferences page to add that directory to the list of template directories that Oxygen XML Editor

makes available in the New Document wizard.

To add a template directory, follow these steps:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 176

1. open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document

Templates.

2. Use the New button to select a location of the new document template folder.

3. You can also use the Edit or Delete buttons to manage folders in the list, and you can alter the order

that Oxygen XML Editor looks in these directories by using the Up and Down buttons.

Result: This will add the folder to the list in this preferences page and it will now appear in the New Document

wizard (on page 378) in a category based upon the folder path you specified.

Note:

For DITA templates, they will also appear in the dialog box for creating new DITA topics from the DITA

Maps Manager, but if you customize the template (on page 388), you need to set the type property

to dita in the corresponding properties file.

Encoding Preferences

Oxygen XML Editor lets you configure how character encodings are recognized when opening files and which

encodings are used when saving files. To configure encoding options, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Encoding.

The following encoding options are available:

Fallback character encoding

Specifies the default character encoding of non-XML documents if their character encoding

cannot be determined from other sources (for example, it is not specified in the document or

determined by the file type).

Note:

For certain document types, the following encoding detection rules are used:

• For XML, DTD, and CSS documents, Oxygen XML Editor tries to collect the

character encoding from the document. If no such encoding is found, then UTF-8

is used.

• For JavaScript, JSON, SQL, XQuery, and RNC, the UTF-8 encoding is used.

UTF-8 BOM handling

This setting specifies how to handle the Byte Order Mark (BOM) when Oxygen XML Editor saves

a UTF-8 XML document:

• Keep (default) - Do not alter the BOM declaration of the currently open file.

• Write - Save the BOM bytes.

• Don't Write - Do not save the BOM bytes. Loaded BOM bytes are ignored.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 177

Note:

The UTF-16 BOM is always preserved. UTF-32 documents have a big-endian byte order.

Encoding errors handling

This setting specifies how to handle characters that cannot be represented in the character

encoding that is used when the document is opened. The available options are:

• REPORT (default) - Displays an error identifying the character that cannot be represented

in the specified encoding. Unrecognized characters are rendered as an empty box.

• REPLACE - The character is replaced with a standard replacement character. For example,

if the encoding is UTF-8, the replacement character has the Unicode code FFFD, and if the

encoding is ASCII, the replacement character code is 63.

• IGNORE - The error is ignored and the character is not included in the document displayed

in the editor.

Attention:

If you edit and save the document, the characters that cannot be represented in

the specified encoding are dropped.

Encoding for Base64, Base32, Hex conversions

Specifies the encoding to be used when invoking the Encode Selection or Decode Selection

actions for Base64 (on page 582), Base32 (on page 583), or Hex conversions (on page

584). The default setting is UTF8.

Encode non-ASCII characters in URL paths

If selected (default), Oxygen XML Editor will escape non-ASCII characters (encode them with

their hexadecimal equivalent) within URL paths. If you are using a non-Latin alphabet (such

as Arab, Japanese, Chinese), it may be beneficial to deselect this option so that non-ASCII

characters in URL paths will not be escaped and will remain more readable.

Editor Preferences

Oxygen XML Editor offers the possibility to configure the appearance of various components and features of

the main editor. To access these options, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor.

The following options are available:

Selection background color

Allows you to set the background color of selected text.

Selection foreground color

Allows you to set the color of selected text.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 178

Completion proposal background

Allows you to set the background color of the Content Completion Assistant (on page 3295).

Completion proposal foreground

Allows you to set the color of the text in the Content Completion Assistant (on page 3295).

Documentation window background

Allows you to set the background color of the documentation of elements suggested by the

Content Completion Assistant (on page 3295).

Documentation window foreground

Allows you to set the color of the text for the documentation of elements suggested by the

Content Completion Assistant (on page 3295).

Find highlight color

Allows you to set the color of the highlights generated by the Find and Find all actions.

XPath highlight color

Allows you to set the color of the highlights generated when you run an XPath expression.

Declaration highlight color

Allows you to set the color of the highlights generated by the Find declaration action.

Reference highlight color

Allows you to set the color of the highlights generated by the Find reference action.

Maximum number of highlights

Allows you to set the maximum number of highlights that Oxygen XML Editor displays.

Show TAB/NBSP/EOL/EOF marks

Makes the TAB/NBSP/EOL/EOF characters visible in the editor. You can use the color picker to

choose the color of the marks.

Show SPACE marks

Makes the space character visible in the editor.

Can edit read-only files

If this option is selected, Oxygen XML Editor will let you edit read-only files. When you try to save

them, a Save As dialog box will be displayed to avoid overwriting the initial resource. If the option

is not selected, a warning message is displayed when you try to edit a read-only file.

Display quick-assist and quick-fix side hints

Displays the Quick Assist (on page 3300) icon () and Quick Fix (on page 3300) icon () in

the line number stripe on the left side of the editor.

Undo history size

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 179

Allows you to set the maximum amount of undo operations you can perform in any of the editor

modes (Text, Author, Design, Grid).

Enable mouse-wheel zooming

If selected, you can use Ctrl + MouseWheelForward (Command + MouseWheelForward on

macOS) to increase the editor font (zoom in) or Ctrl + MouseWheelBackwards (Command +

MouseWheelBackwards on macOS) to decrease the editor font (zoom out). It is enabled by

default on Windows and Linux, while it is disabled by default on macOS, due to the way inertia

affects the mouse wheel on this operating system.

Edit Modes Preferences

Oxygen XML Editor lets you configure which edit mode a file is opened in the first time it is opened. This

setting only applies the first time a file is opened. The current editing mode of each file is saved when the

file is closed and restored the next time it is opened. To configure the options for editing modes, open the

Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit Modes .

Allow Document Type specific edit mode setting to override the general mode setting

If selected, the initial edit mode setting set in the Document Type configuration dialog box (on

page 148) overrides the general edit mode setting from the table below.

Select the initial edit mode (page) for each editor

This table specifies the default editing mode that will be opened for each type of document

when the Allow Document Type specific edit mode setting to override the general mode setting

option is not selected. Use the Edit button to change the initial edit mode for each type of

document (editor). The initial edit mode can be one of the following:

• Text

• Author

• Grid

• Design (available only for the XSD editor).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 180

Figure 28. Edit Modes Preferences Page

Text Preferences

Oxygen XML Editor allows you to configure how the Text mode editor appears. To configure these options,

open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes >

Text.

The following options are available:

Editor background color

Sets the background color for the Text editing mode, Outline view, and some external tool

editors (Large File Viewer (on page 2714), Compare Files (on page 486), Compare Directories

(on page 506)).

Editor cursor color

Sets the color for the cursor in Text mode.

Highlight current line

If selected, the current line is highlighted with the foreground color specified with the color

chooser.

Show line numbers

If selected (default value), line numbers are shown in the editor panels and in the Output view

(on page 2210) of the debugger perspectives (on page 3299). You can also specify the color

for the line numbers using the color chooser. Printed output will also include the line numbers.

Show print margin

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 181

If selected, it allows you to set a safe print limit in the form of a vertical line displayed in the right

side of the editor pane. You can also customize the print margin line color.

Print margin column

Allows you to specify a limit for the print width, measured in the number of

characters.

Line wrap

If selected, long lines are automatically wrapped in edited documents. The line wrap does not

alter the document content since the application does not use new-line characters to break long

lines.

Cut / Copy whole line when nothing is selected

If selected, Cut and Copy actions operate on the entire current line when nothing is selected in

the editor.

Enable folding

If selected (default value), the vertical stripe that holds the folding markers is displayed in Text

mode.

XML section

Highlight matching tag

If selected, when you place the cursor on a start or end tag, Oxygen XML Editor

highlights the corresponding member of the pair. You can also customize the

highlight color.

Lock the XML tags

If selected, XML are locked and cannot be edited in Text mode.

JSON section

Show property name after ending bracket

If enabled (default), property names are displayed after the ending bracket when

editing JSON documents in Text mode. You can also use the transparency slider to

adjust the level of transparency or opaqueness.

YAML section

Show SPACE marks for YAML only

If enabled (default), space characters are visible in the YAML editor.

Diagram Preferences

For certain XML languages, Oxygen XML Editor provides a diagram view as part of the Text mode editor. To

configure the Diagram preferences, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Editor > Edit modes > Text > Diagram.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 182

The following options are available in this preference page:

Show Full Model XML Schema diagram

When this option is selected, the Text mode editor for XML Schemas includes a split-screen view

that shows a diagram of the schema structure. This is useful for seeing the effects of schema

changes you make. For editing a schema using a diagram instead of text, use the schema

Design view (on page 365).

Note:

When handling very large schemas, displaying the schema diagram might affect

the performance of your system. In such cases, disabling the schema diagram view

improves the speed of navigation through the edited schema.

Enable Relax NG diagram and related views

Enables the Relax NG schema diagram and synchronization with the related views (Attributes

(on page 554), Model (on page 557), Elements (on page 558), Outline (on page 1109)).

Show Relax NG diagram

Displays the Relax NG schema diagram in the split-screen views (Full Model View

(on page 1102) and Logical Model View (on page 1103)).

Enable NVDL diagram and related views

Enables the NVDL schema diagram and synchronization with the related views (Attributes (on

page 554), Model (on page 557), Elements (on page 558), Outline (on page 1125)).

Show NVDL diagram

Displays the NVDL schema diagram in the split-screen views (Full Model View (on

page 1121) and Logical Model View (on page 1122)).

Location relative to editor

Allows you to specify the location of the schema diagram panel relative to the diagram Text

editor.

Show/Hide Annotations link

Use this link to navigate to the Schema Design preferences page (on page 207) where you can

choose to show or hide annotations in schema diagrams.

Zoom link

Use this link to navigate to the Schema Design preferences page (on page 207) where you can

adjust the default zoom level of schema diagrams.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 183

Grid Preferences

Oxygen XML Editor provides a Grid view (on page 364) of an XML document. To configure the Grid mode

options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit

modes > Grid.

The following options are available:

Compact representation

If selected, the compact representation of the grid is used: a child element is displayed beside

the parent element. In the non-compact representation, a child element is nested below the

parent.

Format and indent when passing from grid to text or on save

If selected, the content of the document is formatted and indented each time you switch from

the Grid view to the Text view.

Default column width (characters)

Sets the default width (in characters) of a table column of the grid. A column may contain the

following:

• Element names

• Element text content

• Attribute names

• Attribute values

If the total width of the grid structure is too large you can resize any column by dragging the

column margins with the mouse pointer, but the change is not persistent. To make it persistent,

set the new column width with this option.

Active cell color

Allows you to set the background color for the active cell (on page 3294) of the grid. The

keyboard input always goes to the active cell and the selection always contains it.

Selection color

Allows you to set the background color for the selected cells of the grid, except the active cell

(on page 3294).

Border color

Allows you to set the color used for the lines that separate the grid cells.

Background color

Allows you to set the background color of grid cells that are not selected.

Foreground color

Allows you to set the text color of the information displayed in the grid cells.

Row header colors

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 184

Background color

Allows you to set the background color of row headers that are not selected.

Active cell color

Allows you to set the background color of the row header cell that is currently

active.

Selection color

Allows you to set the background color of the header cells corresponding to the

currently selected rows.

Column header colors

The column headers are painted with two color gradients, one for the upper 1/3 part of the

header and the other for the lower 2/3 part. The start and end colors of the first gradient are set

with the first two color buttons. The start and end colors of the second gradient are set with the

last two color buttons.

Background color

Allows you to set the background color of column headers that are not selected.

Active cell color

Allows you to set the background color of the column header cell that is currently

active.

Selection color

Allows you to set the background color of the header cells corresponding to the

currently selected columns.

Author Preferences

Oxygen XML Editor provides an Author editing mode that provides a configurable graphical interface for

editing documents. To configure the options for the Author mode, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Edit modes > Author.

The following options are available:

Author default background color

Sets the default background color of the Author editing mode. The background-color property

set in the CSS file associated with the currently edited document overwrites this option.

Author default foreground color

Sets the default foreground color of the Author editing mode. The color property set in the CSS

file associated with the currently edited document overwrites this option.

Show XML comments

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 185

When this option is selected, XML comments are displayed in Author mode. Otherwise, they are

hidden.

Show placeholders for empty elements

When this option is selected, placeholders are displayed for elements with no content to make

them clearly visible. The placeholder is rendered as a light gray box and displays the element

name.

Show processing instructions

When this option is selected, XML processing instructions are displayed in Author mode.

Otherwise, they are hidden.

Show Author layout messages

When this option is selected, all errors reported while rendering the document in Author mode

are presented in the Results panel (on page 560) at the bottom of the editor.

Show doctype

When this option is selected, the doctype declaration is displayed in Author mode. Otherwise, it

is hidden.

Show block range

When this option is selected, a block range indicator is displayed in a stripe located in the left

side of the editor. It is displayed as a heavy line that spans from the first line to the last line of the

block.

Fast text layout

In certain cases, the widths computed in the Author visual editing mode for lines of text may be

larger than expected, leading to an incorrect visual layout. Deactivating this option will improve

the computation quality for character widths in the visual editing mode, but it may hinder overall

performance for very large documents.

Tip:

For macOS users, some specific examples of this type of situation can be found here:

Text Rendering Issues on macOS (on page 2937). Because of such problems, when an

installation kit with Java 9 or newer is used on macOS, the checkbox is not selected by

default.

Show floating contextual toolbar

When this option is selected (default), the floating contextual toolbar is displayed in the Author

mode in certain situations. When not selected, the floating contextual toolbar is never displayed.

Images Section

The following options regarding images in Author mode are available in this section:

Auto-scale images wider than (pixels)

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 186

Sets the maximum width that an image will be displayed. Wider images will be

scaled to fit.

Show very large images

When this option is selected, images larger than 6 megapixels are displayed in

Author mode. Otherwise, they are not displayed.

Important:

If you select this option and your document contains many such images,

Oxygen XML Editor may consume all available memory, throwing an

OutOfMemory error. To resolve this, increase the available memory limit

(on page 349) and restart the application.

Tags Section

In this section, you can configure the following options regarding tags that are displayed in

Author mode:

Tags display mode

Sets the default display mode for element tags presented in Author mode. You can

choose between the following:

Full Tags with Attributes

Displays full tag names with attributes for both block (on page 3294)

and inline elements (on page 3297).Oxygen XML Editor

Full Tags

Displays full tag names without attributes for both block elements

and inline elements.

Block Tags

Displays full tag names for block elements and simple tags without

names for inline elements.

Block Tags without Element Names

Displays tags for block elements but without element names for a

more compact version of Block Tags mode. You can still see the

element names by hovering over the tags.

Inline Tags

Displays full tag names for inline elements, while block elements are

not displayed.

Partial Tags

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 187

Displays simple tags without names for inline elements, while block

elements are not displayed.

No Tags

No tags are displayed. This is the most compact mode and is as

close as possible to a word-processor view.

Sort attributes alphabetically for "Full Tags with Attributes"

When selected, if you choose Full Tags with Attributes for the Tags Display

Mode, the attributes will be displayed in alphabetical order. Otherwise, they are

displayed in the order that they appear in the XML source code.

Tags background color

Sets the Author mode tags background color.

Tags foreground color

Sets the Author mode tags foreground color.

Tags font

Allows you to change the font used to display tags text in the Author visual editing

mode. The default font is computed based on the setting of the Author default font

option in the Fonts preferences page (on page 141).

Compact tag layout

If this option is not selected, the Author mode displays the tags in a more

decompressed layout, where block tags are displayed on separate lines.

References Section

Display referenced content (external entities, XInclude, DITA conref, etc.)

When selected, the references (such as external entities, XInclude, DITA conrefs)

also display the content of the resources they reference. When the option is not

selected, the referenced resources are not automatically loaded and displayed, but

the referenced content can be expanded on demand by using the small expansion

button located next to each element that contains references. If you toggle this

option while editing, you need to reload the file for the modification to take effect.

Allow referenced content to be edited

When selected, for a specific XML vocabulary that supports this feature, the

content referenced from other files and presented in the Author visual editing

mode can be edited in-place and saved. For now, if the feature is enabled and you

use the Open Map in Editor with Resolved Topics toolbar action in the DITA

Maps Manager view, the referenced content in the opened document becomes

editable in-place. Saving the document will save all other modified topics.

Local files only

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 188

When selected (default), the Allow referenced content to be edited

(Experimental) option only works for local files. For files located

in remote locations such as a CMS, additional steps might be

necessary to save all modified content because this feature might

not function properly with remote resources.

For advanced Author configuration see the Document Type Association settings

Click this link to open the Document Type Association preferences page (on page 146).

Cursor Navigation Preferences

Oxygen XML Editor allows you to configure the appearance and behavior of the cursor in the Author mode

editor. To set cursor navigation preferences, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Author > Cursor Navigation.

The following options are available:

Highlight elements near cursor

When this option is selected, the element that contains the cursor is highlighted. If the cursor is

between two elements, both of them are highlighted. You can use the color picker to choose the

color of the highlight.

Show cursor position tooltip

Oxygen XML Editor uses tooltips (on page 609) in Author mode to indicate the position of the

cursor in the element structure of the underlying document. Depending on context, the tooltips

may show the current element name or the names of the elements before and after the current

cursor position.

Show location tooltip on mouse move

When this option is selected, Oxygen XML Editor displays Location Tooltips (on page 611)

when you are editing the document in certain tags display modes (Inline Tags, Partial Tags, No

Tags) or when the mouse pointer is moved between block elements (on page 3294).

Quick up/down navigation

This option is deselected by default and this means that when you navigate using the up and

down arrow keys in Author mode, the cursor is placed within each of the underlying XML

elements between two blocks of text (the cursor changes to a horizontal line when it is between

blocks of text). This allows you to easily insert elements and manage the structure of your XML

content. However, if this option is selected, the cursor ignores the XML structure and jumps from

one line of text to another, similar to how the cursor behaves in a word processor.

Quick navigation in tables

This option is selected by default and this means that when navigating between table cells

with the arrow keys, the cursor jumps from one cell to another. If this option is not selected, the

cursor navigates between XML nodes when navigating between table cells with the arrow keys.

Avoid positioning the cursor between blocks after a deletion

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 189

If selected (default), the cursor will not stay between block element sentinels after a deletion is

performed.

Arrow keys move the cursor in the writing direction

This setting determines how the left and right arrow keys behave in Author mode for

bidirectional (BIDI) text. When this option is selected (default value), the right arrow key

advances the cursor in the reading direction and the left arrow moves it in the opposite direction.

When this option is not selected, pressing the right arrow will simply move the cursor to the right

(and the left arrow moves it to the left), regardless of the text direction.

Schema-Aware Preferences

Oxygen XML Editor can use the schema of your XML language to improve the way the Author mode editor

handles your content. To configure the Schema-Aware options, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Edit modes > Author > Schema-Aware.

The following options are available:

Schema-aware normalization, format, and indent

When you open or save a document in Author mode, white space is normalized using the

display property of the current CSS stylesheet and the values of the settings (on page 214)

for Preserve space elements, Default space elements, and Mixed content elements. When

this option is selected, the schema will also be used to normalize white space, based on the

content model (element-only, simple-content, or mixed). Note that the schema information takes

precedence.

Indent blocks-only content

To avoid accidentally introducing inappropriate white space around inline elements

(on page 3297), Oxygen XML Editor does not normally apply indenting to the

source of an element with mixed content. If this option is selected, Oxygen XML

Editor will apply indenting to the source of mixed content elements that only

contain block elements (on page 3294).

Schema-Aware Editing

The options in this section determine how Oxygen XML Editor will use the schema of a

document to control the behavior of the Author mode.

• On - Enables all schema-aware editing options.

• Off - Disables all schema-aware editing options.

• Custom - Allows you to select custom schema-aware editing options from the following:

Schema-Aware Actions section

Delete element tags with backspace and delete

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 190

Controls what happens when you attempt to delete an element tag. The two

options are:

• Smart delete - If deleting the tag would make the document invalid, Oxygen

XML Editor will attempt to make the document valid by unwrapping the

current element or by appending it to an adjacent element where the result

would be valid. For instance, if you delete a bold tag, the content can be

unwrapped and become part of the surrounding paragraph, but if you delete

a list item tag, the list item content cannot become part of the list container.

However, the content could be appended to a preceding list item.

• Reject action when its result is invalid - A deletion that would leave the

document in an invalid state is rejected.

Paste and Drag and Drop

Controls the behavior for paste and drag and drop actions. Available options are:

• Smart paste and drag and drop - If the content inserted by a paste or drop

action is not valid at the cursor position, according to the schema, Oxygen

XML Editor tries to find an appropriate insert position. The possibilities

include:

◦ Creating a sibling element that can accept the content (for example,

if you tried to paste a paragraph into an existing paragraph).

◦ Inserting the content into a parent or child element (for example,

if you tried to paste a list item into an existing list item, or into the

space above or below and existing list).

◦ Inserting the content into an ancestor element where it would be

valid.

• Reject action when its result is invalid - If selected, Oxygen XML Editor will

not let you paste content into a position where it would be invalid.

Typing

Controls the behavior that takes place when typing. Available options are:

• Smart typing - If typed characters are not allowed in the element at the

cursor position, but the previous element does allow text, then a similar

element will be inserted, along with your content.

• Reject action when its result is invalid - If selected, and the result of the

typing action is invalid, the action will not be performed.

Content Completion

Controls the behavior that takes place when inserting elements using the Content

Completion Assistant in Author mode. Available options are:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 191

• Press ENTER to show available content completion proposals - If selected,

pressing Enter will open the Content Completion Assistant. If deselected,

there are three possibilities:

◦ The current element will be split (if possible).

◦ A new element with the same name will be inserted (if possible).

◦ Otherwise, a new paragraph will be inserted.

• Show all possible elements in the content completion list - If selected,

the content completion list will show all the elements in the schema, even

those that cannot be entered validly at the current position. If you select

an element that is not valid at the current position, Oxygen XML Editor will

attempt to find a valid location to insert it and may present you with several

options.

• Allow only insertion of valid elements and attributes - If selected, you can

only select elements in the content completion list that are valid (according

to the schema) at the current position.

• Allow only insertion of valid attribute values - If selected, you cannot

enter an attribute value that is not valid (according to the schema) in the

Attributes view (on page 641) or In-place Attributes Editor (on page

622). If the attribute has a choice of values, you can select a possible

value from a drop-down list in the combo box, but you cannot enter a value

manually.

Warn on invalid content when performing action

A warning message will be displayed when performing an action that will result in

invalid content. Available options are:

• Delete Element Tags - If selected, a warning message will be displayed

if the Delete Element Tags (on page 774) action will result in an invalid

document. You will be asked to confirm the deletion.

• Join Elements - If selected, a warning message will be displayed if the Join

Elements (on page 774) action will result in an invalid document. You will

be asked to confirm the join.

Automatically apply the best schema-aware insertion operation

If selected, Oxygen XML Editor automatically uses what it considers to be the best insertion

solution, when there is an attempt to insert content that is not valid in a specific context. If not

selected, Oxygen XML Editor will ask the user to choose from a list of proposed solutions.

Convert external content on paste

If selected, the Smart Paste feature (on page 626) is enabled when external content is pasted

in Author mode.

Convert even when pasting inside space-preserve elements

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 192

If selected, the Smart Paste feature will be used even when external content is

pasted inside a space-preserve element (such as a <codeblock>).

Convert pasted URLs to links

If selected, when a URL is pasted into Author mode, a link will be inserted (the type

of link depends on the type of document). For example, in DITA documents, an

<xref> is inserted.

Related information

Smart Paste in Author Mode (on page 626)

Customizing Smart Paste Support (on page 2299)

Review Preferences

Oxygen XML Editor allows you to add review comments and track changes (on page 656) in your

documents. The Review preferences page allows you to control how the Oxygen XML Editor review features

work. To configure these options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Editor > Edit modes > Author > Review.

The available options are as follows:

Author

Specifies the name to be attached to all comments and to changes made while Track Changes

is active. By default, Oxygen XML Editor uses the system user name.

Track Changes section (applies for all authors)

Initial state

Specifies whether or not the Track Changes feature (on page 3301) is enabled

when you open a document. You may have the Track Changes feature enabled

in some documents and disabled in others, or you can choose to always enable

or disable the feature for all documents. You can choose between the following

options:

• Stored in document - The current state of the Track Changes feature is

stored in the document itself, meaning that it is on or off depending on

the state the last time the document was saved. This is the recommended

setting when multiple authors work on the same set of documents as it

will make it obvious to other authors that changes have been made in the

document.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 193

• Always On - The Track Changes feature is always on when you open a

document. You can turn it off for an open document, but it will be turned on

for the next document you open.

• Always Off - The Track Changes feature is always off when you open a

document. You can turn it on for an open document, but it will be turned off

for the next document you open.

Initial display mode

Specifies whether or not all tracked changes and comments are visible when you

open a document in the Author visual editing mode. You can choose between the

following options:

• View All Changes/Comments - All tracked changes and comments are

visible in the Author visual editing mode.

• View Final - Comments are hidden, while insertion and deletion track

changes are presented as if they would be accepted.

Display changed lines marker

A changed line maker is a vertical line on the left side of the editor window

indicating where changes have been made in the document. To hide the changed

lines marker, deselect this option.

Inserted content color

When the Track Changes feature (on page 3301) is on, the newly inserted content

is highlighted with an insertion marker that uses a color to adjust the following

display properties of the inserted content: foreground, background, and underline.

This section allows you to customize the following color options:

• Automatic - If this option is selected, Oxygen XML Editor automatically

assigns a color to each user who inserted content in the current document.

The colors are picked from the Colors for automatic assignment list (on

page 194), the priority being established by the type of change (deletion,

insertion, or comment) and in the order that you see in the list.

• Fixed - If this option is selected, Oxygen XML Editor uses the specified color

for all insertion markers, regardless of who the author is.

• Use same color for text foreground - If selected, Oxygen XML Editor uses

the color defined above (Automatic or Fixed) to render the foreground of the

inserted content.

• Use same color for background - If selected, Oxygen XML Editor uses the

color defined above (Automatic or Fixed) to render the background of the

inserted content. A slider control allows you to set the transparency level of

the background.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 194

Deleted content color

When the Track Changes feature (on page 3301) is on, the deleted content is

highlighted with a deletion marker that uses a color to adjust the following display

properties of the deleted content: foreground, background, and strikethrough. This

section allows you to customize the following color options:

• Automatic - If this option is selected, Oxygen XML Editor automatically

assigns a color to each user who deleted content in the current document.

The colors are picked from the Colors for automatic assignment list (on

page 194), the priority being established by the type of change (deletion,

insertion, or comment) and in the order that you see in the list.

• Fixed - If this option is selected, Oxygen XML Editor uses the specified color

for all deletion markers, regardless of who the author is.

• Use same color for text foreground - If selected, Oxygen XML Editor uses

the color defined above (Automatic or Fixed) to render the foreground of the

deleted content.

• Use same color for background - If selected, Oxygen XML Editor uses the

color defined above (Automatic or Fixed) to render the background of the

deleted content. A slider control allows you to set the transparency level of

the background.

Comments color section (applies for all authors)

Sets the background color of the text that is commented on. The options are:

• Automatic - If this option is selected, Oxygen XML Editor automatically assigns a color to

each user who adds a comment in the current document. The colors are picked from the

Colors for automatic assignment list (on page 194), the priority being established by

the type of change (deletion, insertion, or comment) and in the order that you see in the

list.

• Fixed - If this option is selected, Oxygen XML Editor uses the specified color for

all changes, regardless of who the author is. A slider control allows you to set the

transparency level of the background.

Colors for automatic assignment list

These are the colors that will be automatically assigned for tracked insertions, tracked deletions,

and comments if the Automatic option is selected in any of the sections in this preferences

page. The colors are assigned in the order that you see in this list. You can use the Add, Edit, or

Remove buttons to modify the list of colors.

Related information

Reviewing Documents (on page 656)

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 195

Callouts Preferences

Oxygen XML Editor can display callouts (on page 3295) for review items such as comments and tracked

changes (on page 656). To customize options for review callouts, open the Preferences dialog box (Options

> Preferences) (on page 132) and go to Editor > Edit modes > Author > Review > Callouts.

The available options are as follows:

Show Review Callouts section

Comments

If selected, callouts are displayed for comments, including comments that are

added to tracked changes (on page 3301). This option is selected by default.

Track Changes deletions

If selected, callouts are displayed for tracked change (on page 3301) deletions

and the following additional option becomes available:

Show deleted content in callout

If selected, the deleted content is also displayed in the callout.

Track Changes insertions

If selected, callouts are displayed for tracked change (on page 3301) insertions

and the following additional option becomes available:

Show inserted content in callout

If selected, the inserted content is also displayed in the callout.

Rendering section

Show review time

When selected, timestamp information is displayed in callouts.

Show all connecting lines

When selected, lines are shown that connect the callout to the location of the

change.

Initial width (px)

Specifies the initial width of the callouts each time the document is opened. The

default is 250 pixels.

Text lines count limit

Specifies the maximum number of lines to be shown in the callouts. The default

is 5 lines. Note that this does not limit the number of lines in the actual comment.

It only limits the number of lines shown without opening or editing it. To see the

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 196

full comment, right-click on the callout and select Edit Comment or Show

Comment.

Profiling/Conditional Text Preferences

Oxygen XML Editor lets you configure how profiling and conditional text (on page 683) is displayed in Author

mode. It has built-in support for the standard conditional text features of DITA and DocBook that you can

customize for your own projects. You can also add conditional support for other XML vocabularies, including

your custom vocabularies.

To configure Profiling/Conditional Text options, open the Preferences dialog box (Options > Preferences)

(on page 132) and go to Editor > Edit modes > Author > Profiling/Conditional Text. There are several sub-

pages in this section. This first parent page includes options for determining which types of profiled content is

displayed:

Show profiling attributes

Toggles whether or not the Show Profiling Attributes option (on page 694) in the

Profiling / Conditional Text drop-down menu is enabled by default.

Show profiling attribute name

If selected, the names of the profiling attributes are displayed with their values. If

unchecked, only the values are displayed.

Show profiling colors and styles

Toggles whether or not the Show Profiling Colors and Styles option (on page 694) in the

Profiling / Conditional Text drop-down menu is enabled by default.

Show excluded content

Toggles whether or not the Show Excluded Content option (on page 694) in the

Profiling / Conditional Text drop-down menu is enabled by default.

Attributes and Condition Sets Preferences

To configure profiling attributes and condition sets, open the Preferences dialog box (Options > Preferences)

(on page 132) and go to Editor > Edit modes > Author > Profiling/Conditional Text > Attributes and

Condition Sets.

Note:

Note the following when configuring these settings:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 197

• This preferences page is used to define how profiled elements are treated in Author mode.

It does not create profiling or conditional text attributes or values in the underlying XML

vocabulary. It just changes how the editor displays them.

• This preferences page should be used for profiling / conditional text elements only. To change

how other types of attributes are displayed in the text, use a CSS file.

• If you are using the DITA XML vocabulary and a DITA subject scheme map (on page 3301) is

defined in the root map (on page 3301) of your document, it will be used in place of anything

defined using this dialog box.

This preferences page contains the following options and sections:

Import from DITAVAL

This button allows you to import profiling attributes from DITAVAL files (on page 3219). You can

merge these new profiling attributes with the existing ones, or replace them completely. If the

imported attributes conflict with the existing ones, Oxygen XML Editor displays a dialog box that

contains two tables. The first one previews the imported attributes and the second one previews

the already defined attributes. You can choose to either keep the existing attributes or replace

them with the imported ones.

Note:

When importing profiling attributes from DITAVAL files, Oxygen XML Editor automatically

creates condition sets based on these files.

Profiling Attributes section

Allows you to specify a set of allowable values for each profiling or conditional attribute. You

can use the New button at the bottom of the table to add profiling attributes (on page 684), the

Edit button to edit existing ones, or the Delete button to delete entries from the table. Use the Up

and Down buttons to change the priority of the entries. If you have multiple entries with identical

names that match the same document type, Oxygen XML Editor uses the one that is positioned

highest in the table.

Report invalid profiling attribute values (DITA only)

If selected, it means the following:

• In DITA, the automatic validation will display a warning when a value that is

not defined is found in the document.

• In the DITA Validate and Check for Completeness dialog box, the Report

attributes and values that conflict with profiling preferences (on page 3000)

option is not displayed. This means that the validation will behave the same

as if that option was selected and it will always report such values.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 198

Allow contributing extra profiling attribute values

This option is selected by default, which means that users are allowed to add

values that are not defined in preferences to profiling attributes. If a user inserts

such a value, when invoking the Edit Profiling Attributes action from the contextual

menu in Author mode (or for DITA topics, the Edit Properties action in the DITA

Maps Manager (on page 2950)), the Profiling Values Conflict dialog box (on page

686) will appear and it includes an Add these values to the configuration action

that will automatically add the new value to the particular profiling attribute. If

deselected, Oxygen XML Editor behaves as if the Preserve the configuration option

has been chosen in the Profiling Values Conflict dialog box (on page 686) and

that dialog box will never appear.

Configure profiling colors and styles link

Use this link to open the profiling Colors and Styles preference page (on page

198).

Profiling Condition Sets section

Allows you to specify a specific set of profiling attributes to be used to specify a particular build

configuration for your content. You can use the New button at the bottom of the table to add

condition sets (on page 689), the Edit button to edit existing ones, or the Delete button to

delete entries from the table. Use the Up and Down buttons to change the priority of the entries.

If you have multiple entries with identical names that match the same document type, Oxygen

XML Editor uses the one that is positioned highest in the table.

Related information

Filtering Profiling Values with a DITAVAL File (on page 3219)

Styling the Rendering of Profiled Content Using a DITAVAL File (on page 3221)

Colors and Styles Preferences

Oxygen XML Editor lets you set the colors and styles used to display profiling / conditional text (on page

196) in the Author mode editor (on page 364). To set Colors and Styles preferences, open the Preferences

dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes > Author > Profiling/

Conditional Text > Colors and Styles.

The preference page includes the following options and sections:

Automatically apply colors and styles from DITAVAL files referenced in the Main Files folder

If this setting is enabled (default state is disabled) and DITAVAL filter files that define flagging

conditions are referenced within the Main Files folder in the Project view, those conditions are

automatically taken into account when the Show Profiling Colors and Styles option (on page

694) from the Profiling / Conditional Text toolbar drop-down menu in Author mode is

enabled.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 199

Import from DITAVAL

Allows you to import profiling styles from a .ditaval file. You can merge these new profiling

styles with the existing ones, or replace them completely. If the imported styles conflict with

the existing ones, Oxygen XML Editor displays a dialog box containing two tables. The first one

previews the imported styles, while the second one previews the already defined styles. You can

choose to either keep the existing styles or replace them with the imported ones. This feature

works even if you use profiling attribute groups to organize the attributes into subcategories (on

page 3212).

Profiling Colors and Styles Table

You can use buttons below this table to set specific colors and styles for the listed profiling

attribute values. The table includes two categories:

• Defined attributes values - Contains the styles for profiling attribute values defined in the

Profiling / Conditional Text (on page 196) preferences page. Each profiling attribute

value has an associated style. To ease the process of customizing styles, the Defined

attributes values category contains by default the list of empty styles. All you have to do

is to adjust the colors and decorations, thus skipping the process of manually defining

the association rules (document type, attribute name, and value). This is the reason why a

style from this category can only be reset (on page 200), not deleted.

• Other - This category contains styles for attribute values that are not marked as profiling

values, in the Profiling / Conditional Text (on page 196) preferences page. In this

category are listed:

◦ All the styles that were defined in other projects (with other profiling attribute value

sets).

◦ All the styles set for the profiling attributes defined in a subject scheme map (on

page 3214).

Automatic styling button

If you click this button, Oxygen XML Editor will apply automatic styling to the profiling attribute

values that do not have a style defined.

New button

Opens the Add Profiling Style dialog box that allows you to associate a set of coloring and

styling properties to a profiling value.

Note:

You can define a default style for a specific attribute by setting the Attribute value

field to <ANY>. This style is applied for attribute values that do not have a specific style

associated with it.

Edit button

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 200

Open the Edit Profiling Style dialog box that allows you to edit the colors or style for an existing

profiling value. You can also double-click the value to open this dialog box.

Clear style button

Resets the style for the selected value to its default setting (no color or decoration).

Delete button

Delete the selected style from the Other category.

Related information

Filtering Profiling Values with a DITAVAL File (on page 3219)

Styling the Rendering of Profiled Content Using a DITAVAL File (on page 3221)

Attributes Preferences

When the Show Profiling Attributes option (on page 694) is selected, the Author mode displays conditional

text markers at the end of conditional text blocks. To configure the rendering of these text markers, open the

Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes > Author >

Profiling/Conditional Text > Colors and Styles > Attributes.

The following options are available:

Background color

Sets the background color used to display the profiling attributes.

Attribute name foreground color

Sets the foreground color used to display the names of the profiling attributes.

Attribute values foreground color

Sets the foreground color used to display values of the profiling attributes.

Border color

Sets the color of the border of the block that displays the profiling attributes.

MathML Preferences

Oxygen XML Editor allows you to edit MathML (on page 763) equations and displays the results in a preview

window. For a more advanced MathML editor, you can either install Wiris MathType (on page 765) (which is

a commercial product that requires a separate license) or use an external MathML editor (e.g. the LibreOffice

equation editor).

Using MathFlow for Editing and Rendering MathML Equations (Deprecated)

Important:

The MathFlow editor integration has been marked as deprecated and was replaced with a new

MathType integration (on page 764).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 201

To configure the MathML editor or to enter your MathFlow license information, open the Preferences dialog

box (Options > Preferences) (on page 132) and go to Editor > Edit modes > Author > MathML.

You can configure the following options:

Equation minimum font size

The minimum size of the font used for rendering mathematical symbols when editing in the

Author mode.

MathFlow installation directory

The installation folder for the MathFlow components product (MathFlow SDK).

MathFlow license file

The license file for the MathFlow components product (MathFlow SDK).

MathFlow preferred editor

A MathML formula can be edited in one of three editors of MathFlow components product

(MathFlow SDK).

• Structure Editor (default selection) - Targets professional XML workflow users.

• Style Editor - Tailored to the needs of content authors.

• Simple Editor - Designed for applications where end-users can enter mathematical

equations without prior training and only the meaning of the math matters.

Save special characters

Specifies how special characters are saved in the XML file.

• As entity names - Saves the characters in &name; format. It refers to a character by the

name of the entity that has the desired character as its replacement text. For example, the

Greek Omega character is saved as Ω.

• As character entities (default selection) - Saves the characters in a hexadecimal value,

using the &#xNNN format. For example, the Greek Omega character is saved as Ω.

• As character values - Saves the characters as the actual symbol. For example, the Greek

Omega character is saved as Ω.

More documentation is available on the Wiris MathFlow website.

Using an External Tool for Editing MathML Equations

External application > Command line

You can use this option to specify an external MathML application for editing MathML

equations.

For example, the following commands could be used to edit MathML equations with a

LibreOffice application (depending on the O.S.):

http://www.wiris.com/mathflow
http://www.wiris.com/mathflow

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 202

• Windows - "C:\Program Files\LibreOffice\program\smath.exe" --nologo "${cf}"

• macOS - /Applications/LibreOffice.app/Contents/MacOS/soffice --math --nologo

"${cf}"

• Linux - /usr/lib/libreoffice/program/smath --nologo "${cf}"

AutoCorrect Preferences

Oxygen XML Editor includes an option to automatically correct misspelled words as you type in Author mode.

To enable and configure this AutoCorrect feature (on page 472), open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Edit Modes > Author > AutoCorrect.

The following options are available:

Enable AutoCorrect

When selected (default state), while editing in Author mode, if you type anything that is listed in

the Replace column of the Replacements table displayed in this preferences page, Oxygen XML

Editor will automatically replace it with the value listed in the With column.

Use additional suggestions from the spell checker

If selected, in addition to anything listed in the Replacements table displayed in

this preferences page, Oxygen XML Editor will also use suggestions from the Spell

Checker to automatically correct misspelled words. Suggestions from the Spell

Checker will only be used if the misspelled word is not found in the Replacements

table.

Note:

The AutoCorrect feature shares the same options configured in the

Language options (on page 240) and Ignore elements (on page 241)

sections in the Spell Check preferences page.

Include text-to-markup corrections based on the current document type

If selected, in addition to anything listed in the Replacements table displayed

in this preferences page, the AutoCorrect mechanism will also include XML

markup insertion rules specified in a configuration file for each document type.

For example, for default DITA, DocBook, and TEI documents, entering a hyphen

(-) followed by a space in an empty paragraph will automatically insert a list

element with an empty list item element inside. The configuration file is located

at: [OXYGEN_INSTALL_DIR]/frameworks/[DOC_TYPE]/resources/

structureAutocorrect.xml.

Tip:

By default, the structureAutocorrect.xml file only exists for DITA,

DocBook, and TEI frameworks, but it is possible to customize your own

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 203

markup correction rules for your particular document type. For details, see

Customizing Text-to-Markup Shortcut Patterns (on page 2298).

Spell Check options link

Use this link to navigate to the Spell Check Preferences page (on page 239).

Replacements Table section

The AutoCorrect feature uses the Replacements table to automatically replace anything that is

listed in the Replace column with the value listed in the With column for each language.

Replacements for language drop-down menu

You can specify the language for the Replacements table, and for each language,

you can configure the items listed in the table. The language selected in this page

is not the language that will be used by the AutoCorrect feature. It is simply the

language for the Replacements table.

Replacements Table

You can double-click on cells in either column to edit the listed items. Use the Add

button to insert new items and the Remove button to delete rows from the table.

Note:

Any changes, additions, or deletions you make to this table are saved to a

path that is specified in the AutoCorrect Dictionaries preferences page (on

page 205).

Smart quotes section

You can also choose to automatically convert double and single quotes to a quotation character

of your choice by using the following options in the Smart quotes section:

• Replace "Single quotes" - Replaces single quotes with the quotation symbols you select

with the Start quote and End quote buttons.

• Replace "Double quotes" - Replaces double quotes with the quotation symbols you select

with the Start quote and End quote buttons.

Note:

These Smart quotes options are ignored for content inside any element listed in the

Ignore elements section of the Spell Check preferences page (on page 241).

Global Options (on page 3297)

If this option is selected, the options are stored on your local computer, in a folder that is not

accessible to other users.

Project Options (on page 3300)

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 204

If this option is selected, the options are stored in the project file and can be shared with

other users. Selecting Project Options (on page 3300) will only save your selections in

Enable AutoCorrect (on page 202), Use additional suggestions from the spell checker (on

page 202), and the options in the Smart quotes section (on page 203). Changes to the

Replacements table are not saved in this page. To save changes to the Replacements table at

project level you need to specify a custom location in the User-defined replacements section of

the AutoCorrect Dictionaries preferences page (on page 205) and select Project Options from

that preferences page instead.

Restore Defaults

Restores the options in this preferences page to their default values and also deletes any

changes you have made to the Replacements table (on page 203).

AutoCorrect Dictionaries Preferences

To set the Dictionaries preferences for the AutoCorrect feature (on page 472), open the Preferences

dialog box (Options > Preferences) (on page 132) and go to Editor > Edit Modes > Author > AutoCorrect >

Dictionaries. This page allows you to specify the location of the dictionaries that Oxygen XML Editor uses for

the AutoCorrect feature and the location for saving user-defined replacements.

The following options are available in this preferences page:

Dictionaries default folder

Displays the default location where the dictionaries that Oxygen XML Editor uses for the

AutoCorrect feature are stored.

Include dictionaries from

Selecting this option allows you to specify a location where you have stored AutoCorrect

dictionaries that you want to include, along with the default ones.

Important:

Consider the following notes regarding this option:

• The AutoCorrect mechanism takes into account AutoCorrect dictionaries

collected both from the default and custom locations and multiple dictionaries

from the same language are merged (for example, en_UK.dat from the default

location is merged with en_US.dat from a custom location).

• If you have a generic AutoCorrect dictionary file (one that just has a two-letter

language code for its file name, such as en.dat) saved in either the default or

custom location, the other more specific dictionaries (for example, en_UK.dat

and en_US.dat) will not be merged and the existing generic dictionary will

simply be used instead.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 205

• You can use a custom suffix in the dictionary file name after the language code.

For example, en_US_synopsys.dat or en_synopsys.dat.

• If the additional location contains a file with the same name as one from the

default location, the file in the additional location takes precedence over the file

from the default location.

How to add more dictionaries link

Use this link to open a topic in the Oxygen XML Editor User Guide that explains how to add

dictionaries for the AutoCorrect feature (on page 474).

Save user-defined replacements in the following location

Specifies the target where added, edited, or deleted replacements are saved. By default, the

target is the application preferences folder, but you can also choose a custom location.

Tip:

To save changes to the Replacement table (in the AutoCorrect preferences page) (on

page 203) at project level (on page 3300), select a custom location for the User-

defined replacements and select Project Options (on page 3300) at the bottom of the

page.

Related information

Add Dictionaries for the AutoCorrect Feature (on page 474)

Serialization Preferences

To configure the serialization options for the Author mode, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Edit modes > Author > Serialization.

The following options are available:

Format and indent

Use this option to specify what should be formatted and indented when you save a document (or

switch from Author to Text mode). You can choose between the following two options:

Only the modified content

The Save operation only formats the nodes that were modified in the Author mode.

The rest of the document preserves its original formatting.

Note:

This option also applies to the DITA maps opened in the DITA Maps

Manager (on page 2950).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 206

The entire document

The Save operation applies the formatting to the entire document regardless of the

nodes that were modified in Author mode.

Also apply the format and indent options that are set for Text mode

If this option is selected, the result of the Format and indent

operation will be the same as when it is applied in Text editing mode.

Thus, the content of the document is formatted by applying the

Format and Indent rules from the Editor/Format (on page 211) and

Editor/Format/XML (on page 214) preference pages. You can use

the Format and indent options link to navigate to those options.

Compatibility with other tools

Use this option to control how line breaks are handled when a document is serialized. This will

help to obtain better compatibility with other tools. You can choose one of the following:

• None - Choose this option if compatibility with other tools can be ignored.

• Do not break lines, do not indent - Choose this option to avoid breaking lines after

element start or end tags and indenting will not be used.

Note:

New lines that are added by the user in elements where the @xml:space attribute is

set to preserve (such as <pre> elements in HTML, or <codeblock> elements in DITA)

are still inserted. Also, selecting this option automatically disables the Also apply

the format and indent options that are set for Text mode option (on page 206),

since the formatting from Text mode does not take the CSS styles into account.

• Break lines only after elements displayed as blocks, do not indent - Choose this option to

instruct Oxygen XML Editor to insert new lines only after elements that have a CSS display

property set to anything other than inline or none (for example, block, list-item, table,

etc.) and indenting will not be used. When selecting this option, the formatting is dictated

by the CSS.

Note:

New lines that are added by the user in elements where the @xml:space attribute is

set to preserve (such as <pre> elements in HTML, or <codeblock> elements in DITA)

are still inserted. Also, selecting this option automatically disables the Also apply

the format and indent options that are set for Text mode option (on page 206),

since the formatting from Text mode does not take the CSS styles into account.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 207

Schema Design Preferences

Oxygen XML Editor provides a graphical schema design editor (on page 365) to make editing XML Schema

easier. To configure the Schema Design options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Edit modes > Schema Design.

The following options are available in the Schema Design preferences page:

Show annotation in the diagram

When selected, Oxygen XML Editor displays the content of documentation in schema diagrams.

When trying to edit components from another schema

The schema diagram editor will combine schemas imported by the current schema file into a

single schema diagram. You can choose what happens if you try to edit a component from an

imported schema. The options are:

• Always go to its definition - Oxygen XML Editor opens the imported schema file so that

you can edit it.

• Never go to its definition - The imported schema file is not opened and the component

cannot be edited in place.

• Always ask - Oxygen XML Editor asks if you want to open the imported schema file.

Zoom

Allows you to set the default zoom level of the schema diagram.

XSD Properties Preferences

Oxygen XML Editor lets you control which properties to display for XML Schema components in the XML

Schema Design view (on page 365). To configure the schema design properties displayed, open the

Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes > Schema

Design > XSD Properties.

This preferences page contains the following:

Show additional properties in the diagram

If this option is selected, the properties selected in the property table are shown in the XML

Schema Design mode. This option is selected by default.

Properties Table

Show

Use this column in the table to select the properties that you want to be displayed

in the XML Schema Design mode.

Only if specified

Use this column to select if you want the property to be displayed only if it is

defined in the schema.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 208

JSON Schema Properties Preferences

Oxygen XML Editor lets you control which properties to display for JSON Schema components in the JSON

Schema Design mode. To configure the JSON properties that are displayed, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Editor > Edit modes > Schema Design > JSON Schema

Properties.

This preferences page contains the following:

Show additional properties in the diagram

If this option is selected, the properties selected in the property table are shown in the JSON

Schema Design mode. This option is selected by default.

Properties Table

Show

Use this column in the table to select the properties that you want to be displayed

in the JSON Schema Design mode.

Only if specified

Use this column to select if you want the property to be displayed only if it is

defined in the schema.

Open Preferences

Oxygen XML Editor lets you control how files are opened. To configure the options for opening documents,

open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Open.

The following options are available:

Open each document in a tab next to the current one

When selected (default), each new document is opened in a tab next to the currently open tab. If

not selected, each new document is opened in a tab at the end of the current tab stack.

Restore cursor position

Selected by default, it ensures that the last position of the cursor will be remembered when a

document is re-opened. If this option is not selected, the cursor will always be positioned at the

beginning of the document.

Lock local resources

When this option is selected and you open a file from the local file system or a shared network

drive, Oxygen XML Editor locks the file for the current user and the file becomes read-only for

other users while the lock exists. Locked and read-only files have a lock icon () displayed

on their editor tabs. Newly created files are locked when you first save them. If you select

this option with files already opened in Oxygen XML Editor, it will lock all the currently open

files. If you deselect this option with files already opened, it will unlock them by deleting the

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 209

corresponding .lock files. When you try to save locked (read-only) files, a Save As dialog box

will be displayed to avoid overwriting the initial resource.

Support for Special Characters section

Note:

The options in this section only affect the Text editing mode.

When bidirectional text, Asian languages, or other special characters are detected

You can choose how you want Oxygen XML Editor to handle bidirectional text,

Asian languages, or other special characters when they are detected in Text mode.

You can choose one of the following:

• Enable support for special characters - The support for special characters

will always be enabled. For details about what this means, see Bidirectional

Text Support in Text Mode - Enabled (on page 577).

• Disable support for special characters - The support for special characters

will always be disabled. For details about what this means, see Bidirectional

Text Support in Text Mode - Disabled (on page 577).

• Prompt for each document (default setting) - You will be prompted to

choose whether or not to enable the support for special characters

whenever they are detected in a newly opened document. For details about

which setting to choose, see Special Character Support in Text Mode (on

page 576).

Disable special characters support for documents larger than (characters)

Enabling bidirectional text editing support can affect performance on large files.

When this option is selected, bidirectional editing is disabled for files exceeding

the specified size (even if the Enable support for special characters option (on

page 209) is selected). The default limit is 300 MB. You can change it to 500

MB or 800 MB, but it is recommended that you always leave this option selected

regardless of the limit that is set.

Performance section

Optimize loading in the Text edit mode for files over (MB)

File loading is optimized for reduced memory usage for any file whose size is

larger than the value specified in this drop-down list. This is useful for editing

large files, but there are several restrictions (on page 482) for memory-intensive

operations.

Show warning when loading large documents

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 210

Oxygen XML Editor will warn you if you open a file that is bigger than

the specified size.

Optimize loading for documents with lines longer than (Characters)

Line wrap is automatically performed for documents that contain lines that exceed

the length specified in this text field. For a list of the restrictions applied to a

document with long lines, see Editing Documents with Long Lines (on page 484).

Show warning when loading documents with long lines

When selected, Oxygen XML Editorwill warn you when you open a file

with lines longer than the specified length. To reduce the length of

lines in a file, format and indent the document after it is opened in the

editor panel. For a list of the restrictions applied to a document with

long lines, see Documents with Long Lines (on page 484).

Save Preferences

Oxygen XML Editor lets you control how files are saved. To configure the options for saving documents, open

the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Save.

The following options are available:

Show "Save as" option to save newly created documents in the "New" document wizard

It is selected by default, but if you deselect this option, the Save as option (on page 380) will

not be available in the New Document wizard (on page 378), so you will not have the ability to

change the default name and path of the new file.

Safe save (only for local files)

In the unlikely event of a failure when attempting a Save action, this option provides increased

protection from corruption of the original file. When this option is selected, it saves the content

to a temporary file and if the save is unsuccessful, the editor preserves its unsaved state status.

Automatically save the document every

If selected, your documents are automatically saved after a preset time interval that is specified

in the drop-down list.

On Save, make backup copy with extension (only for local files)

If selected, a backup copy is made when saving the edited document. This option is available

only for local files (files that are stored on the local file system). The default backup file

extension is .bak, but that can be changed in the text field.

Save auto-recover information every

If selected, your documents are automatically saved to a backup file after the time interval

specified in the drop-down list.

Auto-recover file location

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 211

Specifies the location of the backup file for auto-recovery.

Validate document before saving

If selected, Oxygen XML Editor runs a validation that checks your document for errors before

saving it.

Save all files before transformation or validation

Saves all opened files before validating or transforming an XML document. This ensures that any

dependencies are resolved when modifying the XML document and its XML Schema.

Save all files before calling external tools

If selected, all files are saved before executing an external tool.

Automatically compile LESS to CSS when saving

If selected, when you save a LESS file it will automatically be compiled to CSS (deselected by

default).

Important:

If this option is selected, when you save a LESS file, the CSS file that has the same name

as the LESS file is overwritten without warning. Make sure all your changes are made in

the LESS file. Do not edit the CSS file directly, as your changes might be lost.

Performance section

Clear undo buffer on save

If selected, Oxygen XML Editor clears its undo buffer when you save a document.

Thus, modifications made prior to saving the document cannot be undone. Select

this option if you frequently encounter out of memory errors when editing large

documents.

Format Preferences

This preferences page contains various formatting options that influence editing and formatting in both the

Text (on page 363) and Author (on page 364) editing modes. To control additional options specifically for

the Author mode editor, see Whitespace Handling in Author Mode (on page 611).

Note:

These settings apply to the formatting of source documents. The formatting of output documents is

determined by the transformation scenarios that create them (on page 1472).

To configure the Format options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Editor > Format.

The following options are available:

Detect indent on open

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 212

If selected, Oxygen XML Editor detects how a document is indented when it is opened. Oxygen

XML Editor uses a heuristic method of detection by computing a weighted average indent

value from the initial document content. You can deselect this setting if the detected value

does not work for your particular case and you want to use a fixed-size indent for all the edited

documents. If this option is selected, Oxygen XML Editor detects the following:

• When TAB characters are used to indent content, the size of the TAB characters is used

for the indent size.

• Otherwise, the detected size of SPACE characters is used for the indent size.

Tip:

If you want to minimize the formatting differences created by the Format and Indent

operation in a document edited in the Text edited mode, make sure that both the Detect

indent on open and Detect line width on open (on page 213) options are selected.

Use zero-indent, if detected

By default, if no indent was detected in the document, the fixed-size indent is used.

Select this option if all of your documents have no indentation and you want to

keep them that way.

Indent with tabs

If selected, indents are created using TAB characters. If unchecked, lines are indented using

space characters. Selecting this option automatically disables the Detect indent on open (on

page 211) option.

Indent size

The meaning of this setting depends on the following:

• If the Detect indent on open option (on page 211) is selected and TAB characters are

detected at the beginning of the line, the indent size is the width of a TAB character.

Otherwise, the indent size value is ignored and Oxygen XML Editor uses the number of

detected SPACE characters.

• If the Indent with tabs option (on page 212) is selected, the indent size is the width of a

TAB character.

• If neither of these options are selected, the indent size is the number of SPACE characters

used for indenting the text lines.

For additional information about changing the indent size, see Setting an Indent Size to Zero (on

page 572).

For information about when this setting is used, see Where Indent Size and Line Width Settings

are Used in Oxygen XML Editor (on page 214).

Indent on enter

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 213

If selected, when you press Enter to insert a line break in the Text editing mode, an indentation

will be added to the new line.

Enable smart enter

If selected, when you press the Enter key between a start and an end XML tag in

the Text editing mode, the cursor is placed in an indented position on the empty

line formed between the start and end tag.

Format and indent the document on open

If selected, an XML document is formatted and indented before opening it in Oxygen XML Editor.

Note:

Some specialized types of XML documents do not benefit from this feature, including

Relax NG, XSD, XSL, and Ant. However, the feature is available for some non-XML types

of documents, such as CSS and JSON.

Detect line width on open

If selected, Oxygen XML Editor automatically detects the line width when the document is

opened.

Hard line wrap (Limit to "Line width - Format and Indent")

If selected, when typing content in the Text editing mode and the maximum line width is reached,

a line break is automatically inserted.

Line width - Format and Indent

Defines the number of characters after which the Format and Indent (pretty-print) action

performs hard line-wrapping. For example, if set to 100, after a Format and Indent action, the

longest line will have a maximum of 100 characters. This setting is also used when saving XML

content edited in the Author editing mode.

Note:

To avoid having an indent that is longer than the line width setting and without having

sufficient space available for the text content, the indent limit is actually set at half the

value of the Line width - Format and Indent setting. The remaining space is reserved for

text.

For information about when this setting is used, see Where Indent Size and Line Width Settings

are Used in Oxygen XML Editor (on page 214).

Clear undo buffer before Format and Indent

The Format and Indent operation can be undone, but if used intensively, a considerable amount

of the memory allocated for Oxygen XML Editor will be used for storing the undo states. If

this option is selected, Oxygen XML Editor empties the undo buffer before doing a Format

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 214

and Indent operation. This means you will not be able to undo any changes you made before

the format and indent operation. Select this option if you encounter out of memory problems

(OutOfMemoryError) when performing the Format and Indent operation.

Where Indent Size and Line Width Settings are Used in Oxygen XML Editor

The values set in the Indent Size and Line Width - Format and Indent options are used in various places in the

application, including the following:

• When the Format and Indent action is used in the Text editing mode.

• When you press Enter to break a line in the Text editing mode.

• When the Hard line wrap (Limit to "Line width - Format and Indent") option is selected and the

maximum line width is reached while editing in the Text mode.

• When the XML is serialized by saving content in the Author editing mode.

Resources

For more information about the formatting options offered by Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/1plmdN0Cfso

XML Preferences

To configure the XML Formatting options, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Format > XML.

The following options are available:

Format Section

This section includes the following drop-down boxes:

Preserve empty lines

The Format and Indent operation preserves all empty lines found in the document.

Preserve text as it is

The Format and Indent operation preserves text content as it is, without removing

or adding any white space.

Preserve line breaks in attributes

Line breaks found in attribute values are preserved.

Note:

When this option is selected, the Break long attributes option (on page

215) is automatically disabled.

https://www.youtube.com/embed/1plmdN0Cfso

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 215

Break long attributes

The Format and Indent operation breaks long attribute values.

Indent inline elements

The inline elements are indented on separate lines if they are preceded by white

spaces and they follow another element start or end tag. For example:

Original XML:

<root>

 text <parent> <child></child> </parent>

</root>

Indent inline elements selected:

<root> text <parent>

 <child/>

 </parent>

</root>

Indent inline elements not selected:

<root> text <parent> <child/> </parent> </root>

Expand empty elements

If not selected (default), the Format and Indent operation results in an empty XML

element being serialized in a compact form (<a atr1="v1"/>). If selected, the same

operation results in empty XML elements being serialized in expanded form (for

example, <a atr1="v1">).

Notes:

• When using the Format and Indent operation in Text mode, if

the Schema-aware format and indent option (on page 217)

is enabled, Oxygen XML Editor will use information from the

associated schema and avoid expanding tags for elements that are

defined as empty in the schema.

• When saving a document in Author mode, if the Schema-aware

normalization, format, and indent option in the Schema-Aware

preferences page (on page 189) is enabled, Oxygen XML Editor

will use information from the associated schema and avoid

expanding tags for elements that are defined as empty in the

schema (therefore, text or other elements are not allowed inside

them).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 216

Sort attributes

The Format and Indent operation sorts the attributes of an element

lexicographically.

Add space before slash in empty elements

Inserts a space character before the trailing / and > of empty elements.

Break line before an attribute name

When selected, the Format and Indent operation always breaks the line before any

attribute name in an XML element. By default, the setting is not selected, which

means that new lines might still be added before the attribute names but only if

the line of content would overflow the maximum line width specified in the Format

preferences page (on page 211).

Element Spacing Section

This section controls how the application handles whitespaces found in XML content. You can

Add or Remove element names or simplified XPath expressions in the various tabs.

The XPath expressions can accept multiple attribute conditions and inside each condition you

can use AND/OR boolean operators and parentheses to override the priority.

You can use one or more of the following attribute conditions (default attribute values are not

taken into account):

• element[@attr] - Matches all instances of the specified element that include the specified

attribute.

• element[not(@attr)] - Matches all instances of the specified element that do not include

the specified attribute.

• element[@attr = "value"] - Matches all instances of the specified element that include the

specified attribute with the given value.

• element[@attr != "value"] - Matches all instances of the specified element that include the

specified attribute and its value is different than the one given.

Example: The following is an example of how you could use multiple boolean operators and

parentheses inside an attribute condition:

*[@a and @b or @c and @d]

*[@a and (@b or @c) and @d]

The following are just examples of how simplified XPath expressions might look like:

• elementName

• //elementName

• /elementName1/elementName2/elementName3

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 217

• //xs:localName Note: The namespace prefixes (such as xs) are treated as part of the

element name without taking its binding to a namespace into account.

• //xs:documentation[@lang="en"]

The tabs are as follows:

Preserve space

List of elements that will have the Format and Indent operation preserve the

whitespaces (such as blanks, tabs, and newlines).

Default space

List of elements that will have the content normalized (multiple contiguous

whitespaces are replaced by a single space), before applying the Format and

Indent operation.

Mixed content

The elements from this list are treated as mixed content when applying the Format

and Indent operation. The lines are split only when whitespaces are encountered.

Line break

List of elements that will have line breaks inserted, regardless of their content. You

can choose to break the line before the element, after, or both.

Schema-aware format and indent

The Format and Indent operation takes the schema information into account with regard to the

space preserve, mixed, or element only properties of an element.

Indent Section

Includes the following options:

Indent (when typing) in preserve space elements

Normally, the Preserve space elements (identified by the xml:space attribute set to

preserve or by their presence in the Preserve space tab of the Element Spacing list

(on page 216)) are ignored by the Format and Indent operation. When this option

is selected and you edit one of these elements, its content is formatted.

Indent on paste - sections with number of lines less than 300

When you paste a chunk of text that has fewer than 300 lines, the inserted content

is indented. To keep the original indent style of the document you copy content

from, deselect this option.

Whitespaces Preferences

When Oxygen XML Editor formats and indents XML documents, a whitespace normalization process is

applied, thus replacing whitespace sequences with single space characters. Oxygen XML Editor allows you to

configure which Unicode characters are treated as spaces during the normalization process.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 218

To configure the Whitespace preferences, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Format > XML > Whitespaces.

This table lists the Unicode whitespace characters. Select any that you want to have treated as whitespace

when formatting and indenting an XML document.

The whitespaces are normalized when:

• The Format and Indent action is applied on an XML document.

• You switch from Text mode to Author mode.

• You switch from Author mode to Text mode.

Note:

The whitespace normalization process replaces any sequence of characters declared as whitespaces

in the Whitespaces table with a single space character (U+0020). If you want to be sure that a certain

whitespace character will not be removed in the normalization process, deselect it in the Whitespaces

table.

Important:

The characters with the codes U+0009 (TAB), U+000A (LF), U+000D (CR) and U+0020 (SPACE) are always

considered to be whitespace characters and cannot be deselected.

XQuery Preferences

To configure the XQuery Formatting options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Format > XQuery.

The following options are available:

• Preserve line breaks - All initial line breaks are preserved.

• Break line before an attribute name - Each attribute of an XML element is written on a new line and

properly indented.

XPath Preferences

To configure the XPath Formatting options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Format > XPath.

The following option is available:

Format XPath code embedded in XSLT, XSD and Schematron files

If selected, the Format and Indent action applied on an XSD, XSLT, or Schematron document

will perform an XPath-specific formatting on the values of the attributes that accept XPath

expressions.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 219

Note:

For XSLT documents, the formatting is not applied to attribute value templates.

CSS Preferences

Oxygen XML Editor can format and indent your CSS files. To configure the CSS formatting options, open the

Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Format > CSS.

The following options control how your CSS files are formatted and indented:

Class body on new line

If selected, the class body (including the curly brackets) is placed on a new line. This option is

not selected by default.

Indent class content

When selected (default state), the class content is indented.

Add space before the value of a CSS property

When selected (default state), whitespaces are added between the : (colon) and the value of a

style property.

Add new line between classes

If selected, an empty line is added between two classes. This option is not selected by default.

Preserve empty lines

When selected (default state), the empty lines from the CSS content are preserved.

Allow formatting embedded CSS

When selected (default state), CSS content that is embedded in XML is also formatted when the

XML content is formatted.

JavaScript Preferences

To configure the JavaScript format options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Format > JavaScript.

The following options control the behavior of the Format and Indent action:

• Start curly brace on new line - Opening curly braces start on a new line.

• Preserve empty lines - Empty lines in the JavaScript code are preserved. This option is selected by

default.

• Allow formatting embedded JavaScript - Applied only to XHTML documents, this option allows Oxygen

XML Editor to format embedded JavaScript code, taking precedence over the Schema-aware format

and indent (on page 217) option. This option is selected by default.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 220

JSON Preferences

To configure the JSON format options, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Format > JSON.

The following option is available:

Sort keys - If enabled, when using the Format and Indent action on JSON content, dictionary items are sorted

alphabetically by key name.

Content Completion Preferences

Oxygen XML Editor provides a Content Completion Assistant (on page 3295) that provides a list of available

options at any point in a document and can auto-complete structures, elements, and attributes. To configure

the Content Completion preferences, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Content Completion. These options control how the Content Completion Assistant

works.

The following options are available:

Auto close the last opened tag

When selected, Oxygen XML Editor automatically closes the last open tag when you type </.

Automatically rename/delete/comment matching tags

If you rename, delete, or comment out a start tag, Oxygen XML Editor automatically renames,

deletes, or comments out the matching end tag.

Note:

If you select Toggle comment for multiple starting tags and the matching end tags are

on the same line as other start tags, the end tags are not commented.

Enable content completion

Toggles the content completion feature on or off.

Consider subsequent sibling elements

When this option is selected (default), the subsequent sibling elements of the current element

are taken into account when using the Content Completion Assistant. For example, in DITA, if

you invoke the content completion before an already inserted required element (e.g. a <title>

element), the content completion mechanism will not offer a proposal to insert a title (since it

was already inserted).

Close the inserted element

When you choose an entry from the Content Completion Assistant list of proposals, Oxygen XML

Editor inserts both start and end tags. The following additional options are available with regard

to closing the element:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 221

• If it has no matching tag - The end tag of the inserted element is automatically added only

if it is not already present in the document.

• Add element content - Oxygen XML Editor inserts the required elements specified in

the DTD, XML Schema, or RELAX NG schema that is associated with the edited XML

document.

◦ Add optional content - If selected, Oxygen XML Editor inserts the optional

elements specified in the DTD, XML Schema, or RELAX NG schema.

◦ Add first Choice particle - If selected, Oxygen XML Editor inserts the first choice

particle specified in the DTD, XML Schema, or RELAX NG schema.

Case sensitive search

When selected, the search in the Content Completion Assistant is case-sensitive when you type a

character ('a' and 'A' are different characters).

Note:

This option is ignored when the current language itself is not case-sensitive. For

example, the case is ignored in the CSS language.

Position cursor between tags

When selected, Oxygen XML Editor automatically moves the cursor between the start and end

tag after inserting the element. This only applies to:

• Elements with only optional attributes or no attributes at all.

• Elements with required attributes, but only when the Insert the required attributes option

(on page 221) is not selected.

Show all entities

Oxygen XML Editor displays a list with all the internal and external entities declared in the current

document when you type the start character of an entity reference (for example, &).

Insert the required attributes

If selected, Oxygen XML Editor automatically inserts the required attributes taken from the DTD

or XML Schema for an element inserted with the Content Completion Assistant. For ID attributes

that are required, a unique value is automatically generated for each new ID.

Insert the fixed attributes

If selected, Oxygen XML Editor automatically inserts any FIXED attributes from the DTD or XML

Schema for an element inserted with the Content Completion Assistant.

Show recently used items

When selected, Oxygen XML Editor remembers the last inserted items from the Content

Completion Assistant window. The number of items to be remembered is limited by the

Maximum number of recent items shown list box. These most frequently used items are

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 222

displayed on the top of the content completion window and are separated from the rest of the

suggestions by a thin gray line .

Maximum number of recent items shown

Specifies the limit for the number of recently used items presented at the top of the

Content Completion Assistant window.

Learn attributes values

When selected, Oxygen XML Editor learns the attribute values used in a document.

Learn on open document

Oxygen XML Editor automatically learns the document structure when the document is opened.

Learn words (Dynamic Abbreviations, available on Ctrl+Space

When selected, Oxygen XML Editor learns the typed words and makes them available in a

content completion fashion by pressing Ctrl + Space on your keyboard;

Note:

For the words to be learned, they need to be separated by space characters.

Activation delay of the proposals window (ms)

Delay in milliseconds from the last key press until the Content Completion Assistant is displayed.

Related information

Configuring the Proposals for Attribute and Element Values (on page 2312)

XSLT Preferences

XSLT stylesheets are often used to create output in XHTML or XSL-FO. In addition to suggesting content

completion options for XSLT stylesheet elements, Oxygen XML Editor can suggest elements from these

vocabularies. To configure the XSLT content completion options, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Content Completion > XSLT.

The following options are available:

Include elements declared in the schema section

This section includes options with regard to detecting elements from the declared schema.

Automatically detect HTML or Formatting Objects

Detects if the output being generated is HTML or FO and provides content

completion for those vocabularies. Oxygen XML Editor analyzes the namespaces

declared in the root element to find an appropriate schema.

If the detection fails, Oxygen XML Editor uses one of the following options:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 223

• None - The Content Completion Assistant (on page 3295) suggests only XSLT elements.

• HTML - The Content Completion Assistant (on page 3295) includes HTML elements,

including HTML5 elements (such as <video>, <canvas>, etc.).

• Formatting objects - The Content Completion Assistant (on page 3295) includes

Formatting Objects (XSL-FO) elements as substitutes for <xsl:element>.

• Custom schema - If you want content completion hints for another output vocabulary, you

can use this option to specify the path to the schema for that vocabulary. The supported

schema types are DTD, XML Schema, RNG schema, or NVDL schema for inserting

elements from the target language of the stylesheet.

Documentation schema section

This section specifies an additional schema that will be used for documenting XSL stylesheets.

You can choose between the following:

• Built-in schema - Uses the built-in schema for documentation.

• Custom schema - Allows you to specify a custom schema for documentation. The

supported schema types are XSD, RNG, RNC, DTD, and NVDL.

XPath Preferences

Oxygen XML Editor provides content-completion support for XPath expressions. To configure the options for

the content completion in XPath expressions, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Content Completion > XPath.

The following options are available:

• Enable content completion for XPath expressions - Enables the Content Completion Assistant in XPath

expressions (on page 913) that you enter in the @match, @select, and @test XSL attributes and also in

the XPath toolbar (on page 2110).

◦ Include XPath functions - When this option is selected, XPath functions are included in the

content completion suggestions.

◦ Include XSLT functions - When this option is selected, XSLT functions are included in the content

completion suggestions.

◦ Include axes - When this option is selected, XSLT axes are included in the content completion

suggestions.

• Show signatures of XSLT / XPath functions - Makes the editor indicate the signature of the XPath

function located at the cursor position in a tooltip. See the XPath Tooltip Helper (on page 917)

section for more information.

• Function signature window background - Specifies the background color of the tooltip window.

• Function signature window foreground - Specifies the foreground color of the tooltip window.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 224

XSD Preferences

Oxygen XML Editor provides content completion assistance when you are writing XML Schema (XSD). To

configure XSD preferences, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to Editor > Content Completion > XSD. The option in this preferences page allows you to define additional

elements to be suggested by the Content Completion Assistant (on page 3295) in <xs:appinfo> elements (in

addition to the elements defined in the XML Schema).

The following option is available:

When in "xs:appinfo" context, also include elements declared in the schema

You can choose between the following:

• None - The Content Completion Assistant offers only the XML Schema schema

information.

• ISO Schematron - The Content Completion Assistant also includes ISO Schematron

elements in <xs:appinfo>.

• Schematron 1.5 - The Content Completion Assistantalso includes Schematron 1.5

elements in <xs:appinfo>.

• Other - The Content Completion Assistant also includes elements from an XML Schema

identified by a URL in <xs:appinfo> elements.

JavaScript Preferences

Oxygen XML Editor can provide content completion suggestions when you are writing JavaScript files.

To configure content completion support for JavaScript, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Content Completion > JavaScript. You can configure the

following options:

Enable content completion

Enables the content completion support for JavaScript files.

Use built-in libraries

Allows Oxygen XML Editor to include components (object names, properties, functions, and

variables) collected from the built-in JavaScript library files when making suggestions.

Use defined libraries

Oxygen XML Editor can also use JavaScript libraries when making suggestions. List the paths

(URIs) of any JavaScript files you want Oxygen XML Editor to use when making suggestions.

Note:

The paths can contain editor variables (on page 333) such as ${pdu}, or

${oxygenHome}. You can make these paths relative to the project directory or installation

directory.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 225

JSON Preferences

Oxygen XML Editor can provide content completion suggestions when you are editing JSON files. To configure

content completion support for JSON, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Content Completion > JSON. You can configure the following options:

Generate required content

When invoking content completion over JSON files, all contextual required content is

automatically generated according to the specifications from the associated JSON Schema.

Generate optional properties

If selected, optional properties that are defined in the associated JSON Schema will be added

when using content completion in JSON files.

Generate additional content

If selected, additional properties (or additional items for arrays) that are defined in the

associated JSON Schema will be added when using content completion in JSON files.

YAML Preferences

Oxygen XML Editor can provide content completion suggestions when you are editing YAML files. To configure

content completion support for YAML, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Content Completion > YAML. You can configure the following options:

Generate required content

When invoking content completion over YAML files, all contextual required content is

automatically generated according to the specifications from the associated JSON schema.

Property value

You can specify the way the values of the properties are generated. The following options are

available:

• None - Assigns empty values for properties (a template file will be generated). This is the

default value.

• Default - Assigns the name of the property as the value (for strings) or assigns the

specified minimum value (for numbers).

• Random - Assigns random values according to schema restrictions.

Generate optional properties

If selected, optional properties that are defined in the associated JSON schema will be added

when using content completion in YAML files.

Generate additional content

If selected, additional properties (or additional items for arrays) that are defined in the

associated JSON schema will be added when using content completion in YAML files.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 226

Annotations Preferences

Certain types of schemas (XML Schema, DTDs, Relax NG) can include annotations that document the various

elements and attributes that they define. Oxygen XML Editor can display these annotations when offering

content completion suggestions. To configure the Annotations preferences, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Editor > Content Completion > Annotations.

The following options are available:

Show annotations in Content Completion Assistant

If selected, Oxygen XML Editor displays the schema annotations of an element, attribute, or

attribute value currently selected in the Content Completion Assistant (on page 3295) proposals

list.

Show annotations in tooltip

If selected, Oxygen XML Editor displays the annotation of elements and attributes as a tooltip

when you hover over them with the cursor in the editing area or in the Elements view. If not

selected, tooltips are disabled in all modes.

Show annotation in HTML format, if possible

This option allows you to view the annotations associated with an element or attribute in HTML

format. It is available when editing XML documents that have associated an XML Schema or

Relax NG schema. If this option is not selected, the annotations are converted and displayed as

plain text.

Prefer DTD comments that start with "doc:" as annotations

To address the lack of dedicated annotation support in DTD documents, Oxygen XML Editor

recommends prefixing with the doc: particle all comments intended to be shown to the

developer who writes an XML validated against a DTD schema.

If this option is selected, Oxygen XML Editor uses the following mechanism to collect

annotations:

• If at least one doc: comment is found in the entire DTD, only comments of this type are

displayed as annotations.

• If no doc: comment is found in the entire DTD, all comments are considered annotations

and displayed as such.

If not selected, all comments, regardless of their type, are considered annotations and displayed

as such.

Use all Relax NG annotations as documentation

If selected, any element outside the Relax NG namespace, that is http://relaxng.org/

ns/structure/1.0, is considered annotation and is displayed in the annotation window next

to the Content Completion Assistant (on page 3295) window and in the Model view (on

page 557). When this option is not selected, only elements from the Relax NG annotations

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 227

namespace, that is http://relaxng.org/ns/compatibility/annotations/1.0 are considered

annotations.

Related information

Schema Annotations in Text Mode (on page 546)

Code Templates Preferences

Code templates are code fragments that can be inserted at the current editing position. Oxygen XML Editor

includes a set of built-in templates for CSS, LESS, Schematron, XSL, XQuery, JSON, HTML, and XML Schema

document types. You can also define your own code templates (on page 549) for any type of file and share

them with your colleagues (on page 550) using the template export and import functions.

To configure Code Templates, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to Editor > Templates > Code Templates.

This preferences page contains a list of all the available code templates (both built-in and custom created

ones) and a code preview area. You can disable any code template by deselecting it.

The following actions are available:

New

Opens the Code template dialog box that allows you to define a new code template. You can

define the following fields:

• Name - The name of the code template.

• Description - [Optional] The description of the code template that will appear in the

Code Templates preferences page and in the tooltip message when selecting it from the

Content Completion Assistant (on page 3295). HTML markup can be used for better

rendering.

• Associate with - You can choose to set the code template to be associated with a specific

type of editor or for all editor types.

• Shortcut key - [Optional] If you want to assign a shortcut key that can be used to insert

the code template, place the cursor in the Shortcut key field and press the desired key

combination on your keyboard. Use the Clear button if you make a mistake. If the Enable

platform-independent shortcut keys checkbox is selected, the shortcut is platform-

independent and the following modifiers are used:

◦ M1 represents the Command key on macOS, and the Ctrl key on other platforms.

◦ M2 represents the Shift key.

◦ M3 represents the Option key on macOS, and the Alt key on other platforms.

◦ M4 represents the Ctrl key on macOS, and is undefined on other platforms.

• Content - Text box where you define the content that is used when the code template

is inserted. An editor variable (on page 333) can be inserted in the text box using the

Insert Editor Variables button.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 228

Edit

Opens the Code template dialog box and allows you to edit an existing code template. You can

edit the following fields:

• Description - [Optional] The description of the code template that will appear in the

Code Templates preferences page and in the tooltip message when selecting it from the

Content Completion Assistant (on page 3295). HTML markup can be used for better

rendering.

• Shortcut key - [Optional] If you want to assign a shortcut key that can be used to insert

the code template, place the cursor in the Shortcut key field and press the desired key

combination on your keyboard. Use the Clear button if you make a mistake. If the Enable

platform-independent shortcut keys checkbox is selected, the shortcut is platform-

independent and the following modifiers are used:

◦ M1 represents the Command key on macOS, and the Ctrl key on other platforms.

◦ M2 represents the Shift key.

◦ M3 represents the Option key on macOS, and the Alt key on other platforms.

◦ M4 represents the Ctrl key on macOS, and is undefined on other platforms.

• Content - Text box where you define the content that is used when the code template

is inserted. An editor variable (on page 333) can be inserted in the text box using the

Insert Editor Variables button.

Duplicate

Creates a duplicate of the currently selected code template.

Delete

Deletes the currently selected code template. This action is not available for the built-in code

templates.

Export

Exports a file with code templates.

Import

Imports a file with code templates that was created by the Export action.

You can use the following editor variables (on page 333) when you define a code template in the Content

text box:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 229

• ${caret} - The position where the cursor is located. This variable can be used in a code template, in

Author mode operations, or in a selection plugin.

Note:

The ${caret} editor variable is available only for parameters that take XML content as values.

It is replaced with the ${UNIQUE_CARET_MARKER_FOR_AUTHOR} macro. The default Author

operations process this macro and position the cursor at the designated offset.

Note:

The ${caret} editor variable can be used for setting a fixed cursor position

inside an XML fragment. To set the cursor position depending on the fragment

inserted in the document, you can use AuthorDocumentFilter and inside the

insertFragment(AuthorDocumentFilterBypass, int, AuthorDocumentFragment) method,

use the AuthorDocumentFragment.setSuggestedRelativeCaretOffset(int) API on the given

fragment.

• ${selection} - The currently selected text content in the currently edited document. This variable can be

used in a code template, in Author mode operations, or in a selection plugin.

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...),

'default_value', @id)} - To prompt for values at runtime, use the ask('message', type,

('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default-value'') editor variable.

You can set the following parameters:

◦ 'message' - The displayed message. Note the quotes that enclose the message.

◦ 'default-value' - Optional parameter. Provides a default value.

◦ @id - Optional parameter. Used for identifying the variable to reuse the answer using the

${answer(@id)} editor variable.

◦ type - Optional parameter (defaults to generic), with one of the following values:

Note:

The title of the dialog box will be determined by the type of parameter and as follows:

▪ For url and relative_url parameters, the title will be the name of the parameter and

the value of the 'message'.

▪ For the other parameters listed below, the title will be the name of that respective

parameter.

▪ If no parameter is used, the title will be "Input".

Notice:

Editor variables that are used within a parameter of another editor variable must be

escaped within single quotes for them to be properly expanded. For example:

${ask('Provide a date',generic,'${date(yyyy-MM-dd'T'HH:MM)}')}

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 230

Parameter

Format: ${ask('message', generic, 'default')}

Description: The input is considered to be generic text that requires no

special handling.

generic (default)

Example:

▪ ${ask('Hello world!')} - The dialog box has a Hello world! message

displayed.

▪ ${ask('Hello world!', generic, 'Hello again!')} - The dialog box has a

Hello world! message displayed and the value displayed in the input

box is 'Hello again!'.

Format: ${ask('message', url, 'default_value')}

Description: Input is considered a URL. Oxygen XML Editor checks that

the provided URL is valid.

url

Example:

▪ ${ask('Input URL', url)} - The displayed dialog box has the name In

put URL. The expected input type is URL.

▪ ${ask('Input URL', url, 'http://www.example.com')} - The displayed

dialog box has the name Input URL. The expected input type is

URL. The input field displays the default value http://www.example

.com.

Format: ${ask('message', relative_url, 'default')}

Description: Input is considered a URL. This parameter provides a file

chooser, along with a text field. Oxygen XML Editor tries to make the URL

relative to that of the document you are editing.

Note:

If the $ask editor variable is expanded in content that is not yet

saved (such as an untitled file, whose path cannot be determined),

then Oxygen XML Editor will transform it into an absolute URL.

relative_url

Example:

${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has the

name 'File location'. The URL inserted in the input box is made relative to

the currently edited document location.

password Format: ${ask('message', password, 'default')}

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 231

Parameter

Description: The input is hidden with bullet characters.

Example:

▪ ${ask('Input password', password)} - The displayed dialog box has

the name 'Input password' and the input is hidden with bullet sym

bols.

▪ ${ask('Input password', password, 'abcd')} - The displayed dialog

box has the name 'Input password' and the input hidden with bullet

symbols. The input field already contains the default abcd value.

Format: ${ask('message', combobox, ('real_value1':'rendered_value1';..

.;'real_valueN':'rendered_valueN'), 'default')}

Description: Displays a dialog box that offers a drop-down menu. The

drop-down menu is populated with the given rendered_value values.

Choosing such a value will return its associated value (real_value).

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

combobox

Example:

▪ ${ask('Operating System', combobox, ('win':'Microsoft Win

dows';'macos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog

box has the name 'Operating System'. The drop-down menu dis

plays the three given operating systems. The associated value will

be returned based upon your selection.

Note:

In this example, the default value is indicated by the osx

key. However, the same result could be obtained if the de

fault value is indicated by macOS, as in the following ex

ample: ${ask('Operating System', combobox, ('win':'Mi

crosoft Windows';'macos':'macOS';'lnx':'Linux/UNIX'), 'mac

OS')}

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 232

Parameter

▪ ${ask('Mobile OS', combobox, ('ios':'iOS';'and':'Android'), 'Android')}

▪ ${ask('Mobile OS', combobox, (${xpath_eval(for $pair in (['ios',

'iOS'], ['and', 'Android']) return "'" || $pair?1 || "':'" || $pair?2 || "';")}),

'ios')}

Format: ${ask('message', editable_combobox, ('real_value1':'rendered_

value1';...;'real_valueN':'rendered_valueN'), 'default')}

Description: Displays a dialog box that offers a drop-down menu with ed

itable elements. The drop-down menu is populated with the given ren

dered_value values. Choosing such a value will return its associated real

value (real_value) or the value inserted when you edit a list entry.

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

editable_com

bobox

Example:

▪ ${ask('Operating System', editable_combobox, ('win':'Microsoft

Windows';'macos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog

box has the name 'Operating System'. The drop-down menu dis

plays the three given operating systems and also allows you to ed

it the entry. The associated value will be returned based upon your

selection or the text you input.

▪ ${ask('Operating System', editable_combobox, (${xpath_eval(for

$pair in (['win', 'Microsoft Windows'], ['macos', 'macOS'], ['lnx', 'Lin

ux/UNIX']) return "'" || $pair?1 || "':'" || $pair?2 || "';")}), 'ios')}

Format: ${ask('message', radio, ('real_value1':'rendered_value1';...;'real_

valueN':'rendered_valueN'), 'default')}

radio

Description: Displays a dialog box that offers a series of radio buttons.

Each radio button displays a 'rendered_value and will return an associat

ed real_value.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 233

Parameter

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

Example:

▪ ${ask('Operating System', radio, ('win':'Microsoft Windows';'ma

cos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog box has the

name 'Operating System'. The radio button group allows you to

choose between the three operating systems.

Note:

In this example, macOS is the default-selected value and if

selected, it would return macos for the output.

▪ ${ask('Operating System', radio, (${xpath_eval(for $pair in (['win',

'Microsoft Windows'], ['macos', 'macOS'], ['lnx', 'Linux/UNIX']) return

"'" || $pair?1 || "':'" || $pair?2 || "';")}), 'ios')}

• ${timeStamp} - The timestamp, which is the current time in Unix format. For example, it can be used to

save transformation results in multiple output files on each transformation.

• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the

Java UUID class.

• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not

guaranteed to be universally unique.

• ${cfn} - Current file name without the extension and parent folder. The current file is the one currently

open and selected.

• ${cfne} - Current file name with extension. The current file is the one currently open and selected.

• ${cf} - Current file as file path, that is the absolute file path of the currently edited document.

• ${cfd} - Current file folder as file path, that is the path of the currently edited document up to the name

of the parent folder.

• ${frameworksDir} - The path (as file path) of the frameworks directory. When used to define

references inside a framework configuration, it expands to the parent folder of that specific framework

folder. Otherwise, it expands to the main frameworks folder defined in the Document Type

Association > Locations preferences page.

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 234

• ${pd} - The file path to the folder that contains the current project file (.xpr).

• ${oxygenInstallDir} - Oxygen XML Editor installation folder as file path.

• ${homeDir} - The path (as file path) of the user home folder.

• ${pn} - Current project name.

• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables

are managed by the operating system. If you are looking for Java System Properties, use the

${system(var.name)} editor variable.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can

be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are

looking for operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java

SimpleDateFormat class. Example: yyyy-MM-dd.

Note:

This editor variable supports both the xs:date and xs:datetime parameters. For details about

xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go

to: http://www.w3.org/TR/xmlschema-2/#dateTime.

Related information

Code Templates (on page 548)

Syntax Highlight Preferences

Oxygen XML Editor supports syntax highlighting in the Text mode editors for numerous types of documents,

including XML, XHTML, JavaScript, XQuery, XPath, PHP, PowerShell, CSS, LESS, Markdown, Text, DTD, RNC,

Java, JSON, Ant, and more.

To configure syntax highlighting, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Editor > Syntax Highlight.

To set syntax colors for a language, expand the listing for that language in the top panel to show the list of

syntax items for that type of document. Use the color and style selectors to change how each syntax item is

displayed. The results of your changes are displayed in the Preview panel. If you do not know the name of the

syntax token that you want to configure, click that token in the Preview area to select it.

Note:

All default color sets come with a high-contrast variant that is automatically used when you switch

to a black-background or white-background high-contrast theme in your Windows operating system

settings. The high-contrast theme will not overwrite any default color you set in Editor > Syntax

Highlight preferences page.

The settings for XML documents are also used in XSD, XSL, RNG documents and the Preview area has a

separate tab for each of them when XML is selected in the top pane.

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 235

The Enable nested syntax highlight option controls whether or not content types that are nested in the same

file (such as PHP, JS, or CSS scripts inside an HTML file) are highlighted according to the color schemes

defined for each content type.

Elements/Attributes by Prefix Preferences

Oxygen XML Editor allows you to specify syntax highlighting colors for elements and attributes with specific

namespace prefixes. To configure the Elements/Attributes by Prefix preferences, open the Preferences dialog

box (Options > Preferences) (on page 132) and go to Editor > Syntax Highlight > Elements/Attributes by

Prefix.

To change the syntax coloring for a specific namespace prefix, choose the prefix from the list, or add a new

one using the New button, and use the color and style selectors to set the syntax highlighting style for that

namespace prefix.

Note:

Syntax highlighting is based on the literal namespace prefix, not the namespace that the prefix is

bound to in the document.

If you only want the prefix (and not the whole element or attribute name) to be styled with a particular color,

select the Draw only the prefix with a separate color option.

Mark Occurrences Preferences

This preferences page specifies which types of files will have the Highlight IDs Occurrences (on page 579)

feature activated. To configure these options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Mark Occurrences:

The following options are available in this preferences page:

Highlight component occurrences in the current file for:

• XML files - Activates the Highlight IDs Occurrences (on page 579) feature in XML files.

• XSLT files - Activates the Highlight Component Occurrences (on page 1253) feature in

XSLT files.

• XML Schema files - Activates the Highlight Component Occurrences (on page 1253)

feature in XSD files.

• WSDL files - Activates the Highlight Component Occurrences (on page 1253) feature in

WSDL files.

• RNG files - Activates the highlight component occurrences feature in RNG files.

• Schematron files - Activates the Highlight Component Occurrences (on page 1253)

feature in Schematron files.

• Ant files - Activates the Highlight Component Occurrences (on page 963) feature in Ant

files.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 236

Declaration highlight color

Allows you to choose the color to be used for highlighting component declarations.

Reference highlight color

Allows you to choose the color to be used for highlighting component references.

Document Validation Preferences

To configure document validation options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Document Validation. This page contains preferences for configuring how a

document is checked for both well-formedness and validation errors.

The following options are available:

Maximum number of validation highlights

If a validation generates more errors than the number specified in this option, only the errors up

to this number are highlighted in the editor panel and on the stripe that is displayed at the right

side of the editor panel. This option applies to both automatic validation and manual validation.

Validation fatal error highlight color

The color used to highlight fatal validation errors in the document.

Validation error highlight color

The color used to highlight validation errors in the document.

Validation warning highlight color

The color used to highlight validation warnings in the document.

Validation info highlight color

The color used to highlight validation info messages in the document.

Validation success color

The color used to highlight the success indicator of the validation operation in the vertical ruler

bar.

Always show validation status

If this option is selected, the current validation error or warning is always visible in the message

line at the bottom of the editor panel. This is useful when the Enable automatic validation option

is selected and the vertical scroll bar changes position due to an error message being displayed.

Enable automatic validation

This causes the validation to be automatically executed in the background as the document is

modified in Oxygen XML Editor.

Delay after the last key event (s)

The period of keyboard inactivity before starting a new validation (in seconds).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 237

At the bottom of the preferences page you can choose whether or not the saved options will be shared with

other users by selecting Global or Project storage options (on page 321).

Custom Validation Engines Preferences

As the name implies, the Custom Validation Engines preferences page displays the list of custom validation

engines that can be associated to a particular editor and used for validating documents. To access this page,

open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Document

Validation > Custom Validation Engines.

If you want to add a new custom validation tool or edit the properties of an existing one, you can use the

Custom Validator dialog box displayed by pressing the New or Edit button.

Figure 29. Custom Validator Dialog Box

The Custom Validator dialog box allows you to configure the following parameters:

Name

Name of the custom validation engine that will be displayed in the Validation toolbar drop-

down menu.

Executable path

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 238

Path to the executable file of the custom validation tool. You can specify the path by using the

text field, the Insert Editor Variables (on page 333) button, or the Browse button.

Working directory

The working directory of the custom validation tool. You can specify the path by using the text

field, the Insert Editor Variables (on page 333) button, or the Browse button.

Associated editors

The editors that can perform validation with the external tool (XML editor, XSL editor, XSD editor,

etc.)

Command-line arguments for detected schemas

Command-line arguments used in the commands that validate the currently edited file against

various types of schema (XML Schema, Relax NG full syntax, Relax NG compact syntax, NVDL,

Schematron, DTD, etc.) The arguments can include any custom switch (such as -rng) and the

following editor variables (on page 333):

• ${cf} - Current file as file path, that is the absolute file path of the currently edited

document.

• ${currentFileURL} - Current file as URL, that is the absolute file path of the currently edited

document represented as URL.

• ${ds} - The path of the detected schema as a local file path for the current validated XML

document.

• ${dsu} - The path of the detected schema as a URL for the current validated XML

document.

Related information

Editor Variables (on page 333)

Increasing the Stack Size for Validation Engines

To prevent the appearance of a StackOverflowException error, use one of the following methods:

• Use the com.oxygenxml.stack.size.validation.threads property to increase the size of the stack for

validation engines. The value of this property is specified in bytes. For example, to set a value of one

megabyte specify 1x1024x1024=1048576. For information about how to setup the system property on

the JVM, see Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page

349).

• Increase the value of the -Xss parameter.

Note:

Increasing the value of the -Xss parameter affects all the threads of the application.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 239

Related information

Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page 349)

Ignored Validation Problems Preferences

Some validation issues include a Quick Fix (on page 828) proposal that instructs the application to ignore

that type of validation problem. The ignored problems are then listed in the Ignored Validation Problems

preferences page. To access this page, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Editor > Document Validation > Ignored Validation Problems.

The Ignored Validation Problems preferences page includes the following:

Enable support for ignoring validation problems

If this option is selected, the support for ignoring certain validation problems is enabled. This

means that when you choose a Quick Fix proposal to ignore the particular validation problem (on

page 827), it is added to the table below this option.

Ignored problems table

The table includes an entry for each validation problem that has been ignored. The columns

in the table include information about the Severity, Problem ID, Message, and System ID. The

entries are added automatically when you choose a Quick Fix proposal to ignore the particular

validation problem (on page 827). You can delete an entry by selecting it and clicking the

Delete button at the bottom of the table. The deleted problem is no longer ignored.

Tip:

Changes made in this preferences page can be saved at project level (on page 322) so that you can

easily share your ignored problems configuration with others.

Spell Check Preferences

Oxygen XML Editor provides support for spell checking in the Text mode and Author mode. To configure the

Spell Check options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

Editor > Spell Check.

The following options are available:

Automatic spell check

This option is not selected by default. When selected, Oxygen XML Editor automatically checks

the spelling as you type and highlights misspelled words in the document.

Select editors

You can select which editors (and therefore which file types) will automatically

be spell checked. File types such as CSS and DTD are excluded by default since

automatic spell checking is not usually helpful in these types of files.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 240

Spell check highlight color

Use this option to set the color used by the spell check engine to highlight spelling errors.

Language options section

This section includes the following language options:

Default language

The default language list allows you to choose the language used by the spell

check engine when the language is not specified in the source file. You can add

additional dictionaries to the spell check engines (on page 460).

Use "lang" and "xml:lang" attributes

When this option is selected, the contents of an element with one of the @lang or

@xml:lang attributes is checked in that language. Choose between the following two

options for instances when these attributes are missing:

• Use the default language - If the @lang and @xml:lang attributes are missing,

the selection in the Default language list (on page 240) is used.

• Do not check - If the @lang and @xml:lang attributes are missing, the element

is not checked.

XML spell checking in section

You can choose to check the spelling inside the following XML items:

• Comments

• Processing instructions

• Attribute values

• Text

• CDATA

Options section

This section includes the following other options:

Check capitalization

When selected, the spell checker reports detected capitalization errors.

Note:

When such problems are reported, they cannot be learned and ignored by

the application as words stored in dictionaries, term lists, and the list of

learned words are not handled as case-sensitive.

Check punctuation

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 241

When selected, the spell checker checks punctuation. Misplaced white space and

unusual sequences, such as a period following a comma, are highlighted as errors.

Ignore mixed case words

When selected, the spell checker does not check words containing mixed case

characters (for example, SpellChecker).

Ignore acronyms

Available only for the Hunspell Spell Checker. When selected, acronyms are not

reported as errors.

Ignore words with digits

When selected, the spell checker does not check words containing digits (for

example, b2b).

Ignore duplicates

When selected, the spell checker does not signal two successive identical words

as an error.

Ignore URL

When selected, the spell checker ignores words recognized as URLs or file names

(for example, www.oxygenxml.com or c:\boot.ini).

Allow compounds words

When selected, all words formed by concatenating multiple legal words with

hyphens or underscores are accepted.

Allow file extensions

When selected, the spell checker accepts any word ending with recognized file

extensions (for example, myfile.txt or index.html).

Ignore elements section

You can use the Add and Remove buttons to configure a list of element names or XPath

expressions to be ignored by the spell checker. The following restricted set of XPath expressions

are supported:

• '/' and '//' separators

• '*' wildcard

An example of an allowed XPath expression is: /a/*/b.

AutoCorrect options link

Use this link to navigate to the AutoCorrect preferences page (on page 202).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 242

Spell Check Dictionaries Preferences

To set the Dictionaries preferences, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Editor > Spell Check > Dictionaries. This page allows you to configure the dictionaries (.dic files)

and term lists (.tdi files) that Oxygen XML Editor uses and to choose where to save new learned words.

The following options are valid when Oxygen XML Editor uses the Hunspell spell checking engine:

Dictionaries and term lists default folder

Displays the default location where the dictionaries and term lists that Oxygen XML Editor uses

are stored.

Include dictionaries and term list from

Selecting this option allows you to specify a location where you have stored dictionaries and

term lists that you want to include, along with the default ones.

Important:

Consider the following notes regarding this option:

• The spell checker takes into account dictionaries and term lists collected both

from the default and custom locations and multiple dictionaries and term lists

from the same language are merged (for example, en_UK.dic from the default

location is merged with en_US.dic from a custom location).

• If you have a generic dictionary file (one that just has a two-letter language code

for its file name, such as en.dic) saved in either the default or custom location,

the other more specific dictionaries (for example, en_UK.dic and en_US.dic)

will not be merged and the existing generic dictionary will simply be used instead.

• If the additional location contains a file with the same name as one from the

default location, the file in the additional location takes precedence over the file

from the default location.

How to add more dictionaries and term lists link

Use this link to open a topic in the Oxygen XML Editor User Guide that explains how to add more

dictionaries and term lists (on page 463).

Save learned words in the following location

Specifies the target where the newly learned words are saved. By default, the target is the

application preferences folder, but you can also choose a custom location.

Delete learned words

Opens the list of learned words, allowing you to select the items you want to remove, without

deleting the dictionaries and term lists.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 243

Note:

Words stored in dictionaries, term lists, and the list of learned words are not handled as case-

sensitive. Therefore, you do not need to include both uppercase and lowercase versions of the words.

Related information

Adding Custom Spell Check Dictionaries (on page 463)

Adding Custom Spell Check Term Lists (on page 466)

Print Preferences

Oxygen XML Editor lets you configure how files are printed out of the editor. Note that these settings cover

how files are printed directly from Oxygen XML Editor itself, not how they are printed after the XML source has

been transformed by a publishing stylesheet. To configure the Print options, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Editor > Print.

This page allows you to customize the headers and footers added to a printed page when you print from the

Text mode (on page 363) or Author mode (on page 364) editors. These settings do not apply to the Grid

(on page 364) and schema Design (on page 365) mode.

You can specify what is printed on the Left, Middle, and Right of the header and footer using plain text of any

of the following variables:

• ${currentFileURL} - Current file as URL, that is the absolute file path of the currently edited document

represented as URL.

• ${cfne} - Current file name with extension. The current file is the one currently open and selected.

• ${cp} - Current page number. Used to display the current page number on each printed page in the

Editor / Print Preferences page.

• ${tp} - Total number of pages in the document. Used to display the total number of pages on each

printed page in the Editor / Print Preferences page.

• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables

are managed by the operating system. If you are looking for Java System Properties, use the

${system(var.name)} editor variable.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can

be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are

looking for operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java

SimpleDateFormat class. Example: yyyy-MM-dd.

Note:

This editor variable supports both the xs:date and xs:datetime parameters. For details about

xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go

to: http://www.w3.org/TR/xmlschema-2/#dateTime.

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 244

For example, to show the current page number and the total number of pages in the top right corner of the

page, write the following pattern in the Right text area of the Header section: ${cp} of ${tp}.

You can also set the Color and Font used in the header and footer. Default font is SansSerif.

You can place a line below the header or above the footer by selecting Underline/Overline.

CSS Validator Preferences

To configure the CSS Validator preferences, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to CSS Validator.

You can configure the following options for the built-in CSS Validator of Oxygen XML Editor:

• Profile - Selects one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, CSS 3 + SVG,

CSS 3 with Oxygen extensions, SVG, SVG Basic, SVG Tiny, Mobile, TV Profile, ATSC TV Profile.

The CSS 3 with Oxygen extensions profile includes all the CSS 3 standard properties plus the CSS

extensions specific for Oxygen (on page 2444) that can be used in Author mode (on page 364). That

means all Oxygen-specific extensions are accepted in a CSS stylesheet by the built-in CSS validator (on

page 1094) when this profile is selected.

• Media type - Selects one of the available mediums: all, aural, braille, embossed, handheld, print,

projection, screen, tty, tv, presentation, oxygen.

• Warning level - Sets the minimum severity level for reported validation warnings. Can be one of: All,

Normal, Most Important, No Warnings.

• Ignore properties - You can type comma separated patterns that match the names of CSS properties

that will be ignored at validation. The following vendor extensions are specified as ignored by default:

-ro-* (PDFreactor), -ah-* (Antenna House), prince-* (Prince). As wildcards you can use:

◦ * to match any string.

◦ ? to match any character.

• Recognize browser CSS extensions (also applies to content completion) - If selected, Oxygen

XML Editor recognizes browser-specific CSS properties (no validation is performed). The Content

Completion Assistant (on page 3295) lists these properties at the end of its list, prefixed with the

following particles:

◦ -moz- for Mozilla.

◦ -ms- for Edge.

◦ -o- for Opera.

◦ -webkit- for Safari/Webkit.

XML Preferences

This section describes the panels that contain the user preferences related with XML.

XML Catalog Preferences

To configure options that pertain to XML Catalogs (on page 3302), open the Preferences dialog box (Options

> Preferences) (on page 132) and go to XML > XML Catalog.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 245

The following options are available:

Prefer

Determines whether public identifiers specified in the catalog are used in favor of system

identifiers supplied in the document. Suppose you have an entity in your document that has both

a public identifier and a system identifier specified, and the catalog only contains a mapping for

the public identifier (for example, a matching public catalog entry). You can choose between the

following:

• system - If selected, the system identifier in the document is used.

• public - If selected, the URI supplied in the matching public catalog entry is used.

Generally, the purpose of catalogs is to override the system identifiers in XML documents,

so public should usually be used for your catalogs.

Note:

If the catalog contains a matching system catalog entry giving a mapping for the system

identifier, that mapping would have been used, the public identifier would never have

been considered, and this setting would be irrelevant.

Verbosity

When using catalogs, it is sometimes useful to see what catalog files are parsed, if they are valid,

and what identifiers are resolved by the catalogs. This option selects the detail level of such

logging messages of the XML catalog resolver that will be displayed in the Catalogs table at the

bottom of the window. You can choose between the following:

• None - No message is displayed by the catalog resolver when it tries to resolve a URI

reference, a SYSTEM one or a PUBLIC one with the XML catalogs specified in this panel.

• Unresolved entities - Only the logging messages that track the failed attempts to resolve

references are displayed.

• All messages - The messages of both failed attempts and successful ones are displayed.

Resolve schema locations also through system mappings

If selected, Oxygen XML Editor analyzes both uri and system mappings to resolve the location of

schema.

Note:

This option is not applicable for DTD schemas since the public and system catalog

mappings are always considered.

Process "schemaLocation" namespaces through URI mappings for XML Schema

If selected, the target namespace of the imported XML Schema is resolved through the uri

mappings. The namespace is taken into account only when the schema specified in the

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 246

schemaLocation attribute was not resolved successfully. If not selected, the system IDs are used

to resolve the schema location.

Use default catalog

If this option is selected and Oxygen XML Editor cannot resolve the catalog mapping with

any other means, the default global catalog (listed below this checkbox) is used. For more

information, see How Oxygen XML Editor Determines which Catalog to Use (on page 843).

Catalogs table

You can use this table to add or manage global user-defined catalogs. The following actions are

available at the bottom of the table:

Add

Opens a dialog box that allows you to add a catalog to the list. You can specify the

path by using the text field, its history drop-down, the Insert Editor Variables

(on page 333) button, or the browsing actions in the Browse drop-down list.

Edit

Opens a dialog box that allows you to edit an existing catalog. You can specify the

path by using the text field, its history drop-down, the Insert Editor Variables

(on page 333) button, or the browsing actions in the Browse drop-down list.

Delete

Deletes the currently selected catalog from the list.

Up

Moves the selection to the previous resource.

Down

Moves the selection to the following resource.

Note:

When you add, delete, or edit a catalog in this table, you need to reopen the currently

edited files that use the modified catalog or run a manual Validate action (on page

790) so that the changes take full effect.

You can also add or configure catalogs at framework level from the Catalogs tab (on page

172) in the Document Type configuration dialog box (on page 148).

Related information

Controlling the Catalog Resolver

Working with XML Catalogs (on page 842)

http://xerces.apache.org/xml-commons/components/resolver/resolver-article.html#ctrlresolver

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 247

XML Parser Preferences

To configure the XML Parser options, open the Preferences dialog box (Options > Preferences) (on page

132) and go to XML > XML Parser.

The configurable options of the built-in XML parser are as follows:

Enable parser caching (validation and content completion)

Enables re-use of internal models when validating and provides content completion in open XML

files that reference the same schemas (grammars) such as DTD, XML Schema, or RelaxNG.

Enable system parameter entity expansion in other entity definitions

This security setting controls the expansion of the DTD system parameter entities (the ones that

are loaded from disk or from remote sources). This option is off by default, to protect against

XXE attacks. If you enable it, make sure the XML files you are opening or processing with the

application come from a trusted source.

Enable secure processing

Enables the configuration of the number of entities that are allowed to be expanded and the

maximum occurrence limit for nodes.

Entity expansion limit

The maximum number of entities that are allowed to be expanded by the parser.

Nodes maximum occurrence limit

The maximum occurrence limit for XML schema nodes.

Ignore the DTD for validation if a schema is specified

Forces validation against a referenced schema (XML Schema, Relax NG schema) even if the

document includes also a DTD DOCTYPE declaration. This option is useful when the DTD

declaration is used only to declare DTD entities and the schema reference is used for validation

against an XML Schema or a Relax NG schema.

Note:

Schematron schemas are treated as additional schemas. The validation of a document

associated with a DTD and referencing a Schematron schema is executed against both

the DTD and the Schematron schema, regardless of the value of the Ignore the DTD for

validation if a schema is specified option.

Enable XInclude processing

Enables XInclude processing. If selected, the XInclude support in Oxygen XML Editor is turned on

for validation, rendering in Author mode and transformation of XML documents.

Base URI fix-up

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 248

According to the specification for XInclude, processors must add an @xml:base attribute to

elements included from locations with a different base URI. Without these attributes, the

resulting infoset information would be incorrect.

Unfortunately, these attributes make XInclude processing to not be transparent to Schema

validation. One solution to this is to modify your schema to allow @xml:base attributes to appear

on elements that might be included from different base URIs.

If the addition of @xml:base and / or @xml:lang is not desired by your application, you can deselect

this option.

Language fix-up

The processor will preserve language information on a top-level included element by adding

an @xml:lang attribute if its included parent has a different [language] property. If the addition of

@xml:lang is not allowed by your application, you can deselect this option.

DTD post-validation

Select this option to validate an XML file against the associated DTD, after all the content

merged to the current XML file using XInclude was resolved. If you deselect this option, the

current XML file is validated against the associated DTD before all the content merged to the

current XML file using XInclude is resolved.

XML Schema Preferences

To configure options regarding XML Schema, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to XML > XML Parser > XML Schema.

This preferences page allows you to configure the following options:

Default XML Schema version

Allows you to select the version of XML Schema to be used as the default. You can choose XML

Schema 1.0 or XML Schema 1.1.

Note:

You are also able to set the XML Schema version using the Customize option in the New

document wizard (on page 378).

Default XML Schema validation engine

Allows you to select the default validation engine to be used for XML Schema. You can choose

Xerces or Saxon EE.

Xerces validation features section

Enable full schema constraint checking

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 249

Sets the schema-full-checking feature to true. This enables a validation of

the parsed XML document against a schema (XML Schema or DTD) while the

document is parsed.

Enable honour all schema location feature

Sets the honour-all-schema-location feature to true. All the files that declare

XML Schema components from the same namespace are used to compose the

validation model. If this option is not selected, only the first XML Schema file that is

encountered in the XML Schema import tree is taken into account.

Enable full XPath 2.0 for alternative types

When selected (default value), you can use the full XPath support in assertions and

alternative types. Otherwise, only the XPath support offered by the Xerces engine is

available.

Assertions can see comments and processing instructions

Controls whether or not comments and processing instructions are visible to the

XPath expression used for defining an assertion in XSD 1.1.

Saxon EE validation features section

Multiple schema imports

Forces <xs:import> to fetch the referenced schema document. By default, the

<xs:import> fetches the document only if no schema document for the given

namespace has already been loaded. With this option in effect, the referenced

schema document is loaded unless the absolute URI is the same as a schema

document already loaded.

Assertions can see comments and processing instructions

Controls whether or not comments and processing instructions are visible to the

XPath expression used to define an assertion. By default, they are not made visible

(unlike Saxon 9.3).

Relax NG Preferences

To configure options regarding Relax NG, open the Preferences dialog box (Options > Preferences) (on page

132) and go to XML > XML Parser > Relax NG.

The following options are available in this page:

Check feasibly valid

Checks if Relax NG documents can be transformed into valid documents by inserting any

number of attributes and child elements anywhere in the tree.

Note:

Selecting this option disables the Check ID/IDREF option.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 250

Check ID/IDREF

Checks the ID/IDREF matches when a Relax NG document is validated.

Add default attribute values

Default values are given to the attributes of documents validated using Relax NG. These values

are defined in the Relax NG schema.

Ignore "data-" attributes in XHTML

This option is selected by default, which means that when XHTML documents are validated with

an RNG schema, any data- attributes detected in the document will not be taken into account by

the validation engine.

Schematron Preferences

To configure options regarding Schematron, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to XML > XML Parser > Schematron.

The following options are available in this preferences page:

ISO Schematron Section

Optimize (visit-no-attributes)

If your ISO Schematron assertion tests do not contain the attributes axis, you

should select this option for faster ISO Schematron validation.

Allow foreign elements (allow-foreign)

Enables support for allow-foreign on ISO Schematron. This option is used to pass

non-Schematron elements to the generated stylesheet.

Use associated XML Schema to expand default attribute values

When selected (default value), if the validated XML document has an XML Schema

associated that contains default values for attributes defined in the XML content,

the Schematron will be able to match on those default attributes.

Use Saxon EE (schema aware) for xslt2/xslt3 query language binding

When selected, Saxon EE is used for xslt2/xslt3 query binding. If this option is not

selected, Saxon PE is used.

Enable Schematron Quick Fixes (SQF) support

Allows you to enable or disable the support for Quick Fixes (on page 3300) in

Schematron files. This option is selected by default.

Embedded rules query language binding

You can control the query language binding used by the ISO Schematron

embedded rules. You can choose between: xslt1, xslt2, or xslt3.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 251

Note:

To control the query language binding for standalone ISO Schematron, you

need to set the query language to be used with a @queryBinding attribute on

the schema root element.

Message language

This option allows you to specify the language to be used in Schematron validation

messages. You can choose between the following:

• Use the language defined in the application - The language that is specified

in the Global Preferences page (on page 134) will be used and only the

validation messages that match that language will be presented. You can

use the Change application language link to navigate to the preferences

page where you can specify the language to be used in the application.

• Use the "xml:lang" attribute set on the Schematron root - The language

specified in the @xml:lang attribute from the Schematron root will be used

and only the validation message that match that language will be presented.

• Ignore the language and show all message - All messages are displayed in

whatever language is defined within the Schematron schema.

• Custom - Use this option to specify a custom language to be used and only

the messages that match the specified language will be presented.

Note:

In all cases, if the selected language is not available for a validation error

or warning, all messages will be displayed in whatever language is defined

within the Schematron schema.

Schematron 1.5 Section

XPath Version

Allows you to select the version of XPath for the expressions that are allowed

in Schematron assertion tests. You can choose between: 1.0, 2.0, or 3.0. This

option is applied in both standalone Schematron 1.5 schemas and embedded

Schematron 1.5 rules.

Security

Disable Schematron security checks

For security reasons, several security checks are performed on Schematron files

that are not located inside a framework (on page 3297) or plugin (on page 3299).

Select this option if your Schematron files are failing because of these security

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 252

checks and you are unable to move them to a location recognized as safe (a

framework or a plugin).

Sample XML Files Generator Preferences

The Generate Sample XML Files tool (on page 1026) (available on the Tools menu) allows you to generate

XML instance documents based on an XML Schema. There are various options that can be configured within

the tool and these options are also available in the Sample XML Files Generator preferences page. This

allows you to set default values for these options. To configure the options for generating the XML files, open

the Preferences dialog box (Options > Preferences) (on page 132) and go to XML > Sample XML Files

Generator.

The following options are available:

Generate optional elements

When selected, all elements are generated, including the optional ones (having the minOccurs

attribute set to 0 in the schema).

Generate optional attributes

When selected, all attributes are generated, including the optional ones (having the use attribute

set to optional in the schema).

Values of elements and attributes

Controls the content of generated attribute and element values. The following choices are

available:

• None - No content is inserted.

• Default - Inserts a default value depending on the data type descriptor of the particular

element or attribute. The default value can be either the data type name or an incremental

name of the attribute or element (according to the global option from the Sample XML

Files Generator preferences page). Note that type restrictions are ignored when this

option is selected. For example, if an element is of a type that restricts an xs:string with

the xs:maxLength facet to allow strings with a maximum length of 3, the XML instance

generator tool may generate string element values longer than 3 characters.

• Random - Inserts a random value depending on the data type descriptor of the particular

element or attribute.

Important:

If all of the following are true, the Generate Sample XML Files tool outputs invalid

values:

◦ At least one of the restrictions is a regexp.

◦ The value generated after applying the regexp does not match the

restrictions imposed by one of the facets.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 253

Preferred number of repetitions

Allows you to set the preferred number of repeating elements related to minOccurs and maxOccurs

facets defined in the XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value is used.

• If the value set here is less than minOccurs, then the minOccurs value is used.

• If the value set here is greater than maxOccurs, then maxOccurs is used.

Maximum recursion level

If a recursion is found, this option controls the maximum allowed depth of the same element.

Type alternative strategy

Used for the <xs:alternative> element from XML Schema 1.1. The possible strategies are:

• First - The first valid alternative type is always used.

• Random - A random alternative type is used.

Choice strategy

Used for <xs:choice> or <substitutionGroup> elements. The possible strategies are:

• First - The first branch of <xs:choice> or the head element of <substitutionGroup> is always

used.

• Random - A random branch of <xs:choice> or a substitute element or the head element of

a <substitutionGroup> is used.

Generate the other options as comments

If selected, generates the other possible choices or substitutions (for <xs:choice> and

<substitutionGroup>). These alternatives are generated inside comments groups so you

can uncomment and use them later. Use this option with care (for example, on a restricted

namespace and element) as it may generate large result files.

Use incremental attribute / element names as default

If selected, the value of an element or attribute starts with the name of that element or attribute.

For example, for an <a> element the generated values are: a1, a2, a3, and so on. If not selected, the

value is the name of the type of that element / attribute (for example: string, decimal, etc.)

Maximum length

The maximum length of string values generated for elements and attributes.

Discard optional elements after nested level

The optional elements that exceed the specified nested level are discarded. This option is

useful for limiting deeply nested element definitions that can quickly result in very large XML

documents.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 254

Related information

Generating Sample XML Files (on page 1026)

XProc Preferences

Oxygen XML Editor includes a bundled version of the Calabash XProc engine that can be used for XProc

transformations and validation, but you also have several ways to integrate other external XProc engines.

If the external engine is Java-based, or it has validation support, or it can receive parameters or ports passed

from the transformation, you need to integrate the external XProc engine using a plugin extension procedure

(on page 1594).

If you do not need the engine to be used for automatic validation or pass parameters/ports and it is not Java-

based, you can add an external XProc engine by using the XProc preferences page. Open the Preferences

dialog box (Options > Preferences) (on page 132) and go to XML > XProc.

To add an external engine, click the New button. To configure an existing engine, click the Edit button. This

opens the Custom Engine dialog box that allows you to configure an external engine.

Figure 30. Creating an XProc external engine

The following options can be configure in this custom engine configuration dialog box:

• Name - The value of this field will be displayed in the XProc transformation scenario and in the

command line that will start it.

• Description - A textual description that will appear as a tooltip where the XProc engine will be used.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 255

• Working directory - The working directory for resolving relative paths. You can specify the path by using

the text field, the Insert Editor Variables (on page 333) button, or the Browse button.

• Command line - The command line that will run the XProc engine as an external process. You can

specify the path by using the text field, the Insert Editor Variables (on page 333) button, or the

Browse button.

• Output encoding - The encoding for the output stream of the XProc engine, used for reading and

displaying the output messages.

• Error encoding - The encoding for the error stream of the XProc engine, used for reading and displaying

the messages from the error stream.

Note:

You can configure the built-in Calabash processor by using the calabash.config file. This file is

located in [OXYGEN_INSTALL_DIR]\lib\xproc\calabash\lib. If that file does not exist, you

have to create it.

The Show XProc messages option at the bottom of the XProc preferences page can be selected if you want

all messages emitted by the XProc processor during a transformation to be presented in dedicated XProc

Results view (on page 560).

XSLT/XQuery Preferences

To configure options regarding XSLT and XQuery processors, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to XML > XSLT-XQuery. This panel contains only the most generic

options for working with XSLT or XQuery processors. The more specific options are grouped in other panels

linked as child nodes of this panel in the tree of this Preferences page.

There is only one generic option available:

Create transformation temporary files in system temporary directory

It should be selected only when the temporary files necessary for performing transformations

are created in the same folder as the source of the transformation (the default behavior when

this option is not selected) and this breaks the transformation. An example of breaking the

transformation is when the transformation processes all the files located in the same folder as

the source of the transformation (including the temporary files) and the result is incorrect or the

transformation fails because of this.

XSLT Preferences

To configure the XSLT options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to XML > XSLT-XQuery > XSLT.

The XSLT preferences page allows you to customize options for the default XSLT validation engines. You can

also specify the engine directly in a validation scenario (on page 813).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 256

Note:

If no specific engine is specified in the validation scenario and the XSLT file has a transformation

scenario associated, Oxygen XML Editor will use the engine specified in the transformation scenario.

The following options are available in this page:

Validation engine - XSLT 1.0

Allows you to select the XSLT engine to be used for validation of XSLT 1.0 documents.

Validation engine - XSLT 2.0

Allows you to select the XSLT engine to be used for validation of XSLT 2.0 documents.

Validation engine - XSLT 3.0

Allows you to select the XSLT engine to be used for validation of XSLT 3.0 documents.

Note:

Saxon-HE does not implement any XSLT 3.0 features. Saxon-PE implements a selection

of XSLT 3.0 (and XPath 3.1) features, with the exception of schema-awareness and

streaming. Saxon-EE implements additional features relating to streaming (processing

of a source document without constructing a tree in memory. For further details about

XSLT 3.0 conformance, go to http://www.saxonica.com/documentation/index.html#!

conformance/xslt30.

XSLT Editor Content Completion Options link

Use this link to switch to the XSLT Content Completion preferences page (on page 222), where

you can configure the XSLT content completion options.

Saxon6 Preferences

To configure the Saxon 6 options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to XML > XSLT-XQuery > XSLT > Saxon > Saxon6.

The built-in Saxon 6 XSLT processor can be configured with the following options:

• Line numbering - Specifies whether or not line numbers are maintained and reported in error messages

for the XML source document.

• Disable calls on extension functions - If selected, external function calls are not allowed. Selecting

this option is recommended in an environment where untrusted stylesheets may be executed. It also

disables user-defined extension elements and the writing of multiple output files, since they carry

similar security risks.

• Handling of recoverable stylesheet errors - Allows you to choose how dynamic errors are handled. One

of the following options can be selected:

http://www.saxonica.com/documentation/index.html#!conformance/xslt30
http://www.saxonica.com/documentation/index.html#!conformance/xslt30

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 257

◦ recover silently - Continue processing without reporting the error.

◦ recover with warnings - Issue a warning but continue processing.

◦ signal the error and do not attempt recovery - Issue an error and stop processing.

Saxon-HE/PE/EE Preferences

To configure global options for XSLT transformation and validation scenarios that use the Saxon HE/PE/EE

engine, open the Preferences dialog box (Options > Preferences) (on page 132) and go to XML > XSLT-

XQuery > XSLT > Saxon > Saxon-HE/PE/EE.

Saxon-HE/PE/EE Options

Oxygen XML Editor allows you to configure the following XSLT options for the Saxon 12.5 Home Edition (HE),

Professional Edition (PE), and Enterprise Edition (EE):

Use a configuration file ("-config")

Select this option if you want to use a Saxon 12.5 configuration file that will be executed for the

XSLT transformation and validation processes. You can specify the path to the configuration

file by entering it in the URL field, or by using the Insert Editor Variables button, or using the

browsing actions in the Browse drop-down list.

Attention:

Oxygen XML Editor does not support the ALLOWED_PROTOCOLS Saxon property (http://

saxon.sf.net/feature/allowedProtocols). This feature is specific to Saxon and controls

access by Saxon (but not by underlying software, such as the XML parser). For

more information, see https://www.saxonica.com/documentation12/index.html#!

configuration/config-features.

Debugger trace into XPath expressions (applies to debugging sessions)

Instructs the XSLT Debugger (on page 2228) to step into XPath expressions.

Enable Optimizations ("-opt")

This option is selected by default, which means that optimization is enabled. If not selected,

the optimization is suppressed, which is helpful when reducing the compiling time is important,

optimization conflicts with debugging, or optimization causes extension functions with side-

effects to behave unpredictably.

Line numbering ("-l")

Line numbers where errors occur are included in the output messages.

Expand attributes defaults ("-expand")

Specifies whether or not the attributes defined in the associated DTD or XML Schema are

expanded in the output of the transformation you are executing.

DTD validation of the source ("-dtd")

https://www.saxonica.com/documentation12/index.html#!configuration/config-features
https://www.saxonica.com/documentation12/index.html#!configuration/config-features

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 258

Specifies whether or not the source document will be validated against their associated DTD.

You can choose from the following:

• On - Requests DTD validation of the source file and of any files read using the document()

function.

• Off - (default setting) Suppresses DTD validation.

• Recover - Performs DTD validation but treats the errors as non-fatal.

Note:

Any external DTD is likely to be read even if not used for validation, since DTDs

can contain definitions of entities.

Strip whitespaces ("-strip")

Specifies how the strip whitespaces operation is handled. You can choose one of the following

values:

• All ("all") - Strips all whitespace text nodes from source documents before any further

processing, regardless of any @xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents

before any further processing, regardless of any @xml:space attributes in the source

document. Whitespace text nodes are ignorable if they appear in elements defined in the

DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Saxon-PE/EE Options

The following options are available for Saxon 12.5 Professional Edition (PE) and Enterprise Edition (EE) only:

Register Saxon-JS extension functions and instructions

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using

the Saxon 12.5 processors.

Note:

Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This

means that you will use Oxygen XML Editor only for developing the Saxon-CE stylesheet,

leaving the execution part to a web browser. See more details about executing such a

stylesheet on Saxonica's website.

Allow calls on extension functions ("-ext")

If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on

integrated extension functions, including Saxon and EXSLT extension functions. This option is

useful when loading an untrusted stylesheet (such as from a remote site using http://[URL]).

http://www.saxonica.com/ce/index.xml
http://www.saxonica.com/ce/index.xml

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 259

It ensures that the stylesheet cannot call arbitrary Java methods and thus gain privileged access

to resources on your machine.

Enable assertions ("-ea")

In XSLT 3.0, you can use the <xsl:assert> element to make assertions in the form of XPath

expressions, causing a dynamic error if the assertion turns out to be false. If this option is

selected, XSLT 3.0 <xsl:assert> instructions are enabled. If it is not selected (default), the

assertions are ignored.

Saxon-EE Options

The options available specifically for Saxon 12.5 Enterprise Edition (EE) are as follows:

Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or

similar functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing

the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for

parsing the source documents with schema-validation enabled but the validation will not

fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed

with schema-validation disabled.

Validation errors in the result tree treated as warnings ("-outval")

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this

option causes such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document

The validation messages for non-fatal errors are written (wherever possible) as a

comment in the result document itself.

Saxon-HE/PE/EE Advanced Preferences

To configure the Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to XML > XSLT-XQuery > XSLT > Saxon > Saxon-HE/PE/EE > Advanced.

You can configure the following advanced XSLT options for the Saxon 12.5 transformer (all three editions:

Home Edition, Professional Edition, Enterprise Edition):

• URI Resolver class name ("-r") - Specifies a custom implementation for the URI resolver used by the

XSLT Saxon 12.5 transformer (the -r option when run from the command line). The class name must be

fully specified and the corresponding jar or class extension must be configured from the dialog box

for configuring the XSLT extension (on page 1507) for the particular transformation scenario.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 260

• Collection URI Resolver class name ("-cr") - Specifies a custom implementation for the Collection

URI resolver used by the XSLT Saxon 12.5 transformer (the -cr option when run from the command

line). The class name must be fully specified and the corresponding jar or class extension must be

configured from the dialog box for configuring the XSLT extension (on page 1507) for the particular

transformation scenario.

XSLTProc Preferences (Deprecated)

To configure XSLTProc options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to XML > XSLT-XQuery > XSLT > XSLTProc.

The following options are available in this preferences page:

• Enable XInclude processing - If selected, XInclude references will be resolved when XSLTProc is used

as transformer in XSLT transformation scenarios (on page 1472).

• Skip loading the document's DTD - If selected, the DTD specified in the DOCTYPE declaration will not be

loaded.

• Do not apply default attributes from document's DTD - If selected, the default attributes declared in the

DTD and not specified in the document are not included in the transformed document.

• Do not use Internet to fetch DTD's, entities or docs - If selected, the remote references to DTD's and

entities are not followed.

• Maximum depth in templates stack - If this limit of maximum templates depth is reached the

transformation ends with an error.

• Verbosity - If selected, the transformation will output detailed status messages about the

transformation process in the Warnings view.

• Show version of libxml and libxslt used - If selected, Oxygen XML Editor will display in the Warnings

view the version of the libxml and libxslt libraries invoked by XSLTProc.

• Show time information - If selected, the Warnings view will display the time necessary for running the

transformation.

• Show debug information - If selected, the Warnings view will display debug information about what

templates are matched, parameter values, and so on.

• Show all documents loaded during processing - If selected, Oxygen XML Editor will display in the

Warnings view the URL of all the files loaded during transformation.

• Show profile information - If selected, Oxygen XML Editor will display in the Warnings view a table

with all the matched templates, and for each template will display: the match XPath expression, the

template name, the number of template modes, the number of calls, the execution time.

• Show the list of registered extensions - If selected, Oxygen XML Editor will display in the Warnings view

a list with all the registered extension functions, extension elements and extension modules.

• Refuses to write to any file or resource - If selected, the XSLTProc processor will not write any part of

the transformation result to an external file on disk. If such an operation is requested by the processed

XSLT stylesheet the transformation ends with a runtime error.

• Refuses to create directories - If selected, the XSLTProc processor will not create any directory during

the transformation process. If such an operation is requested by the processed XSLT stylesheet the

transformation ends with a runtime error.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 261

MSXML Preferences (Deprecated)

To configure the MSXML options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to XML > XSLT-XQuery > XSLT > MSXML (Legacy).

The options in this preferences page for the MSXML 3.0 and 4.0 processors are as follows:

Validate documents during parse phase

If selected, and either the source or stylesheet document has a DTD or schema that its content

can be checked against, validation is performed.

Do not resolve external definitions during parse phase

By default, MSXML instructs the parser to resolve external definitions such as document type

definition (DTD), external subsets or external entity references when parsing the source and style

sheet documents. If this option is selected, the resolution is disabled.

Strip non-significant whitespaces

If selected, strips non-significant white space from the input XML document during the load

phase. Selecting this option can lower memory usage and improve transformation performance

while, in most cases, creating equivalent output.

Show time information

If selected, the relative speed of various transformation steps can be measured, including:

• The time to load, parse, and build the input document.

• The time to load, parse, and build the stylesheet document.

• The time to compile the stylesheet in preparation for the transformation.

• The time to execute the stylesheet.

Start transformation in this mode

Although stylesheet execution usually begins in the empty mode, this default behavior may be

changed by specifying another mode. Changing the start mode allows execution to jump directly

to an alternate group of templates.

MSXML.NET Preferences (Deprecated)

To configure the MSXML.NET options, open the Preferences dialog box (Options > Preferences) (on page

132) and go to XML > XSLT-XQuery > XSLT > MSXML.NET (Legacy).

The options in this preferences page for the MSXML.NET processor are as follows:

Enable XInclude processing

If selected, XInclude references will be resolved when MSXML.NET is used as the transformer in

the XSLT transformation scenario (on page 1472).

Validate documents during parse phase

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 262

If selected, and either the source or stylesheet document has a DTD or schema that its content

can be checked against, validation is performed.

Do not resolve external definitions during parse phase

By default, MSXML instructs the parser to resolve external definitions such as document type

definition (DTD), external subsets or external entity references when parsing the source and style

sheet documents. If this option is selected, the resolution is disabled.

Strip non-significant whitespaces

If selected, strips non-significant white space from the input XML document during the load

phase. Selecting this option can lower memory usage and improve transformation performance

while, in most cases, creating equivalent output.

Show time information

If selected, the relative speed of various transformation steps can be measured, including:

• The time to load, parse, and build the input document.

• The time to load, parse, and build the stylesheet document.

• The time to compile the stylesheet in preparation for the transformation.

• The time to execute the stylesheet.

Forces ASCII output encoding

There is a known problem with the .NET 1.X XSLT processor (System.Xml.Xsl.XslTransform

class). It does not support escaping of characters as XML character references when they

cannot be represented in the output encoding. This means that it will be outputted as '?'.

Usually this happens when output encoding is set to ASCII. If this option is selected, the output

is forced to be ASCII encoded and all non-ASCII characters get escaped as XML character

references (&#nnnn; form).

Allow multiple output documents

This option allows you to create multiple result documents using the exsl:document extension

element.

Use named URI resolver class

This option allows you to specify a custom URI resolver class to resolve URI references in

<xsl:import> and <xsl:include> instructions (during XSLT stylesheet loading phase) and in

document() functions (during XSL transformation phase).

Assembly file name for URI resolver class

This option specifies a file name of the assembly where the specified resolver class can be

found. The Use named URI resolver class option (on page 262) specifies a partially or fully

qualified URI resolver class name (for example, Acme.Resolvers.CacheResolver). Such a name

requires additional assembly specification using this option or the Assembly GAC name for URI

resolver class option (on page 263), but fully qualified class name (which always includes an

assembly specifier) is all-sufficient.

http://exslt.org/exsl/elements/document/index.html
http://exslt.org/exsl/elements/document/index.html
http://exslt.org/exsl/elements/document/index.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 263

Assembly GAC name for URI resolver class

This option specifies partially or fully qualified name of the assembly in the global assembly

cache (GAC) where the specified resolver class can be found.

List of extension object class names

This option allows to specify extension object classes, whose public methods then can be

used as extension functions in an XSLT stylesheet. It is a comma-separated list of namespace-

qualified extension object class names. Each class name must be bound to a namespace URI

using prefixes, similar to providing XSLT parameters.

Use specified EXSLT assembly

MSXML.NET supports a rich library of the EXSLT and EXSLT.NET extension functions embedded

or in a plugin EXSLT.NET library. EXSLT support is enabled by default and cannot be disabled in

this version. Use this option if you want to use an external EXSLT.NET implementation instead of

a built-in one.

Credential loading source xml

This option allows you to specify user credentials to be used when loading XML source

documents. The credentials should be provided in the username:password@domain format (all

parts are optional).

Credential loading stylesheet

This option allows you to specify user credentials to be used when loading XSLT stylesheet

documents. The credentials should be provided in the username:password@domain format (all

parts are optional).

XQuery Preferences

To configure the XQuery options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to XML > XSLT-XQuery > XQuery.

The following generic XQuery preferences are available:

Validation engine

Allows you to select the processor that will be used to validate XQuery documents. If you are

validating an XQuery file that has an associated validation scenario, Oxygen XML Editor uses

the processor specified in the scenario. If no validation scenario is associated, but the file has

an associated transformation scenario, the processor specified in the scenario is used. If the

processor does not support validation or if no scenario is associated, then the value from this

combo box will be used as validation processor.

Size limit of Sequence view (MB)

When the result of an XQuery transformation is set as a sequence (Present as a sequence

option (on page 1526)) in the transformation scenario, the size of one chunk of the result that is

fetched from the database in lazy mode in one step is set in this option. If this limit is exceeded,

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 264

go to the Sequence view (on page 1064) and click More results available to extract more data

from the database.

Format transformer output

Specifies whether or not the output of the transformer is formatted and indented (pretty-print (on

page 3299)).

Note:

This option is ignored if you choose Present as a sequence (on page 1526) (lazy

extract data from a database) from the associated transformation scenario.

Create structure indicating the type nodes

If selected, Oxygen XML Editor takes the results of a query and creates an XML document

containing copies of all items in the sequence, suitably wrapped.

Note:

This option is ignored if you choose Present as a sequence (on page 1526) (lazy

extract data from a database) from the associated transformation scenario.

Saxon-HE/PE/EE Preferences

To configure global options for XQuery transformation and validation scenarios that use the Saxon HE/PE/

EE engine, open the Preferences dialog box (Options > Preferences) (on page 132) and go to XML > XSLT-

XQuery > XQuery > Saxon-HE/PE/EE.

Oxygen XML Editor allows you to configure the following XQuery options for the Saxon 12.5 Home Edition

(HE), Professional Edition (PE), and Enterprise Edition (EE):

Use a configuration file ("-config")

Sets a Saxon 12.5 configuration file that is used for XQuery transformation and validation

scenarios.

Enable Optimizations ("-opt")

This option is selected by default, which means that optimization is enabled. If not selected,

the optimization is suppressed, which is helpful when reducing the compiling time is important,

optimization conflicts with debugging, or optimization causes extension functions with side-

effects to behave unpredictably.

Use linked tree model ("-tree:linked")

This option activates the linked tree model.

Strip whitespaces ("-strip")

Specifies how the strip whitespaces operation is handled. You can choose one of the following

values:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 265

• All ("all") - Strips all whitespace text nodes from source documents before any further

processing, regardless of any @xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents

before any further processing, regardless of any @xml:space attributes in the source

document. Whitespace text nodes are ignorable if they appear in elements defined in the

DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

The following option is available for Saxon 12.5 Professional Edition (PE) and Enterprise Edition (EE) only:

Allow calls on extension functions ("-ext")

If selected, calls on external functions are allowed. Selecting this option is not recommended

in an environment where untrusted stylesheets may be executed. It also disables user-defined

extension elements and the writing of multiple output files, both of which carry similar security

risks.

The options available specifically for Saxon 12.5 Enterprise Edition (EE) are as follows:

Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or

similar functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing

the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for

parsing the source documents with schema-validation enabled but the validation will not

fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed

with schema-validation disabled.

Validation errors in the result tree treated as warnings ("-outval")

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this

option causes such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document

The validation messages for non-fatal errors are written (wherever possible) as a

comment in the result document itself.

Enable XQuery update ("-update:(on|off)")

This option controls whether or not XQuery update syntax is accepted. The default value is off.

Backup files updated by XQuery ("-backup:(on|off)")

If selected, backup versions for any XML files updated with an XQuery Update are generated.

This option is available when the Enable XQuery update option is selected.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 266

Saxon HE/PE/EE Advanced Preferences

To configure Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to XML > XSLT-XQuery > XQuery > Saxon-HE/PE/EE > Advanced.

The advanced XQuery options that can be configured for the Saxon 12.5 XQuery transformer (all editions:

Home Edition, Professional Edition, Enterprise Edition) are as follows:

• URI Resolver class name - Allows you to specify a custom implementation for the URI resolver used

by the XQuery Saxon 12.5 transformer (the -r option when run from the command line). The class

name must be fully specified and the corresponding JAR or class extension must be configured from

the dialog box for configuring the XQuery extension (on page 1507) for the particular transformation

scenario.

Note:

If your URIResolver implementation does not recognize the given resource, the resolve(String

href, String base) method should return a null value. Otherwise, the given resource will not

be resolved through the XML Catalog (on page 842).

• Collection URI Resolver class name - Allows you to specify a custom implementation for the Collection

URI resolver used by the XQuery Saxon 12.5 transformer (the -cr option when run from the command

line). The class name must be fully specified and the corresponding JAR or class extension must be

configured from the dialog box for configuring the XQuery extension (on page 1507) for the particular

transformation scenario.

Debugger Preferences

To configure the Debugger preferences, open the Preferences dialog box (Options > Preferences) (on page

132) and go to XML > XSLT-XQuery > Debugger.

The following options are available:

Show xsl:result-document output

If selected, the debugger presents the output of <xsl:result-document> instructions into the

debugger output view.

Infinite loop detection

Select this option to receive notifications when an infinite loop occurs during transformation.

Enable Saxon optimizations

This option is not selected by default and this means that the optimization for the debugging

process is suppressed. This is helpful when reducing the compiling time is important,

optimization conflicts with debugging, or optimization causes extension functions with side-

effects to behave unpredictably.

Maximum depth in templates stack

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 267

Allows you to set how many <xsl:template> instructions can appear on the current stack. This

setting is used by the infinite loop detection.

Debugger layout

If you select the Horizontal layout, the stack of XML editors is presented on the left half of the

editing area while the stack of XSL editors is on the right half. If you select the Vertical layout,

the stack of XML editors is presented on the upper half of the editing area while the stack of XSL

editors is on the lower half.

Debugger current instruction pointer

Allows you to set the background color of the current execution node, both in the document

(XML) and XSLT/XQuery views.

XWatch evaluation timeout (seconds)

Allows you to specify the maximum time that Oxygen XML Editor allocates to the evaluation of

XPath expressions while debugging.

Messages

Allows you to specify how to handle the debugging process when the source document involved

in a debugging session is edited. You can choose one of the following:

• Ask me what to do

• Always stop the debugging session

• Never stop the debugging session

Profiler Preferences

This section explains the settings available for the XSLT/XQuery Profiler. To access and modify these settings,

open the Preferences dialog box (Options > Preferences) (on page 132) and go to XML > XSLT-XQuery >

Profiler (see Debugger Preferences (on page 266)).

The following profiler settings are available:

Show time

Shows the total time that was spent in the call.

Show inherent time

Shows the inherent time that was spent in the call. The inherent time is defined as the total time

of a call minus the time of its child calls.

Show invocation count

Shows how many times the call was called in this particular call sequence.

Time scale

Determines the unit of time measurement. You can choose between milliseconds or

microseconds.

Hotspot threshold

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 268

Hotspots are ignored below this specified amount (in milliseconds). For more information, see

Hotspots View (on page 2236).

Ignore invocation less than

Invocations are ignored below this specified amount (in microseconds). For more information,

see Invocation Tree View (on page 2235).

Percentage calculation

The percentage base that determines what time span percentages are calculated against. You

can choose between the following:

• Absolute - Percentage values show the contribution to the total time.

• Relative - Percentage values show the contribution to the calling call.

XPath Preferences

To configure XPath options, open the Preferences dialog box (Options > Preferences) (on page 132) and go

to XML > XSLT-XQuery > XPath.

Oxygen XML Editor allows you to customize the following options:

Unescape XPath expression

If selected, the entities of an XPath expression that you type in the XPath/XQuery Builder (on

page 2112) and the XPath toolbar (on page 2110) are unescaped during their execution. For

example, the expression:

//varlistentry[starts-with(@os,'s')]

is equivalent to:

//varlistentry[starts-with(@os,'s')]

Multiple XPath results

Select this option to display the results of an XPath expression in separate tabs in the Results

view (on page 560).

XPath Default Namespace (only for XPath version 2.0)

Specifies the default namespace to be used for unprefixed element names. You can choose

between the following four options:

• No namespace - If selected, Oxygen XML Editor considers unprefixed element names of

the evaluated XPath expressions as belonging to no namespace.

• Use the default namespace from the root element (default selection) - Oxygen XML Editor

considers unprefixed element names of the evaluated XPath expressions as belonging

to the default namespace declared on the root element of the XML document you are

querying.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 269

• Use the namespace of the root - If selected, Oxygen XML Editor considers unprefixed

element names of the evaluated XPath expressions as belonging to the same namespace

as the root element of the XML document you are querying.

• This namespace - If selected, you can use the corresponding text field to enter the

namespace of the unprefixed elements.

Default prefix-namespace mappings

You can use this table to associate prefixes with namespaces. Use these mappings when you

want to define them globally (not for each document). Use the New button to add mappings to

the list and the Delete button to remove mappings.

Custom Engines Preferences

Oxygen XML Editor allows you to configure custom processors to be used for running XSLT and XQuery

transformations.

Note:

You can not use these custom engines in the Debugger perspective (on page 2209).

To configure the Custom Engines preferences, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to XML > XSLT-XQuery > Custom Engines.

The table in this preferences page displays the custom engines that have been defined. Use the New or Edit

button at the bottom of the table to open a dialog box that allows you to add or configure a custom engine.

Figure 31. Parameters of a Custom Engine

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 270

The following parameters can be configured for a custom engine:

Engine type

Specifies the transformer type. You can choose between XSLT and XQuery engines.

Name

The name of the transformer displayed in the dialog box for editing transformation scenarios.

Description

A textual description of the transformer.

Working directory

The start directory of the executable program for the transformer. The following editor variables

(on page 333) are available for making the path to the working directory independent of the

location of the input files:

• ${homeDir} - The user home directory in the operating system.

• ${cfd} - The path to the directory of the current file.

• ${pd} - The path to the directory of the current project.

• ${oxygenInstallDir} - The Oxygen XML Editor install directory.

Command line

The command line that must be executed by Oxygen XML Editor to perform a transformation

with the engine. The following editor variables (on page 333) are available for making the

parameters in the command line (the transformer executable, the input files) independent of the

location of the input files:

• ${xml} - The XML input document as a file path.

• ${xmlu} - The XML input document as a URL.

• ${xsl} - The XSL / XQuery input document as a file path.

• ${xslu} - The XSL / XQuery input document as a URL.

• ${out} - The output document as a file path.

• ${outu} - The output document as a URL.

• ${ps} - The platform separator that is used between library file names specified in the

class path.

Output Encoding

The encoding of the transformer output stream.

Error Encoding

The encoding of the transformer error stream.

PDF Output Preferences

The PDF Output preferences page simply includes links to sub-pages for configuring PDF output options.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 271

FO Processors Preferences

Oxygen XML Editor includes a built-in formatting objects processor (Apache FOP), but you can also configure

other external processors and use them in the transformation scenarios for processing XSL-FO documents.

Oxygen XML Editor provides an easy way to add two of the most commonly used commercial FO processors:

RenderX XEP and Antenna House Formatter. You can easily add RenderX XEP as an external FO processor

if you have the XEP installed. Also, if you have the Antenna House Formatter, Oxygen XML Editor uses the

environment variables set by the XSL formatter installation to detect and use it for XSL-FO transformations.

If the environment variables are not set for the XSL formatter installation, you can browse and choose

the executable file just as you would for XEP. You can use these two external FO processors for DITA-OT

transformations scenarios (on page 1530) and XML with XSLT transformation scenarios (on page 1504).

To configure the options for the FO processors, open the Preferences dialog box (Options > Preferences)

(on page 132) and go to XML > PDF Output > FO Processors. This preferences page includes the following

options:

Apache FOP Section

In this section, you can configure options for the built-in Apache processor. The following options are

available:

Use built-in Apache FOP

Instructs Oxygen XML Editor to use the built-in Apache FO processor. To see the version of the

built-in XSL-FO processor for your installation, go to Help > About > Libraries and search for

Apache FOP.

Use other Apache FOP

Instructs Oxygen XML Editor to use another Apache FO processor that is installed on your

computer. You can specify the path by using the text field, the Insert Editor Variables (on

page 333) button, or the Browse button.

Enable the output of the built-in FOP

All Apache FOP output is displayed in a results pane at the bottom of the Oxygen XML Editor

window, including warning messages about FO instructions not supported by Apache FOP.

Memory available to the Apache FOP

If your Apache FOP transformations fail with an Out of Memory error (OutOfMemoryError), use

this combo box to select a larger value for the amount of memory reserved for Apache FOP

transformations.

Configuration file for the built-in FOP

Use this option to specify the path to an Apache FOP configuration file (for example, to render

to PDF a document containing Unicode content using a special true type font). You can specify

the path by using the text field, the Insert Editor Variables (on page 333) button, or the

Browse button.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 272

Generates PDF/A-1b output

When selected, PDF/A-1b output is generated.

Notes:

• All fonts have to be embedded, even the implicit ones. More information about

configuring metrics files for the embedded fonts can be found in Add a font to the

built-in FOP (on page 1581).

• You cannot use the <filterList> key in the configuration file since the FOP would

generate the following error: The Filter key is prohibited when PDF/A-1 is active.

External FO Processors Section

In this section, you can manage the external FO processors you want to use in transformation scenarios. You

can use the two options at the bottom of the section to use the RenderX XEP or Antenna House Formatter

commercial FO processors.

Add 'XEP' FO processor (executable file is needed)

If RenderX XEP is already installed on your computer, you can use this button to choose the XEP

executable script (xep.bat for Windows, xep for Linux).

Add 'Antenna House' FO processor (executable file is needed)

If Antenna House Formatter is already installed on your computer, you can use this button to

choose the Antenna House executable script (AHFCmd.exe or XSLCmd.exe for Windows, and

run.sh for Linux/macOS).

Note:

The built-in Antenna House Formatter GUI transformation scenario requires that you

configure an external FO processor that runs AHFormatter.exe (Windows only). In

the external FO Processor configuration dialog box (on page 273), you could use

"${env(AHF63_64_HOME)}\AHFormatter.exe" -d ${fo} -s for the value in the Command

line field, although the environment variable name changes for each version of the AH

Formatter and for each system architecture (you can install multiple versions side-

by-side). For more information, see https://github.com/AntennaHouse/focheck/wiki/

focheck. A list with all AntennaHouse command line parameters can be found here:

https://www.antenna.co.jp/AHF/help/en/ahf-xslcmd.html#cl-parameter.

You can also add external processors or configure existing ones. Click the New button to open a configuration

dialog box that allows you to add a new external FO processor. Use the other buttons (Edit, Duplicate,

Delete, Up, Down) to configure existing external processors.

https://github.com/AntennaHouse/focheck/wiki/focheck
https://github.com/AntennaHouse/focheck/wiki/focheck
https://www.antenna.co.jp/AHF/help/en/ahf-xslcmd.html#cl-parameter

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 273

Figure 32. External FO Processor Configuration Dialog Box

The external FO Processor configuration dialog box includes the following options:

Name

The name that will be displayed in the list of available FO processors on the FOP tab of the

transformation scenario dialog box.

Description

A textual description of the FO processor that will be displayed in the FO processors table and in

tooltips of UI components where the processor is selected.

Working directory

The directory where the intermediate and final results of the processing are stored. You can

specify the path by using the text field, the Insert Editor Variables (on page 333) button, or

the Browse button. You can use one of the following editor variables (on page 333):

• ${homeDir} - The path to the user home directory.

• ${cfd} - The path of the current file directory. If the current file is not a local file, the target

is the user desktop directory.

• ${pd} - The project directory.

• ${oxygenInstallDir} -The Oxygen XML Editor installation directory.

Command line

The command line that starts the FO processor, specific to each processor. You can specify

the path by using the text field, the Insert Editor Variables (on page 333) button, or the

Browse button. You can use one of the following editor variables (on page 333):

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 274

• ${method} - The FOP transformation method: pdf, ps, or txt.

• ${fo} - The input FO file.

• ${out} - The output file.

• ${pd} - The project directory.

• ${frameworksDir} - The path of the frameworks subdirectory of the Oxygen XML Editor

installation directory.

• ${oxygenInstallDir} - The Oxygen XML Editor installation directory.

• ${ps} - The platform-specific path separator. It is used between the library files specified in

the class path of the command line.

Output Encoding

The encoding of the FO processor output stream that is displayed in a Results panel (on page

560) at the bottom of the Oxygen XML Editor window.

Error Encoding

The encoding of the FO processor error stream that is displayed in a Results panel (on page

560) at the bottom of the Oxygen XML Editor window.

CSS-based Processors Preferences

Oxygen XML Editor includes a built-in XML to PDF transformation with CSS scenario type for generating PDF

output using a CSS-based processor.

To configure the options for the CSS-based processors, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to XML > PDF Output > CSS-based Processors. This preferences page

includes the following options:

Oxygen PDF Chemistry Section

Auto-detect

If selected, the directory of the Chemistry processor will be automatically detected. This is

based on the system's PATH environmental variable. If none is detected, it will use the path of

the built-in distribution.

Custom installation directory

Use this option to select an external directory of a custom installation of the Chemistry

processor.

Memory available to the processor (MB)

Specifies the maximum amount of memory that is available for the transformation. If your

transformations fail with an Out of Memory error (OutOfMemoryError), you can use this option

to select a bigger value for the amount of memory reserved for the process.

Generates PDF/UA-1 output

Use this option to produce output that conforms with the PDF/UA-1 accessibility standards.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 275

Note:

This mode has some special requirements. For example, all fonts have to be embedded

and the title of documents must be marked using the metadata. For more information,

see Oxygen PDF Chemistry User Guide: Fully Accessible PDF (PDF/UA1).

Show console output

Allows you to specify when to display the console output log in the message panel at the bottom

of the editor. The following options are available:

• When build fails - Displays the console output log only if the build fails.

• Always - Displays the console output log, regardless of whether or not the build fails.

Ant Preferences

To set Ant preferences, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

XML > Ant. This panel allows you to choose the directory containing the Apache Ant (on page 3294) libraries

(the so-called Ant Home) that Oxygen XML Editor uses to handle Ant build files.

There are two options available:

• Built-in - the path to the Ant distribution that comes bundled with Oxygen XML Editor installation kit.

• Custom - the path to an Ant distribution of your choice.

Import Preferences

To configure importing options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to XML > Import. This page allows you to configure how empty values and null values are handled when

they are encountered in imported database tables or Excel sheets. Also you can configure the format of date /

time values recognized in the imported database tables or Excel sheets.

The following options are available:

Create empty elements for empty values

If selected, an empty value from a database column or from a text file is imported as an empty

element.

Create empty elements for null values

If selected, null values from a database column are imported as empty elements.

Escape XML content

Selected by default, this option instructs Oxygen XML Editor to escape the imported content to

an XML-safe form.

Add annotations for generated XML Schema

If selected, the generated XML Schema contains an annotation for each of the imported table

columns. The documentation inside the annotation tag contains the remarks of the database

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_pdf_output.html#ariaid-title5

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 276

columns (if available) and also information about the conversion between the column type and

the generated XML Schema type.

Date / Time Format section

Specifies the format used for importing date and time values from Excel spreadsheets or

database tables, and in the generated XML schemas. You can choose from the following format

types:

• Unformatted - The date and time formats specific to the database are used for import.

When importing data from Excel a string representation of date or time values are used.

The type used in the generated XML Schema is xs:string.

• XML Schema date format - The XML Schema-specific format ISO8601 is used for

imported date / time data (yyyy-MM-dd'T'HH:mm:ss for datetime, yyyy-MM-dd for date and

HH:mm:ss for time). The types used in the generated XML Schema are xs:datetime, xs:date

and xs:time.

• Custom format - If selected, you can define a custom format for timestamp, date, and

time values or choose one of the predefined formats. A preview of the values is presented

when a format is used. The type used in the generated XML Schema is xs:string.

Table 3. Pattern Letters

Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am / pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am / pm (0-11) Number 0

h Hour in am / pm (1-12) Number 12

m Minute in hour Number 30

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 277

Table 3. Pattern Letters (continued)

Letter Date or Time Component Presentation Examples

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone PST; GMT-08:00

Z Time zone RFC 822 time zone -0800

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text - If the number of pattern letters is 4 or more, the full form is used. Otherwise, a short

or abbreviated form is used if available.

• Number - The number of pattern letters is the minimum number of digits, and shorter

numbers are zero-padded to this amount.

• Year - If the number of pattern letters is 2, the year is truncated to 2 digits. Otherwise, it is

interpreted as a number.

• Month - If the number of pattern letters is 3 or more, the month is interpreted as text.

Otherwise, it is interpreted as a number.

• General time zone - Time zones are interpreted as text if they have names. For time zones

representing a GMT offset value, the following syntax is used:

◦ GMTOffsetTimeZone - GMT Sign Hours: Minutes

◦ Sign - one of + or -

◦ Hours - one or two digits

◦ Minutes - two digits

◦ Digit - one of 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format

is locale independent and digits must be taken from the Basic Latin block of the Unicode

standard.

• RFC 822 time zone: The RFC 822 4-digit time zone format is used:

◦ RFC822TimeZone

◦ TwoDigitHours (must be between 00 and 23)

XML Signing Certificates Preferences

Oxygen XML Editor provides two types of keystores (on page 3298) for certificates that are used for

digital signatures of XML documents: Java Keystore (JKS) and Public-Key Cryptography Standards version

12 (PKCS-12). A keystore file is protected by a password. To configure a certificate keystore, open the

Preferences dialog box (Options > Preferences) (on page 132) and go to XML > XML Signing Certificates.

You can customize the following parameters of a keystore:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 278

Figure 33. Certificates Preferences Panel

• Keystore type - The type of keystore (on page 3298) that Oxygen XML Editor uses (JKS or PKCS-12).

• Keystore file - The location of the imported file.

• Keystore password - The password that is used for protecting the privacy of the stored keys.

• Certificate alias - The alias used for storing the key entry (the certificate or the private key) inside the

keystore (on page 3298).

• Private key password - The private key password of the certificate (required only for JKS keystores (on

page 3298)).

• Validate - Click this button to verify the configured keystore (on page 3298) and the validity of the

certificate.

XML Refactoring Preferences

To specify a folder for loading the custom XML refactoring operations, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to XML > XML Refactoring. The following option is available

in this preferences page:

Load additional refactoring operations from

Use this text box to specify a folder for loading custom XML refactoring operations. You can

specify the path by using the text field, the Insert Editor Variables (on page 333) button, or

the Browse button. Oxygen XML Editor looks for XML refactoring operations recursively in

the specified folder, so they can be stored in descendant folders.

DITA Preferences

To access the DITA Preferences page, open the Preferences dialog box (Options > Preferences) (on page

132) and go to DITA. This preferences page includes the following sections and options:

DITA Open Toolkit section

This section allows you to specify the default directory of the DITA Open Toolkit distribution

(bundled with the Oxygen XML Editor installation) to be used for validating and publishing DITA

content. You can select from the following:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 279

Built-in Oxygen Publishing Engine (based on DITA-OT 4.x)

Oxygen XML Editor comes bundled with the Oxygen Publishing Engine (based

on DITA-OT 4.2.3). By default, all defined DITA transformation/validation

scenarios will run with this version. The default publishing engine directory is:

[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT.

Custom

Allows you to specify a custom directory for your DITA-OT distribution.

Location

You can either provide a new file path for the specific DITA-OT that

you want to use or select a previously used one from the drop-down

list. You can specify the path by using the text field, the Insert

Editor Variables (on page 333) button, or the Browse button.

Important:

Using a custom DITA Open Toolkit may disable certain features in the

application. Examples of features that may not work properly:

• If the custom DITA-OT is missing certain publishing plugins, default

transformation scenarios such as DITA Map WebHelp Responsive

(on page 3141) or DITA Map PDF - based on HTML5 & CSS (on

page 3156) may no longer work properly.

• Validation of Markdown documents using Schematron may not

work because it is based on a certain DITA Open Toolkit plugin.

• The DITA framework (defined in the Preferences > Document Type

Associations page) will use the XML catalogs specified in the

DITA-OT configured in the Preferences > DITA page to perform the

validation of all DITA topic types. If this DITA-OT is different from

the one that comes bundled with the Oxygen XML Editor default

distribution, you might encounter validation-related issues.

CAUTION:

Oxygen XML Editor support engineers do not officially offer support and

troubleshooting assistance for custom DITA-OT distributions or custom

installed DITA-OT plugins. If you discover any issues or inconsistent

behavior while using a custom DITA-OT or a DITA-OT that contains custom

DITA-OT plugins, you should revert to the default built-in DITA-OT.

Enable DITA 2.0 editing support (Experimental)

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 280

If selected, you will have access to a DITA 2.0 folder in the New Document Wizard (on page

378) where you can find new document templates for creating DITA 2.0 maps or topics based

on the DITA 2.0 standard DTDs. For example, in a DITA topic based on the DITA 2.0 DTDs, you

can insert an <include> element that is not found in the DITA 1.3 DTDs.

DITA Maps Preferences

To access the DITA Maps preferences page, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to DITA > Maps. This preferences page includes the following options:

DITA Maps file patterns

Allows you to specify the extension types that will be handled as DITA maps when opened in

Oxygen XML Editor.

When opening a map

Oxygen XML Editor can open a DITA map in the regular editor view or in the DITA Maps Manager

(on page 2950). This option allows you to specify how a map will be opened. You can choose

one of the following options:

• Always open in the DITA Maps Manager - A DITA map file is always opened in the DITA

Maps Manager view.

• Always open as XML - A DITA map file is always opened in the XML editor.

• Always ask - When opening a DITA map, you are prompted to choose between opening it

in the XML editor panel or in the DITA Maps Manager view.

Expand references to other maps when opening a map in Author mode

Enabling this option will improve performance (decrease the loading time) when opening maps

in Author mode (particularly maps that contain a large amount of submaps). This option is

disabled by default.

Note:

You must close and reopen the map to see the effects of enabling/disabling this option.

DITA Maps Manager section

Automatically save local DITA maps after each modification

If selected (default), local DITA maps that are edited in the DITA Maps Manager are

automatically saved whenever a modification is made.

Warning:

This option is ignored if the Validate document before saving option (on page 211) in

the Editor > Save preferences page is also selected.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 281

Only display items related to currently open maps in the Context drop-down list

If selected, only the currently open maps and contexts that are relevant to the currently open

maps are displayed in the Context map drop-down menu in the DITA Maps Manager. This is

helpful if you are working with multiple DITA-OT projects and DITA maps set as Main Files since

it helps you narrow down the relevant contexts.

Prefer using the navigation title for rendering topic references

If selected and there is a @navtitle attribute set on a <topicref>, then the @navtitle is used to

render the title of the topic in the DITA Maps Manager (on page 2950).

Allow referenced submaps to be edited

If selected, all DITA maps referenced directly or indirectly in a DITA map that is open in the DITA

Maps Manager view will be fully editable. You will be able to add new topic references, modify

properties, and move topic references from one submap to another. Saving the main DITA map

will also save the contents of the modified submaps.

Attention:

The documents must be reopened to apply a change to this option.

Local files only

If selected, only submaps that are located on local disk drives will be editable. As for maps

located in remote locations (e.g. content management systems), the save operation might not

work on all submaps. This checkbox is selected by default.

Inserting Topic References section

Always set values for the following attributes

Allows you to specify that when inserting a topic reference (using the Insert Reference

dialog box (on page 2976) and Edit Properties dialog box (on page 2986)), the values for

certain attributes will always be automatically populated with a detected value (based on the

specifications), even if it is the same as the default value. You can choose to always populate

the values for the following attributes:

• Format - If selected, the @format attribute will always be automatically populated with a

detected value.

• Scope - If selected, the @scope attribute will always be automatically populated with a

detected value.

• Type - If selected, the @type attribute will always be automatically populated with a

detected value.

• Navigation title - If selected, the @navtitle attribute will always be automatically populated

with a detected value.

Use the file name as the value of the "keys" attribute

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 282

If selected, when inserting a topic reference into a map, the file name will be used as the value of

the @keys attribute for the new <topicref>. The key is not defined on the <topicref> for references

to DITA maps. This option has a slightly different effect depending on the method used for

inserting the topic reference:

• Drag/Drop or Copy/Paste in the DITA Maps Manager - If you drag or copy a resource from

another view (or outside Oxygen XML Editor) and drop or paste it into the DITA Maps

Manager and a key is already defined for that resource, a @keyref attribute will be inserted

instead. This even works for two consecutive drag/drop or copy/paste operations without

saving the file and it works for multiple selections of topic references.

• Drag/Drop or Copy/Paste in a Map opened in Author Mode - If you drag or copy a

resource from another view (or outside Oxygen XML Editor) and drop or paste it into a

map that is open in Author mode and a key is already defined for that resource, a @keyref

attribute will be inserted instead.

Restriction:

In this particular scenario, if you perform two identical, consecutive drag/drop

or copy/paste operations without saving the file between operations, the value

of the @keys attribute will be the same for both inserted topic references. The

workaround for this limitation is to simply save the map after each drag/drop or

copy/paste operation.

• Using the Fast Create Topics or Duplicate Actions - If you use the Fast Create Topics

feature (on page 3018) or Duplicate action (on page 3015) to insert topic references,

the newly created <topicref> elements will contain the @keys attribute with its value set

depending on the file name.

• Using the Insert Topic Reference Dialog Box from the DITA Maps Manager - If you use

an action in the DITA Maps Manager to insert topic references (e.g. Append Child >

Reference), a @keys attribute will be set for each inserted topic reference and the value

depends on the file name. If a single target was selected, you can see the value in the

Define keys field from the Keys tab of the Insert Reference dialog box (on page 2976)

and you can change it, while if multiple targets were selected, the values are automatically

generated based on each file name when the insertion is performed, and you cannot see

or change the values in that dialog box.

Note:

This option also has an effect on image references. When inserting a reference to an

image in a DITA map and this option is selected, a <keydef> element is created if it is

allowed by the schema. If it is not allowed (or this option is deselected), a specific

topic reference element is created with the value of the @processing-role attribute set to

resource-only.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 283

Prefer adding key references to already referenced resources

If selected, when a topic reference is inserted into a map and a key is already defined for that

resource, a @keyref attribute is inserted for the new <topicref>. If not selected, an @href attribute is

inserted instead.

Dynamic conversion of specific non-DITA resources

If selected (default), non-DITA documents are dynamically converted to DITA when they are

chosen in the Insert Reference dialog box (on page 2976) and the IDs from the resulting DITA

content are presented in the dialog box. If not selected, non-DITA documents (Word, Excel,

Markdown, OpenAPI, and HTML) are not dynamically converted when they are chosen in the

dialog box.

Review section

When the last/first item is reached while navigating review items

This option allows you to specify what should happen when you are navigating review items in

the Review view (on page 678) and you reach the last or first review item. You can choose one

of the following options:

• Open the next/previous document (in the current DITA map hierarchy) that contains

review items - If you reach the last/first review item in the document, clicking the Next

or Previous navigation buttons will open the next/previous document (from the

current DITA map hierarchy) that contains review items.

• Do nothing - If you reach the last/first review item in the document, clicking the Next

or Previous navigation buttons will do nothing.

• Always ask - If you reach the last/first review item in the document, clicking the Next

or Previous navigation buttons will open a dialog box asking if you want to open the

next/previous document (from the current DITA map hierarchy) that contains review

items.

DITA New Topics Preferences

To access the DITA New Topics preferences page, open the Preferences dialog box (Options > Preferences)

(on page 132) and go to DITA > New Topics. This preferences page includes the following options:

New Topics section

Use the title to generate the file name

This option (and its sub-options) pertain to the rules that will be used to generate file names in

the New DITA File dialog box (on page 3015). Select this option to use the text entered in the

Title field to automatically generate a file name (the generated name can be seen in the Save

as field). By default, the generated name will replace spaces with underscores (_), all illegal

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 284

characters will be removed, and all upper case characters changed to lower case, but you can

use the sub-options to change this.

Replace non-alphanumeric characters with

If selected, the file name generation mechanism will replace all non-alphanumeric

characters in the title with the character entered in this option.

Lower case only

If selected, the file name generation mechanism will only use lower

case letters.

Use camel case

If selected, the file name generation mechanism will convert the title to a file name

using the camel case convention where the first word starts with a lower case

letter and all subsequent words begin with upper case (for example, myFileName).

Upper case first letter

Select this option if you want the file name generation mechanism to

convert the title to a file name using the camel case convention but

with an upper case letter for the first word (for example, MyFileName).

Use the file name as the value of the root ID attribute

If selected, when creating a new topic, the file name (as seen in the Save as field but without the

file extension) will be used as the value of the root @id attribute for the new topic.

Inserting Links section

Always set values for the following attributes

Allows you to specify that when a link reference is inserted (using actions in the Link drop-

down menu), the values for certain attributes will always be automatically populated with a

detected value (based on the specifications), even if it is the same as the default value. You can

choose to always populate the values for the following attributes:

• Format - If selected, the @format attribute will always be automatically populated with a

detected value.

• Scope - If selected, the @scope attribute will always be automatically populated with a

detected value.

• Type - If selected, the @type attribute will always be automatically populated with a

detected value.

Use '.' instead of the ID of the parent topic (DITA 1.3)

When addressing a non-topic element within the topic that contains the URI reference, the URI

reference can use an abbreviated fragment-identifier syntax that replaces the topic ID with

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 285

"." (#./elementId). For more information, see https://www.oxygenxml.com/dita/1.3/specs/

index.html#archSpec/base/uri-based-addressing.html.

DITA Publishing Preferences

To access the DITA Publishing preferences page, open the Preferences dialog box (Options > Preferences)

(on page 132) and go to DITA > Publishing. You can also open this page by clicking the Configure

Publishing Templates Gallery link in the Templates tab of the transformation scenario dialog box for WebHelp

Responsive transformations.

You can use this preferences page to specify additional directories where custom publishing templates are

stored. The templates stored in these directories will appear in the preview pane in the Templates tab of the

transformation scenario dialog box, along with all the built-in templates.

DITA Logging Preferences

To access the DITA Logging preferences page, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to DITA > Logging. This preferences page includes the following sections and options:

Show console output

Allows you to specify when to display the console output log in the message panel at the bottom

of the editor. The following options are available:

• When build fails - Displays the console output log only if the build fails.

• Always - Displays the console output log, regardless of whether or not the build fails.

Show the following types of messages in a new tab

This section allows you to specify which types of messages will be displayed in separate tabs

in the message panel at the bottom of the editor if a DITA transformation results in errors or

warnings. You can choose whether or not to display the following types of messages:

• DITA-OT errors

• DITA-OT warnings

• DITA-OT info

• FOP errors

• FOP warnings

• FOP info

• XSLT problems

Markdown Preferences

The Markdown preferences page makes it possible to validate Markdown documents with Schematron.

To access the page, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

Markdown. This preferences page includes the following options:

https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 286

Validate converted HTML content

If selected, converted HTML content will be validated using the Schematron file specified in this

option.

Validate converted DITA content

If selected, converted DITA content will be validated using the Schematron file specified in this

option.

Note:

It is also possible to create a Schematron association for Markdown documents by adding a catalog

mapping (on page 842) for one of the following URIs:

• http://www.oxygenxml.com/schematron/validation/markdown-as-html

• http://www.oxygenxml.com/schematron/validation/markdown-as-dita

The catalog mapping is a fallback in case the validation is disabled in this preferences page or

the path to the Schematron is empty. The associations configured in this preferences page take

precedence.

Data Sources Preferences

To configure the Data Sources preferences, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Data Sources. This preferences page allows you to configure data sources and

connections to relational and native XML databases. For a list of drivers that are available for the major

database servers, see Download Links for Database Drivers (on page 291).

Connection Wizards Section

Create eXist-db XML connection

Click this link to open the dedicated Create eXist-db XML connection dialog box (on page 2144)

that provides a quick way to create an eXist connection.

Data Sources Section

This section allows you to add and configure data sources.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 287

Figure 34. Data Sources Preferences Panel

The following buttons are available at the bottom of the Data Sources panel:

New

Opens the Data Sources Drivers dialog box that allows you to configure a new database driver.

Figure 35. Data Sources Drivers Dialog Box

The following options are available in the Data Source Drivers dialog box:

• Name - The name of the new data source driver that will be used for creating connections

to the database.

• Type - Selects the data source type from the supported driver types.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 288

• Help button - Opens the User Manual at the list of the sections (on page 291) where

the configuration of supported data sources is explained and the URLs for downloading

the database drivers are specified.

• Driver files (JAR, ZIP) - Lists download links for database drivers (on page 291) that are

necessary for accessing databases in Oxygen XML Editor.

• Add Files - Adds the driver class library.

• Add Recursively - Adds driver files recursively.

• Remove - Removes the selected driver class library from the list.

• Detect - Detects driver file candidates.

• Stop - Stops the detection of the driver candidates.

• Driver class - Specifies the driver class for the data source driver.

Edit

Opens the Data Sources Drivers dialog box for editing the selected driver. See above the

specifications for the Data Sources Drivers dialog box. To edit a data source, there must be no

connections using that data source driver.

Duplicate

Creates a copy of the selected data source.

Delete

Deletes the selected driver. To delete a data source, there must be no connections using that

data source driver.

Connections Section

This section allows you to add and configure data source connections.

Figure 36. Connections Preferences Panel

The following buttons and options are available at the bottom of the Connections panel:

New

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 289

Opens the Connection dialog box that allows you to configure a new database connection.

Figure 37. Connection Dialog Box

The following options are available in the Connection dialog box:

• Name - The name of the new connection that will be used in transformation scenarios

and validation scenarios.

• Data Source - Allows selecting a data source defined in the Data Source Drivers dialog

box.

Depending upon the selected data source, you can set some of the following parameters in the

Connection details area:

• URL - The URL for connecting to the database server.

• User - The user name for connecting to the database server.

• Password - The password of the specified user name.

• Host - The host address of the server.

• Port - The port where the server accepts the connection.

• XML DB URI - The database URI.

• Database - The initial database name.

• Collection - One of the available collections for the specified data source.

• Use a secure HTTPS connection (SSL) - Allows you to establish a secure connection to

an eXist database through the SSL protocol.

Edit

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 290

Opens the Connection dialog box, allowing you to edit the selected connection. See above the

specifications for the Connection dialog box.

Duplicate

Creates a copy of the selected connection.

Delete

Deletes the selected connection.

Move Up

Moves the selected connection up one row in the list.

Move Down

Moves the selected connection down one row in the list.

Limit the number of cells

For performance issues, you can set the maximum number of cells that will be displayed in the

Table Explorer view (on page 2127) for a database table. Leave this field empty if you want

the entire content of the table to be displayed. By default, this field is set to 2000. If a table that

has more cells than the value set here is displayed in the Table Explorer view (on page 2127), a

warning dialog box will inform you that the table is only partially shown.

Maximum number of children for container nodes

In Oracle XML, a container can hold millions of resources. If the node corresponding to such

a container in the Data Source Explorer view (on page 2125) would display all the contained

resources at the same time, the performance of the view would be very slow. To prevent this,

only a limited number of the contained resources is displayed as child nodes of the container

node. You can navigate to other contained resources from the same container by using the Up

and Down buttons in the Data Source Explorer view (on page 2125). This limited number is set

in the field. The default value is 200 nodes.

Table Filters Preferences

The Table Filters preferences page allows you to choose the types of tables to be shown in the Data Source

Explorer view (on page 2125). To open this preferences page, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Data Sources > Table Filters.

You can choose to display the following types of tables:

• Alias

• Global Temporary

• Local Temporary

• Synonym

• System Table

• Table

• View

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 291

Download Links for Database Drivers

For a list of major relational databases and the drivers that are available for them, see https://

www.oxygenxml.com/database_drivers.html.

In addition, the following is a list of other popular databases along with instructions for getting the drivers that

are necessary to access the databases in Oxygen XML Editor:

• IBM DB2 Pure XML database (Deprecated) - Go to the IBM website and in the DB2 Clients and

Development Tools category select the DB2 Driver for JDBC and SQLJ download link. Fill out

the download form and download the zip file. Unzip the zip file and use the db2jcc.jar and

db2jcc_license_cu.jar files in Oxygen XML Editor for configuring a DB2 data source (on page

2168).

• eXist database - Copy the jar files from the eXist database install directory to the Oxygen XML Editor

install directory as described in the procedure for configuring an eXist data source (on page 2145).

• MarkLogic database (Deprecated) - Download the MarkLogic driver from MarkLogic Community site.

• Oracle 11g database (Deprecated) - Go to http://www.oracle.com/technetwork/database/enterprise-

edition/jdbc-112010-090769.html and download the Oracle 11g JDBC driver called ojdbc6.jar.

• PostgreSQL database (Deprecated) - Go to https://jdbc.postgresql.org/download/ and download the

PostgreSQL JDBC driver specific for your server version.

• Microsoft SQL Server 2019 database (Deprecated) - Download the appropriate MS SQL JDBC driver

from the Microsoft website.

SVN Preferences

To configure the options for the SVN client tool, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to SVN. Some other preferences for the embedded SVN client tool can be set in the global

files called config and servers. These files contain parameters that act as defaults applied to all the SVN

client tools that are used by the same user on their computer login account. To open these files for editing,

launch the embedded SVN client tool (Tools > SVN Client) and select Global Runtime Configuration > Edit

'config' file or Global Runtime Configuration > Edit 'servers' file from the SVN client Options menu.

https://www.oxygenxml.com/database_drivers.html
https://www.oxygenxml.com/database_drivers.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://community.marklogic.com/download
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
https://jdbc.postgresql.org/download/
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 292

Figure 38. SVN Preferences Panel

The following SVN options can be configured in this preferences page:

Enable symbolic link support (available only on macOS and Linux)

Apache Subversion™ can put a symbolic link under version control, via the usual SVN add

command. The Subversion repository has no internal concept of a symbolic link. It stores a

versioned symbolic link as an ordinary file with a svn:special property attached. On Unix/Linux,

the SVN client sees the property and translates the file into a symbolic link in the working copy. If

the symbolic link support is disabled, the versioned symbolic links appear as a text file instead of

symbolic link.

Note:

Windows file systems have no symbolic links, so a Windows client will not do any such

translation and the object appears as a normal file.

Important:

It is recommended to disable symbolic links support if you do not have versioned

symbolic links in your repository, since the SVN operations will work faster. However, you

should not disable this option when you do have versioned symbolic links in repository.

In that case a workaround would be to reference the working copy by its real path,

instead of a path that includes a symbolic link.

Allow unversioned obstructions

Controls how to handle a situation where working copy resources are ignored / unversioned

when performing an update operation and incoming files (from the repository) with the same

name and location intersect with those being ignored / unversioned. If the option is selected, the

incoming items will become BASE revisions of the ones already present in the working copy, and

those present will be made versioned resources and will be marked as modified (exactly as if the

user first made the update operation and then modified the files). If the option is not selected,

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 293

the update operation will fail when encountering files in this situation, possibly leaving other files

not updated. By default, this option is selected.

Use unsafe copy operations

Sometimes when the working copy is accessed through Samba and the SVN client cannot make

a safe copy of the committed file due to a delay in getting a write permission, the result is that

the committed file will be saved with zero length (the content is removed) and an error will be

reported. In this case, this option should be selected so that the SVN client does not try to make

the safe copy.

Results Console

Specifies the maximum number of lines displayed in the Console view. The default value is 1000.

Annotations View

Sets the color used in the editor panel for highlighting all the changes contributed to a resource

by the revision selected in the Annotations view.

Revision Graph

Enables caching for the action of computing a revision graph. When a new revision graph is

requested, one of the caches from the previous actions may be used that will avoid running the

whole query again on the SVN server. If a cache is used, it will finish the action much faster.

Working Copy Preferences

To configure the Working Copy preferences, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to SVN > Working Copy. The options in this preferences page are specific to SVN working

copies and they include the following:

Working copies location

Allows you to define a location where you keep your working copies. This location is

automatically suggested when you checkout a new working copy.

Working copy administrative directory

Allows you to customize the directory name where the SVN entries are kept for each directory in

the working copy.

When loading an old format working copy

You can instruct the SVN client to do one of the following:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 294

• Always ask - You are notified when such a working copy is used and you are allowed

to choose what action to be taken (whether or not to upgrade the format of the current

working copy).

• Never upgrade - Older format working copies are left untouched. No attempt to upgrade

the format is made.

Note:

SVN 1.6 and older working copies still need to be upgraded before loading them.

Enable working copy caching

If selected, the content of the working copies is cached for refresh operations.

Automatically refresh the working copy

If selected, the working copy is refreshed from cache. Only the new changes (modifications with

a date/time that follows the last refresh operation) are refreshed from disk. This option is not

selected by default.

Allow moving/renaming mixed revision directories

If selected, Oxygen XML Editor will allow you to move or rename a directory even if its child

items have a different revision. Otherwise, an error message is displayed when there are multiple

revisions to avoid unnecessary conflicts. It is recommended to leave this option deselected and

to Update the subtree to a single revision before moving or renaming it.

When synchronizing with repository

The action that will be executed automatically after the Synchronize action. The possible actions

are:

• Always switch to 'Modified' mode - The Synchronize action is followed automatically by a

switch to Modified mode of Working Copy view, if All Files mode is currently selected.

• Never switch to 'Modified' mode - Keeps the currently selected view mode unchanged.

• Always ask - The user is always asked if they want to switch to Modified mode.

Application global ignores

Allows you to set file patterns that may include the * and ? wildcards for unversioned files and

folders that must be ignored when displaying the working copy resources in the Working Copy

view. These patterns are case-sensitive. For example,*.txt matches file.txt, but does not

match file.TXT.

Diff Preferences

To configure the SVN Diff options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Diff.

The following option is available:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 295

Compare With External Application

Specifies an external application to be launched for compare operations in the following cases:

• When two history revisions are compared.

• When the working copy file is compared with a history revision.

• When a conflict is edited.

The parameters ${firstFile} and ${secondFile} specify the positions of the two compared files in

the command line for the external diff application. The parameter ${ancestorFile} specifies the

common ancestor (that is, the BASE revision of a file) in a three-way comparison. The working

copy version of a file is compared with the repository version, with the BASE revision (the latest

revision read from the repository by an Update or Synchronize operation) being the common

ancestor of these two compared versions.

Important:

If the path to the external compare application includes spaces (or any of the

subsequent options or arguments), then each of these paths or tokens must be double-

quoted for the Oxygen XML Editor to correctly parse and identify them. For example,

C:\Program Files\compareDir\app name.exe must be written as "C:\Program Files

\compareDir\app name.exe".

Messages Preferences

The Messages preferences page allows you to disable certain warning messages that may appear in the

application. To configure these options, open the Preferences dialog box (Options > Preferences) (on page

132) and go to SVN > Messages.

This preferences page allows you to disable the following warning messages:

Show confirmation dialog when using the "Update All" action

Allows you to avoid performing accidental update operations by requesting you to confirm them

before execution.

Show confirmation dialog for drag and drop actions in Working Copy

This option avoids doing a drag and drop when you just want to select multiple files in the

Working Copy view.

Show warning dialog when editing conflicts

When the Edit Conflicts action is executed, a warning dialog box notifies you that the action

overwrites the conflicted version of the file created by an update operation. The conflicted file is

overwritten with the version of the same file that existed in the working copy before the update

operation and then proceeds with the visual editing of the conflicting file.

Show warning dialog when "svn:externals" definitions are ignored

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 296

A warning dialog box is displayed when "svn:externals" definitions are ignored before performing

any operation that updates resources of the working copy (such as Update and Override and

Update).

Diff Preferences

The Diff Preferences Page has sub-pages for configuring File Comparisons and Directory Comparisons.

Files Comparison Preferences

To configure the Files Comparison options, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Diff > Files Comparison.

This preferences page allows you to configure the following options:

Enable file comparison in Author mode

If selected, a visual Author mode is available in the file comparison tool. It displays the files

in a visual mode similar to the Author editing mode in Oxygen XML Editor/Author. This visual

mode is available when both compared files are detected as being XML and from a recognized

document type.

Ignore Whitespaces (Not applicable for the visual Author comparison mode)

If selected, before performing the comparison, the application normalizes the content (collapses

any sequence of whitespace characters into a single space) and trims its leading and trailing

whitespaces.

Note:

If the Ignore Whitespaces checkbox is selected, comparing the a b sequence with a b,

Oxygen XML Editor finds no differences, because after normalization, all whitespaces

from the first sequence are collapsed into a single space character. However, when

comparing a b with ab (no whitespace between a and b), Oxygen XML Editor signals a

difference.

Two-Way Diff section

Default algorithm

The default algorithm used for comparing two files. The following options are

available:

• Auto - Selects the most appropriate algorithm, based on the compared

content and its size (selected by default).

• Characters - Computes the differences at character level, meaning that

it compares two files or fragments looking for identical characters. This

algorithm is not available when the file comparison is in Author comparison

mode.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 297

• Words - Computes the differences at word level, meaning that it compares

two files or fragments looking for identical words. This algorithm is not

available when the file comparison is in Author comparison mode.

• Lines - Computes the differences at line level, meaning that it compares two

files or fragments looking for identical lines of text. This algorithm is not

available when the file comparison is in Author comparison mode.

• Syntax Aware - Computes differences for the file types or fragments known

by Oxygen XML Editor, taking the syntax (the specific types of tokens) into

consideration. This algorithm is not available when the file comparison is in

Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is

less precise than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the

expense of speed. It compares two XML files or fragments looking for

identical XML nodes.

Algorithm strength

Controls the amount of resources allocated to the application to perform the

comparison. The algorithm stops searching more differences when reaches

the maximum allowed resources. A dialog box is displayed when this limit is

reached and partial results are displayed. Four settings are available: Low, Medium

(default), High and Very High.

Three-Way Diff section

Default algorithm

The default algorithm used for performing a three-way comparison. The following

options are available:

• Auto - Selects the most appropriate algorithm, based on the compared

content and its size (selected by default).

• Lines - Computes the differences at line level, meaning that it compares two

files or fragments looking for identical lines of text. This algorithm is not

available when the file comparison is in Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is

less precise than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the

expense of speed. It compares two XML files or fragments looking for

identical XML nodes.

Algorithm strength

Controls the amount of resources allocated to the application to perform the

comparison. The algorithm stops searching more differences when reaches

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 298

the maximum allowed resources. A dialog box is displayed when this limit is

reached and partial results are displayed. Four settings are available: Low, Medium

(default), High and Very High.

Show pseudo conflicts

Specifies whether or not the file comparison displays pseudo-conflicts. A pseudo-

conflict occurs when two users make the same change (for example, when they

both add or remove the same line of code).

XML Diff section

Ignore (Not applicable for the visual Author comparison mode)

Allows you to specify the types of XML nodes that will be ignored in the file

comparison for the XML Fast and XML Accurate algorithms. You can choose to

ignore Processing Instructions, Comments, CDATA, DOCTYPE, Text, Namespaces,

Prefixes, Namespace declarations, and Attribute order.

Ignore nodes by XPath (Not applicable for the visual Author comparison mode)

If selected, you can enter an XPath expression (on page 2109) to ignore certain

nodes from the comparison. It will be processed as XPath version 2.0. The XPath

expression specified in this option is used as the default ignore instructions only

when the application is started. If you enter an XPath expression in the similar

option on the Diff Files toolbar, that expression will be used instead.

Merge adjacent differences (Not applicable for the visual Author comparison mode)

If selected, the application considers two adjacent differences as one when the

differences are painted in the side-by-side editors. If not selected, every difference

is represented separately.

Mark end tags as different for modified elements (Not applicable for the visual Author

comparison mode)

If selected, end tags of modified elements are also presented as differences.

Otherwise, only the start tags are presented as differences.

Ignore expansion state for empty elements (Not applicable for the visual Author

comparison mode)

If selected, empty elements in both expansion states are considered matched (that

is <element/> and <element></element> are considered equal).

Note:

The File Comparison preferences are also accessible through the Directory Compare Tool (on page

506) and are taken into account when directory comparisons are invoked.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 299

Appearance Preferences

To configure the appearance options for the Files Comparison tool, open the Preferences dialog box (Options

> Preferences) (on page 132) and go to Diff > Files Comparison > Appearance. This preferences page offers

the following options:

Line wrap

Wraps the lines presented in the two diff panels at the right margin of each panel, so no

horizontal scrollbar is necessary.

Incoming color

Specifies the color used on the vertical bar for incoming changes.

Outgoing color

Specifies the color used on the vertical bar for outgoing changes.

Conflict color

Specifies the color used on the vertical bar for conflicts between the compared files.

Directories Comparison Preferences

To configure the Directories Comparison preferences, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Diff > Directories Comparison.

Figure 39. Diff Preferences Page

You can specify the following options for the directories comparison tool:

Compare files by

Controls the method used for comparing two files:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 300

• Content - The file content is compared using the current diff algorithm (on page 296).

This option is applied for a pair of files only if that file type is associated with a built-in

editor type (either associated by default or associated by the user when prompted to do

so on opening a file of that type for the first time).

You can use the Configure content comparison link to open the Files Comparison

preferences page (on page 296) where you can configure options for comparing

files. However, the Ignore nodes by XPath option is ignored when using the Compare

Directories tool.

• Binary Compare - The files are compared at byte level.

• Timestamp (last modified date / time) - The files are compared only by their last modified

timestamp.

Look in archives

If selected, known archive types (on page 301) are considered directories and their content is

compared just like regular files.

Navigation

This options control the behavior of the differences traversal actions (Go to previous

modification, Go to next modification) when the first or last difference in a file is reached:

• Ask what to do next - A dialog box is displayed asking you to confirm that you want the

application to display modifications from the previous or next file.

• Go to the next/previous file - The application opens the next or previous file without

waiting for your confirmation.

• Do nothing - No further action is taken.

Appearance Preferences

To configure the appearance options for the Directories Comparison tool, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Diff > Directories Comparison > Appearance.

Figure 40. Diff Appearance Preferences Panel

• Added/Deleted - Color used for marking added or deleted files and folders.

• Modified - Color used for marking modified files.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 301

Archive Preferences

To configure Archive options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to Archive.

The following options are available in the Archive preferences page:

Archive backup options

Controls if the application makes backup copies of the modified archives. The following options

are available:

• Always create backup copies of modified archives - When you modify an archive, its

content is backed up.

• Never create backup copies of modified archives - No backup copy is created.

• Ask for each archive once per session - Once per application session for each modified

archive, user confirmation is required to create the backup. This is the default setting.

Note:

Backup files have the name originalArchiveFileName.bak and are located

in the same folder as the original archive.

Archive types

This table contains all known archive extensions mapped to known archive formats. Each row

maps a list of extensions to an archive type supported in Oxygen XML Editor. You can use the

Edit button at the bottom of the table to edit an existing mapping or the New button to create a

new one and associate your own list of extensions to an archive format.

Figure 41. Edit Archive Extension Mappings

Important:

You have to restart Oxygen XML Editor after removing an extension from the table for

that extension to not be recognized as an archive extension.

Store Unicode file names in Zip archives

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 302

Use this option when you archive files that contain international (non-English) characters in file

names or file comments. If this option is selected and an archive is modified in any way, UTF-8

characters are used in the names of all files in the archive.

Plugins Preferences

You can add plugins (on page 3299) that extend the functionality of Oxygen XML Editor. The plugins are

shipped as separate packages. To check for new plugins, go to http://www.oxygenxml.com/oxygen_sdk.html.

A plugin consists of a separate sub-folder in the Plugins folder of the Oxygen XML Editor installation

folder (for example, [OXYGEN_INSTALL_DIR]/plugins/myPlugin). This sub-folder must contain a valid

plugin.xml file in accordance with the plugin.dtd file located in the Plugins folder.

Oxygen XML Editor automatically detects and loads plugins installed correctly in the Plugins folder and

displays them in the Plugins preferences page. To configure plugins, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Plugins.

You can use the checkboxes in front of each plugin to enable or disable them. To display the properties of a

plugin in the second section of the Plugins preferences page, click the name of the plugin.

Also, you can install a plugin as an add-on. For further details about this, go to Deploying Add-ons (on page

2557)

External Tools Preferences

A command-line tool can be started in the Oxygen XML Editor user interface as if from the command line

of the operating system shell. The External Tools preferences page allows you to add and configure these

external tools that could be used while working with Oxygen XML Editor. To access this preferences page,

open the Preferences dialog box (Options > Preferences) (on page 132) and go to External Tools (or select

Configure from the Tools > External Tools menu).

This preferences page presents a list of the external tools that have been configured. You can use the buttons

at the bottom of the page to configure the items in the list. Once a tool has been configured, you can open it

by selecting it from the Tools > External Tools menu or from the External Tools drop-down menu on the

toolbar (the Tools toolbar needs to be selected in the Configure Toolbars dialog box (on page 375)).

How to Configure an External Tool

To configure an external tool in the External Tools preferences page, use any of the following buttons at the

bottom of the page:

• New - Adds a new external tool to the list.

• Edit - Allows you to configure an existing external tool, selected from the list.

• Duplicate - Duplicates an existing external tool, selected from the list, to use as a template for

configuring a similar tool.

https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 303

Any of those three buttons opens the External Tools configuration dialog box.

Figure 42. External Tools Configuration Dialog Box

This configuration dialog box includes the following options:

Name

The name of tool that will be displayed in the Tools > External Tools menu and in the

External Tools drop-down menu on toolbar.

Description

A description of the tool displayed as a tooltip where the tool name is used.

Working directory

The directory that the external tool will use to store intermediate and final results. You

can specify the path by using the text field, the Insert Editor Variables (on page 333)

button, or the Browse button. You can use one of the following editor variables: ${cfd}

(on page 339), ${pd} (on page 341), ${oxygenInstallDir} (on page 341), ${homeDir}

(on page 341), ${system(var.name)} (on page 342), ${date(pattern)} (on page 340),

${xpath_eval(expression)} (on page 342).

Command line

The command line that will start the external tool. You can specify the path by using the text

field, the Insert Editor Variables (on page 333) button, or the Browse button. You can

use one of the following editor variables: ${homeDir} (on page 341), ${home} (on page 341),

${cfn} (on page 339), ${cfne} (on page 339), ${cf} (on page 339), ${currentFileURL} (on

page 340), ${cfd} (on page 339), ${cfdu} (on page 339), ${tsf} (on page 342), ${pd} (on

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 304

page 341), ${pdu} (on page 341), ${oxygenInstallDir} (on page 341), ${oxygenHome}

(on page 341), ${frameworksDir} (on page 341), ${frameworks} (on page 341), ${ps} (on

page 342), ${timeStamp} (on page 342), ${uuid} (on page 342), ${id} (on page 341),

${afn} (on page 334), ${afne} (on page 334), ${af} (on page 334), ${afu} (on page 334),

${afd} (on page 334), ${afdu} (on page 334), ${ask('message', type, 'default_value')} (on

page 335), ${dbgXML} (on page 340), ${dbgXSL} (on page 340), ${env(VAR_NAME)}

(on page 340), ${system(var.name)} (on page 342), ${date(pattern)} (on page 340), and

${xpath_eval(expression)} (on page 342).

Show output messages

When this option is selected, all the messages emitted by the external tool are displayed in the

Results view (on page 560) view. When this option is not selected, only the error messages are

displayed. You can also choose the output encoding and content type:

• Output encoding - The encoding of the output stream of the external tool that will be used

byOxygen XML Editor to read the output of the tool.

• Output content type - A list of predefined content type formats that instructOxygen XML

Editor how to display the generated output. For example, setting the Output content type

to text/xml enables the syntax coloring of XML output.

Error Encoding

The encoding of the error stream of the external tool that will be used by Oxygen XML Editor to

read the error stream.

Shortcut key

You can choose a keyboard shortcut that can be used to launch the external tool.

Menu Shortcut Keys Preferences

You can use the Menu Shortcut Keys preferences page to configure shortcut keys for the actions available

in Oxygen XML Editor. The shortcuts assigned to actions are displayed in a table in this preference page. To

access the full list of shortcut keys, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Menu Shortcut Keys (or simply go to Options > Menu Shortcut Keys).

For a list of the most commonly used shortcuts, see Frequently Used Shortcut Keys (on page 54).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 305

Figure 43. Menu Shortcut Keys Preferences Page

The Menu Shortcut Keys preferences page also contains the shortcuts that you define at document type level

(on page 158).

Note:

A shortcut defined at document type level overwrites a default shortcut.

Furthermore, the shortcuts table also contains entries for actions that show side-views contributed by plug-

ins.

To find a specific action, you can use the filter text field to search through any of the columns in the table. You

can also press shortcut key combinations on your keyboard to filter the list and click on a column header to

sort that column.

The table includes the following columns or options:

• Description - A short description of the action.

• Category - A classification of the actions in categories for easier management and more flexibility in

assigning multiple keys for the same action.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 306

• Shortcut key - The combination of keyboard keys that can be used to launch the action. To add or

change a shortcut key, you can either double-click a row or select the row and click the Edit button.

• 'Home' and 'End' keys are applied at line level (available on macOS only) - Controls the way the HOME

and END keys are interpreted. If selected, the default behavior of these keys is overridden and the

cursor only moves on the current line.

How to Assign a Shortcut Key or Edit an Existing Shortcut

To assign a shortcut key to an action or edit an existing shortcut configuration, follow these steps:

1. Select the action in the table.

2. Click the Edit button.

Step Result: The Shortcut key configuration dialog box is displayed.

Figure 44. Shortcut Key Configuration Dialog Box

3. Press the desired shortcut keys on your keyboard.

4. If you need the shortcut to work on multiple platforms, select the Enable platform-independent

shortcut keys option. In this case, the following modifiers are used:

◦ M1 represents the Command key on macOS, and the Ctrl key on other platforms.

◦ M2 represents the Shift key.

◦ M3 represents the Option key on macOS, and the Alt key on other platforms.

◦ M4 represents the Ctrl key on macOS, and is undefined on other platforms.

5. Click OK to save your configuration.

Troubleshooting:

If you encounter problems with keyboard shortcuts not working as expected, see Keyboard Shortcuts

Result in Unexpected Behavior (on page 2930) or Keyboard Shortcuts Do Not Work At All (on page

2930).

Related information

Frequently Used Shortcut Keys (on page 54)

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 307

File Types Preferences

Oxygen XML Editor offers built-in editing support for a wide variety of file types, but you can also add new file

extensions and associate them with whatever editor type fits your needs. The associations set here between a

file extension and the type of editor will determine which editor will be opened for editing purposes when that

type of file is created or opened.

To configure the File Types options, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to File Types.

Figure 45. File Types Preferences Page

The table contains the following columns:

• Extension - The extensions of the files that will be associated with an editor type.

• Editor - The type of editor which the extensions will be associated with. Some editors provide easy

access to frequent operations via toolbars (XML editor, XSL editor, DTD editor) while others provide just

a syntax highlight scheme (Java editor, SQL editor, Shell editor).

If the editor set here is not one of the XML editors (XML editor, XSL editor, XSD editor, RNG editor, WSDL

editor) then the encoding set in the Encoding for non-XML files option (on page 176) is used for

opening and saving a file of this type.

The files that match the Ant build patterns will be associated with the Ant editor.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 308

The files that match the Binary file patterns patterns are handled as binary and opened in the associated

system application. Also, they are excluded from the following actions available in the Project view (on page

414): File/Replace in Files, Check Spelling in Files, Validate.

Note:

If you associate an empty extension to a content type, all files without extensions will be opened with

that specific content type.

Open/Find Resource Preferences Page

You can configure various options that pertain to the Open/Find Resource dialog box (on page 437) and

Open/Find Resource view (on page 434). To access these options, open the Preferences dialog box

(Options > Preferences) (on page 132) and go to Open/Find Resource.

The following options are available in this Open/Find Resource preferences page:

Refresh index when opening a map in DITA Maps Manager

If selected, DITA maps that are opened in the DITA Maps Manager will automatically be re-

indexed.

Only index files referenced in the context DITA map as "resource-only"

If selected, only files referenced as "resource-only" in the context DITA map or in its referenced

sub maps are indexed. By default, the setting is not selected.

Tip:

It makes sense to enable this setting if the current opened project contains lots of

resources to speed up computation of the reusable components displayed in the DITA

Reusable Components view's Components tab.

Limit search results to

Specifies the maximum number of results that are displayed in the Open/Find Resource dialog

box/view (on page 437).

Enable searching in content

This option is selected by default and it allows you to use the Open/Find Resource dialog box/

view (on page 437) to search in content or reviews, as well as in file paths. If this option is not

selected, you can only use the Open/Find Resource feature to search in file paths.

Content search scope section

Ignore content of these files

Allows you to select specific directories, files, or file types that are ignored when

you perform a search. For example, *.txt ignores all the .txt files, */topics/

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 309

* ignores all the files from the topics directory, regardless of their depth, and

file:/C:/tmp/* ignores everything from the tmp directory.

Include the contents of these binary files

Results from a search in the Open/Find Resource dialog box/view (on page 437)

will be returned as a PDF if the PDF contains the searched text. If you want to

disable this feature, delete the contents of the text field.

Index the content of remote resources

Controls the indexing of resources that are not local. For example, the resources

referenced in a DITA map (on page 3296) opened from a remote server (from a

CMS or from a WebDAV location) are not indexed by default. To index the content

of these resources, select this option.

Note:

Selecting this option may lead to delays when the indexing is computed.

Content search options section

Content language

Use this option to specify a language for the search engine to use for the current

document. This is helpful if you have multiple languages within the content of a

document. The search engine will use a set of stop words and analyzers tuned

specifically for that specific language. By default, it is mapped to the UI language

specified in the Global preferences page (on page 134). Therefore, you need to

change this option only if the language of the text you want to perform the search

in differs from the UI language.

Tip:

If you select <Generic language (no stemming)> from the drop-down list,

no word stemming is performed when creating the index. This might be

useful if your content has many technical terms that should be indexed as

they are.

Stop words

A list of stop words that will be filtered out of the search processing. The list is

automatically populated based upon the specified Content language, but you can

add or remove words from the list.

When searching in content, return

This option specifies how matches are returned when doing searches in content.

You can choose between two options:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 310

• Exact matches - The search results match the exact whole words that you

enter in the search field of the Open/Find Resource dialog box/view.

• Prefix matches (default) - The search results match documents that contain

words starting with the search terms. For instance, searching for "pref page"

will also find documents containing "preference page".

Automatically join search terms using:

Allows you to select the default boolean operator that Oxygen XML Editor applies

when you perform a search. For example, if the AND operator is selected and

you search for "car assembly", the matches must contain both of the words. If

you choose OR, the matches must contain one of the selected search terms and

results that contain both words are promoted to the top of the list.

Enable XML-aware searching

When selected, you can perform XML-specific searches (on page 440) for XML

elements and attributes.

Note:

Selecting this option may slow down the indexing of your documents and

increase the index size on the disk.

Index files with size less than (KB)

Since indexing can be slowed down when the Enable XML-aware

searching option (on page 310) is active, you can use this option to

set a maximum file size to be indexed.

Stop Words

A list of comma-separated stop words, meaning that the words added in this list

are filtered out prior to processing a search query.

Related information

Open/Find Resource View (on page 434)

Open/Find Resource Dialog Box (on page 437)

Custom Editor Variables Preferences

An editor variable (on page 333) is useful for making a transformation scenario, validation scenario, or

other tool independent of its file path. An editor variable is specified as a parameter in a transformation

scenario, validation scenario, or command line of an external tool. Such a variable is defined by a name, a

string value, and a text description. A custom editor variable is defined by the user and can be used in the

same expressions as the built-in editor variables (on page 333).

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 311

Custom editor variables are created and configured in the Custom Editor Variables preferences page. To

access this page, open the Preferences dialog box (Options > Preferences) (on page 132) and go to Custom

Editor Variables.

This preferences page displays a table of all the custom editor variables that have been defined. The table

includes three columns for the editor variable Name, its Value, and its Description. The create a new variable,

click the New button at the bottom of the table and define your custom editor variable in the subsequent

dialog box. To edit an existing custom editor variable, click the Edit button and configure the variable in the

subsequent dialog box. You can also use the Delete button to remove custom editor variables that are no

longer needed.

Figure 46. Custom Editor Variables Table

Network Connection Settings Preferences

This section presents the options available in the Network Connection Settings preferences pages.

Proxy Preferences

Some networks use proxy servers to provide internet services to LAN clients. Therefore, clients behind the

proxy may only connect to the Internet via the proxy service. If you are not sure if your computer is required to

use a proxy server to connect to the Internet or you do not know the proxy parameters, consult your network

administrator.

To configure the Proxy options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to Network Connection Settings > Proxy. The following options are available:

Proxy section

Specifies how HTTP(S) connections go through the proxy server. You can choose between the

following three options:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 312

• Direct connection - HTTP(S) connections will go directly to the target host without going

through a proxy server.

• Use system settings (default setting) - HTTP(S) connections will go through the proxy

server set in the operating system.

Attention:

The system settings for the proxy cannot be read correctly from the operating

system on some Linux systems. The system settings option should work properly

on Gnome-based Linux systems, but it does not work on KDE-based ones as the

Java virtual machine does not offer the necessary support yet.

• Manual proxy configuration - HTTP(S) connections will go through the proxy server

specified in the Web Proxy (HTTP/HTTPS) section.

Web Proxy (HTTP/HTTPS) section

Address

The address of the proxy server used for manual configurations.

Port

The port of the proxy server used for manual configurations.

No proxy for

Specifies the hosts that the connections must not go through a proxy server.

A host needs to be written as a fully qualified domain name (for example,

myhost.example.com) or as a domain name (for example, example.com). Use a

comma to separate multiple hosts.

User

The user name for authentication with the proxy server.

Password

The password for authentication with the proxy server.

SOCKS Proxy section

Address

The address of a SOCKS proxy that all connections will pass through. If this field is

empty, the connections do not use a SOCKS proxy.

Port

The port of a SOCKS proxy that all connections will pass through.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 313

HTTP(S)/WebDAV Preferences

To set the HTTP(S)/WebDAV preferences, open the Preferences dialog box (Options > Preferences) (on page

132) and go to Network Connection Settings > HTTP(S)/WebDAV. The following options are available:

Maximum number of simultaneous connections per host

Defines the maximum number of simultaneous connections established by the application with

a distinct host. Servers might consider multiple connections opened from the same source to be

a Denial of Service attack. You can avoid that by lowering the value of this option.

Note:

The minimum value that can be set in this option is 5.

Read Timeout (seconds)

The period (in seconds) after which the application considers that an HTTP server is

unreachable if it does not receive any response from that server.

Enable HTTP 'Expect: 100-continue ' handshake (for HTTP/1.1 protocol)

Activates Expect: 100-Continue handshake. The purpose of the Expect: 100-Continue

handshake is to allow a client that is sending a request message with a request body to

determine if the origin server is willing to accept the request (based on the request headers)

before the client sends the request body. The use of the Expect: 100-continue handshake can

result in noticeable performance improvement when working with databases. The Expect: 100-

continue handshake should be used with caution, as it may cause problems with HTTP servers

and proxies that do not support the HTTP/1.1 protocol.

Use the 'Content-Type' header field to determine the content type

When selected, Oxygen XML Editor tries to determine a resource type using the Content-Type

header field. This header indicates the Internet media type of the message content, consisting of

a type and subtype. For example:

Content-Type: text/xml

When unchecked, the resource type is determined by analyzing its extension. For example, a file

ending in .xml is considered to be an XML file.

Automatic retry on recoverable error

When selected, if an HTTP error occurs when Oxygen XML Editor communicates with a server

via HTTP (for example, sending or receiving a SOAP request to or from a Web services server)

and the error is recoverable, Oxygen XML Editor tries to re-send the request to the server.

Cache content for similar HTTP requests when opening and validating documents

When opening XML documents that contain lots of xi:include elements over HTTP (for

example), depending on how content is reused, there may be lots of HTTP requests to the same

target files during the validation or opening of the XML document. When this setting is selected,

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 314

HTTP calls to the same target file are cached and the opening and validation of such XML

documents may take less time.

Automatically accept a security certificate, even if invalid

When selected, the HTTPS connections that Oxygen XML Editor attempts to establish with will

accept all security certificates, even if they are invalid.

Important:

By accepting an invalid certificate, you accept (at your own risk) a potential security

threat, since you cannot verify the integrity of the certificate's issuer.

Lock WebDAV files on open

If selected, the files opened through WebDAV are locked on the server so that they cannot be

edited by other users while the lock placed by the current user still exists on the server.

SFTP Preferences

To configure the SFTP options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to Network Connection Settings > SFTP. You can customize the following options:

Encoding for FTP control connection

The encoding used to communicate with SFTP servers: either ISO-8859-1 or UTF-8. If the server

supports the UTF-8 encoding, Oxygen XML Editor will use it for communication. Otherwise, it will

use ISO-8859-1. This section also includes a Show hidden files toggle option.

Public known hosts file

Specifies the file that contains the list of all SSH server host keys that you have determined are

accurate. The default value is ${homeDir}/.ssh/known_hosts.

Private key file

The path to the file that contains the private key used for the private key method of

authentication of the SFTP protocol. Only RSA private keys in PEM (Base64) and PPK (PuTTY)

formats are supported. Other keys (such as OpenSSH) are not supported. The user / password

method of authentication has precedence if it is used in the Open URL dialog box (on page

397).

Passphrase

The passphrase used for the private key method of authentication of the SFTP protocol. The

user / password method of authentication has precedence if it is used in the Open URL dialog

box (on page 397).

Trusted Hosts Preferences

Oxygen XML Editor comes with a built-in firewall that controls the access to external resources. Anytime the

application detects a request to connect to a remote resource, it checks to see if the URL belongs to a domain

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 315

that has been identified as trusted. If not, a confirmation dialog box will be displayed where you can choose

whether to allow or reject access to the remote connection.

Figure 47. Trusted Hosts Confirmation Dialog Box

You can configure the list of trusted hosts using the Trusted Hosts preferences page. It contains a list of

domains that have been identified as trusted. You can add or remove domains from the list and Oxygen XML

Editor will allow connections to the listed hosts without requesting user confirmation.

Note:

Connections defined in the Data Sources preferences page (on page 286) or accepted by add-ons

are also considered trusted.

To add or remove domains, open the Preferences dialog box (Options > Preferences) (on page 132) and go

to Network Connection Settings > Trusted Hosts. The following options are available:

• New - Allows you to manually add a new entry to the list of trusted hosts.

Tip:

You can specify a specific port at the end of the URL (for instance, www.example.com:8080).

Otherwise, if no port is specified, connections will be allowed on all ports for the particular

host.

• Delete - Allows you to remove an entry from the list of trusted hosts.

SSH Preferences

To configure the SSH options, open the Preferences dialog box (Options > Preferences) (on page 132) and

go to Connection settings > SSH. The following options are available:

SSH

Specifies the command line for an external SSH client that will be used when connecting to a

SVN+SSH repository. Absolute paths are recommended for the SSH client executable and the

file paths given as arguments (if any). Depending on the SSH client used and your SSH server

configuration, you may need to specify the user name and/or private key/passphrase in the

command line. You can also choose whether to use the Default SVN user (the same user name

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 316

as the SSH client user) or Prompt for a SVN user for SVN repository operations whenever SVN

authentication is required. For example, on Windows the following command line uses the

plink.exe tool as the external SSH client for connecting to the SVN repository with SVN+SSH:

C:\plink-install-folder\plink.exe -l username -pw password -ssh -batch

host_name_or_IP_address_of_SVN_server

XML Structure Outline Preferences

To configure options regarding the Outline view (on page 551), open the Preferences dialog box (Options >

Preferences) (on page 132) and go to XML Structure Outline. It contains the following options:

Preferred attribute names for display

The preferred attribute names when displaying the attributes of an element in the Outline view. If

there is no preferred attribute name specified, the first attribute of an element is displayed.

Enable outline drag and drop

Drag and drop is disabled for the tree displayed in the Outline view only if there is a possibility to

accidentally change the structure of the document by such operations.

Views Preferences

The Views preferences page allows you to configure some options regarding certain views. To edit these

options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to Views.

The following options are available:

Project view section

Enable drag-and-drop in Project view

Enables drag and drop support in the Project view (on page 414). It should be

disabled only if there is a possibility of accidentally changing the structure of the

project by drag and drop actions.

Information view section

Maximum number of lines

Specifies the maximum number of lines that can be written in the Information view

(on page 524).

Elements view section

Show only allowed items

If selected, when editing in Author mode, only the elements that are allowed at the

current cursor position will be listed in the Elements view (on page 646). If not

selected, all elements allowed by the schema will be listed, even if they are already

used.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 317

Messages Preferences

The Messages preference page allows you to specify whether or not certain messages are displayed. To

configure these options, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

Messages.

The following warning messages can be enabled or disabled:

Show Java vendor warning at startup

If this option is selected, Oxygen XML Editor displays a warning on startup if a non-

recommended version of the Java virtual machine is being used.

Show confirmation dialog when moving resources

Specifies whether or not to display a confirmation dialog box when you move a resource in the

Project view (on page 414), Data Source Explorer view (on page 2125), and Archive Browser

(on page 2118). In the confirmation dialog box, there is an option to choose to not show this

dialog box in the future. To reset that behavior, simply select Restore Defaults at the bottom of

this preferences page.

Show warning when adding resources already included in the project

Specifies whether or not to display a dialog box that warns you if you try to add files that already

exist in your project.

Show warning for document size limit for bidirectional text, Asian languages, and other special

characters

Specifies whether or not to display a warning message when an open file that contains

bidirectional characters is too large and bidirectional support is disabled.

Show warning message when changing the text orientation in the editor

Specifies whether or not to display a warning message when you change the text orientation in

the editor.

Show warning when editing long expressions in the XPath toolbar

Specifies whether or not to display an information dialog box that allows you to specify if

you want to use the XPath/XQuery Builder (on page 2112) view when editing long XPath

expressions.

Show MathML editor recommendation

Specifies whether or not to display an information dialog box that recommends using the

MathFlow Editor (on page 765) to edit MathML equations.

Show SFTP certificate warning dialog

Specifies whether or not to display a warning dialog box each time the authenticity of the SFTP

server host cannot be established.

Show Enterprise license related message when trying to connect to a Microsoft SharePoint server

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 318

Specifies whether or not to display an error message if you try to connect to a Microsoft

SharePoint server without having the proper license.

Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions

Specifies whether or not to display a dialog box that allows you to choose a specific encoding

whenever you use the Encode Selection or Decode Selection actions for Base64 (on page

582), Base32 (on page 583), or Hex conversions (on page 584). In the dialog box, there

is an option to choose to not show this dialog box in the future. To reset that behavior, simply

select Restore Defaults at the bottom of this preferences page.

Show the dialog box that suggests switching to the DITA perspective

Specifies whether or not to display a dialog box that asks you if you want to switch to the DITA

perspective when you open a DITA resource from the DITA Maps Manager (on page 2950).

Convert DB Structure to XML Schema

When tables from a database schema are selected in the Select database table section of the

Convert DB Structure to XML Schema dialog box (on page 1044) and another database schema

is expanded, a confirmation is needed since the previous selection will be discarded. This option

specifies whether or not you are always asked if you want the other database schema to always

be expanded without asking you, or it is never expanded.

Configuring Options
A set of options controls the behavior of Oxygen XML Editor, allowing you to configure most of the

features. To offer you the highest degree of flexibility in customizing the application to fit the needs of your

organization, Oxygen XML Editor includes several distinct layers of option values.

Figure 48. Option Lookup Priority

The option layers are as follows (sorted from high priority to low):

• Project Options (on page 322)

Allows project managers to establish a set of rules for a specific project. These rules standardize the

information exchanged by the team members (for example, if the project is stored in a repository, a

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 319

common set of formatting rules avoid conflicts that may appear when documents modified by various

team members are committed to the repository).

• Global Options (on page 322)

Allows individual users to personalize Oxygen XML Editor according to their specific needs.

• Customized Default Options (on page 319)

Designed to customize the initial option values for a group of users, this layer allows an administrator

to deploy the application preconfigured with a standardized set of option values.

Note:

Once this layer is set, it represents the initial state of Oxygen XML Editor when an end-user

selects the Restore defaults (on page 133) or Reset Global Options (on page 324) actions.

• Default Options

The predefined default values, tuned so that Oxygen XML Editor behaves optimally in most working

environments.

Important:

If you set a specific option in one of the layers, but it is not applied in the application, make sure that

one of the higher priority layers does not overwrite it.

Customizing Default Options

Oxygen XML Editor has an extensive set of options that you can configure. When Oxygen XML Editor in

installed, these options are set to default values. You can provide a different set of default values for an

installation using an XML options file.

Creating an XML Options File

To create an options file, follow these steps:

1. It is recommended that you use a fresh install for this procedure, to make sure that you do not copy

personal or local preferences.

2. Open Oxygen XML Editor and open the Preferences dialog box (Options > Preferences) (on page

132).

3. Go through the options and set them to the desired defaults. Make sure that Global Options (on page

3297) is selected in each page.

4. Click OK and close the Preferences dialog box.

5. Go to Options > Export Global Options to create an XML options file.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 320

Controlling Which Options are Stored in the Default Options File

If you want to control exactly which option pages will be stored in the default options file, you can choose to

attach them to a project file (.xpr file extension) by following this procedure:

1. You may want to use a fresh install for this procedure, to make sure that you do not copy personal or

local preferences.

2. In the Project view (on page 414), create a project or open an existing one.

3. Open the Preferences dialog box (Options > Preferences) (on page 132).

4. Configure the options in each preferences page that you want to be included in the project file and

switch the storage preference to Project Options (on page 3300) in each page.

Note:

Some pages do not have the Project Options button, since the options they host might contain

sensitive data (such as passwords, for example) that is unsuitable for sharing with other users.

5. Click OK and close the Preferences dialog box.

All explicitly set values are now saved in the project file. You can then share the project file so that your

team will have the same option configuration that you stored in the project file.

Note:

The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice:

When a project is opened for the first time, a confirmation dialog box will be displayed that

asks you to confirm that the project came from a trusted source. This is meant to help prevent

potential security issues.

Configuring an Installation to Use Customized Default Options

There are several methods that you can use to configure an Oxygen XML Editor installation to use the

customized default options from the created XML options file.

Warning:

The disadvantage of customizing the default options is that if the end-user manually changes an

option, the default value will no longer be used. An alternative would be to use a plugin to impose a

set of options (on page 321).

The possible methods for using customized default options during an installation include:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 321

• Copy the XML Options File to the Installation Directory

In the [OXYGEN_INSTALL_DIR], create a folder called preferences and copy the created XML

options file into it (for example, [OXYGEN_INSTALL_DIR]/preferences/default.xml).

Note:

The XML file placed in the preferences folder can have any name as long as it has the

extension xml or xpr. If there are multiple such files in the preferences folder only the first one

found is used.

• Specify a Path to the XML Options File in a Startup Parameter

Set the path to the XML options file as the value of the com.oxygenxml.default.options system property

in the startup parameters (on page 349). The path can be specified with any of the following:

◦ A URL or file path relative to the application installation folder. For example:

-Dcom.oxygenxml.default.options=options/default.xml

◦ A system variable that specifies the file path. For example:

com.oxygenxml.default.options=${system(CONFIG)}/default.xml

◦ An environmental variable that specifies the file path. For example:

com.oxygenxml.default.options=${env(CONFIG)}/default.xml

Impose a Set of Options Using a Plugin

The Oxygen XML SDK includes a sample Java-based oxygen-sample-plugin-impose-options plugin that

shows how to impose a set of options for the end-users every time the API is called. It is possible to use this

plugin to impose options but still allow the end-user to change options by calling the API only once, the first

time the plugin starts along with Oxygen XML Editor.

A similar JavaScript-based sample impose-options plugin is also available here: https://github.com/

oxygenxml/wsaccess-javascript-sample-plugins. This plugin imports a fixed set of options (saved in XML

format) when Oxygen XML Editor starts.

Related information

Sharing Application Settings (on page 323)

Storing Global and Project Level Options

When you configure the Oxygen XML Editor options, you can store them globally or bind them to a specific

project by choosing the appropriate setting in the preferences pages. They can then be shared with others by

exporting the global options (on page 323) or by sharing the stored project-level files (on page 323). The

same is true with transformation and validation scenarios.

https://www.oxygenxml.com/oxygen_sdk.html
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 322

For each preferences page, you can choose between Global Options (on page 322) and Project Options (on

page 322) depending upon how you want to store the options in that particular preferences page.

Notice:

Some pages do not have the Project Options button, since the options they host might contain

sensitive data (passwords, for example), unsuitable for sharing with other users.

If changes have been made to the options in a preferences page and you switch between Project Options and

Global Options, a dialog box will be displayed that allows you to select one of the following:

• Overwrite - The existing options from the current preferences page will be overwritten.

• Preserve - The existing options from the current preferences page will be preserved.

Figure 49. Controlling the Storage Options for the Preferences

Global Options

By default, Global Options is selected in the preferences pages, meaning that the options are stored locally on

your computer and are not accessible to other users (unless you export them into an XML options file that can

then be shared (on page 323)).

Global options are stored locally in option files (for example, oxyOptionsSa19.1.xml for a standalone

distribution of Oxygen XML Editor version 19.1) located in the following directories:

• Windows (7, 8, 10) - [user_home_directory]\AppData\Roaming\com.oxygenxml

• macOS - [user_home_directory]/Library/Preferences/com.oxygenxml

• Linux/Unix - [user_home_directory]/.com.oxygenxml

Project Options

If you select Project Options, the preferences are stored in the project file (.xpr), which can easily be shared

with other users (on page 323).

Notice:

Some pages do not have the Project Options button, since the options they host might contain

sensitive data (passwords, for example), unsuitable for sharing with other users.

Related information

Sharing Application Settings (on page 323)

Customizing Default Options (on page 319)

Importing/Exporting/Resetting Global Options (on page 324)

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 323

Sharing Application Settings

There are a variety of ways that you can share the settings in Oxygen XML Editor with other members of your

team so that you all use a common set of options. This topic describes various possibilities.

Share Settings Through a Project File

Most of the preference pages in Oxygen XML Editor include a Project Options (on page 3300) button that

allows you to pass changes to the settings to the current project file that is opened in the Project view (on

page 414). That project file can then be shared with other users. For instance, if your project file is saved on

a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have access

to the same option configuration that you stored in the project file.

For more information about sharing projects, see Sharing a Project - Team Collaboration (on page 427).

Share Settings by Exporting/Importing Global Options

Oxygen XML Editor includes actions in the Options menu that allow you to export and import the global

settings (on page 3297). The Export Global Options action will save the global settings as an XML properties

file. You can then share those settings with others by using the Import Global Options action to import that

properties file on their computer.

For more information about global options, see Importing/Exporting/Resetting Global Options (on page

324).

Share Settings with a Custom Options File During Installation

When Oxygen XML Editor in installed, all the settings are set to default values. You can customize the set of

default values by creating an XML options file that you will use when installing Oxygen XML Editor on each

computer. You can then copy the XML options file to the installation directory or specify its path in a startup

parameter.

For more information about creating and referencing a custom options file, see Customizing Default Options

(on page 319).

Share Settings by Imposing Fixed Options with an API

The Maven-based Oxygen XML SDK includes a sample plugin called ImposeOptions that

imposes a fixed set of options when the application starts. This can be achieved by using the

PluginWorkspaceProvider.getPluginWorkspace().setGlobalObjectProperty(key, value) API method.

For more information about this API, see PluginWorkspaceProvider Class.

Related information

Sharing a Project - Team Collaboration (on page 427)

Sharing Transformation Scenarios (on page 1622)

Sharing Validation Scenarios (on page 823)

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspaceProvider.html#getPluginWorkspace--

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 324

Customizing Default Options (on page 319)

Importing/Exporting/Resetting Global Options (on page 324)

Sharing a Framework (on page 2399)

Importing/Exporting/Resetting Global Options

Actions for importing, exporting, and resetting global options are available in the Options menu. The export

operation allows you to save global preferences (on page 3297) as an XML properties file and the import

operation allows you to load the property file. You can use this file to reload saved options on your computer

or to share with others (on page 321).

The following actions are available in the Options menu:

Reset Global Options

Restores the preference to the factory defaults or to customized defaults (on page 319). This

action also resets the transformation and validation scenarios to the default scenarios and

clears recently used document templates.

Import Global Options

Allows you to import a set of Global Options from an exported XML properties file. You can

also select a project-level options file (on page 427) (.xpr) to import all the Global Options

that are set in that project file. After you select a file, the Import Global Options dialog box is

displayed, and it informs you that the operation will only override the options that are included

in the imported file. You can select the Reset all other options to their default values option to

reset all options to the default values before the file is imported.

Export Global Options

Allows you to export Global Options to an XML properties file. Some user-specific options that

are private are not included. For example, passwords and the name of the Review Author is not

included in the export operation.

Oxygen XML Editor automatically stores your global options in an XML properties file. Depending on the

platform you are using, this file is located in the following directories:

• [user-home-folder]\AppData\Roaming\com.oxygenxml for Windows

• [user-home-folder]/Library/Preferences/com.oxygenxml for macOS

• [user-home-folder]/.com.oxygenxml for Linux

The name of the options file of Oxygen XML Editor 27.1 is oxyOptionsSa27.1.xml.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 325

Configuring the Layout of the Views and Editors
All of the side-views available in Oxygen XML Editor are dockable (on page 3295) and there are various ways

to configure and arrange the layout of the views and editing panes. You can also configure the layout of the

toolbars (on page 375).

To open a view, select it from the Window > Show View menu. You can hide a view by closing it with the

button at the top-right corner of the view, or with the Window > Hide current view action.

Arranging the Layout

You can drag any view to any margin of another view or editor inside the Oxygen XML Editor window. Once

you create a layout that suits your needs, you can save it from Window > Export Layout. Oxygen XML Editor

creates a layout file containing the preferences of the saved layout. To load a layout, go to Window > Load

Layout. To reset it, select Window > Reset Layout.

Note:

The Load Layout menu lets you select between the default layout, a predefined layout, or a custom

layout. The changes you make using the Load Layout menu are also reflected in the Application

Layout preferences page.

The changes you make to any layout are preserved between working sessions. The predefined layout files are

saved in the preferences directory (on page 133) of Oxygen XML Editor.

You can drag the editors and arrange them in any order, both horizontally and vertically.

The following image presents two editors arranged as horizontal tiles. To arrange them vertically, drag one of

them on top of the other. In the following example, the personal.xml file was dragged over the personal-

schema.xml file:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 326

Figure 50. Drag and Drop Editors

Hide or Float Views

Hide

To gain more editing space in the Oxygen XML Editor window, click Toggle auto-hide in any

view. This button sets the view in the auto-hide state, making it visible only as a vertical tab, at

the margins of the Oxygen XML Editor window. To display a view in the auto-hide state, hover its

side-tab with your cursor, or click it to keep the view visible until you click elsewhere.

Float

A view can also be set to a floating state by using the Toggle floating action, making it

independent from the rest of the Oxygen XML Editor window.

Maximize the Editing Environment

You can configure the interface to maximize the editing area, leaving more vertical screen space available for

the main editing pane. This is, for example, useful for presentations on low-resolution screens or for laptops

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 327

with small screen space. You can use the following two actions that are available in the Window menu to

create a near full-screen editing environment:

Maximize Editor Area

If toggled on, all side views are minimized to give you more horizontal space in the editing pane.

Hide All Toolbars

If toggled on, all toolbar buttons are hidden to give you more vertical space in the interface.

Tile/Stack Editor Actions

You can also tile or stack all open editors using the following actions from the toolbar or Window menu:

Tile Editors Horizontally

Splits the editing area into horizontal tiles, one for each open file.

Tile Editors Vertically

Splits the editing area into vertical tiles, one for each open file.

Stack Editors

The reverse of the Tile Editors Horizontally/Vertically actions. Stacks all open editors.

Synchronous Scrolling

Select this action to scroll through the tiled editors at the same time.

Note:

When tiled, you can still drag and drop the editors, but note that they are docked in the same way as a

window/view (instead of just tabs). You are actually rearranging the editor windows, so drag the editor

tab and drop it to one of the sides of an editor (left/right/top/bottom). While dragging, you will see

the dark gray rectangle aligned to one of the sides of the editor, or around the entire editor window. If

you drop it to one of the sides, it will dock to that side of the editor. If you drop it when the rectangle is

around the entire window of the editor, it will get stacked on top of that editor. You can also grab one

of the stacked editors and tile it to one of the sides.

Split Editor Actions

You can divide the editing area vertically and horizontally using the following actions available in the toolbar

and Window menu:

• Split Editor Horizontally - Splits the editor horizontally so that two editor panes are displayed with

one on top of the other. This is useful for comparing and merging content between two documents.

• Split Editor Vertically - Splits the editor vertically so that two editor panes are displayed side by side.

This is useful for comparing and merging content between two documents.

• Unsplit Editor - Removes a split action on the editing area.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 328

To maximize or restore the editors, go to Window > Maximize Editing Area.

Switch, Move, or Hide Editor Tabs

Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch

between tabs or move them, and you can even hide the tabs to only show the currently open file.

Note:

If multiple file tabs are left open when you close the application, upon startup, Oxygen XML Editor

will not load the file content until you switch to the corresponding file tab. The tabs remain visible as

a placeholders until the focus is switched to them. This helps to improve the application's startup

time. If you want to disable this feature (meaning that the previously open files will all be re-loaded at

startup), deselect the Load file content only when switching to its corresponding editor tab option in

the Global preferences page (on page 135).

Switching Editor Tabs

You can switch between editor tabs by using any of the following methods:

Mouse and Scroll Wheel

Of course, you can switch to a different editor tab by left-clicking the tab with your mouse, but

when there are too many open tabs to fit on the screen, you can hover over the tab stripe and use

the scroll wheel on your mouse to scroll to the left or right (same as using the two arrows on the

far-right of the tab stripe).

Buttons on the Far-Right of the Tab Stripe ()

You can use the arrow buttons () on the right side of the tab stripe to scroll to the left or right

and the Show List button opens a pop-up window that displays all the open file tabs and

allows you to select and switch to a specific open file.

Ctrl + Tab (Command + Tab on macOS) [NOTE: Ctrl + Page Down (Ctrl + Option + Right Arrow on macOS)

does the same]

Switches to the next open tab in the order specified in the Order of switching between editor

tabs option (on page 136).

Ctrl + Shift + Tab (Command + Shift + Tab on macOS) [NOTE: Ctrl + Page Up (Ctrl + Option + Left Arrow

on macOS) does the same]

Switches to the previous open tab in the order specified in the Order of switching between editor

tabs option (on page 136).

Window > Switch editor tab (Ctrl + F9 (Command + F9 on macOS))

This action opens a dialog box that allows you to switch to a particular editor tab by selecting

it from a filterable list. This is especially helpful when you have a large amount of open file tabs

and you want to switch to a certain tab this is not shown on the screen. It includes a search filter

field and several options to help you find specific open file tabs.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 329

Figure 51. Switch Editor Tab Dialog Box

The Switch Editor Tab dialog box contains the following options and features:

Search Filter

You can enter text in the filter field at the top of the dialog box to filter the list

and search for specific open files. You can enter any number of terms, separated

by space, and wildcards are allowed (for example, * to match any sequence of

characters, or ? to match a single character). This field also has a history drop-

down that allows you to select previously used search terms.

Match all terms

If this option is selected, only the files that match all of your search terms will be

displayed. If you use a wildcard in the search filter, this option is automatically

disabled.

Include file paths

If this option is selected, the search is expanded to include file paths, and also the

paths are displayed in this dialog box.

Case sensitive

If this option is selected, the search operation will be case-sensitive.

List of Open File Tabs

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 330

All files that are currently open are displayed in the upper part of the main pane of

the dialog box, followed by recently closed files. Files that have been modified but

not yet saved are prefixed by an asterisk. To switch to a particular file tab, double-

click the file or select it and click OK.

Moving Editor Tabs

You can move editor tabs by using any of the following methods:

Mouse Drag

You can use your mouse to drag editor tabs to a new location on the tab stripe.

Ctrl + Alt + Comma

Moves the current file tab one position to the left.

Ctrl + Alt + Period

Moves the current file tab one position to the right.

Hiding Editor Tabs

If you want to hide all the file tabs and only show the currently open file, select Hide editor tabs from the

Window menu. This does not close the other tabs, just hides them. You can still navigate between tabs using

keyboard shortcuts (Ctrl + Tab, Ctrl + Shift + Tab, Ctrl + F6, Ctrl + Shift + F6) or by selecting Next editor or

Previous editor from the Window menu.

Resources

For more information about configuring the interface of Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/anwjepfAdEk

Tip:

To get more ideas for more advanced customization possibilities, watch our Webinar: Working with

DITA in Oxygen - Customizing the Editing Experience. It offers a visual demonstration of how to

customize actions, document validation, content completion, new document templates, Author mode

rendering, and more.

Related information

Configuring Toolbars (on page 375)

Configuring Toolbars
You can configure the toolbars in Oxygen XML Editor to personalize the interface for your specific needs.

You can choose which toolbars to show or hide in the current editor mode (Text, Author,Design, or Grid) and

in the current perspective (on page 3299) (Editor, XSLT Debugger, XQuery Debugger, or Databse). You can

https://www.youtube.com/embed/anwjepfAdEk
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 331

also choose which actions to display in each toolbar, add actions to toolbars, and customize the layout of the

toolbars.

To configure the toolbars, open the Configure Toolbars dialog box by doing one of the following:

• Right-click any toolbar and select Configure Toolbars.

• Select Configure Toolbars from the Window menu.

Figure 52. Configure Toolbars Dialog Box

The Configure Toolbars dialog box provides the following features:

Filter Text Box

You can use the filter text box at the top of the dialog box to search for a specific toolbar or

action.

Show or Hide Toolbars

You can choose whether to show or hide a toolbar by using the checkbox next to the toolbar

name. This checkbox is only available for toolbars that are available for the current perspective

(on page 3299) and editing mode.

Show or Hide Actions in a Toolbar

To show or hide actions in a toolbar, expand it by clicking the arrow next to the toolbar name,

then use the checkbox to select or deselect the appropriate actions. The toolbar configuration

changes in the Preview column according to your changes.

Add Actions to a Toolbar

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 332

Use the Add Actions button to open the Add Actions dialog box that displays all the actions

that can be added to any of the toolbars, with the exception of those that are contributed from

frameworks (on page 3297) or 3rd party plugins (on page 3299).

Remove Actions from a Toolbar

You can remove actions that you have previously added to toolbars by using the Remove Action

button.

Move Actions in a Toolbar

Use the Move Up and Move Down actions to change the order of the actions in a toolbar.

The Configure Toolbars dialog box also provides a variety of other ways to customize the layout in Oxygen

XML Editor.

Customize My Toolbar

You can customize the My Toolbar to include your most commonly used actions. By default,

this toolbar is listed first. Also, it is hidden until you add actions to it and you can easily hide it

with the Hide "My Toolbar" Toolbar action that is available when you right-click anywhere in the

toolbar area.

Drop-down Menu Actions

Composite actions that are usually displayed as a drop-down menu can only be selected in one

toolbar at a time. These actions are displayed in the Configure Toolbars dialog box with the

name in brackets.

Configure External Tools Action

There is a Configure external tools composite action that appears in the toolbar called

Tools. It is a drop-down menu that contains any external tools that are configured in the External

Tools preferences page.

Note:

If no external tools are configured, this drop-down menu is not shown in the toolbar.

Additional actions are available from the Window menu or contextual menu when invoked from a toolbar that

allows you to further customize your layout. These actions include:

Reset Toolbars

To reset the layout of toolbars to the default setting, select the Reset Toolbars action from the

contextual menu or Window menu.

Reset Layout

To reset the entire layout (including toolbars, editing modes, views, etc.) to the default setting,

select Reset Layout from the contextual menu or Window menu.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 333

Export Layout

You can use the Export Layout action that is available in the Window menu to export the entire

layout of the application to share it with other users.

Hide Toolbars

You can use the Hide Toolbar action from the contextual menu to easily hide a displayed toolbar.

When you right-click a toolbar it will be highlighted to show you which actions are included in

that toolbar.

Related information

Configuring the Layout of the Views and Editors (on page 370)

Import/Export Transformation or Validation Scenarios
You can export global transformation and validation scenarios into specialized scenarios files. You can import

transformation and validation scenarios from various sources (such as project files, framework (on page

3297) option files, or exported scenario files). The import and export scenario actions are available in the

Options menu. The following actions are available:

Import Transformation Scenarios

Loads a set of transformation scenarios from a project file, framework options file, or exported

scenarios file.

Export Global Transformation Scenarios

Stores a set of global transformation scenarios in a specialized scenarios file.

Import Validation Scenarios

Loads a set of validation scenarios from a project file, framework options file, or exported

scenarios file.

Export Global Validation Scenarios

Stores a set of global validation scenarios in a specialized scenarios file.

The Export Global Transformation Scenarios and Export Global Validation Scenarios options are used

to store all the scenarios in a separate file. Associations between document URLs and scenarios are also

saved in this file. You can load the saved scenarios using the Import Transformation Scenarios and Import

Validation Scenarios actions. To distinguish the existing scenarios and the imported ones, the names of the

imported scenarios contain the word import.

Editor Variables
An editor variable is a shorthand notation for context-dependent information, such as a file or folder

path, a time-stamp, or a date. It is used in the definition of a command (for example, the input URL of a

transformation, the output file path of a transformation, or the command line of an external tool) to make a

command or a parameter generic and re-usable with other input files. When the same command is applied

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 334

to multiple files, the notation is expanded at the execution of the command so that the same command has

different effects depending on the actual file.

Oxygen XML Editor includes a variety of built-in editor variables. You can also create your own custom editor

variables by using the Custom Editor Variables preferences page (on page 310).

Editor variables are evaluated and automatically expanded in many places in the application, when:

• Creating new documents from file templates (on page 387).

• Inserting code templates (on page 387) in the Text or Author editor modes.

• Running custom configured External Tools (on page 2905).

• Executing predefined Built-in Author Mode Operations (on page 2261) that have editor variables given

as parameter values.

• Running validation scenarios (on page 813) that use editor variables inside to reference various

resources.

• Executing transformation scenarios (of type ANT, DITA-OT (on page 3174), XSLT (on page 1505), etc.)

that have editor variables set as parameter values or as values for references to various resources.

• Expanding CSS imports (on page 2419) for editing in the Author visual editing mode.

• Using specific Java API UtilAccess.expandEditorVariables(String, URL) from plugins and framework

extensions.

You can use the following editor variables in Oxygen XML Editor commands of external engines or other

external tools, and in various places in the application, such as in transformation scenarios, Author mode

operations, and validation scenarios:

• ${activeConditionSet} - Current active profiling condition set (on page 689) name. If there is no active

condition set, the variable will be replaced with an empty string.

• ${af} - The local file path of the ZIP archive that includes the currently edited document.

• ${afd} - The local directory path of the ZIP archive that includes the currently edited document.

• ${afdu} - The URL path of the directory of the ZIP archive that includes the currently edited document.

• ${afn} - The file name (without parent directory and without file extension) of the zip archive that

includes the currently edited file.

• ${afne} - The file name (with file extension, for example .zip or .epub, but without parent directory) of

the zip archive that includes the currently edited file.

• ${afu} - The URL path of the ZIP archive that includes the currently edited document.

• ${answer(@id)} - Used in conjunction with the ${ask} editor variable. The @id parameter is required and

identifies the answer from the ${ask} editor variable with the same ID.

Example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">

<topic id="topic_lcf_1c4_tdb">

 <title></title>

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/util/UtilAccess.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 335

 <body>

 <data name="${ask('Set a data name', String, 'name', @name)}"></data>

 <p>The name is: ${answer(@name)}</p>

 </body>

</topic>

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...),

'default_value', @id)} - To prompt for values at runtime, use the ask('message', type,

('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default-value'') editor variable.

You can set the following parameters:

◦ 'message' - The displayed message. Note the quotes that enclose the message.

◦ 'default-value' - Optional parameter. Provides a default value.

◦ @id - Optional parameter. Used for identifying the variable to reuse the answer using the

${answer(@id)} editor variable.

◦ type - Optional parameter (defaults to generic), with one of the following values:

Note:

The title of the dialog box will be determined by the type of parameter and as follows:

▪ For url and relative_url parameters, the title will be the name of the parameter and

the value of the 'message'.

▪ For the other parameters listed below, the title will be the name of that respective

parameter.

▪ If no parameter is used, the title will be "Input".

Notice:

Editor variables that are used within a parameter of another editor variable must be

escaped within single quotes for them to be properly expanded. For example:

${ask('Provide a date',generic,'${date(yyyy-MM-dd'T'HH:MM)}')}

Parameter

Format: ${ask('message', generic, 'default')}

Description: The input is considered to be generic text that requires no

special handling.

generic (default)

Example:

▪ ${ask('Hello world!')} - The dialog box has a Hello world! message

displayed.

▪ ${ask('Hello world!', generic, 'Hello again!')} - The dialog box has a

Hello world! message displayed and the value displayed in the input

box is 'Hello again!'.

url Format: ${ask('message', url, 'default_value')}

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 336

Parameter

Description: Input is considered a URL. Oxygen XML Editor checks that

the provided URL is valid.

Example:

▪ ${ask('Input URL', url)} - The displayed dialog box has the name In

put URL. The expected input type is URL.

▪ ${ask('Input URL', url, 'http://www.example.com')} - The displayed

dialog box has the name Input URL. The expected input type is

URL. The input field displays the default value http://www.example

.com.

Format: ${ask('message', relative_url, 'default')}

Description: Input is considered a URL. This parameter provides a file

chooser, along with a text field. Oxygen XML Editor tries to make the URL

relative to that of the document you are editing.

Note:

If the $ask editor variable is expanded in content that is not yet

saved (such as an untitled file, whose path cannot be determined),

then Oxygen XML Editor will transform it into an absolute URL.

relative_url

Example:

${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has the

name 'File location'. The URL inserted in the input box is made relative to

the currently edited document location.

Format: ${ask('message', password, 'default')}

Description: The input is hidden with bullet characters.

password

Example:

▪ ${ask('Input password', password)} - The displayed dialog box has

the name 'Input password' and the input is hidden with bullet sym

bols.

▪ ${ask('Input password', password, 'abcd')} - The displayed dialog

box has the name 'Input password' and the input hidden with bullet

symbols. The input field already contains the default abcd value.

combobox Format: ${ask('message', combobox, ('real_value1':'rendered_value1';..

.;'real_valueN':'rendered_valueN'), 'default')}

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 337

Parameter

Description: Displays a dialog box that offers a drop-down menu. The

drop-down menu is populated with the given rendered_value values.

Choosing such a value will return its associated value (real_value).

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

Example:

▪ ${ask('Operating System', combobox, ('win':'Microsoft Win

dows';'macos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog

box has the name 'Operating System'. The drop-down menu dis

plays the three given operating systems. The associated value will

be returned based upon your selection.

Note:

In this example, the default value is indicated by the osx

key. However, the same result could be obtained if the de

fault value is indicated by macOS, as in the following ex

ample: ${ask('Operating System', combobox, ('win':'Mi

crosoft Windows';'macos':'macOS';'lnx':'Linux/UNIX'), 'mac

OS')}

▪ ${ask('Mobile OS', combobox, ('ios':'iOS';'and':'Android'), 'Android')}

▪ ${ask('Mobile OS', combobox, (${xpath_eval(for $pair in (['ios',

'iOS'], ['and', 'Android']) return "'" || $pair?1 || "':'" || $pair?2 || "';")}),

'ios')}

Format: ${ask('message', editable_combobox, ('real_value1':'rendered_

value1';...;'real_valueN':'rendered_valueN'), 'default')}

editable_com

bobox

Description: Displays a dialog box that offers a drop-down menu with ed

itable elements. The drop-down menu is populated with the given ren

dered_value values. Choosing such a value will return its associated real

value (real_value) or the value inserted when you edit a list entry.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 338

Parameter

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

Example:

▪ ${ask('Operating System', editable_combobox, ('win':'Microsoft

Windows';'macos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog

box has the name 'Operating System'. The drop-down menu dis

plays the three given operating systems and also allows you to ed

it the entry. The associated value will be returned based upon your

selection or the text you input.

▪ ${ask('Operating System', editable_combobox, (${xpath_eval(for

$pair in (['win', 'Microsoft Windows'], ['macos', 'macOS'], ['lnx', 'Lin

ux/UNIX']) return "'" || $pair?1 || "':'" || $pair?2 || "';")}), 'ios')}

Format: ${ask('message', radio, ('real_value1':'rendered_value1';...;'real_

valueN':'rendered_valueN'), 'default')}

Description: Displays a dialog box that offers a series of radio buttons.

Each radio button displays a 'rendered_value and will return an associat

ed real_value.

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

radio

Example:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 339

Parameter

▪ ${ask('Operating System', radio, ('win':'Microsoft Windows';'ma

cos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog box has the

name 'Operating System'. The radio button group allows you to

choose between the three operating systems.

Note:

In this example, macOS is the default-selected value and if

selected, it would return macos for the output.

▪ ${ask('Operating System', radio, (${xpath_eval(for $pair in (['win',

'Microsoft Windows'], ['macos', 'macOS'], ['lnx', 'Linux/UNIX']) return

"'" || $pair?1 || "':'" || $pair?2 || "';")}), 'ios')}

• ${author.name} - Expands to the current author name that is set in the Review preferences page (on

page 192).

• ${caret} - The position where the cursor is located. This variable can be used in a code template, in

Author mode operations, or in a selection plugin.

Note:

The ${caret} editor variable is available only for parameters that take XML content as values.

It is replaced with the ${UNIQUE_CARET_MARKER_FOR_AUTHOR} macro. The default Author

operations process this macro and position the cursor at the designated offset.

Note:

The ${caret} editor variable can be used for setting a fixed cursor position

inside an XML fragment. To set the cursor position depending on the fragment

inserted in the document, you can use AuthorDocumentFilter and inside the

insertFragment(AuthorDocumentFilterBypass, int, AuthorDocumentFragment) method,

use the AuthorDocumentFragment.setSuggestedRelativeCaretOffset(int) API on the given

fragment.

• ${cf} - Current file as file path, that is the absolute file path of the currently edited document.

• ${cfd} - Current file folder as file path, that is the path of the currently edited document up to the name

of the parent folder.

• ${cfdu} - Current file folder as URL, that is the path of the currently edited document up to the name of

the parent folder, represented as a URL.

• ${cfn} - Current file name without the extension and parent folder. The current file is the one currently

open and selected.

• ${cfne} - Current file name with extension. The current file is the one currently open and selected.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 340

• ${comma} - Used to display a comma when the actual comma symbol would be considered part of

some sort of instruction or delimiter.

• ${configured.ditaot.dir} - The default directory of the DITA Open Toolkit distribution, as configured in

the DITA preferences page (on page 278).

• ${cp} - Current page number. Used to display the current page number on each printed page in the

Editor / Print Preferences page.

• ${currentFileURL} - Current file as URL, that is the absolute file path of the currently edited document

represented as URL.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java

SimpleDateFormat class. Example: yyyy-MM-dd.

Note:

This editor variable supports both the xs:date and xs:datetime parameters. For details about

xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go

to: http://www.w3.org/TR/xmlschema-2/#dateTime.

• ${dbgXML} - The local file path to the XML document that is currently selected in the Debugger source

combo box (for tools started from the XSLT/XQuery Debugger).

• ${dbgXSL} - The local file path to the XSL/XQuery document that is currently selected in the Debugger

stylesheet combo box (for tools started from the XSLT/XQuery Debugger).

• ${dita.dir.url} - A special local contextual editor variable that gets expanded only in the Libraries dialog

box that is accessible from the Advanced tab of DITA transformation scenarios. The Libraries dialog

box allows you to specify additional libraries (JAR (on page 3297) files or additional class paths) to

be used by the transformer. This ${dita.dir.url} editor variable gets expanded to the value of the dita.dir

parameter from the Parameters tab of the DITA transformation scenario.

• ${ds} - The path of the detected schema as a local file path for the current validated XML document.

• ${dsu} - The path of the detected schema as a URL for the current validated XML document.

• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables

are managed by the operating system. If you are looking for Java System Properties, use the

${system(var.name)} editor variable.

• ${framework(fr_name)} - The path (as URL) of the fr_name framework.

• ${framework} - The path (as URL) of the current framework directory.

• ${frameworkDir(fr_name)} - The path (as file path) of the fr_name framework.

Note:

Since multiple frameworks might have the same name (although it is not recommended), for

both ${framework(fr_name)} and ${frameworkDir(fr_name)} editor variables Oxygen XML Editor

employs the following algorithm when searching for a given framework name:

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 341

◦ All frameworks are sorted, from high to low, according to their Priority (on page 149)

setting from the Document Type configuration dialog box (on page 148). Only

frameworks that have the Enabled checkbox selected are taken into account.

◦ Next, if the two or more frameworks have the same name and priority, a further sorting

based on the Storage setting is made, in the exact following order:

▪ Frameworks stored in the internal Oxygen XML Editor options.

▪ Additional frameworks added in the Locations preferences page (on page 148).

▪ Frameworks installed using the add-ons support.

▪ Frameworks found in the main framework location (on page 148) (Default or

Custom).

• ${frameworkDir} - The path (as file path) of the current framework directory.

• ${frameworks} - The path (as URL) of the frameworks directory. When used to define references

inside a framework configuration, it expands to the parent folder of that specific framework folder.

Otherwise, it expands to the main frameworks folder defined in the Document Type Association >

Locations preferences page.

• ${frameworksDir} - The path (as file path) of the frameworks directory. When used to define

references inside a framework configuration, it expands to the parent folder of that specific framework

folder. Otherwise, it expands to the main frameworks folder defined in the Document Type

Association > Locations preferences page.

• ${home} - The path (as URL) of the user home folder.

• ${homeDir} - The path (as file path) of the user home folder.

• ${i18n(key)} - Editor variable used only at framework-level to allow translating names and descriptions

of Author mode actions in multiple actions. For more details, see Localizing Frameworks (on page

2340).

• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not

guaranteed to be universally unique.

• ${makeRelative(base,location)} - Takes two URL-like paths as parameters and tries to return a relative

path. A use-case would be to insert content references to a certain reusable component when defining

code templates.

Example:

${makeRelative(${currentFileURL}, ${dictionaryURL}#gogu)}

• ${oxygenHome} - Oxygen XML Editor installation folder as URL.c

• ${oxygenInstallDir} - Oxygen XML Editor installation folder as file path.

• ${pd} - The file path to the folder that contains the current project file (.xpr).

• ${pdu} - The URL path to the folder that contains the current project file (.xpr).

• ${pluginDir(pluginID)} - Each plugin has an ID specified in its plugin.xml file. This editor variable

expands to the file path of the folder that contains the plugin.xml file where that specific plugin ID is

located.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 342

• ${pluginDirURL(pluginID)} - Each plugin has an ID specified in its plugin.xml file. This editor variable

expands to the URL path of the folder that contains the plugin.xml file where that specific plugin ID

is located.

• ${pn} - Current project name.

• ${ps} - Path separator, which is the separator that can be used on the current platform (Windows,

macOS, Linux) between library files specified in the class path.

• ${rootMapDir} - Will be expanded to the current root map parent directory file path.

• ${rootMapDirURL} - Will be expanded to the current root map parent directory URL.

• ${rootMapFile} - Will be expanded to the current root map file path.

• ${rootMapURL} - Will be expanded to the current root map URL. For example, if in the main DITA Map

you define a key with a certain value:

 <keydef keys="test">

 <topicmeta><keywords><keyword>ABC</keyword></keywords></topicmeta>

 </keydef>

you can modify a DITA-OT publishing parameter to have the value: ${xpath_eval(doc('${rootMapURL}')/

/keydef[@keys='test']/keywords/keyword/text())}. It will be expanded to the value of that specified

key name.

• ${selection} - The currently selected text content in the currently edited document. This variable can be

used in a code template, in Author mode operations, or in a selection plugin.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can

be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are

looking for operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${timeStamp} - The timestamp, which is the current time in Unix format. For example, it can be used to

save transformation results in multiple output files on each transformation.

• ${tp} - Total number of pages in the document. Used to display the total number of pages on each

printed page in the Editor / Print Preferences page.

• ${tsf} - The transformation result file path. If the current opened file has an associated scenario that

specifies a transformation output file, this variable expands to it.

• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the

Java UUID class.

• ${xmlCatalogFilesList} - A list of file paths that point to all known XML catalog files, separated by semi-

colons (;).

• ${xpath_eval(expression)} - Evaluates an XPath expression. Depending on the context, the expression

can be:

◦ static - When executed in a non-XML context. For example, you can use such static expressions

to perform string operations on other editor variables for composing the name of the output file

in a transformation scenario's Output tab.

Example:

${xpath_eval(upper-case(substring('${cfn}', 1, 4)))}

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 343

◦ dynamic - When executed in an XML context. For example, you can use such dynamic

expression in a code template or as a value of a parameter of an Author mode operation.

Example:

${ask('Set new ID attribute', generic, '${xpath_eval(@id)}')}

Related information

Code Templates (on page 548)

Selection Plugin Extension (on page 2547)

Installing and Updating Add-ons (on page 126)

Custom Editor Variables

An editor variable (on page 333) can be created and included in any user-defined expression where a built-

in editor variable is also allowed. For example, a custom editor variable may be necessary for configuring the

command line of an external tool, the working directory of a custom validator, the command line of a custom

XSLT engine, or a custom FO processor.

You can create or configure custom editor variables in the Custom Editor Variables preferences page (on page

310). To create a custom editor variable, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Custom Editor

Variables.

2. Click the New button at the bottom of the table.

3. Use the subsequent dialog box to specify the Name, Value, and Description for the new editor variable.

4. Click OK to save your configuration.

Related information

Editor Variables (on page 333)

Custom System Properties
A variety of Java system properties can be set in the application to influence its behavior. For information

about how to do this, see Setting a System Property (on page 351).

com.oxygenxml.disable.http.protocol.handlers

• Allowed Values: true or false

• Default Value: false

• Purpose: By default, Oxygen XML Editor uses the open source Apache HTTP Client

software for HTTP(S) connections. If set to True, the default Java Sun HTTP(S) will be

used instead. You will also lose WebDAV support and possibly other related features.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 344

com.oxygenxml.present.license.reminders

• Allowed Values: true or false

• Default Value: true

• Purpose: When set to false, Oxygen XML Editor will not display the messages that remind

you to renew your Support and Maintenance Pack that covers your current license.

com.oxygenxml.enable.content.reference.caching

• Allowed Values: true or false

• Default Value: true

• Purpose: Enables content reference caching.

com.oxygenxml.eclipse.remove.grid.editing.mode

• Allowed Values: true or false

• Default Value: false

• Purpose: When set to false, Oxygen XML Editor does not show the Grid editing mode

when opening an XML document.

com.oxygenxml.default.java.accessibility

• Allowed Values: true or false

• Default Value: false

• Purpose: System property that can be set to true to force the default detection of java

accessibility. If com.sun.java.accessibility.AccessBridge cannot be loaded, Oxygen XML

Editor forces the Java accessibility to be disabled.

com.oxygenxml.floating.license.timeout

• Allowed Values: An integer (minutes)

• Default Value: 120

• Purpose: Stores the time interval (in minutes) before floating licenses are released in

case of application's inactivity.

com.oxygenxml.language

• Allowed Values: Language code (for example, en-us)

• Default Value: N/A

• Purpose: Property that holds the language code set during installation.

com.oxygenxml.default.options

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 345

• Allowed Values: A URL-type relative or absolute path.

• Default Value: N/A

• Purpose: Provides the path to an XML file containing default application options. For

more details, see Customizing Default Options (on page 319).

com.oxygenxml.customOptionsDir

• Allowed Values: A file system absolute path pointing to a folder.

• Default Value: N/A

• Purpose: Sets a folder to be used by the application to load and save preference files. The

default location where the options are saved varies according to the operating system.

For more details, see Importing/Exporting/Resetting Global Options (on page 324).

com.oxygenxml.ApplicationDataFolder (Windows only)

• Allowed Values: A file system absolute path pointing to a folder.

• Default Value: %APPDATA%

• Purpose: When the application runs on Windows, you can set this property to change the

location where the application considers that the APPDATA folder is located.

com.oxygenxml.editor.frameworks.url

• Allowed Values: A URL-type absolute path.

• Default Value: OXYGEN_DIR \frameworks

• Purpose: Changes the folder where the application considers that the main frameworks

are installed. It has the same effect as changing the custom frameworks directory value in

the Location preferences page (on page 148).

com.oxygenxml.editor.plugins.dir

• Allowed Values: The path can be specified with any of the following:

◦ A URL or file path that is relative to the application's installation folder (for example:

-Dcom.oxygenxml.editor.plugins.dir=my-plugins).

◦ A system variable that specifies the file path (for example:

-Dcom.oxygenxml.editor.plugins.dir=${system(CONFIG)}/plugins).

◦ An environmental variable that specifies the file path (for example:

-Dcom.oxygenxml.editor.plugins.dir=${env(CONFIG)}/plugins).

• Default Value: N/A

• Purpose: Specifies the directory where the application finds plugins to load.

com.oxygenxml.MultipleInstances

• Allowed Values: true or false

• Default Value: false

• Purpose: If set to true, multiple instances of the application are allowed to be started.

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 346

com.oxygenxml.xep.location

• Allowed Values: A file system absolute path pointing to a folder.

• Default Value: N/A

• Purpose: Points to a folder where RenderX XEP is installed. Has the same effect as

configuring XEP in the FO Processors preferences page (on page 271).

com.oxygenxml.additional.classpath

• Allowed Values: A list of JAR (on page 3297)-type resources separated by a classpath

separator.

• Default Value: N/A

• Purpose: An additional list of libraries to be used in the application's internal class loader

in addition to the libraries specified in the lib folder.

com.oxygenxml.user.home (Windows only)

• Allowed Values: A file system absolute path pointing to a folder.

• Default Value: USERPROFILE folder

• Purpose: Overwrites the user home directory that was implicitly detected for the

application.

com.oxygenxml.use.late.delegation.for.author.extensions

• Allowed Values: true or false

• Default Value: true

• Purpose: All Java extensions in a framework configuration are instantiated in a separate

class loader. When true, the JAR libraries used in a certain document type will have

priority to resolve classes before delegating to the parent class loader. When false, the

parent class loader will take precedence.

com.oxygenxml.stack.size.validation.threads

• Allowed Values: The number of bytes used for validation threads.

• Default Value: 5*1024*1024

• Purpose: Some parts of the application (validation, content completion) that use

the Relax NG parser sometimes require a larger Thread stack size to parse complex

schemas. The default value should be more than enough.

com.oxygenxml.jing.skip.validation.xhtml.data.attrs

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 347

• Allowed Values: true or false

• Default Value: true

• Purpose: By default, the Relax NG validation was configured to skip validation for XHTML

attributes that start with "data-", which should be skipped from validation according to the

XHTML 5 specification.

com.oxygenxml.report.problems.url

• Allowed Values: User-defined URL

• Default Value: N/A

• Purpose: The URL where a problem reported through the Report Problem dialog box is

sent. The report is sent in XML format using the report parameter with the POST HTTP

method.

com.oxygenxml.parallel.title.computing.threads

• Allowed Values: Integers

• Default Value: 4

• Purpose: The number of parallel threads that will be used to compute referenced topic

titles. Increasing this value reduces the amount of time it takes to compute topic titles in

the DITA Maps Manager view.

com.oxygenxml.prefer.plugin.classloader.context.loader

• Allowed Values: true or false

• Default Value: true

• Purpose: Used to instruct the application to use the plugin class loader when there

is code that loads content (usually Xerces code) using the thread's class loader. For

instance, if you have a plugin that specifies a certain Xerces version and you want to load

that version instead of the one from Oxygen's lib directory.

com.oxygenxml.classic.file.output.stream.save

• Allowed Values: true or false

• Default Value: false

• Purpose: When set to true, the files are saved using a Java classic file output stream,

which destroys the NTFS alternate data streams set on the file. However, this might

prevent data loss in the rare occasions when Oxygen XML Editor saves empty file content

over shared network drives.

com.oxygenxml.format.indent.files.parallel

• Allowed Values: true or false

• Default Value: true

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 348

• Purpose: By default, when using the Format and Indent Files action from the Project view,

up to four parallel threads are used by the operation, speeding up the processing when

formatting very large or a large amount of documents. If the system property is set to

false, only one thread will be used for the formatter.

Related information

Setting a System Property (on page 351)

Localizing the User Interface
Oxygen XML Editor comes with the following built-in languages: English, French, German, Japanese, Dutch,

and Chinese. To change the interface language, go to Options > Preferences > Global preferences page, then

choose the appropriate language from the Language drop-down menu.

You can also localize the interface in another language by creating an interface localization file.

How to Create an Interface Localization File

You can change the language of the Oxygen XML Editor user interface by creating an interface localization file:

1. Identify the code for the new language you want to translate the interface. It is composed from a

language code (two or three lowercase letters that conform to the ISO 639 standard), followed by an

underscore character, and a region code (two or three uppercase letters that conform to the ISO 3166

standard).

2. Write an email to the Oxygen XML Editor support team and ask them to send you the

translation.xml sample file.

3. Open the translation.xml file in Oxygen XML Editor. The file contains all the interface messages

that can be translated and is updated at every new release with the latest additions. Here is a small

sample of its content:

<translation>

 <languageList>

 <language description="English" lang="en_US"/>

 </languageList>

 <key value="New">

 <comment>The File/New action. Creates a new document.</comment>

 <val lang="en_US">New</val>

 </key>

 <key value="New_folder">

 <comment>Creates a folder in the Project View.</comment>

 <val lang="en_US">New Folder</val>

 </key>

</translation>

http://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.iso.org/obp/ui/#search
https://www.iso.org/obp/ui/#search

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 349

4. Update the <language> element to reflect the new language. For example, set the @description attribute to

Spanish and the @lang attribute to es_ES.

5. For each <key> element, translate the <comment> (optional) and <val> elements. For example, set the @lang

attribute to es_ES.

Note:

After you are finished, the file should look like this:

<translation>

 <languageList>

 <language description="Español" lang="es_ES"/>

 </languageList>

 <key value="New">

 <comment>El Archivo / Nueva acción. Crea un nuevo documento.</comment>

 <val lang="es_ES">Nuevo</val>

 </key>

 <key value="New_folder">

 <comment>Crea una carpeta en la vista del proyecto.</comment>

 <val lang="es_ES">Nueva carpeta</val>

 </key>

</translation>

6. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Global, and select the

Other language option (on page 134). Browse for the translation.xml file.

7. Restart the application.

Adding New Languages to the Interface

Oxygen XML Editor provides a plugin extension is available in the Oxygen SDK that provides the ability to

contribute a new translation language to the interface. By using this plugin extension, you can bundle the new

language translation and that new language will be available in the Languages drop-down menu in the Options

> Preferences > Global preferences page (on page 134).

Setting a Java Virtual Machine Parameter when Launching
Oxygen XML Editor
You can set Java Virtual Machine parameters (for example, if you want to increase the maximum amount of

memory available) for the Oxygen XML Editor application launchers (on page 350) or command-line scripts

(on page 352). You can also create a custom startup parameters file (on page 353).

https://www.oxygenxml.com/oxygen_sdk.html

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 350

Setting Parameters for the Application Launchers

Increasing the Amount of Memory that Oxygen XML Editor Uses on Windows and Linux

For Windows and Linux installations of Oxygen XML Editor, the startup launchers for the application and

its executable internal tools (Tree Editor, XML Schema Regular Expressions Builder, Large File Viewer,

SVN Client, Compare Directories, and Compare Files) include a default .vmoptions file in the installation

directory that contains some startup parameters (such the -Xmx parameter, which is used for allocating

memory for that particular application). If your installation contains these .vmoptions files, you can edit the

parameters in them so that the applications will launch with your desired values. However, if you re-install the

application, install an update for the application, or deploy it to other users or machines, those parameters

will be reset to their default values.

To increase the memory available to the Oxygen XML Editor application on Windows:

1. Browse the installation directory of Oxygen XML Editor.

2. Locate the -Xmx parameter in the oxygen27.1.vmoptions file. If it is located in a directory where

you do not have write access, copy the file to another folder (where you do have write access), modify it

there, and then copy it back to the original location.

Note:

The parameters from the .vmoptions file are used when you start Oxygen XML Editor

with the oxygen launcher (or with the desktop shortcut). If you use the command-line script

(<oxygen.bat> or <oxygen.sh>), make sure you use the following procedure instead: Setting

Parameters in the Command-Line Scripts (on page 352).

Tip:

By default, the maximum memory available to the application is about a quarter of the internal

memory available on the machine. It is recommended to not use more than half of your

existing physical RAM.

3. Restart Oxygen XML Editor. Go to Help > About and verify the amount of memory that is actually

available (see the JVM Memory Used in the last row in the Copyright tab). If Oxygen XML Editor does

not start and you receive and error message saying that it could not start the JVM, decrease the -Xmx

parameter and try again.

Increasing the Amount of Memory that Oxygen XML Editor Uses on macOS

To increase the memory available to Oxygen XML Editor on macOS:

1. Create a file named vmoptions.txt.

2. Add the -Xmx argument (or other Java VM arguments), one per line, and do not add extra new lines at

the beginning or end of the file. For example:

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 351

-Xmx4g

-Dcom.oxygenxml.editor.plugins.dir="$OXYGEN_HOME/plugins"

3. Make sure you save the file as plain text (in the TextEdit, go to Menu > Format > Make plain text)

and copy the file to the Contents folder for the main application launcher (i.e. Oxygen XML

Editor.app/Contents). To show the Contents folder for the application launcher, right-click (or

Command+Single-Click) the Oxygen XML Editor icon in Finder, and choose Show Package Contents.

Setting a System Property

Depending on the operating system and type of installer, you can set a Java system property in multiple ways:

• [Windows/Linux Installer] When installing the application on Windows or Linux using the provided

installation kit, you can create your own custom startup parameters file (on page 353) in the

installation folder.

• [macOS Installer] Create a file named vmoptions.txt in the Contents folder within the application

installation folder, similarly to this procedure (on page 350). Add each system property (or Java VM

argument) on a separate line. For example:

-DpropertyName1=value1

-DpropertyName2=value2

• [Windows Linux/Mac Startup Scripts] The application also contains startup scripts in the installation

folder. If you are using such scripts to start the application, you can follow this procedure to set system

properties for them: Setting Parameters in the Command-Line Scripts (on page 352).

Note:

You can also set a system property through a parameter prefixed with -Doxy in the command line used

to start the application:

oxygen25.1.exe "-Doxyproperty.name=value"

but this system property will be set immediately after the application starts and might not be available

if it is needed sooner.

To check the value for a system property, you can select Help > About from the main menu and look in the

System properties tab.

To view the list of Oxygen XML Editor system properties, go to Custom System Properties (on page 343).

Disabling DPI Scaling

Some users may prefer the look of smaller icons in an HiDPI display. To achieve this, display scaling needs to

be disabled for high DPI settings. To disable the DPI scaling, set the following property (on page 351):

sun.java2d.dpiaware=false

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 352

Setting Environment Variables

When started, the application inherits and can access all environment variables set in the operating system.

All processes started by the application (for example, publishing using the DITA Open Toolkit engine or

starting external tools) also inherit the environment variables provided to the application. Depending on the

operating system, environment variables can be set in various ways:

• [Windows] (Note: You will need Administrator permissions or to work with a system administrator):

1. Go to Start > Edit the system environment variables > Environment Variables.

2. Click New in the System variables section.

3. Specify the variable name and value in the Name and Value fields.

4. Click OK.

5. Restart Windows.

• [Linux]:

1. Append the following line to the /etc/environment file:

ENV_VAR_NAME=VALUE

2. Reboot the computer.

• [macOS]: There is no standard way to set an environment variable so that it is inherited by the

applications regardless of the way they start.

To check the value for an environmental variable, you can select Help > About from the main menu and look in

the System properties tab.

Setting Parameters in the Command-Line Scripts

If you start Oxygen XML Editor with a command-line script (oxygen.bat/oxygen.sh), you have to add or

modify parameters in the java command at the end of the script.

For example, to set the maximum amount of Java memory to 2 GB in Windows, add the -Xmx parameter to the

last line of the .bat file like this:

%OXYGEN_JAVA% -Xmx2g -Dsun.java2d.noddraw=true ...

On macOS/Linux, add the -Xmx parameter (followed by a '\') to a new line just above the ro.sync.exml.Oxygen\

line (at approximately line 100) in the .bat file like this:

-cp "$CP"\

 -Xmx2g\

 ro.sync.exml.Oxygen\

 ..

Oxygen XML Editor 27.1 | 4 - Configuring Oxygen XML Editor | 353

Creating Custom Startup Parameters File

You can create your own custom .vmoptions file and the application and the executable tools will

automatically include your custom parameters at startup. The following custom files are recognized by the

application and the executable tools:

• custom_commons.vmoptions - The parameters and their values of this file will be included in all the

startup launchers.

• custom_<app name>.vmoptions - The <app name> is the name of the executable application or

tool (for example, custom_diffFiles.vmoptions for the Compare Files tool). The parameters and

their values of this file will be included in the startup launcher for this particular executable.

For example: To specify a different language for all launchers you can use the custom vmoptions file called

custom_commons.vmoptions and the content would look like this:

-Dcom.oxygenxml.language=French

For example: To increase the memory available for a specific tool, such as the Compare Files tool

(diffFiles.exe), you can use a custom vmoptions file called custom_diffFiles.vmoptions and the

content would look like this:

-Xmx2g

To be recognized and included, these custom startup parameter files must be saved in the installation

directory of Oxygen XML Editor.

How to Increase the Amount of Available Memory
Determining how to increase the amount of memory that is allocated to Oxygen XML Editor depends on how

you launch the application.

• Windows/Linux Application Launcher - If you start Oxygen XML Editor using the default startup

launcher that was created during a Windows or Linux installation, see Increasing the Amount of

Memory that Oxygen XML Editor Uses on Windows and Linux (on page 350).

• macOS Application Launcher - If you start Oxygen XML Editor using the default startup launcher that

was created during a macOS installation, see Increasing the Amount of Memory that Oxygen XML

Editor Uses on macOS (on page 350).

• Command-Line Script - If you start Oxygen XML Editor using a command-line script, see Setting

Parameters in the Command-Line Scripts (on page 352).

• Custom Startup Parameters File - You can also create your own custom startup parameters file and

increase the memory using this file. For more information, see Creating Custom Startup Parameters

File (on page 353).

5.
Perspectives
An Oxygen XML Editor perspective (on page 3299) is a layout geared towards a specific use. The Oxygen

XML Editor interface uses standard interface conventions and components to provide a familiar and intuitive

editing environment across all operating systems. There are several perspectives that you can use to work

with documents in Oxygen XML Editor. You can change the perspective by selecting the respective icon

() in the top-right corner of Oxygen XML Editor or by selecting the perspective from the

Window > Open Perspective menu.

Editor Perspective
The Editor perspective (on page 3299) is the most commonly used perspective and it is the default

perspective when you start Oxygen XML Editor for the first time. It is the perspective that you will use to edit

the content of your XML documents.

To switch the focus to this perspective, select the Editor button in the top-right corner of Oxygen XML

Editor (or select Editor from the Window > Open perspective menu).

The layout of this perspective is composed of the following components:

Menus

Provides menu driven access to all the features and functions available in Oxygen XML Editor.

Most of the menus are common for all types of documents. However, Oxygen XML Editor also

includes some context-sensitive and framework (on page 3297)-specific menus that are only

available for a specific context or type of document.

Toolbars

Provides easy access to common and frequently used functions. Each icon is a button that acts

as a shortcut to a related function. Most of the toolbars are common for all types of documents.

However, Author mode also includes framework (on page 3297)-specific toolbars, depending

on the type of document that is being edited (for example, if you are editing a DITA document,

a DITA Author Custom Actions toolbar is available that includes operations that are specific to

DITA documents). The toolbars can be configured (on page 375) to suit your specific needs.

Editor Pane

The main editing pane where you spend most of your time reading, editing, applying markup, and

validating your documents.

Views

Oxygen XML Editor 27.1 | 5 - Perspectives | 355

Oxygen XML Editor includes a large variety of dockable (on page 3295) views to assist you

with editing, viewing, searching, validating, transforming, and organizing your documents. The

most commonly used views are displayed by default and you can choose to display others

by selecting them from the Window > Show View menu. The layout of the views can also be

configured (on page 370) according to your preferences.

When two or more views are displayed, the application provides divider bars. Divider bars can be

dragged to a new position increasing the space occupied by one panel while decreasing it for the

other.

As the majority of the work process centers around the Editor area, other views can be hidden

using the toggle controls located on the top corner of the view ([on macOS]).

Some of the most helpful views in the Editor perspective include the following:

• Project view (on page 414) - Enables the definition of projects and logical management

of the documents they contain.

• DITA Maps Manager view (on page 2950) - For DITA document types, this view helps you

organize, manage, and edit DITA topics and maps.

• Open/Find Resource view (on page 434) - Designed to offer advanced search

capabilities in various scopes.

• Outline view (on page 551) - It provides an XML tag overview and offers a variety of

functions, such as modifications follow-up, document structure change, document tag

selection, and elements filtering.

• Results view (on page 560) - Displays the messages generated as a result of user

actions such as validations (on page 788), transformation scenarios (on page 1472),

spell checking in multiple files (on page 470), search operations, and others. Each

message is a link to the location related to the event that triggered the message.

• Attributes view (on page 554) - Presents all possible attributes of the current element

and allows you to edit attribute values. You can also use this view to insert attributes in

Text mode. Author mode also includes an in-place attribute editor (on page 643).

• Model view (on page 557) - Presents the currently edited element structure model and

additional documentation as defined in the schema.

• Elements view (on page 558) - Presents a list of all defined elements that you can insert

at the current cursor position according to the document's schema. In Author mode this

view (on page 646) includes tabs that present additional information relative to the

cursor location.

• Entities view (on page 559) - Displays a list with all entities declared in the current

document as well as built-in ones.

• Transformation Scenarios view (on page 1622) - Displays a list with all currently

configured transformation scenarios.

Oxygen XML Editor 27.1 | 5 - Perspectives | 356

• XPath/XQuery Builder view (on page 2112) - Displays the results from running an XPath

expression.

• WSDL SOAP Analyzer view (on page 1090) - Provides a tool that helps you test if the

messages defined in a Web Service Descriptor (WSDL) are accepted by a Web Services

server.

Related information

Editing Supported Document Types (on page 528)

Editing Modes (on page 363)

Configuring the Layout of the Views and Editors (on page 370)

DITA Perspective
The DITA perspective (on page 3299) provides an editing environment with default side-views and other

interface components that are optimal for working with DITA projects. To switch the focus to this perspective,

select the DITA button in the top-right corner of Oxygen XML Editor or select DITA from the Window >

Open perspective menu. If you open a DITA resource from the DITA Maps Manager (on page 2950) while in

another perspective, a message will appear asking if you want to switch to the DITA perspective.

The layout of this perspective is composed of the following components:

Menus

Most of the menus are common for all types of documents, but this perspective also include

DITA-specific actions in the DITA Maps and DITA menus.

Toolbars

Many of the toolbar buttons are common for all types of documents, but Author mode also

includes DITA-specific toolbar actions. The toolbars can be configured (on page 375) to suit

your specific needs.

Editor Pane

The main editing pane where you spend most of your time reading, editing, applying markup, and

validating your documents.

Views

Oxygen XML Editor includes a large variety of dockable (on page 3295) views to assist you with

editing, viewing, searching, validating, transforming, and organizing your documents. By default,

this perspective displays the most commonly used views for DITA users and you can choose to

display others by selecting them from the Window > Show View menu. The layout of the views

can also be configured (on page 370) according to your preferences.

Some of the most helpful views in the DITA perspective include the following:

Oxygen XML Editor 27.1 | 5 - Perspectives | 357

• DITA Maps Manager view (on page 2950) - This view helps you organize, manage, and

edit DITA maps.

• DITA Reusable Components view (on page 3119) - This view is helpful if you use a large

amount of keys or reusable components in your DITA project. It collects all of the keys

and reusable components that are defined in the root map (on page 3301) and presents

them in several tabs. It includes various features to make it easy to locate and insert

references to the reusable content.

• DITA Referenced/Dependent Resources view (on page 3247) - This view displays the

references or dependencies for resources that are directly referenced in the DITA topic.

• Project view (on page 414) - Enables the definition of projects and logical management

of the documents they contain.

• Open/Find Resource view (on page 434) - Designed to offer advanced search

capabilities in various scopes.

• Outline view (on page 551) - It provides an XML tag overview and offers a variety of

functions, such as modifications follow-up, document structure change, document tag

selection, and elements filtering.

• Results view (on page 560) - Displays the messages generated as a result of user

actions such as validations (on page 788), transformation scenarios (on page 1472),

spell checking in multiple files (on page 470), search operations, and others. Each

message is a link to the location related to the event that triggered the message.

• Attributes view (on page 554) - Presents all possible attributes of the current element

and allows you to edit attribute values. You can also use this view to insert attributes in

Text mode. Author mode also includes an in-place attribute editor (on page 643).

• Elements view (on page 558) - Presents a list of all defined elements that you can insert

at the current cursor position according to the document's schema. In Author mode, this

view (on page 646) includes tabs that present additional information relative to the

cursor location.

XSLT Debugger Perspective
The XSLT Debugger perspective (on page 3299) allows you to detect problems in an XSLT transformation by

executing the process step by step in a controlled environment. To switch the focus to this perspective, select

the XSLT Debugger button in the top-right corner of the interface or Window > Open perspective > XSLT

Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing

area contains editor panels that you can split horizontally or vertically (on page 266) in a stack of XML editor

panels and a stack of XSLT editor panels. The XML files and XSL files can be edited in Text mode (on page

363) only.

The layout of this perspective is composed of the following components:

Menus

Provides menu driven access to all the features and functions available in the XSLT Debugger.

Oxygen XML Editor 27.1 | 5 - Perspectives | 358

Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be

configured (on page 375) to suit your specific needs.

XML Source Pane

The editing pane where you can display and edit data or document-oriented XML documents.

XSL Source Pane

The editing pane where you can display and edit XSL stylesheets.

Output View

Displays the transformed output that results from the input of a selected document (XML) and

selected stylesheet (XSL) to the transformer. The result of transformation is dynamically written

as the transformation is processed. There are three types of views for the output: a text view

(with XML syntax highlight), an XHTML view, and one text view for each <xsl:result-document>

element used in the stylesheet (if it is an XSLT 2.0 / 3.0 stylesheet).

Debugging Information Views (on page 2215)

Presented in two panes, they display various types of information that can be used to

understand the transformation process. For each information type there is a corresponding

tab. While running a transformation, relevant events are displayed in the various information

views. This allows you to obtain a clear view of the transformation progress. See the Debugging

Information Views (on page 2215) topic for a list of all the information views (and links to more

details on each view).

Note:

You can add XPath expression automatically in the XWatch view using the Watch

expression action from the contextual menu. In case you select an expression or

a fragment of it and then click Watch expression in the contextual menu, the entire

selection is presented in the XWatch view. Using Watch expression without selecting

an expression displays the value of the attribute from the cursor position in the XWatch

view. Variables detected at the cursor position are also displayed. Expressions displayed

in the XWatch view are normalized (unnecessary white spaces are removed from the

expression).

Resources

For more information about the XSLT debugging capabilities in Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/m9d8c4V-LJw

https://www.youtube.com/embed/m9d8c4V-LJw

Oxygen XML Editor 27.1 | 5 - Perspectives | 359

Related information

Debugging XSLT Stylesheets and XQuery Documents (on page 2209)

XQuery Debugger Perspective (on page 359)

XQuery Debugger Perspective
The XQuery Debugger perspective (on page 3299) allows you to detect problems in an XQuery

transformation process by executing the process step by step in a controlled environment and inspecting

the information provided in the special views. To switch the focus to this perspective, select the XQuery

Debugger button in the top-right corner of the interface or Window > Open perspective > XQuery Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing

area contains editor panels that you can split horizontally or vertically (on page 266) in a stack of XML editor

panels and a stack of XQuery editor panels. The XML files and XQuery files can be edited in Text mode (on

page 363) only.

The layout of this perspective is composed of the following components:

Menus

Provides menu driven access to all the features and functions available in the XQuery Debugger.

Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be

configured (on page 375) to suit your specific needs.

XML Source Pane

The editing pane where you can display and edit data or document-oriented XML documents.

XQuery Source Pane

The editing pane where you can display and edit XQuery files.

Output View

Displays the transformed output that results from the input of a selected document (XML)

and selected XQuery document to the XQuery transformer. The result of transformation is

dynamically written as the transformation is processed. There are two types of views for the

output: a text view (with XML syntax highlight) and an XHTML view.

Debugging Information Views (on page 2215)

Presented in two panes, they display various types of information that can be used to

understand the transformation process. For each information type there is a corresponding

tab. While running a transformation, relevant events are displayed in the various information

views. This allows you to obtain a clear view of the transformation progress. See the Debugging

Information Views (on page 2215) topic for a list of all the information views (and links to more

details on each view).

Oxygen XML Editor 27.1 | 5 - Perspectives | 360

Note:

You can add XPath expression automatically in the XWatch view using the Watch

expression action from the contextual menu. If you select an expression, or a fragment

of it, and then click Watch expression in the contextual menu, the entire selection is

presented in the XWatch view. Expressions displayed in the XWatch view are normalized

(unnecessary white spaces are removed from the expression).

Resources

For more information about the XQuery debugging capabilities in Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/o5_M2kbyipU

Related information

Debugging XSLT Stylesheets and XQuery Documents (on page 2209)

XSLT Debugger Perspective (on page 357)

Database Perspective
The Database perspective (on page 3299) allows you to manage databases. To switch the focus to this

perspective, select the Database button in the top-right corner of Oxygen XML Editor or Window > Open

perspective > Database from the Window > Open perspective menu.

The Database perspective offers various helpful features, including:

• Support for browsing multiple connections at the same time.

• Support for both Relational and Native XML databases.

• Browsing the structure of databases.

• Viewing tables from databases.

• Inspecting or modifying data.

• Specifying XML Schemas for XML fields.

• SQL execution.

• XQuery execution.

• Data export to XML.

Supported Databases

Oxygen XML Editor supports numerous types of databases, including:

• eXist XML Database

• IBM DB2 (Enterprise edition only)

• JDBC-ODBC Bridge

• MarkLogic (Enterprise edition only)

https://www.youtube.com/embed/o5_M2kbyipU

Oxygen XML Editor 27.1 | 5 - Perspectives | 361

• MySQL

• Oracle 11g (Enterprise edition only)

• PostgreSQL (Enterprise edition only)

• SharePoint (CMS)

• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only) (Deprecated)

Note:

For the databases marked with "Enterprise edition only", the XML capabilities are only available in the

Enterprise edition of Oxygen XML Editor. For a detailed feature matrix that compares the Academic,

Professional, and Enterprise editions of Oxygen XML Editor go to the Oxygen XML Editor website.

Supported Capabilities

The supported non-XML capabilities are as follows:

• Browsing the structure of the database instance.

• Opening a database table in the Table Explorer view (on page 2127).

• Handling the values from XML Type columns as String values.

Note:

The non-XML capabilities are available in the Enterprise, Academic, and Professional editions of

Oxygen XML Editor by registering the database driver as a Generic JDBC type driver when defining the

data source for accessing the database. For more information, see Database Connection Support (on

page 2130).

The supported XML capabilities are as follows:

• Displaying an XML Schema node in the tree of the database structure (for databases with an XML-

specific structure) with actions for opening, editing, and validating the schemas in an Oxygen XML

Editor editor panel.

• Handling the values from XML Type columns as XML instance documents that can be opened and

edited in an Oxygen XML Editor editor panel.

• Validating an XML instance document added to an XML Type (column of a table, etc.)

Tip:

Connections configured on relational data sources can be used to import data to XML or to generate

XML schemas.

Layout of the Database Perspective

The layout of this perspective is composed of the following components:

Menus

https://www.oxygenxml.com/feature_matrix.html
https://www.oxygenxml.com/feature_matrix.html
https://www.oxygenxml.com/feature_matrix.html

Oxygen XML Editor 27.1 | 5 - Perspectives | 362

Provides menu driven access to all the features and functions available in the perspective.

Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be

configured (on page 375) to suit your specific needs.

Editor Pane

The main editing pane where you spend most of your time reading, editing, applying markup, and

validating your documents.

Data Source Explorer View (on page 2125)

Provides browsing support for the configured connections.

Table Explorer View (on page 2127)

Provides table content editing support for inserting new rows, deleting table rows, editing cell

values, exporting to an XML file, and more.

Related information

Working with Databases (on page 2125)

Data Source Explorer View (on page 2125)

Table Explorer View (on page 2127)

6.
Editing Modes
The main editing area in Oxygen XML Editor includes several editing modes to suit the type of editing that you

want to perform. You can easily switch between modes by clicking on the desired mode at the bottom of the

main editing pane. Oxygen XML Editor offers the following editing modes:

• Text (on page 363) - This mode presents the source of the document.

• Grid (on page 364) - This mode displays the document as a structured grid of nested tables.

• Author (on page 364) - This mode enables you to edit in a WYSIWYG-like editor.

• Design (on page 365) - This mode is found in the schema editor and represents the schema as a

diagram.

The default editing mode that will be initially opened for each type of document can be set in two ways:

• If the Allow Document Type specific edit mode setting to override the general mode setting option

(on page 179) is selected in the Edit Modes preferences page, then the edit mode specified in the

Document Type configuration dialog box (on page 148) is used when that particular type of document

is initially opened.

• If the Allow Document Type specific edit mode setting to override the general mode setting option (on

page 179) is not selected, then the edit mode specified in the table in the Edit Modes preferences page

(on page 179) is used when that particular type of document is initially opened.

Text Editing Mode
The Text mode editor in Oxygen XML Editor is designed to be a simple, yet powerful, XML source editor. It

provides support to help you edit, transform, and debug XML-based documents. It is similar to other common

text editors, but Oxygen XML Editor also includes specialized editing actions, a powerful Content Completion

Assistant, and many other unique features.

To switch to this mode, select Text at the bottom of the editing area.

For more information about working with XML documents in Text mode and all of the details about its

features, see the Editing XML Documents in Text Mode section (on page 529).

Related information

Editing XML Documents in Text Mode (on page 529)

Oxygen XML Editor 27.1 | 6 - Editing Modes | 364

Grid Editing Mode
The Oxygen XML Editor Grid editing mode displays the XML document as a structured grid of nested tables

where the text content can be modified without directly interacting with the XML markup. This is helpful for

non-technical users who want to edit text content without modifying the XML markup. You can easily expand

or collapse elements within the table and the document structure can be changed with simple drag/drop or

copy/paste operations.

To switch to this mode, select Grid at the bottom of the editing area.

Figure 53. Grid Editing Mode

For more information about working with XML documents in Grid mode and all of the details about its

features, see the Editing XML Documents in Grid Mode section (on page 592).

Related information

Editing XML Documents in Grid Mode (on page 592)

Author Editing Mode
The Author editing mode in Oxygen XML Editor allows you to visually edit XML documents in a user-friendly

interface that is similar to a WYSIWYG word processor. Oxygen XML Editor provides support for visually

editing the most commonly used XML vocabularies in Author mode, including DITA, DocBook, TEI, and

XHTML. Adding text content is as simple as doing so in a standard text editor but the content is rendered

similar to how you will see it in the output. Tables, images, and media objects (such as videos) are also

rendered comparable to the output.

To switch to this mode, click the Author button at the bottom of the editing area.

For more information about working with XML documents in Author mode and all of the details about its

features, see the Editing XML Documents in Author Mode section (on page 601).

Oxygen XML Editor 27.1 | 6 - Editing Modes | 365

Related information

Editing XML Documents in Author Mode (on page 601)

Design Editing Mode (Schema Diagram Editor)
Schemas allow document designers to specify the allowed structure and content of a document and to check

if it is valid. Oxygen XML Editor provides a simple and expressive schema diagram editor (Design mode) for

editing XML schemas or JSON schemas. The schema diagram helps both the content authors who want to

understand a schema and schema designers who develop complex schemas.

The Design mode offers a diagram view of the schema document by rendering all the schema components.

You can edit component features directly within the diagram (for instance, the component name, its type, etc.),

you can quickly navigate to the referenced definitions (elements, attributes, types, groups, etc.), and you can

use drag-and-drop operations to move, copy, or make references. It also features some specialized helper

views (such as the Palette view and Facets view) to further enhance the diagram editor, various contextual

menu actions, validation support, and much more.

To switch to this mode, select Design at the bottom of the editing area.

Oxygen XML Editor 27.1 | 6 - Editing Modes | 366

Figure 54. XML Schema Diagram

XML Schema Resources

For more information about designing and editing XML schemas, and all the details about the features that are

available in the Oxygen XML Editor Design mode for XML schema documents, see the Editing XML Schemas

section (on page 966) and the XML Schema Design Mode (XML Schema Diagram Editor) subsection (on

page 967).

JSON Schema Resources

For more information about designing and editing JSON schemas, and all the details about the features that

are available in the Oxygen XML Editor Design mode for JSON schema documents, see the Editing JSON

Oxygen XML Editor 27.1 | 6 - Editing Modes | 367

Schemas section (on page 1173) and the JSON Schema Design Mode (JSON Schema Diagram Editor)

subsection (on page 1175).

7.
Working With Documents
Oxygen XML Editor includes a variety of general features that can be used when working with most types of

documents. More specialized features are available when working with specific types of documents, such as

the various types of XML documents, CSS (on page 1094), JavaScript (on page 1221), Markdown (on page

1298), and more. For details about those specialized features for specific types of documents, see Editing

Supported Document Types (on page 528).

This chapter includes information about how to create and work with documents, working with projects, and

various general editing features. This chapter also includes information about some of the special tools that

are included in Oxygen XML Editor, such as the file and directory comparison tools (on page 485).

Getting Familiar with the Interface
Oxygen XML Editor includes several perspectives (on page 3299) and editing modes (on page 363) to help

you accomplish a wide range of tasks. Each perspective and editing mode also includes a large variety of

helper views, menu actions, toolbars, and contextual menu functions.

There are various ways that you can configure the layout of the views or editors (on page 370), and you can

customize the toolbars (on page 375).

Regardless of the perspective (on page 3299) or editing mode that you are working with, the default layout

consists of the following areas:

Menus

Menu-driven access to all the features and functions available in Oxygen XML Editor. Most of

the menus are common for all types of documents, but Oxygen XML Editor also includes some

context-sensitive and framework-specific menus and actions that are only available for a specific

context or type of document.

Toolbars

Easy access to common and frequently used functions. Each icon is a button that acts as a

shortcut to a related function. Some of the toolbars are common for all perspectives, editing

modes, and types of documents, while others are specific to the particular perspective or mode.

Some toolbars are also framework-specific, depending on the type of document that is being

edited. All the toolbars can be configured (on page 375) to suit your specific needs.

Helper Views

Oxygen XML Editor includes a large variety of dockable (on page 3295) views to assist you with

editing, viewing, searching, validating, transforming, and organizing your documents. Many of

the views also contain useful contextual menu actions, toolbar buttons, or menus. The most

Oxygen XML Editor 27.1 | 7 - Working With Documents | 369

commonly used views for each perspective and editing mode are displayed by default and you

can choose to display others to suit your specific needs. The layout of the views can also be

configured (on page 370) according to your preferences.

Editor Pane

The main editing area in the center of the application. Each editing mode provides a main editor

pane where you spend most of your time reading, editing, applying markup, and validating your

documents. The editor pane in each editing mode also includes various contextual menu actions

and other features to help streamline your editing tasks. Each file that has been opened has a

tab at the top of the editing pane and there are several ways to switch between tabs or move

them (on page 404).

Perspectives

Oxygen XML Editor includes several different perspectives (on page 354) that you can use to

work with your documents. The Editor perspective is the most commonly used perspective used

for displaying and editing the content of your XML documents, and it is the default perspective

when you start Oxygen XML Editor for the first time. Oxygen XML Editor also includes a

Database perspective that allows you to manage databases and their connections and a few

debugging perspectives that allow you to detect problems in XSLT or XQuery transformations.

Status Bar

The status bar at the bottom of the application contains some useful information when you are

working with documents. It includes the following information, in the order it is displayed from

left to right:

• The path of the current document.

• The Unicode value (on page 475) for the character directly to the right of the current

cursor position.

• The status of the current document. The status of Modified is displayed for documents

that have not yet been saved. Otherwise, this section is left blank.

• In Text editing mode, the current line and character position is displayed.

• If the Check for notifications option (on page 134) is selected, this section will show you

when new messages have been received. The types of messages include the addition of

new videos on the Oxygen XML Editor website, the announcement of upcoming webinars

and conferences where the Oxygen XML Editor team will participate, and more.

• The memory consumption, including the memory used by the application and the

maximum amount that is allocated to the application.

• If the Show memory status option (on page 136) is selected, a Free unused memory

icon is displayed in the bottom-right corner and you can use this icon to free up unused

memory.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 370

Configuring the Layout of the Views and Editors

All of the side-views available in Oxygen XML Editor are dockable (on page 3295) and there are various ways

to configure and arrange the layout of the views and editing panes. You can also configure the layout of the

toolbars (on page 375).

To open a view, select it from the Window > Show View menu. You can hide a view by closing it with the

button at the top-right corner of the view, or with the Window > Hide current view action.

Arranging the Layout

You can drag any view to any margin of another view or editor inside the Oxygen XML Editor window. Once

you create a layout that suits your needs, you can save it from Window > Export Layout. Oxygen XML Editor

creates a layout file containing the preferences of the saved layout. To load a layout, go to Window > Load

Layout. To reset it, select Window > Reset Layout.

Note:

The Load Layout menu lets you select between the default layout, a predefined layout, or a custom

layout. The changes you make using the Load Layout menu are also reflected in the Application

Layout preferences page.

The changes you make to any layout are preserved between working sessions. The predefined layout files are

saved in the preferences directory (on page 133) of Oxygen XML Editor.

You can drag the editors and arrange them in any order, both horizontally and vertically.

The following image presents two editors arranged as horizontal tiles. To arrange them vertically, drag one of

them on top of the other. In the following example, the personal.xml file was dragged over the personal-

schema.xml file:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 371

Figure 55. Drag and Drop Editors

Hide or Float Views

Hide

To gain more editing space in the Oxygen XML Editor window, click Toggle auto-hide in any

view. This button sets the view in the auto-hide state, making it visible only as a vertical tab, at

the margins of the Oxygen XML Editor window. To display a view in the auto-hide state, hover its

side-tab with your cursor, or click it to keep the view visible until you click elsewhere.

Float

A view can also be set to a floating state by using the Toggle floating action, making it

independent from the rest of the Oxygen XML Editor window.

Maximize the Editing Environment

You can configure the interface to maximize the editing area, leaving more vertical screen space available for

the main editing pane. This is, for example, useful for presentations on low-resolution screens or for laptops

Oxygen XML Editor 27.1 | 7 - Working With Documents | 372

with small screen space. You can use the following two actions that are available in the Window menu to

create a near full-screen editing environment:

Maximize Editor Area

If toggled on, all side views are minimized to give you more horizontal space in the editing pane.

Hide All Toolbars

If toggled on, all toolbar buttons are hidden to give you more vertical space in the interface.

Tile/Stack Editor Actions

You can also tile or stack all open editors using the following actions from the toolbar or Window menu:

Tile Editors Horizontally

Splits the editing area into horizontal tiles, one for each open file.

Tile Editors Vertically

Splits the editing area into vertical tiles, one for each open file.

Stack Editors

The reverse of the Tile Editors Horizontally/Vertically actions. Stacks all open editors.

Synchronous Scrolling

Select this action to scroll through the tiled editors at the same time.

Note:

When tiled, you can still drag and drop the editors, but note that they are docked in the same way as a

window/view (instead of just tabs). You are actually rearranging the editor windows, so drag the editor

tab and drop it to one of the sides of an editor (left/right/top/bottom). While dragging, you will see

the dark gray rectangle aligned to one of the sides of the editor, or around the entire editor window. If

you drop it to one of the sides, it will dock to that side of the editor. If you drop it when the rectangle is

around the entire window of the editor, it will get stacked on top of that editor. You can also grab one

of the stacked editors and tile it to one of the sides.

Split Editor Actions

You can divide the editing area vertically and horizontally using the following actions available in the toolbar

and Window menu:

• Split Editor Horizontally - Splits the editor horizontally so that two editor panes are displayed with

one on top of the other. This is useful for comparing and merging content between two documents.

• Split Editor Vertically - Splits the editor vertically so that two editor panes are displayed side by side.

This is useful for comparing and merging content between two documents.

• Unsplit Editor - Removes a split action on the editing area.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 373

To maximize or restore the editors, go to Window > Maximize Editing Area.

Switch, Move, or Hide Editor Tabs

Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch

between tabs or move them, and you can even hide the tabs to only show the currently open file.

Note:

If multiple file tabs are left open when you close the application, upon startup, Oxygen XML Editor

will not load the file content until you switch to the corresponding file tab. The tabs remain visible as

a placeholders until the focus is switched to them. This helps to improve the application's startup

time. If you want to disable this feature (meaning that the previously open files will all be re-loaded at

startup), deselect the Load file content only when switching to its corresponding editor tab option in

the Global preferences page (on page 135).

Switching Editor Tabs

You can switch between editor tabs by using any of the following methods:

Mouse and Scroll Wheel

Of course, you can switch to a different editor tab by left-clicking the tab with your mouse, but

when there are too many open tabs to fit on the screen, you can hover over the tab stripe and use

the scroll wheel on your mouse to scroll to the left or right (same as using the two arrows on the

far-right of the tab stripe).

Buttons on the Far-Right of the Tab Stripe ()

You can use the arrow buttons () on the right side of the tab stripe to scroll to the left or right

and the Show List button opens a pop-up window that displays all the open file tabs and

allows you to select and switch to a specific open file.

Ctrl + Tab (Command + Tab on macOS) [NOTE: Ctrl + Page Down (Ctrl + Option + Right Arrow on macOS)

does the same]

Switches to the next open tab in the order specified in the Order of switching between editor

tabs option (on page 136).

Ctrl + Shift + Tab (Command + Shift + Tab on macOS) [NOTE: Ctrl + Page Up (Ctrl + Option + Left Arrow

on macOS) does the same]

Switches to the previous open tab in the order specified in the Order of switching between editor

tabs option (on page 136).

Window > Switch editor tab (Ctrl + F9 (Command + F9 on macOS))

This action opens a dialog box that allows you to switch to a particular editor tab by selecting

it from a filterable list. This is especially helpful when you have a large amount of open file tabs

and you want to switch to a certain tab this is not shown on the screen. It includes a search filter

field and several options to help you find specific open file tabs.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 374

Figure 56. Switch Editor Tab Dialog Box

The Switch Editor Tab dialog box contains the following options and features:

Search Filter

You can enter text in the filter field at the top of the dialog box to filter the list

and search for specific open files. You can enter any number of terms, separated

by space, and wildcards are allowed (for example, * to match any sequence of

characters, or ? to match a single character). This field also has a history drop-

down that allows you to select previously used search terms.

Match all terms

If this option is selected, only the files that match all of your search terms will be

displayed. If you use a wildcard in the search filter, this option is automatically

disabled.

Include file paths

If this option is selected, the search is expanded to include file paths, and also the

paths are displayed in this dialog box.

Case sensitive

If this option is selected, the search operation will be case-sensitive.

List of Open File Tabs

Oxygen XML Editor 27.1 | 7 - Working With Documents | 375

All files that are currently open are displayed in the upper part of the main pane of

the dialog box, followed by recently closed files. Files that have been modified but

not yet saved are prefixed by an asterisk. To switch to a particular file tab, double-

click the file or select it and click OK.

Moving Editor Tabs

You can move editor tabs by using any of the following methods:

Mouse Drag

You can use your mouse to drag editor tabs to a new location on the tab stripe.

Ctrl + Alt + Comma

Moves the current file tab one position to the left.

Ctrl + Alt + Period

Moves the current file tab one position to the right.

Hiding Editor Tabs

If you want to hide all the file tabs and only show the currently open file, select Hide editor tabs from the

Window menu. This does not close the other tabs, just hides them. You can still navigate between tabs using

keyboard shortcuts (Ctrl + Tab, Ctrl + Shift + Tab, Ctrl + F6, Ctrl + Shift + F6) or by selecting Next editor or

Previous editor from the Window menu.

Resources

For more information about configuring the interface of Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/anwjepfAdEk

Tip:

To get more ideas for more advanced customization possibilities, watch our Webinar: Working with

DITA in Oxygen - Customizing the Editing Experience. It offers a visual demonstration of how to

customize actions, document validation, content completion, new document templates, Author mode

rendering, and more.

Related information

Configuring Toolbars (on page 375)

Configuring Toolbars

You can configure the toolbars in Oxygen XML Editor to personalize the interface for your specific needs.

You can choose which toolbars to show or hide in the current editor mode (Text, Author,Design, or Grid) and

in the current perspective (on page 3299) (Editor, XSLT Debugger, XQuery Debugger, or Databse). You can

https://www.youtube.com/embed/anwjepfAdEk
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 376

also choose which actions to display in each toolbar, add actions to toolbars, and customize the layout of the

toolbars.

To configure the toolbars, open the Configure Toolbars dialog box by doing one of the following:

• Right-click any toolbar and select Configure Toolbars.

• Select Configure Toolbars from the Window menu.

Figure 57. Configure Toolbars Dialog Box

The Configure Toolbars dialog box provides the following features:

Filter Text Box

You can use the filter text box at the top of the dialog box to search for a specific toolbar or

action.

Show or Hide Toolbars

You can choose whether to show or hide a toolbar by using the checkbox next to the toolbar

name. This checkbox is only available for toolbars that are available for the current perspective

(on page 3299) and editing mode.

Show or Hide Actions in a Toolbar

To show or hide actions in a toolbar, expand it by clicking the arrow next to the toolbar name,

then use the checkbox to select or deselect the appropriate actions. The toolbar configuration

changes in the Preview column according to your changes.

Add Actions to a Toolbar

Oxygen XML Editor 27.1 | 7 - Working With Documents | 377

Use the Add Actions button to open the Add Actions dialog box that displays all the actions

that can be added to any of the toolbars, with the exception of those that are contributed from

frameworks (on page 3297) or 3rd party plugins (on page 3299).

Remove Actions from a Toolbar

You can remove actions that you have previously added to toolbars by using the Remove Action

button.

Move Actions in a Toolbar

Use the Move Up and Move Down actions to change the order of the actions in a toolbar.

The Configure Toolbars dialog box also provides a variety of other ways to customize the layout in Oxygen

XML Editor.

Customize My Toolbar

You can customize the My Toolbar to include your most commonly used actions. By default,

this toolbar is listed first. Also, it is hidden until you add actions to it and you can easily hide it

with the Hide "My Toolbar" Toolbar action that is available when you right-click anywhere in the

toolbar area.

Drop-down Menu Actions

Composite actions that are usually displayed as a drop-down menu can only be selected in one

toolbar at a time. These actions are displayed in the Configure Toolbars dialog box with the

name in brackets.

Configure External Tools Action

There is a Configure external tools composite action that appears in the toolbar called

Tools. It is a drop-down menu that contains any external tools that are configured in the External

Tools preferences page.

Note:

If no external tools are configured, this drop-down menu is not shown in the toolbar.

Additional actions are available from the Window menu or contextual menu when invoked from a toolbar that

allows you to further customize your layout. These actions include:

Reset Toolbars

To reset the layout of toolbars to the default setting, select the Reset Toolbars action from the

contextual menu or Window menu.

Reset Layout

To reset the entire layout (including toolbars, editing modes, views, etc.) to the default setting,

select Reset Layout from the contextual menu or Window menu.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 378

Export Layout

You can use the Export Layout action that is available in the Window menu to export the entire

layout of the application to share it with other users.

Hide Toolbars

You can use the Hide Toolbar action from the contextual menu to easily hide a displayed toolbar.

When you right-click a toolbar it will be highlighted to show you which actions are included in

that toolbar.

Related information

Configuring the Layout of the Views and Editors (on page 370)

Creating, Opening, Saving, and Closing Documents
Oxygen XML Editor includes various features, actions, and wizards to assist you with creating new files and

working with existing files. This section explains many of these features, including information on creating

new documents, opening, saving, and closing existing files, searching documents, viewing file properties, and

more.

Creating New Documents and Templates

Oxygen XML Editor includes a helpful New Document wizard that allows you to customize and create new files

from a large list of document types and built-in templates. You can also create your own templates (on page

387) and share them with others (on page 392).

To create a new document:

1. Click the New button on the toolbar or select File > New.

2. Select the type of document that you want to create.

Tip:

You can use the text filter field at the top of the dialog box to search for a specific template.

3. Click the Create button at the bottom of the dialog box.

New Document Wizard

Oxygen XML Editor supports a wide range of document types. The New Document wizard presents the default

associations between a file extension and the type of editor that opens the file. To customize these default

associations, open the Preferences dialog box (Options > Preferences) (on page 132) and go to File Types

(on page 307).

The New Document wizard creates a skeleton document that may contain a root element, the document

prolog, and possibly other child elements depending on options that are specific for each schema type. You

can also create your own custom document templates (on page 387) and select them from this wizard.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 379

New Document Wizard

To create a new document using this wizard, follow these steps:

1. Click the New button on the toolbar or select File > New.

Result: The New Document wizard is displayed:

Figure 58. New Document Wizard

The first page of the wizard displays the supported document types and groups them in the following

categories:

Recently Used

Contains the list of the most recently used file types. To clear the history of this folder,

right-click an entry and select Remove all (or select an entry and press Ctrl + Delete on

your keyboard). To remove a single entry, right-click and select Remove (or select the

entry and press Delete on your keyboard).

User-defined template directory

You can add your own custom templates by creating template files (on page 387) in

a directory and then adding that directory to the list of template directories that Oxygen

XML Editor uses in the Document Templates preferences page (on page 175). This user-

defined directory will also appear in the New Document wizard.

Popular

Oxygen XML Editor 27.1 | 7 - Working With Documents | 380

Contains a list of popular framework templates. Each of these templates are marked

as popular using a properties file that contains popular as one of the values for the

tags property. For example, for the OXYGEN_INSTALL_DIR/frameworks/dita/

templates/topic/Topic.dita template, there is a Topic.properties sibling file

that contains tags=popular. Other document templates can also be added to the Popular

category by customizing them using a properties file for each one (on page 388).

New Document

Contains the list of all supported document types. This list includes XML, XSL, XML

Schema, Document Type Definition, Relax NG Schema, XQuery, Web Services Definition

Language, Schematron Schema, CSS, Text, PHP, PowerShell, JavaScript, Java, C, C++,

Batch, Shell, Properties, SQL, XML Catalog, PERL, JSON, and more.

Global Templates

Contains the list of built-in templates along with user-defined custom templates. You

can create your own custom document templates (on page 387) and add them to the

templates folder of the Oxygen XML Editor installation directory.

Framework Templates

Contains the list of templates defined in the Document Type configuration dialog box

(Templates tab) (on page 171) for each framework.

2. Select the type of document that you want to create.

Tip:

You can use the text filter field at the top of the dialog box to search for a specific template.

3. If you want to change the default name and path of the file, select the Save as option and specify the

file path (the Show "Save as" option to save newly created documents in the "New" document wizard

option (on page 210) must be selected in the Save preferences page). Otherwise, the file will be opened

in a new tab with a default untitled name and the document path will not exist until you save it.

Note:

For DITA documents, the dialog box includes some additional options for generating a title, file

name, and root ID attribute. For more information, see Creating a New DITA Topic (on page

3015).

4. If you want to use the default settings in the creation process, select Create at the bottom of the dialog

box.

Result: The document is created using the default settings and the new file is opened in the appropriate

editor.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 381

5. If you want to configure properties before creating the file, select Customize. This action is available for

XML, XML Schema, Schematron, and XSL documents.

Result: A new file configuration dialog box is opened that allows you to customize various options,

depending on the document type you selected. After configuring the options in this wizard, click Create

to create the file and open it in the appropriate editor.

XML Document Configuration Page

Figure 59. New XML Document Configuration Wizard Page

If you selected XML Document for the type of file you want to create and selected the Customize option,

the configuration dialog box will include the following options:

Schema URL

Specifies the path to the schema file. When you select a file, Oxygen XML Editor analyzes its

content and tries to fill in the rest of the dialog box.

Schema Type

Allows you to select the schema type. The following options are available: XML Schema, DTD,

RelaxNG XML syntax, RelaxNG compact syntax, and NVDL.

Public ID

Oxygen XML Editor 27.1 | 7 - Working With Documents | 382

Specifies the PUBLIC identifier declared in the document prolog.

Namespace

Specifies the document namespace.

Prefix

Specifies the prefix for the namespace of the document root.

Root Element

Populated with elements defined in the specified schema, enables selection of the element used

as document root.

Description

A small description of the selected document root.

Add Optional Content

If you select this option, the elements and attributes defined in the XML Schema as optional are

generated in the skeleton XML document.

Add First Choice Particle

If you select this option, Oxygen XML Editor generates the first element of an <xs:choice> schema

element in the skeleton XML document. Oxygen XML Editor creates this document in a new

editor panel when you click OK.

XSLT Document Configuration Page

Figure 60. New XSLT Stylesheet Configuration Wizard Page

If you selected XSLT Stylesheet for the type of file you want to create and selected the Customize option,

the configuration dialog box will include the following options:

Stylesheet version

Allows you to select the Stylesheet version number. You can select from: 1.0, 2.0, 3.0, and 4.0.

Add documentation annotations

Oxygen XML Editor 27.1 | 7 - Working With Documents | 383

Select this option to generate the stylesheet annotation documentation.

XML Schema Document Configuration Page

Figure 61. New XML Schema Configuration Wizard Page

If you selected XML Schema for the type of file you want to create and selected the Customize option, the

configuration dialog box will include the following options:

Default XML Schema version

Uses the XML Schema version defined in the XML Schema preferences page (on page 248).

XML Schema 1.0

Sets the @minVersion attribute to 1.0 and the @maxVersion attribute to 1.1.

XML Schema 1.1

Sets the @minVersion attribute to 1.1.

Target namespace

Allows you to specify the schema target namespace.

Namespace prefix declaration table

Oxygen XML Editor 27.1 | 7 - Working With Documents | 384

This table contains namespace prefix declarations. Table information can be managed using the

New and Delete buttons.

Tip:

For further details on how you can set the version of an XML Schema, go to Setting the

XML Schema Version (on page 1050).

Schematron Document Configuration Page

Figure 62. New Schematron Configuration Wizard Page

If you selected Schematron for the type of file you want to create and selected the Customize option, the

configuration dialog box will include the following option:

Schematron version

Specifies the Schematron version. Possible options: 1.5 (deprecated) and ISO.

Note:

Starting with version 16.0 of Oxygen XML Editor, the support for Schematron 1.5 is

deprecated. It is recommended to use ISO Schematron instead.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 385

XProc Configuration Page

Figure 63. New XProc Configuration Wizard Page

If you selected XProc script for the type of file you want to create and selected the Customize option, the

configuration dialog box will include the following option:

XProc version

Specifies the XProc version. Possible options: 1.0, 3.0 and 3.1.

JSON Document Configuration Page

Figure 64. New JSON Configuration Wizard Page

If you select JSON for the type of file you want to create and select the Customize option, the configuration

dialog box will include the following options:

Schema URL

Specifies the path to a JSON schema file that will be used to generate key-value pairs.

Associate Schema in the Document

If you select this option, the JSON instance will be generated with the JSON schema associated

directly in the document.

Generate Optional Properties

Oxygen XML Editor 27.1 | 7 - Working With Documents | 386

If you select this option, the JSON instance will be generated with optional properties that are

defined in the JSON schema. Otherwise, only the required properties will be generated.

Generate Additional Content

If you select this option, the JSON instance will be generated with additional properties that are

defined in the JSON schema as additionalProperties and additional items that are defined as

additionalItems (in the case of an array).

YAML Document Configuration Page

Figure 65. New YAML Configuration Wizard Page

If you select YAML for the type of file you want to create and select the Customize option, the configuration

dialog box will include the following options:

Schema URL

Specifies the path to a JSON schema file that will be used to generate key-value pairs.

Associate Schema in the Document

If you select this option, the YAML instance will be generated with the JSON schema associated

directly in the document.

Generate Optional Properties

If you select this option, the YAML instance will be generated with optional properties that are

defined in the JSON schema. Otherwise, only the required properties will be generated.

Generate Additional Content

If you select this option, the YAML instance will be generated with additional properties that are

defined in the JSON schema as additionalProperties and additional items that are defined as

additionalItems (in the case of an array).

Property Value

Oxygen XML Editor 27.1 | 7 - Working With Documents | 387

Specifies the method of generating values for the properties. Possible values: None, Default,

Random.

Creating New Document Templates

Oxygen XML Editor allows you to create your own custom document templates and they will appear in the

New document wizard (on page 378).

Creating a New Document Template

To create your own custom document template and have it appear in the new document wizard, follow these

steps:

1. Create a new file (whatever type of document you need) and customize it to become a starting point for

creating new files of this type.

Tip:

You can use editor variables (on page 333) in the template file content and they will be

expanded when the files are opened. Also, see Customizing Document Templates (on page

388) for other template customization tips (for example, you could add placeholders or hints

(on page 391) to assist authors).

2. Save the new document template and reference that location in Oxygen XML Editor. There are several

options for doing this:

◦ Saving the new template in a specific framework's directory - Save the new template in a

directory (for example, called templates) within that specific framework directory (usually a

custom framework (on page 2240)). Then open the Document Type configuration dialog box

(on page 148) for that specific framework, go to the Templates tab (on page 171), and click the

 button in the bottom-right corner to add your new directory to the list. It is recommended that

the reference be made relative to the framework directory (for example, ${frameworkDir}/

templates). You can also remove any existing entries in the list that aren't applicable or won't

be used in your custom framework. Click OK to close the configuration dialog box and then OK

or Apply to save your changes.

◦ Saving the new template in the Oxygen installation directory - Save the new

template in the templates directory of the Oxygen XML Editor installation directory

([OXYGEN_INSTALL_DIR]/templates). Document templates saved in this directory will

appear in the Global templates category in the New document wizard (on page 378).

◦ Saving the new template in a custom directory - Save the new template in any directory of

your choice and then add that directory to the list of templates in the Document Templates

preferences page (on page 175). This user-defined directory will appear in the New document

wizard (on page 378) along with all the new document templates that you save inside it. Click

OK or Apply to save your changes.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 388

Tip:

If you want to create a new template for a binary file (e.g. a zip archive), you need to add .bin to

the end of the file name (for example, *.zip.bin or *.epub.bin). Otherwise, the files will be treated

as XML/text documents and you will be prompted to choose the editor type.

Attention:

The name that you use to save the template will be the name that appears in the new

document wizard, including capitalization, space, and characters (for example, My Custom

Template1.xml will appear in the new file wizard as My Custom Template1). You can also

configure the displayed name in a properties file by following the procedure found in the

Configure the Displayed Names for Document Templates (on page 390) section.

3. Open the new document wizard (New toolbar button or File > New) and you should see your custom

template in the appropriate folder.

Note:

For DITA templates, they will also appear in the dialog box for creating new DITA topics from

the DITA Maps Manager, but if you customize the template (on page 388), you need to set

the type property to dita in the corresponding properties file.

Related information

Customizing Document Templates (on page 388)

Sharing Custom Document Templates (on page 392)

Customizing Document Templates

Oxygen XML Editor allows you to customize certain aspects of built-in or custom document templates. For

example, you can customize the icons or specify a prefix/suffix that will be used for the proposed file name in

the New document wizard (on page 378).

Customizing the Icons for a Document Template

If you want to customize the icons to be used for document templates, use a properties file to specify the

icons using the following procedure:

1. Create a new properties file or edit an existing one following these guidelines:

a. If you want to create a new properties file, you can use the Properties template found in the New

Document folder in the New document wizard (on page 378). If you want to edit an existing

template, you can find them within the subfolders in the templates folder for each framework

(for example, the DITA topic properties file is located in: OXYGEN_INSTALL_DIR/frameworks/

dita/templates/topic/topic.properties).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 389

b. Use the same name as your custom template file except with a .properties extension (for

example, MyTemplate.properties).

c. In this properties file, specify the paths to the icons that will be used in the new file wizard. The

properties file should look like this:

type=general

smallIcon=../icons/Article_16.png

bigIcon=../icons/Article_48.png

Tip:

For DITA files, the type property must be set to dita. Otherwise, the template will not

appear in the dialog box for creating new DITA topics from the DITA Maps Manager

(on page 2950). For all other types of files, set it to general. The icons specified in this

properties file will only be used for the new file wizards and not in any other part of the

interface.

Important:

If you created a new template and chose to use a custom directory for the new template

(in step 2 of the new template procedure (on page 387)), make sure that the path to

the icons is relative to that directory.

2. Save the properties file in the same directory as your custom template.

3. Open the new file wizard (File > New) and you should see your custom icons next to the document

template in the appropriate folder.

Add a Prefix or Suffix to File Names for a Document Template

You can use a properties file for each document template to add a prefix or suffix to the file name that is

proposed in certain dialog boxes when you create a new file from that template. This applies to the following

new document dialog boxes:

• The new document dialog box that appears when you click the New button on the toolbar (or File >

New). The prefix or suffix is added to the name of the file in the Save as field.

• The new document dialog box that appears when you select New > File from the contextual menu in

the Project view (on page 414). The prefix or suffix is added to the name of the file in the File name

field.

• For DITA files, it also applies to the new document dialog box that appears when you select Append

Child > New, Insert Before > New, or Insert After > New from the DITA Maps Manager (on page 2950).

The prefix or suffix is added to the name of the file in the Save as field.

• For DITA files, it also applies to the Fast Create Topics dialog box (on page 3018) that you can use to

create multiple skeleton topics at once.

To add a prefix or suffix to the file names for a document template, follow these steps:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 390

1. Create a new properties file or edit an existing one.

◦ If you create a new properties file, use the same name as the template file except with a

.properties extension (for example, MyTemplate.properties). This properties file

specifies the prefix/suffix that will be used to propose the file name in the new file wizards.

When defining the prefix/suffix, the properties file should look something like this:

type=general

filenamePrefix=prod_

filenameSuffix=_test

Important:

For DITA files, the type property must be set to dita. For all other types of files, set it to

general.

◦ If you edit an existing template, simply define the prefix/suffix as specified above (on page

390).

2. Save the properties file in the same directory as the document template.

3. Open the new document wizard (using the methods described above (on page 389)) and when you

select the appropriate template, you should see your prefix or suffix in the file name that is proposed in

that dialog box.

Note:

The filenamePrefix and filenameSuffix properties can also have editor variables (on page 333) that

do not require user interaction (i.e. editor variables that have ${ask()} and ${answer()} as values

cannot be used).

Configure the Displayed Names for Document Templates

To change the name that is displayed for a document template, use the following procedure:

1. Create a new properties file or edit an existing one. If you create a new properties file, use

the same name as the template file except with a .properties extension (for example,

MyTemplate.properties).

2. Add a displayName property in the properties file:

displayName=My Template Name

Tip:

The names for framework (on page 3297)-specific document templates (such as DITA Topic

or DocBook Article, as you would see in the Framework templates folder in the New file wizard)

can be translated via the internationalization support. In this case, the properties file should

contain something like:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 391

displayName=${i18n(tag)}

where tag refers to an entry in the translation.xml file for that specific framework (for

example, OXYGEN_INSTALL_DIR/frameworks/dita/i18n/translation.xml for DITA).

3. Save the properties file in the same directory as the document template.

4. Open the new file wizard (File > New) and you should see the new name for the template.

Adding Placeholders or Hints in a Document Template

If a document template contains empty elements, it may not be clear to the Author what should be inserted

in them. You can define placeholders in document templates that provide hints for Authors to help them

understand what type of content should be added in any particular empty element within the document. The

placeholder text is specified using a processing instruction and the placeholders are removed when the Author

inserts content in the corresponding element.

To define placeholders in a document template to provide authors with hints, follow this procedure:

1. Edit the document template.

2. Add placeholders in the form of processing instructions within the elements where you want hints to be

displayed when an Author creates a document from the template. For example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">

<topic id="pi">

 <title><?oxy-placeholder content="Enter a title"?></title>

 <shortdesc><?oxy-placeholder content="Writing short descriptions

 induces the writer to clarify the main thesis of the topic.

 We recommended a 50 word limit."?></shortdesc>

 <body>

 <p><?oxy-placeholder content="A paragraph element should be a self-contained

 unit dealing with one idea or point."?></p>

 </body>

</topic>

Important:

The elements that contain the placeholder processing instructions cannot contain other

content/text, not even whitespace used for indentation. Otherwise, the placeholder will not be

rendered properly.

3. Save the template file.

4. Use the New document wizard (on page 378) to create a new document using your customized

template and you should see the hints in the open document.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 392

Resources

To see a visual demonstration of how to customize document templates and to get more ideas for other

advanced customization possibilities, watch our Webinar: Working with DITA in Oxygen - Customizing the

Editing Experience.

Related information

Creating New Document Templates (on page 387)

Sharing Custom Document Templates (on page 392)

Sharing Custom Document Templates

Your custom document templates (on page 387) can be shared with the other members of your team so

that they all have access to the templates in the New document wizard (on page 378). The best way to share

them is by integrating them in an extended framework (on page 3297) (document type) configuration and

then sharing the whole framework with the other users.

Sharing Custom Document Templates

To share custom document templates with other members of your team:

1. Create a custom framework by extending an existing one (on page 2240), if you have not already done

so.

2. Create the new document template (on page 387), if you haven't already done so.

3. Save the new template in a directory (for example, called templates) within your custom framework

directory. Then open the Document Type configuration dialog box (on page 148) for that specific

framework, go to the Templates tab (on page 171), and click the button in the bottom-right corner

to add your new directory to the list. It is recommended that the reference be made relative to the

framework directory (for example, ${frameworkDir}/templates). You can also remove any

existing entries in the list that aren't applicable or won't be used in your custom framework.

4. Click OK to close the configuration dialog box and then OK or Apply to save your changes.

5. All that remains is to share the entire framework with anyone who needs to have access to the custom

templates. There are several methods for sharing frameworks and you can find details here: Sharing a

Framework (on page 2399).

Related information

Sharing a Framework (on page 2399)

Opening Documents

To open a document in Oxygen XML Editor, do one of the following:

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 393

• Go to File > Open (Ctrl + O (Command + O on macOS)) or click the Open toolbar button to

display the Open File dialog box. The start folder of this dialog box can be either the last folder it visited

or the folder of the currently selected file. This can be configured in the Global preferences page. (on

page 134)

• Go to File > Open URL or click the Open URL toolbar button to display a dialog box where you can

specify a URL (defined by a protocol, host, resource path, and an optional port) or use the browsing

actions in the Browse for remote file drop-down menu.

• Click the Open/Find Resource toolbar button to search for a file to open.

• Go to File > Reload to load the last saved file content. All unsaved modifications are lost.

• Go to File > Reopen to reopen one of the recently opened document files. The list containing recently

opened files can be emptied by invoking the Clear history action.

• Select the Open or Open with action from the contextual menu of the Project view (on page 414).

Related information

Opening Local Files at Start-up (on page 393)

Opening the Current Document in a System Application

To open the currently edited document in the associated system application, use the View in Browser/

System Application action that is available in the File menu and on the File toolbar. If you want to open XML

files in a specific internet browser, instead of the associated system application, you can specify the internet

browser to be used. To do so, open the Preferences dialog box (Options > Preferences) (on page 132), go

to Global, and set it in the Default Internet browser field. This will take precedence over the default system

application settings.

Opening Local Files at Start-up

There are two possibilities for opening local files at startup from a command line by adding their file paths as

parameters:

• scriptName [pathToXMLFile1] [pathToXMLFile2]

◦ scriptName is the name of the startup script for your platform (oxygen.bat on Windows,

oxygen.sh on macOS and Linux).

◦ pathToXMLFileN is the name of a local XML file.

• An XML file and a schema file to be associated automatically to the file and used for validation and

content completion:

scriptName -instance pathToXMLFile -schema pathToSchemaFile -schemaType XML_SCHEMA|DTD_SCHEMA|

RNG_SCHEMA|RNC_SCHEMA -dtName documentTypeName

◦ scriptName is the name of the startup script for your platform (oxygen.bat on Windows, or

oxygen.sh on macOS and Linux).

◦ pathToXMLFile is the name of a local XML file.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 394

◦ pathToSchemaFile is the name of the schema that you want to associate to the XML file, the

four constants (XML_SCHEMA, DTD_SCHEMA, RNG_SCHEMA, RNC_SCHEMA) are the possible

schema types (XML Schema, DTD, Relax NG schema in full syntax, Relax NG schema in compact

syntax).

◦ documentTypeName specifies the name of the document type that has the schema defined. If

the document type is already set in preferences, its schema and type are updated.

Tip:

You can use the -h or --help parameters to see more detailed information about possible values.

Related information

Opening a Document at a Specific Location Using a Command-Line Interface (on page 394)

Opening a Document at a Specific Location Using a Command-Line Interface

Oxygen XML Editor offers support for opening a file at a specific position using a command-line interface to

transmit parameters to the Oxygen XML Editor application launching script file (oxygen.bat/oxygen.sh).

The following methods are available, depending on how you identify the position that is needed:

1. Specific position values (line and column number, or character offset)

Oxygen XML Editor supports the following position parameters:

◦ line - The line number.

◦ column - The column number (has meaning if the line parameter is also defined).

◦ char - The character offset.

Examples for Windows:

The following examples show how you can open an XML document in Oxygen XML Editor from a

Windows command-line interface:

oxygen.bat file:samples/personal.xml#line=4

oxygen.bat file:samples/personal.xml#line=4column=5

oxygen.bat file:samples/personal.xml#line=4;column=5

oxygen.bat file:samples/personal.xml#char=334

2. Simplified XPath index path

Oxygen XML Editor will open an XML file and select one of its elements identified by a simplified XPath

index path. For example, an index path of the form 1/5/7 identifies the seventh child of the fifth child of

the root element.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 395

Restriction:

Oxygen XML Editor will display a selection that starts with the first character of the content of

the identified element and spans until the end of the line.

Examples for Windows:

The following example shows how you can open an XML document in Oxygen XML Editor and select

the third child of the root element using a Windows command-line interface:

oxygen.bat file:samples/personal.xml#element(1/3)

3. Anchors identified by ID attribute values

Oxygen XML Editor will open an XML file and select the element whose @id attribute value is an exact

match of the anchor (on page 3294) attached to a command-line instruction.

Examples for Windows:

The following example shows how you can open an XML document in Oxygen XML Editor and select

the element that has the @id set to titleID using a Windows command-line interface:

oxygen.bat file:samples/personal.xml#titleID

Related information

Opening Local Files at Start-up (on page 393)

Saving Documents

You can save the document you are editing with one of the following actions:

• File > Save.

• Save toolbar button - If the document was not yet saved, it displays the Save As dialog box.

• File > Save As - Displays the Save As dialog box, used either to name and save an open document to a

file or to save an existing file with a new name.

• File > Save To URL - Displays a Save to URL dialog box that can be used to save a file identified by its

URL (defined by a protocol, host, resource path, and an optional port). You can also use the browsing

actions in the Browse for remote file drop-down menu.

• File > Save All - Saves all open documents. If any document does not have a file, displays the Save As

dialog box.

Auto Recover Documents

Oxygen XML Editor includes an Auto Recover feature to help prevent losing unsaved content if you encounter

an application or system crash. The feature is enabled by default and it automatically saves documents you

Oxygen XML Editor 27.1 | 7 - Working With Documents | 396

are working on to a specified auto-recover file location. At every specified interval, all documents that have

been modified since the last auto-save are saved to the specified location.

This feature is controlled by two options in the Save preferences page. You can disable it, or configure

how often content is saved by selecting the desired value in the drop-down list of the Save auto-recover

information every option (on page 210), and you can specify the location of the saved documents in the Auto-

recover file location option (on page 210).

In the event of an application or system crash, once you restart the application, Oxygen XML Editor looks for

an auto-recover file for each document that is either automatically or manually reopened. If an auto-recover

file is found, a dialog box is displayed with options for how to handle the recovered information.

Figure 66. Auto Recover Dialog Box

The dialog box offers the following choices:

• Open recovered content in a new tab - Opens the recovered document in a new tab.

Tip:

You can use the Compare Files tool (available in the Tools menu) to compare the recovered

content with the last saved version of the document.

• Replace current file content with recovered content - Replaces the content of the last saved version of

the document with the content of the recovered version of the document and removes the auto-recover

file from disk.

• Use current file content and discard recovered content - Discards the recovered document and retains

the last saved version of the document.

Notes About the Auto-Recover Feature:

• The Auto Recover feature works for both local and remote files.

• For DITA projects, the Auto Recover feature also works for DITA maps opened in the DITA

Maps Manager.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 397

• The Auto Recover feature does NOT work if there is not enough space available on the disk

where the auto-recover file location is specified (on page 210).

• The Auto Recover feature does NOT work on files opened in the huge file editor (on page

483) (if you select the Optimize loading for huge files option when opening large documents

(on page 482)).

Closing Documents

To close open documents, you can simply click the close icon () for the particular editor tab or use one of

the following actions that are available by right-clicking the current editor tab (or from the File menu):

Close (Ctrl + W (Command + W on macOS))

Closes the currently selected editor.

Close Other Files

If multiple files are opened, this action is available to close all opened editors in the current

group/stack of tabs except for the one you are currently viewing. If this action is selected from

the File menu, it closes all opened editors in all groups/stacks of tabs except for the current one.

Close Files to the Right

Available only from the contextual menu of the current editor tab and it closes all opened editors

to the right of the currently selected editor.

Close All

If multiple files are opened, this action is available to close all opened editors in the current

group/stack of tabs. If this action is selected from the File menu, it closes all opened editors in

all groups/stacks of tabs.

Working with Remote Documents
Oxygen XML Editor supports editing remote files, using the WebDAV, SharePoint, SharePoint Online for Office

365, or SFTP protocols. You can edit remote files in the same way you edit local files. For example, you can

add remote files to a project, or use them in XSL and FO transformations.

You can open one or more remote files in the Open URL dialog box (on page 398).

A WebDAV resource can be locked when it is opened in Oxygen XML Editor by selecting the Lock WebDAV

files on open option (on page 314) to prevent other users to modify it concurrently on the server. If a user tries

to edit a locked file, Oxygen XML Editor displays an error message that contains the lock owner's name. The

lock is released automatically when the editor for that resource is closed in Oxygen XML Editor.

To avoid conflicts with other users when you edit a resource stored on a SharePoint server, you can Check Out

the resource.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 398

To improve the transfer speed, the content exchanged between Oxygen XML Editor and the HTTP / WebDAV

server is compressed using the GZIP algorithm.

The current WebDAV Connection (on page 2171) details can be saved by switching to the Database

perspective (on page 3299) and then you can browse and manage the connection in the Data Source Explorer

view (on page 2125).

Open URL

To open this dialog box, go to File > Open URL (or click the Open URL toolbar button), then choose the

Browse for remote file option from the drop-down action list.

Figure 67. Open URL Dialog Box

The displayed dialog box is composed of the following:

Server Type

Specifies the type of server. You can choose between:

• WebDav FTP - For generic HTTP/SFTP/WebDav and other servers.

• SharePoint Online - For SharePoint Online servers.

• SharePoint On-Premises - For SharePoint (older version) servers.

Server URL

Oxygen XML Editor 27.1 | 7 - Working With Documents | 399

Specifies the protocol (HTTP, HTTPS, or SFTP) and the host name or IP of the server.

Tip:

When specifying a URL, follow these rules:

• To access a WebDAV server, write the path to the directory of the WebDAV

repository along with the protocol and the host name. For example, https://

www.some-webdav-server.com:443/webdav-repository/.

Important:

Make sure that the repository directory ends in a slash "/". For example,

https://www.some-webdav-server.com:443/webdav-repository/

Autoconnect

If selected, the browse action is performed every time when you open the dialog box.

User and Password

To browse for a file on a server, you have to specify the user and password for the server. This

information is bound to the selected URL displayed in the File URL combo box, and used further

in opening/saving the file.

Note:

Your password is well protected. If the options file is used on another machine by a user

with a different username, the password will become unreadable since the encryption is

dependent on the username. This is also true if you add URLs that contain a username

and password to your project.

Save

If selected, the user and password are saved between editing sessions. The password is kept

encrypted in the options file.

Browse

When you click this button, the directory listing will be shown in the main section of the dialog

box. If the selected URL points to a SharePoint server, a dedicated SharePoint browsing

component is presented.

Browser view

Oxygen XML Editor 27.1 | 7 - Working With Documents | 400

• If you are browsing a WebDAV or SFTP repository, the items are presented in a tree-like

fashion. You can browse the directories, and make multiple selections. Additionally, you

may use the Rename, Delete, and New Folder actions to manage the file repository.

Note:

The file names are sorted in a case-insensitive way.

• When you browse a SharePoint repository, a specialized component renders the

SharePoint site content.

The left side navigation area presents the SharePoint site structure in a tree-like fashion

with various node types (such as sites, libraries, and folders).

Depending on the type of node, a contextual menu offers customized actions that can be

performed on that node. The contextual menu of a folder allows you to create new folders

and documents, import folders and files, and to rename and delete the folder.

Note:

The rename and delete actions are not available for library root folders (folders

located at first level in a SharePoint library).

Each library node displays a drop-down menu next to its name where you can select what

you want to display for the current library node. This functionality is also available on the

contextual menu of the node.

Figure 68. Drop-Down Menu to Select Which Items to Display

The content of a folder is displayed in a tabular form, where each row represents the

properties of a folder or document. The list of columns and the way the documents and

folders are organized depends on the currently selected view of the parent library.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 401

You can filter and sort the displayed items. To display the available filters of a column,

click the filter widget located on the column header. You can apply multiple filters at the

same time.

Figure 69. Column Filter

File URL

You can use this combo box to directly specify the URL to be opened or saved. You can type a

URL such as http://some.site/test.xml (if the file is accessible through normal HTTP

protocol).

This combo box also displays the current selection when the user changes selection by

browsing the tree of folders and files on the server.

WebDAV over HTTPS

If you want to access a WebDAV repository across a non-secure network, Oxygen XML Editor allows you to

load and save the documents over the HTTPS protocol (if the server understands this protocol) so that any

data exchange with the WebDAV server is encrypted.

When a WebDAV repository is first accessed over HTTPS, the server hosting the repository will present a

security certificate as part of the HTTPS protocol, without any user intervention. Oxygen XML Editor will

use this certificate to decrypt any data stream received from the server. For the authentication to succeed

you should make sure the security certificate of the server hosting the repository can be read by Oxygen

XML Editor. This means that Oxygen XML Editor can find the certificate in the key store of the Java Runtime

Environment where it runs. You know the server certificate is not in the JRE key store if you get the error No

trusted certificate found when trying to access the WebDAV repository.

Troubleshooting HTTPS

If Oxygen XML Editor cannot connect to an HTTPS-capable server and an error message appears stating that

it is "unable to find a valid certification path to the requested target", the HTTPS server is most likely either

configured to use a self-signed certificate or to use a certificate issued by an unknown authority that the Java

Runtime Environment (JRE) used by Oxygen XML Editor does not trust.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 402

Note:

For Windows, starting with version 26.0, by default, Oxygen XML Editor uses the trusted root

certificates from the Windows certificate store instead of the JRE cacerts store. To trust a certificate,

the root certificate should be imported in the Windows Trusted Root certificates store.

Tip:

To make Oxygen XML Editor accept a certificate even if it is invalid, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Connection settings > HTTP(S)/WebDAV, and select the

Automatically accept a security certificate, even if invalid option.

To trust a certificate, follow this procedure:

1. Export a certificate into a local file using any HTTPS-capable web browser:

Chrome or Edge

a. Navigate to the page that uses the certificate.

b. Right-click the page and select Inspect.

c. Select the Security tab.

d. Click View Certificate.Step Result: A Certificate dialog box is displayed.

e. Select the Details tab of the Certificate dialog box.

f. Click the Export button.

g. In the resulting dialog box, for the Save as type option, select DER-encoded binary, single

certificate (*.der).

h. Save the certificate to the local file server.der.

Safari

a. Navigate to the page that uses the certificate.

b. If there is a "This connection is not private" message, click Show Details and in the expanded

panel, click view the certificate.

c. Otherwise, in the address bar, click the padlock icon on the left side of the website name and in

the displayed pop-up, click Show Certificate.

d. Another pop-up box is displayed showing information about the certificate. Drag the large

certificate icon to a Finder window. A .cer file will be created in the indicated folder from

Finder.

2. Import the local file into the JRE running Oxygen XML Editor:

a. Open a text-mode console with administrative rights.If Oxygen XML Editor has been installed in

a user's home directory and includes a bundled JRE, administrative rights are not required. In all

other cases, administrative rights will be required.

b. Go to the lib/security directory of the JRE running Oxygen XML Editor. You can find the

home directory of the JRE in the java.home property that is displayed in the About dialog box

(System properties tab).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 403

Note:

On macOS, for the distribution of Oxygen XML Editor that bundles the JRE from

Oracle, the JRE uses the .install4j/jre.bundle/Contents/Home/jre/lib/

security/cacerts path within its installation directory.

c. Run the following command:

..\..\bin\keytool -import -trustcacerts -file server.cer -keystore cacerts

The server.cer file contains the server certificate, created during the previous step. The

keytool requires a password before adding the certificate to the JRE keystore (on page 3298).

The default password is changeit. If someone changed the default password, then that person

is the only one who can perform the import.

Tip:

If you need to import multiple certificates, you need to specify a different alias for

each additional imported certificate with the -alias command-line argument, as in the

following example:

..\..\bin\keytool -import -alias myalias1 -trustcacerts -file

server1.cer -keystore cacerts

..\..\bin\keytool -import -alias myalias2 -trustcacerts -file

server2.cer -keystore cacerts

3. Restart Oxygen XML Editor.

Related information

HTTP(S)/WebDAV Preferences (on page 313)

HTTP Authentication Schemes

Oxygen XML Editor supports the following HTTP authentication schemes:

• Basic - The basic authentication scheme defined in the RFC2617 specifications.

• Digest - The digest authentication scheme defined in the RFC2617 specifications.

• NTLM - The NTLM scheme is a proprietary Microsoft Windows Authentication protocol (considered to

be the most secure among currently supported authentication schemes).

Note:

For NTLM authentication, the user name must be preceded by the name of the domain it

belongs to, as in the following example:

https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2617.txt

Oxygen XML Editor 27.1 | 7 - Working With Documents | 404

domain\username

• Kerberos (Deprecated) (on page 404) - An authentication protocol that works on the basis of tickets

to allow nodes communicating over a non-secure network to prove their identity to one another in a

secure manner.

Single Sign-on (Deprecated)

Oxygen XML Editor implements the Single sign-on property (meaning that you can log on once and gain

access to multiple services without being prompted to log on for each of them), based on the Kerberos

protocol and relies on a ticket-granting ticket (TGT) that Oxygen XML Editor obtains from the operating

system.

Restriction:

This Single sign-on support is not available for SharePoint integrations.

To turn on the Kerberos-based authentication, you need to add the following system property in the

.vmoptions configuration file or start-up script:

-Djavax.security.auth.useSubjectCredsOnly=false

Related information

Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page 349)

Switching, Moving, or Hiding Editor Tabs
Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch

between tabs or move them, and you can even hide the tabs to only show the currently open file.

Note:

If multiple file tabs are left open when you close the application, upon startup, Oxygen XML Editor

will not load the file content until you switch to the corresponding file tab. The tabs remain visible as

a placeholders until the focus is switched to them. This helps to improve the application's startup

time. If you want to disable this feature (meaning that the previously open files will all be re-loaded at

startup), deselect the Load file content only when switching to its corresponding editor tab option in

the Global preferences page (on page 135).

Switching Editor Tabs

You can switch between editor tabs by using any of the following methods:

Mouse and Scroll Wheel

Of course, you can switch to a different editor tab by left-clicking the tab with your mouse, but

when there are too many open tabs to fit on the screen, you can hover over the tab stripe and use

Oxygen XML Editor 27.1 | 7 - Working With Documents | 405

the scroll wheel on your mouse to scroll to the left or right (same as using the two arrows on the

far-right of the tab stripe).

Buttons on the Far-Right of the Tab Stripe ()

You can use the arrow buttons () on the right side of the tab stripe to scroll to the left or right

and the Show List button opens a pop-up window that displays all the open file tabs and

allows you to select and switch to a specific open file.

Ctrl + Tab (Command + Tab on macOS) [NOTE: Ctrl + Page Down (Ctrl + Option + Right Arrow on macOS)

does the same]

Switches to the next open tab in the order specified in the Order of switching between editor

tabs option (on page 136).

Ctrl + Shift + Tab (Command + Shift + Tab on macOS) [NOTE: Ctrl + Page Up (Ctrl + Option + Left Arrow

on macOS) does the same]

Switches to the previous open tab in the order specified in the Order of switching between editor

tabs option (on page 136).

Window > Switch editor tab (Ctrl + F9 (Command + F9 on macOS))

This action opens a dialog box that allows you to switch to a particular editor tab by selecting

it from a filterable list. This is especially helpful when you have a large amount of open file tabs

and you want to switch to a certain tab this is not shown on the screen. It includes a search filter

field and several options to help you find specific open file tabs.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 406

Figure 70. Switch Editor Tab Dialog Box

The Switch Editor Tab dialog box contains the following options and features:

Search Filter

You can enter text in the filter field at the top of the dialog box to filter the list

and search for specific open files. You can enter any number of terms, separated

by space, and wildcards are allowed (for example, * to match any sequence of

characters, or ? to match a single character). This field also has a history drop-

down that allows you to select previously used search terms.

Match all terms

If this option is selected, only the files that match all of your search terms will be

displayed. If you use a wildcard in the search filter, this option is automatically

disabled.

Include file paths

If this option is selected, the search is expanded to include file paths, and also the

paths are displayed in this dialog box.

Case sensitive

If this option is selected, the search operation will be case-sensitive.

List of Open File Tabs

Oxygen XML Editor 27.1 | 7 - Working With Documents | 407

All files that are currently open are displayed in the upper part of the main pane of

the dialog box, followed by recently closed files. Files that have been modified but

not yet saved are prefixed by an asterisk. To switch to a particular file tab, double-

click the file or select it and click OK.

Moving Editor Tabs

You can move editor tabs by using any of the following methods:

Mouse Drag

You can use your mouse to drag editor tabs to a new location on the tab stripe.

Ctrl + Alt + Comma

Moves the current file tab one position to the left.

Ctrl + Alt + Period

Moves the current file tab one position to the right.

Hiding Editor Tabs

If you want to hide all the file tabs and only show the currently open file, select Hide editor tabs from the

Window menu. This does not close the other tabs, just hides them. You can still navigate between tabs using

keyboard shortcuts (Ctrl + Tab, Ctrl + Shift + Tab, Ctrl + F6, Ctrl + Shift + F6) or by selecting Next editor or

Previous editor from the Window menu.

Contextual Menu of the Current Editor Tab
A contextual menu is available when you right-click the current editor tab label.

The actions that are available depend on the context and the number of files that are opened. The menu

includes the following actions:

Close (Ctrl + W (Command + W on macOS))

Closes the currently selected editor.

Close Other Files

If multiple files are opened, this action is available to close all open editors in the current group/

stack of tabs except for the one you are currently viewing.

Close Files to the Right

Closes all open editors to the right of the currently selected editor.

Close All

If multiple files are opened, this action is available to close all open editors.

Move editor tab to the left (Ctrl + Alt + Comma)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 408

Moves the current editor tab one position to the left.

Move editor tab to the right (Ctrl + Alt + Period

Moves the current editor tab one position to the right.

Reopen last closed editor Ctrl + Alt + T (Command + Option + T on macOS))

Reopens the last closed editor.

Maximize Editing Area

Collapses all the side views and spans the editing are to cover the entire width of the main

window.

Add to project

Adds the file you are editing to the current project.

Add all to project

If multiple files are opened, this action is available to add all the open files in the current group/

stack of tabs to the current project.

Copy Location

Copies the disk location of the file.

Show in Explorer (Show in Finder on macOS)

Opens the Explorer to the file path of the file.

Viewing File Properties
The Properties view displays information about the currently edited document. The information includes:

• Character encoding.

• Full path on the file system.

• Schema used for content completion and document validation.

• Document type name and path.

• Associated transformation scenario.

• Read-only state of a file.

• Bidirectional text (left to right and right to left) state.

• Total number of characters in the document.

• Line width.

• Indent with tabs state.

• Indent size.

The view can be accessed from Window > Show View > Properties.

To copy a value from the Properties view in the clipboard (for example, the full file path), use the Copy action

available on the contextual menu of the view.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 409

Simple Text Editor
Oxygen XML Editor specializes in XML-related technologies, you can also use it to create and edit various

types of non-XML files. Non-XML files are opened in a simple text editor and many of the helpful features that

are commonly used when editing XML files in the Oxygen XML Editor Text editing mode are available in this

simple editor.

Types of Non-XML Files That are Supported in the Simple Text Editor

The types of files that can be created and edited in the simple text editor include:

• Java

• C++

• C

• Dockerfile

• PHP

• Perl

• Properties

• SQL

• PowerShell

• Batch

• Python

• Text

Features Available in the Simple Text Editor

When editing files in the simple text editor, the features that are available include the following:

• Project Support - The unique features that are designed to help you work with projects (on page 410)

are available for all types of files.

• Shortcut Actions - Many of the shortcut actions that are available in Text mode are also available in the

simple text editor.

• Drag and Drop - The normal drag and drop support is available in the simple text editor.

• Content Selection Features - The content selection shortcuts (on page 541) that are available in Text

mode (including the Rectangular Selection feature) are also available in the simple text editor.

• Bookmarks - You can use bookmarks to mark positions (on page 531) in any type of file so that you

can return to it later.

• Convert Hexadecimal Characters - You can convert a sequence of hexadecimal characters to the

corresponding Unicode character (on page 582).

• Encoding/Decoding Actions - Contextual menu actions are available to encode or decode Base 64,

Base 32, and Hex schemes (on page 582).

• Code Templates - You can define your own code templates (on page 548) for any type of file and use

the Content Completion Assistant (on page 3295) to invoke them.

• Syntax Highlighting - Non-XML files also support syntax highlighting with dedicated coloring schemes.

To customize them, open the Preferences dialog box (Options > Preferences) (on page 132) and go to

Oxygen XML Editor 27.1 | 7 - Working With Documents | 410

Editor > Syntax Highlight (on page 234). Select and expand the appropriate section in the top pane for

the type of file you are editing and you can see the effects of your changes in the Preview pane.

• Find/Replace - You can use the Find/Replace action (on page 443) to find or replace all the

occurrences of a word or string of characters in any type of file that you are editing.

• File Comparison Tool - The Compare Files tool (on page 486) can also be used to compare non-XML

files.

Using Projects to Group Documents
Oxygen XML Editor includes a Project view (on page 414) that helps you organize your projects. Oxygen

XML Editor offers a variety of helpful features for working with projects and makes it easy to share your

projects with other members of your team. This section presents various unique features that will help you to

create and work with projects.

Tip:

There are several sample project templates available for DITA users that can be used as a starting

point or for inspiration. These sample project templates are found in the Framework templates > DITA

folder in the New Project wizard: (on page 411)

• Sample DITA Project - This is a basic DITA project meant to help new users see how a DITA

project is structured.

• Startup DITA Project - This is a startup DITA project that imposes a custom set of options

(e.g. spell check settings and custom dictionaries), a custom DITA framework extension (e.g.

custom new file templates. custom actions, custom CSS used for visual editing) and a folder

structure for a DITA project according to best practices. Once created, the project contains a

Readme.html file that explains all customizations and their benefits. If you plan to start your

own DITA project using a version control system (such as Git), you can use this startup DITA

project template to customize various aspects of DITA editing and share them with your team.

Creating a New Project

Oxygen XML Editor allows you to organize your XML-related files into projects. This helps you manage and

organize your files and also allows you to perform batch operations (such as validation and transformation)

over multiple files. You can also share your project settings and transformation/validation scenarios (on page

427) with other users. Use the Project view (on page 414) to manage projects, and the files and folders

contained within.

Creating a New Project

To create a new project, select New Project from the Project menu, the New menu in the contextual menu,

or the drop-down menu at the top-left of the Project view.

This opens a new project wizard:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 411

Figure 71. New Project Wizard

Tip:

There are several sample project templates available for DITA users that can be used as a starting

point or for inspiration. These sample project templates are found in the Framework templates > DITA

folder in the New Project wizard: (on page 411)

• Sample DITA Project - This is a basic DITA project meant to help new users see how a DITA

project is structured.

• Startup DITA Project - This is a startup DITA project that imposes a custom set of options

(e.g. spell check settings and custom dictionaries), a custom DITA framework extension (e.g.

custom new file templates. custom actions, custom CSS used for visual editing) and a folder

structure for a DITA project according to best practices. Once created, the project contains a

Readme.html file that explains all customizations and their benefits. If you plan to start your

own DITA project using a version control system (such as Git), you can use this startup DITA

project template to customize various aspects of DITA editing and share them with your team.

With the exception of the Default project template, which is a pseudo-template and does not exist on the

local disk (it is used only to create a new .xpr file), project templates are actually ZIP archives (with a .zxpr

extension) and are stored within the file template directory structure (for example, frameworks\dita

\templates\sample-project\Sample DITA Project.zxpr).

Tip:

Archives with a .zxpr extension can be edited in the Archive Browser view (on page 2118).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 412

After selecting a project template, you can specify the following:

Project file name

Specifies the name of the new project file. Oxygen XML Editor provides a default proposal for the

file name based on the following rules:

• If there is an .xpr file inside the archive, its name is used.

• Otherwise, the name of the template is used.

Project directory

Specifies the directory where the archive content will be extracted.

Note:

The archive should not contain an extra single folder as the root. For the Project

directory path to work properly, the archive must have the .xpr file on the first level,

along with the other resources (files and folders).

Once you are done, click the Create button to begin the creation process. Oxygen XML Editor extracts the

content from the archive inside the path specified in the Project directory field.

Editor Variables in Project Templates

By default, the editor variables inside project resources created from a project template are not resolved.

To start having them resolved, the project template must be customized (on page 388) by using the

expandEditorVariablesIncludeFilter property. This filter determines the resources where the editor

variables will be resolved. If you need to exclude a subset of resources from the set specified by the

expandEditorVariablesIncludeFilter property, the expandEditorVariablesExcludeFilter property can be used.

Note:

Usually, project files (*.xpr), framework files (*.framework), and framework extension scripts (*.exf)

should be excluded from the editor variable resolving process.

The values of the inclusion and exclusion filters can be file paths relative to the project directory that can use

wildcards or simply wildcards. Each filter can have multiple values, separated by spaces.

Possible filter values:

• ./* - Matches all resources from the first level in the project directory.

• * or ./** - Matches all resources on all levels inside the project directory.

• dir1/dir2/*.dita - Matches all .dita files from [PROJECT_DIR]/dir1/dir2, but not from

subdirectories of dir2.

• dir1/dir2/**/*.dita - Matches all .dita files from [PROJECT_DIR]/dir1/dir2, including those

from subdirectories of dir2.

• dir1/**/* - Matches all resources on all levels inside [PROJECT_DIR]/dir1.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 413

• dir1/article1.xml, dir2/article2.xml - Matches only the two .xml files.

• ./**/*_suffix.md, ./**/prefix_*.html - Matches all .md files with names that end with _suffix and all

.html files with names that start with prefix_.

Adding Items to the Project

To add items to the project, select any of the following actions that are available when invoking the contextual

menu in the Project view:

New > File

Opens a New file dialog box that helps you create a new file and adds it to the project structure.

New > Folder

Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to

the structure of the project.

The project itself is considered a logical folder. You can add a logical folder, or content to a logical folder, by

using one of the following actions that are available in the contextual menu, when invoked from the project

root:

New > Logical Folder

Creates a logical folder in the tree structure (the icon is a magenta folder on macOS -).

New > Logical Folders from Web

Replicates the structure of a remote folder accessible over SFTP/WebDAV, as a structure of

logical folders. The newly created logical folders contain the file structure of the folder it points

to.

Add Folder

Adds a link to a physical folder, whose name and content mirror a real folder that exists in the

local file system (the icon of this action is different on macOS -).

Add Files

Adds links to files on the local file system.

Add Edited File

Adds a link to the currently edited file in the project.

Using Linked Folders (Shortcuts)

Another easy way to organize your XML working files is to place them in a directory and then to create

a corresponding linked folder in your project. If you add new files to that folder, you can simply use the

Refresh (F5) action from the project contextual menu and the Project view (on page 414) will display

the existing files and subdirectories. If your files are scattered among several folders, but represent the same

class of files, you might find it useful to combine them in a logical folder.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 414

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer

(macOS Finder) to the project tree, or by selecting Add Folder in the contextual menu from the project root.

Linked folders are displayed in the Project view (on page 414) with bold text. To create a file inside a linked

folder, select the New > File action from the contextual menu. The linked files presented in the Project view

(on page 414) are marked with a special icon.

Note:

Files may have multiple instances within the folder system, but cannot appear twice within the same

folder.

For more information on managing projects and their content, see Project View (on page 414).

For more details about how you can share projects with other users, see Sharing a Project - Team

Collaboration (on page 427).

Related information

Using Projects to Group Documents (on page 410)

Project View

The Project view is designed to assist you with organizing and managing related files grouped in the same

XML project. The actions available in the contextual menu and on the toolbar associated to this panel allows

you to create XML projects and provide shortcuts to various operations for the project documents.

Figure 72. Project View

By default, the view is positioned on the left side of Oxygen XML Editor, above the Outline view. If the view has

been closed, it can be reopened at any time from the Window > Show View menu (or using the Show Project

View action from the Project menu).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 415

Project View Toolbar

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down

menu that contains all recently used projects and some actions to open a project or create a new one.

You can use this history drop-down menu to quickly switch to a recently opened project. If you enable the

Remember layout changes for each project option in the Application Layout preferences page (on page 144),

the application will remember the layout, open files, and editing location for your session when you switch

projects.

The following actions are grouped in the upper right corner:

Collapse All

Collapses all project tree folders. You can also collapse/expand a project tree folder if you select

it and press the Enter key or Left Arrow to collapse and Right Arrow to expand.

Link with Editor

When selected, the currently edited file (from the main editor or from the DITA Maps Manager

view) is highlighted in the project tree, if the file is found in the project.

Note:

This button is disabled automatically when you move to the Debugger perspective (on

page 3299).

Settings

A submenu that contains the following actions:

Filters

Allows you to filter the information displayed in the Project view. Click the toolbar

button to set filter patterns for the files you want to show or hide. Also, you can set

filter patterns for the linked directories that are hidden.

Show Full Path

When selected, linked files and folders are presented with a full file path.

Enable Main Files Support

Select this option to enable the Main Files support (on page 430).

Change Search and Refactor operations scope

Allows you to change the collection of documents that define the context of the

search and refactor operations.

• Use only Main Files, if enabled - Restricts Oxygen XML Editor to perform the

search and refactor operations starting from the main files (on page 3298)

that are defined for the current resource. This option is available when you

Oxygen XML Editor 27.1 | 7 - Working With Documents | 416

select Project in the Select the scope for Search and Refactor operations

dialog box and the Main Files support is enabled.

• Working sets - Allows you to specify the set of files that will be used for the

scope of the search and refactor operations.

File Explorer Area

The rest of the view is basically a file explorer similar to most other commonly used file explorers. The

XML project (.xpr file) is a logical container with a collection of resources (folders and files). The types of

resources displayed include:

• Logical folders with Linked folders/files - Marked with a blue icon on Windows and Unix/Linux () and

a magenta icon on macOS (), they help you group files within the project. This folder type is used as

containers for linked resources (shortcuts). The icons for file shortcuts include a shortcut symbol ()

and names of folder shortcuts are displayed in bold text. The logical folders are created on the project

root or inside other logical folders by using the contextual menu action New > Logical Folder, and the

linked folders/files are added using Add Files, Add Folder, or by dragging and dropping files/folders

from the view or the system file explorer. Remove from Project can be used to remove them from

the project and the Remove from Disk (Shift+Delete) action can be used to remove them from both

the project and the local file system.

• Physical folders and files - Marked with the operating system-specific icon for folders (usually a yellow

icon on Windows and a blue icon on macOS). These folders and files are mirrors of real folders or files

that exist in the local file system. They are created or added to the project by using contextual menu

actions (such as New > File, New > Folder, Copy, and Paste) or by dragging and dropping files/

folders from the view or the system file explorer. Also, the contextual menu action Remove from

Disk (Shift+Delete) can be used to remove them from the project and local file system.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 417

Figure 73. Project View with Both Types of Resources

Creating New Projects

The following action is available from the New menu when right-clicking any item, the Project menu, or from

the drop-down menu in the top-left of the Project view:

New Project

Opens a wizard that assists you with creating a new project. For more details, see Creating a

New Project (on page 410).

Managing Project Contents

There are various contextual menu actions, shortcuts, and ways to organize the folders and files inside the

project:

Creating New Folders and Files

Right-click any item > New > File

Opens a New file wizard (on page 378) that helps you create a new file and adds

it to the project structure.

Right-click any item in a physical folder > New > Folder

Opens a New Folder dialog box that allows you to specify a name for a new folder

and adds it to the structure of the project.

Right-click any item in a logical folder > New > Logical Folder

Oxygen XML Editor 27.1 | 7 - Working With Documents | 418

Creates a logical folder in the tree structure (the icon is a magenta folder on

macOS).

Right-click on a logical folder > New > Logical Folders from Web

Replicates the structure of a remote folder accessible over SFTP/WebDAV, as

a structure of logical folders. The newly created logical folders contain the file

structure of the folder it points to.

Adding Resources

You can add resources by using drag and drop (or Copy and Paste) actions from within

the Project view or dragging them from the system file explorer. Files may have multiple

instances within the folder system, but cannot appear twice within the same folder.

Adding Resources to Logical Folders

You can add resources to logical folders by using the following actions available in the

contextual menu when invoked on a logical folder (or the project's root container):

Add Folder

Adds a link to a physical folder, whose name and content mirror a real folder that

exists in the local file system (the icon for this action is different on macOS).

Add Files

Adds links to files on the local file system.

Add Edited File

Adds a link to the currently edited file in the project.

Removing Folders and Files

To remove logical folders or the linked resources inside them from the project, use Remove

from Project from the contextual menu (or press Delete on your keyboard).

To remove folders or files from both the project and the local file system, use Remove from

Disk from the contextual menu (or press Shift+Delete on your keyboard).

Moving Folders and Files

You can move the resources by using drag and drop actions from within the Project view (the

Enable drag-and-drop in Project view option must be selected in the View preferences page (on

page 316)).

You can also use the usual Cut, Copy, and Paste actions to move resources in the

project.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 419

You can also move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and

XSLT) or folders by using the Refactoring > Move resource action from the contextual menu.

This action opens the Move resource dialog box that includes the following options:

• Destination - Presents the path to the current location of the resource you want to move

and gives you the option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to

change it.

• Update references of the moved resource(s) - Select this option to update the references

to the resource you are moving, based upon the selected scope. You can select or

configure the scope by using the button.

Renaming Folders and Files

There are several ways to rename a folder or file in the project (this works for both physical and

linked resources):

• Select Rename from the contextual menu.

• Press F2 on your keyboard.

• Select the item, then click the name, and type the new name.

You also can rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and

XSLT) or folders by using the Refactoring > Rename resource action from the contextual menu.

This action opens the Rename resource dialog box that includes the following options:

• New name - Presents the current name of the edited resource and allows you to modify it.

• Update references of the renamed resource - Select this option to update the references

to the resource you are renaming. You can select or configure the scope by using the

button.

Opening Files

There are several ways to open a file:

• Double-click the file.

• Select it and press Enter on your keyboard.

• Right-click the file and select Open.

• If there are no other files open in the editor area, you can drag the file from the project tree

and drop it in the editor area.

• If you want to choose the application or location where to open it, you can right-click the

file and select Open with.

Saving the Project

The project file is automatically saved every time the content of the Project view is saved or

modified by actions such as adding or removing files and drag and drop.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 420

Other Contextual Menu Actions

Numerous other actions are available in the contextual menu, depending on the type of file or folder where it is

invoked from (some actions are available for multiple selected files):

Show in submenu

Explorer (Finder on macOS)

On Windows and macOS, the parent directory of the selected file or folder is

presented in a specific Explorer/Finder window and the selected resource is

highlighted. On Linux, the selected file or folder is not highlighted after opening its

parent in the file explorer.

Terminal

Opens a console (terminal) at the location of the selected physical resource. If the

resource is a file, it will start at the parent directory.

Copy Location

Copies an application-specific URL for the selected resource to the clipboard.

Refactoring submenu

Oxygen XML Editor includes some refactoring operations that help you manage the structure

of your documents. The following actions are available from the contextual menu in the

Refactoring submenu:

Rename resource (Available for certain types of XML documents or folders)

Opens the Rename resource dialog box (on page 424) where you can change

the name of a resource. It also includes an option to update the references to the

renamed resource and you can choose between various scopes for the operation.

Move resource (Available for certain types of XML documents or folders)

Opens the Move resource dialog box (on page 424) where you can choose

a destination and change the name of a resource. It also includes an option to

update the references to the moved resource and you can choose between various

scopes for the operation.

XML Refactoring

Opens the XML Refactoring tool wizard (on page 856) that presents refactoring

operations to assist you with managing the structure of your XML documents.

Apply all default quick fix proposals

Opens the Apply all default quick fix proposals tool (on page 894) that can be

used to apply quick fix proposals for all reported validation errors in the selected

documents when one or more quick fix proposals have been detected for reported

validation errors.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 421

Other XML Refactoring Actions

For your convenience, the last 5 XML Refactoring tool operations (on page 856)

that were finished or previewed will also appear in this submenu.

Show referenced resources

Opens the Referenced/Dependent Resources view (on page 848) that allows you to see the

referenced resource hierarchy for an XML document.

Show dependent resources

Opens the Referenced/Dependent Resources view (on page 848) that allows you to see the

resource dependencies for an XML document. When working with DITA XML projects, this action

is available when right-clicking images to find direct references to them.

Refresh

Refreshes the content and the dependencies between the resources in the Main Files directory

(on page 430).

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find and replace

text in multiple files.

XPath in Files

Opens the XPath/XQuery Builder view (on page 2112) that allows you to compose XPath and

XQuery expressions and execute them over the currently edited XML document.

Open/Find Resource

Opens the Open/Find Resource dialog box (on page 437).

Check Spelling in Files

Allows you to check the spelling of multiple files (on page 470).

Format and Indent Files

Opens the Format and Indent Files dialog box (on page 573) that allows you to configure

the format and indent (pretty-print (on page 3299)) action that will be applied on the selected

documents.

Open in SVN Client

Syncro SVN Client (on page 2771) tool is opened and it highlights the selected resource in its

corresponding working copy.

Compare

Allows you to compare multiple files or directories and the order of your selection determines

where they are opened in the Compare Files (on page 486) or Compare Directories (on page

506) tool. If you select two files or folders, your first selection will be opened in the left panel

and the other one in the right panel.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 422

You can also select 3 files and the tool will automatically be opened in the three-way comparison

mode (on page 489). If you select three files, your first selection will be opened in the left

panel, the second in the right panel, and the third selection will be the base (ancestor) file.

HTML to XML Well-formed (Available when selecting multiple resources)

Batch converts the selected HTML documents to be XML well-formed. This means that missing

end tags will be added to applicable elements, unclosed tags will be properly closed, and quotes

will be added to attribute values that were missing the quotes.

Notes:

• All selected HTML files are backed up before being processed (same path/name

but with the ".bak" extension added at the end).

• Any detected conversion errors are grouped and listed in a dedicated tab in the

Results pane at the bottom of the application.

• A brief report is displayed at the end of the operation.

Transform submenu

The currently selected files in the Project view can be transformed in one step with one of the

following actions available from contextual menu in the Transform submenu:

Apply Transformation Scenario(s)

Obtains the output with one of the built-in scenarios.

Configure Transformation Scenario(s)

Opens a dialog box that allows you to configure pre-defined transformation

scenarios.

Transform with

Allows you to select a transformation scenario to be applied to the currently

selected files.

Validate submenu

The currently selected files in the Project view can be checked to be XML well-formed or

validated against a schema (DTD, XML Schema, Relax NG, Schematron or NVDL) with one of the

following contextual menu actions found in the Validate submenu:

Check Well-Formedness

Checks if the selected file or files are well-formed.

Validate

Oxygen XML Editor 27.1 | 7 - Working With Documents | 423

Validates the selected file or files against their associated schema. For EPUB

files, this action triggers an EPUB Validate and Check for Completeness (on page

2121) operation.

Validate with Schema

Validates the selected file of files against a specified schema.

Configure Validation Scenario(s)

Allows you to configure and run a validation scenario.

Generate Documentation submenu

Generate Documentation > XML Schema Documentation

Opens the XML Schema Documentation dialog box (on page 1031).

Generate Documentation > XSLT Stylesheet Documentation

Opens the XSLT Stylesheet Documentation dialog box (on page 944).

Generate Documentation > XQuery Documentation

Opens the XQuery Documentation dialog box (on page 1063).

Generate Documentation > WSDL Documentation

Opens the WSDL Documentation dialog box (on page 1085).

Properties

Displays the properties of the current file in a Properties dialog box.

Enable Main Files Support (Available from the project container)

Allows you to enable the Main Files Support (on page 431) for each project.

Detect Main Files (Available from the project container when Main Files Support is enabled)

Opens the Detect Main Files wizard (on page 432) that enables the automatic detection of

main files.

Add to Main Files (Available when Main Files Support is enabled)

Adds the selected files to the Main Files folder (on page 433).

Project Menu Actions

The following actions are available in the Project menu:

New Project

Opens a wizard that assists you with creating a new project. For more details, see Creating a

New Project (on page 410).

Open Project (Ctrl + F2 (Command + F2 on macOS))

Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML

Editor XPR project file from the file explorer into the Project panel.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 424

Notice:

When a project is opened for the first time, a confirmation dialog box will be displayed

that asks you to confirm that the project came from a trusted source. This is meant to

help prevent potential security issues.

Save Project As

Allows you to save the current project under a different name.

Validate all project files

Checks if the project files are well-formed and their mark-up conforms with the specified DTD,

XML Schema, or Relax NG schema rules. It returns an error list in the message panel.

Filters

Opens the Project filters dialog box that allows you to decide which files and directories will be

shown or hidden.

Enable Main Files Support

Allows you to enable the Main Files Support (on page 431) for each project you are working

on.

Change Search and Refactor operations scope

Opens a dialog box that allows you to define the context of search and refactor operations.

Show Project View

Displays the Project view.

Reopen Project

Contains a list of links of previously used projects. This list can be emptied by invoking the Clear

history action.

Moving/Renaming Resources in the Project View

The Refactoring submenu in the contextual menu of the Project view (on page 414) provides actions for

moving or renaming certain types of XML resources in the current project while offering the option to update

the references to the resources.

Moving Resources

You can move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the

Refactoring > Move resource action from the contextual menu. This action opens the Move resource dialog

box that includes the following options:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 425

• Destination - Presents the path to the current location of the resource you want to move and gives you

the option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.

• Update references of the moved resource(s) - Select this option to update the references to the

resource you are moving, based upon the selected scope. You can select or configure the scope by

using the button.

Renaming Resources

You can rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the

Refactoring > Rename resource action from the contextual menu. This action opens the Rename resource

dialog box that includes the following options:

• New name - Presents the current name of the edited resource and allows you to modify it.

• Update references of the renamed resource - Select this option to update the references to the

resource you are renaming. You can select or configure the scope by using the button.

Problems Updating References of Moved/Renamed Resources

In some cases, the references of a moved or a renamed resource cannot be updated. For example, when a

resource is resolved through an XML Catalog (on page 3302) or when the path to the moved or renamed

resource contains entities. For these cases, Oxygen XML Editor displays a warning dialog box.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 426

Figure 74. Problems Dialog Box

Batch Validation and Transformation

Oxygen XML Editor provides support for batch validation and batch transformation. Actions are available in

the Project view that provide the ability to validate or transform one or more files attached to a project.

Batch Validation

To batch validate files, select the files (or directories), right-click, and choose one of the following actions from

the Validate submenu:

Check Well-Formedness

Checks if the selected file or files are well-formed.

Validate

Validates the selected file or files against their associated schema. For EPUB files, this action

triggers an EPUB Validate and Check for Completeness (on page 2121) operation.

Validate with Schema

Validates the selected file of files against a specified schema.

Configure Validation Scenario(s)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 427

Allows you to configure and run a validation scenario.

Batch Transformation

To batch transform files, select the files (or directories), right-click, and choose one of the following actions

from the Transform submenu:

Apply Transformation Scenario(s)

Obtains the output with one of the built-in scenarios.

Configure Transformation Scenario(s)

Opens a dialog box that allows you to configure pre-defined transformation scenarios.

Transform with

Allows you to select a transformation scenario to be applied to the currently selected files.

Related information

Contextual Project Operations Using 'Main Files' Support (on page 430)

Quick Validation and Transformation for Main Files (on page 434)

Sharing a Project - Team Collaboration

You can use XML projects to make team collaboration and synergy efficient and effective. Not only can you

share the project files and folders, but Oxygen XML Editor also allows you to store preferences, transformation

scenarios, and validation scenarios at project level (on page 3300) in a project file (.xpr file extension). It can

be saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, so that your

team has access to the same resources stored in the project file.

Sharing Preferences (Creating a Project-Level Options File)

To share options that are configured in certain preferences pages, you can store them in a project file (.xpr

file extension) that can easily be shared with others. To do so, follow these steps:

1. [Recommended] You may want to use a fresh install for this procedure to ensure that you do not copy

personal or local preferences.

2. In the Project view (on page 414), create a project or open an existing one.

3. Open the Preferences dialog box (Options > Preferences) (on page 132).

4. Configure the options in each preferences page that you want to be included in the project file and

switch the storage preference to Project Options (on page 3300) in each page.

Note:

Some pages do not have the Project Options button, since the options they host might contain

sensitive data (such as passwords, for example) that is unsuitable for sharing with other users.

5. Click OK and close the Preferences dialog box.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 428

All explicitly set values are now saved in the project file. You can then share the project file so that your

team will have the same option configuration that you stored in the project file.

Note:

The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice:

When a project is opened for the first time, a confirmation dialog box will be displayed that

asks you to confirm that the project came from a trusted source. This is meant to help prevent

potential security issues.

Sharing Transformation Scenarios

To share created and edited transformation scenarios, you can store them in a project file (.xpr file

extension) by following these steps:

1. In the Project view (on page 414), create a project or open an existing one.

2. When you create a new transformation scenario (on page 1504) or edit an existing one (on page

1613), there is a Storage option. Switch the storage preference to Project Options (on page 3300) in

each transformation scenario you want to be included in the project file.

3. Click OK to store the scenario in the project file.

You can then share the project file so that your team will have access to the same transformation

scenarios that you stored in the project file. When you create a scenario at the project level, the URLs

from the scenario become relative to the project URL.

Note:

The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice:

When a project is opened for the first time, a confirmation dialog box will be displayed that

asks you to confirm that the project came from a trusted source. This is meant to help prevent

potential security issues.

Sharing Validation Scenarios

To share created and edited validation scenarios, you can store them in a project file (.xpr file extension) by

following these steps:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 429

1. In the Project view (on page 414), create a project or open an existing one.

2. When you create a new validation scenario or edit an existing one, there is a Storage option. Switch

the storage preference to Project Options (on page 3300) in each validation scenario you want to be

included in the project file.

3. Click OK to store the scenario in the project file.

You can then share the project file so that your team will have access to the same validation scenarios

that you stored in the project file. When you create a scenario at the project level, the URLs from the

scenario become relative to the project URL.

Note:

The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice:

When a project is opened for the first time, a confirmation dialog box will be displayed that

asks you to confirm that the project came from a trusted source. This is meant to help prevent

potential security issues.

Using Git for Collaboration

To assist you with team collaboration, sharing projects, and version control, an add-on is available that

contributes a built-in Git client directly in Oxygen XML Editor. The Git Client is developed independent of the

normal Oxygen release cycle, so it is updated and improved more frequently than the main application. It is

an optional tool so it needs to be installed as an add-on. Once installed, a Git Staging view is available that

includes various actions that perform common Git commands, such as push, pull, change branch, commit, and

more. It also includes a built-in tool for comparing and merging changes.

For more details, see Git add-on.

Using Subversion (SVN) for Collaboration

Oxygen XML Editor also includes an embedded SVN (Subversion) Client. Even if you start developing a new

project, or you want to migrate an existing one to Subversion, the Syncro SVN Client allows you to easily share

it with the rest of your team. It can be accessed from the Tools menu and can be used for synchronizing your

working copy with a central repository. It can also be started by selecting the Open in SVN Client action

from the contextual menu of the Project view (on page 414). This action opens the Syncro SVN Client and

shows the selected project file in the Working Copy view.

Related information

Sharing Application Settings (on page 323)

Sharing Transformation Scenarios (on page 1622)

Sharing Validation Scenarios (on page 823)

https://www.oxygenxml.com/doc/ug-addons/topics/git-addon.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 430

Minimize Differences Between Versions Saved on Multiple Computers

The number of differences between versions of the same file saved by multiple content authors on multiple

computers can be minimized by imposing the same set of formatting options when saving the file, for all the

content authors. An example, the following procedure can be used to minimize the differences:

1. Create an Oxygen XML Editor project file (.xpr) that will be shared by all content authors.

2. Configure your own formatting preferences. To do this, open the Preferences dialog box (Options >

Preferences) (on page 132), go to Editor > Format, configure the appropriate options in this page, then

go to Editor > Format > XML and configure the options there.

3. Save the configured options into your project file by selecting Project Options (on page 3300) in both

of the preferences pages.

4. Save the project and commit the project file to your versioning system so all the content authors can

use it.

5. Make sure the project is opened in the Project view (on page 414).

6. Open and save your XML files in the Author mode.

7. Commit the saved XML files to your versioning system.

When other content authors change the files, only the changed lines will be displayed in your diff tool instead

of one big change that does not allow you to see the changes between two versions of the file.

Contextual Project Operations Using 'Main Files' Support

Oxygen XML Editor allows you to define Main Files (on page 3298) at project level. These main files are

automatically used by Oxygen XML Editor to determine the context for operations such as validation,

transformation, content completion, refactoring, or searches for XML, XSD, XSL, WSDL, and RNG modules.

Oxygen XML Editor maintains the hierarchy of the main files, helping you to determine the editing context.

Oxygen XML Editor also provides unique support for using the Main Files support in DITA projects. In DITA,

when you rename or move non-DITA resources, it allows you to update all the references to these resources

in the scope of the Main Files (in this case the main DITA map (root map) (on page 3301)). For more

information, see Main Files Support in DITA (on page 3245).

Resources

For more information about the Main Files support for XML documents, watch our video demonstrations:

https://www.youtube.com/embed/e2oo4RWNxW8

https://www.youtube.com/embed/UZwg385RKNw

https://www.youtube.com/embed/FQNSsg57S4E

https://www.youtube.com/embed/gn_YPD5xDCo

https://www.youtube.com/embed/e2oo4RWNxW8
https://www.youtube.com/embed/UZwg385RKNw
https://www.youtube.com/embed/FQNSsg57S4E
https://www.youtube.com/embed/gn_YPD5xDCo

Oxygen XML Editor 27.1 | 7 - Working With Documents | 431

Related information

Modular Contextual XML Editing Using 'Main Files' Support (on page 845)

Modular Contextual Schematron Editing Using 'Main Files' Support (on page 1243)

Modular Contextual XSLT Editing Using 'Main Files' Support (on page 906)

Modular Contextual XML Schema Editing Using 'Main Files' Support (on page 1009)

Modular Contextual Relax NG Schema Editing Using 'Main Files' Support (on page 1101)

Modular Contextual Ant Build File Editing Using 'Main Files' Support (on page 954)

Main Files Benefits

Using the Main Files support in Oxygen XML Editor includes the following benefits:

• When the main file is validated, Oxygen XML Editor automatically identifies the modules included in the

main file and validates all of them.

• When the main file is transformed, Oxygen XML Editor automatically identifies the modules included in

the main file and transforms them accordingly.

• The Content Completion Assistant (on page 3295) presents all the components that are collected from

the main files for the modules they include.

• The Outline view (on page 551) displays all the components that are defined in the main files

hierarchy.

• The main files that are defined for the current module determines the scope of the search and

refactoring actions (on page 847). Oxygen XML Editor performs the search and refactoring actions in

the context that the main files determine, thus improving the speed of execution.

Enabling the Main Files Support

Oxygen XML Editor stores the main files in a folder located in the Project view (on page 414), as the first

child of the project root. The Main Files Support is disabled by default and Oxygen XML Editor allows you to

enable or disable the Main Files Support for each project you are working on.

To enable Main Files support, do one of the following:

• Select Enable Main Files Support from the Settings menu in the top-right corner of the Project view

(on page 414).

• Select Enable Main Files Support from the contextual menu of the project root folder in the Project

view (on page 414). If a disabled Main Files folder exists, you can also select that option from its

contextual menu.

• Click the Enable button in the tooltip located at the bottom of the Project view (on page 414). This

tooltip window is displayed when the Main Files support is disabled. Clicking the Read more link

takes you to the user guide. Clicking the Enable button opens the Enable Main Files dialog box. This

dialog box contains general information about the Main Files Support and allows you to enable it. You

Oxygen XML Editor 27.1 | 7 - Working With Documents | 432

can also use the Detect and Enable button in this dialog box to detect the main files from the current

project.

Warning:

Once you close this window tip, Oxygen XML Editor hides it for all projects. You can make the

window tip reappear by resetting Oxygen XML Editor to its default settings (on page 324).

However, doing so will result in you losing your customized options.

Related information

Detecting Main Files (on page 432)

Adding or Removing Files/Folders in the Main Files Directory (on page 433)

Detecting Main Files

Oxygen XML Editor allows you to detect the main files using the Detect Main Files option. This action

applies to the folders you select in the project.

To detect main files over the entire project, do one of the following:

• Right-click the root of the project and select Detect Main Files.

• Use the Detect Main Files from Project option, available in the contextual menu of the Main Files

folder.

Both of these options display the Detect Main Files wizard. In the first panel you can select the type of main

files you want Oxygen XML Editor to detect. In the subsequent panel the detected main files are presented in a

tree-like fashion.The resources are grouped into three categories:

• Possible main files - The files presented on the first level in this category are not imported or included

from other files. These files are most likely to be set as main files.

Note:

For DITA projects, only DITA Maps (on page 3296) are reported as possible main files.

• Cycles - The files that are presented on the first level have circular dependencies between them. Any file

presented on the first level of a cycle is a possible main file.

• Standalone - Files that do not include or import other files and are also not included or imported

themselves. It is not necessary to set them as main files.

To set them as main files, simply select their checkboxes. Oxygen XML Editor marks all the children of a main

file as modules. Modules are rendered in gray and their tool-tip presents a list of their main files. A module can

be accessed from multiple main files.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 433

The next panel displays a list with the selected main files. Click the Finish button to add the main files in the

Main Files folder.

You can use the Select Main Files option to automatically mark all main files. This action sets all the

resources from the Possible Main Files category and the first resource of each Cycle as main files. The

Deselect All button simply removes all of your selections.

Tip:

It is recommended that you only add top-level files (files that are at the root of the include/import

graph) in the Main Files directory.

Attention:

If the Main Files Support is disabled, the Main Files directory is rendered only if it contains main

files.

Related information

Enabling the Main Files Support (on page 431)

Adding or Removing Files/Folders in the Main Files Directory (on page 433)

Adding or Removing Files/Folders in the Main Files Directory

Adding Files/Folders to the Main File Directory

The Main Files directory can contain logical folders, linked folders, or linked files.

To add files in the Main Files directory, use one of the following methods:

• Right-click a file from your project and select Add to Main Files from the contextual menu.

• Select Add Files or Add Edited File from the contextual menu of the Main Files directory.

• Drag and drop files into the Main Files directory.

• From the contextual menu of the Referenced/Dependent Resources view (on page 848), use the

Add to Main Files action.

To add folders in the Main Files directory, use one of the following methods:

• Right-click Main Files directory and select Add Folder from the contextual menu.

• Drag and drop folders into the Main Files directory.

You can view the main files for the current resource by selecting Properties from the contextual menu (on

page 423) of the Project view (on page 414) and the main files for the current editor in the Properties (on

page 408) and Information (on page 524) views.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 434

Removing Files/Folders from the Main Files Directory

The main files that are already defined in the project are automatically marked in the tree. To disable a main

file or folder, remove it from the Main Files folder (for example, right-click and select Remove from

Main Files). Removing files or folders from the Main Files folder does NOT delete the files from disk. It just

removes the logical files from that logical folder in the project.

Related information

Enabling the Main Files Support (on page 431)

Detecting Main Files (on page 432)

Quick Validation and Transformation for Main Files

If Main Files Support is enabled (on page 431), you can hover the cursor over the Main Files directory, or a

node within the directory, and Oxygen XML Editor will display inline Validate and Transform buttons

that can be used to quickly run a validation or transformation over the directory or node. For nodes within the

Main Files directory, hovering over the Validate and Transform buttons also displays the most recently

used validation or transformation scenario. To change the assigned validation or transformation scenario,

right-click the node and select Validate > Configure Validation Scenario(s) or Transform > Configure

Transformation Scenario(s), respectively.

Search and Find/Replace Features
Oxygen XML Editor includes advanced search capabilities to help you locate documents and resources. The

search features are powered by Apache Lucene. Apache Lucene is a free open source information retrieval

software library. You can perform simple text searches or more complex searches using the Apache Lucene -

Query Parser Syntax.

Note:

When Oxygen XML Editor performs the indexing of resources, referenced content is not taken

into account. For example, when DITA documents are indexed, the content referenced in a @conref

or @conkeyref attribute is not parsed. The files that make up the index are stored on disk in the

[user_home_directory]\AppData\Roaming\com.oxygenxml\lucene folder.

Open/Find Resource View

The Open/Find Resource view is designed to offer advanced search capabilities either by using a simple text

search or by using the Apache Lucene - Query Parser Syntax. By default, the view is presented in the left side

of the Oxygen XML Editor layout, next to the Project view (on page 414) or DITA Maps Manager (on page

2950). If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

http://lucene.apache.org/core/
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 435

Figure 75. Open/Find Resource View

You can use this view to find a file in the current Oxygen XML Editor project or in one of the DITA maps (on

page 3296) opened in the DITA Maps Manager view (on page 2950) by typing only a few letters of the file

name of a document or a fragment of the content you are searching for. The Open/Find Resource view also

supports searching in document edits (comments, tracked change insertions/deletions, and highlighted

content) by selecting the In reviews option (on page 436).

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text

are highlighted in the results list displayed in the dialog box. When you open one of the documents from the

results list, the matching fragments of text are highlighted in the editing area. To remove the highlighting

from your document, close the corresponding tab in the Results view (on page 560) view at the bottom of

the editor. To display the search history, position the cursor in the search field and press Ctrl + DownArrow

(Command + DownArrow on macOS) or Ctrl + UpArrow (Command + UpArrow on macOS) on your keyboard.

Pressing only the DownArrow key moves the selection to the list of results.

Note:

Searches are not case-sensitive. For example, if you search for car you get the same results as when

you search for Car.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 436

Tip:

Suffix searches are also supported, both for searching in the content of your resources and in their

name. For this, you can use wildcards. If you search for *ing with the in content option selected, you

will find documents that contain the word presenting. If you search for */samples/*.gif with the in

file paths option selected, you will find all the gif images from the samples directory.

Options Available in the View

The Open/Find Resource view offers the following options:

• Settings - Drop-down menu that includes the following settings for the view:

◦ Clear Index - Clears the index.

◦ Show description - Presents the search results in a more compact form, displaying only the title

and the location of the resources.

◦ Options - Opens the Open/Find Resource preferences page (on page 308) where you can

configure various search options. For example, you can specify a Content language that differs

from the default UI language in case your document contains multiple languages.

• In file paths (on page 443) - Select this option to search for resources by their name or by its path (or

a fragment of its path).

• In content (on page 440) - Select this option to search through the content of your resources.

• In reviews (on page 443) - Select this option to search through the comments, tracked change

insertions/deletions, or highlights in your resources.

• Reindex - Use this option to reindex your resources.

Contextual Menu Actions

A contextual menu is available on each search result and provides actions applicable to that particular

document. These actions include:

• Open - Opens the document in one of Oxygen XML Editor internal editors.

• Open with - Allows you to choose to open the document in the Internal editor or an external System

application.

• Show in Explorer - Identifies the document in the system file explorer.

• Copy Location - Copies the file path and places it in the clipboard.

Indexing Process

The content of the resources used to search in is parsed from an index. The indexing is performed both

automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in

the currently indexed project. If the index was never initialized, the index is not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-

called stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the,

their, then, there, these, they, this, to, was, will, with. This means that if you are searching for any of these

Oxygen XML Editor 27.1 | 7 - Working With Documents | 437

words, the indexing process will not be able to match any of them. However, you can configure the list of stop

words in the Open/Find Resource preferences page (on page 308).

Caching Mechanism

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current

project. When the first search is performed, all project files are indexed and added to the cache. The next

search operation uses the information extracted from the cache, thus improving the processing time. The

cache is kept for the currently loaded project only, so when you perform a search in a new project, the cache is

rewritten. Also, the cache is reset when you click the Reindex button.

Important:

Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are

searching for was added to the Oxygen XML Editor project after the last caching operation. In this case, re-

indexing the project files with the Reindex button enables the file to be found. The date and time of the last

index operation are displayed below the file list.

Opening the Results

Once you find the files that you want to open, select them in the list and click the Open button (or double-click

them). Each of the selected files is opened in the editor associated with the type of the file (on page 307).

Note:

You can drag a resource from the Open/Find Resource view and drop it in a DocBook, DITA, TEI or

XHTML document to create a link to that resource.

Resources

For more information about the Open/Find Resource feature and its search capabilities, watch our video

demonstration:

https://www.youtube.com/embed/PENoDNdaGao

Related information

Open/Find Resource Dialog Box (on page 437)

Open/Find Resource Dialog Box

The Open/Find Resource dialog box offers advanced search capabilities. To open the dialog box, go to Find >

Open/Find Resource (Ctrl + Shift + R (Command + Shift + R on macOS)). You can also click the Open/Find

Resource toolbar button or use the Search for file action that is available in some URL input fields.

https://www.youtube.com/embed/PENoDNdaGao

Oxygen XML Editor 27.1 | 7 - Working With Documents | 438

Figure 76. Open/Find Resource Dialog Box

You can use this dialog box to find a file in the current Oxygen XML Editor project or in one of the DITA maps

(on page 3296) opened in the DITA Maps Manager view (on page 2950) by typing a few letters of the file

name or a fragment of the content you are searching for. The Open/Find Resource dialog box also supports

searching in document edits (comments, tracked change insertions/deletions, and highlighted content).

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text

are highlighted in the results list displayed in the dialog box. When you open one of the documents from the

results list, the matching fragments of text are highlighted in the editing area. To remove the highlighting

from your document, close the corresponding tab in the Results view (on page 560) view at the bottom of

the editor. To display the search history, position the cursor in the search field and press Ctrl + DownArrow

(Command + DownArrow on macOS) or Ctrl + UpArrow (Command + UpArrow on macOS) on your keyboard.

Pressing only the DownArrow key moves the selection to the list of results.

Note:

Searches are not case-sensitive. For example, if you search for car you get the same results as when

you search for Car.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 439

Tip:

Suffix searches are also supported, both for searching in the content of your resources and in their

name. For this, you can use wildcards. If you search for *ing with the in content option selected, you

will find documents that contain the word presenting. If you search for */samples/*.gif with the in

file paths option selected, you will find all the gif images from the samples directory.

Options Available in the Dialog Box

The Open/Find Resource dialog box includes the following options:

• In file paths (on page 443) - Select this option to search for resources by their name or by its path (or

a fragment of its path).

• In content (on page 440) - Select this option to search through the content of your resources.

• In reviews (on page 443) - Select this option to search through the comments, tracked change

insertions/deletions, or highlights in your resources.

• Options - Opens the Open/Find Resource preferences page (on page 308) where you can configure

various search options. For example, you can specify a Content language that differs from the default

UI language in case your document contains multiple languages.

• Clear Index - Clears the index.

• Reindex - Use this option to reindex your resources.

Contextual Menu Actions

A contextual menu is available on each search result and provides actions applicable to that particular

document. These actions include:

• Open - Opens the document in one of Oxygen XML Editor internal editors.

• Open with - Allows you to choose to open the document in the Internal editor or an external System

application.

• Show in Explorer - Identifies the document in the system file explorer.

• Copy Location - Copies the file path and places it in the clipboard.

Indexing Process

The content of the resources used to search in is parsed from an index. The indexing is performed both

automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in

the currently indexed project. If the index was never initialized, the index is not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-

called stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the,

their, then, there, these, they, this, to, was, will, with. This means that if you are searching for any of these

words, the indexing process will not be able to match any of them. However, you can configure the list of stop

words in the Open/Find Resource preferences page (on page 308).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 440

Caching Mechanism

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current

project. When the first search is performed, all project files are indexed and added to the cache. The next

search operation uses the information extracted from the cache, thus improving the processing time. The

cache is kept for the currently loaded project only, so when you perform a search in a new project, the cache is

rewritten. Also, the cache is reset when you click the Reindex button.

Important:

Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are

searching for was added to the Oxygen XML Editor project after the last caching operation. In this case, re-

indexing the project files with the Reindex button enables the file to be found. The date and time of the last

index operation are displayed below the file list.

Opening the Results

Once you find the files that you want to open, select them in the list and click the Open button (or double-click

them). Each of the selected files is opened in the editor associated with the type of the file (on page 307).

Resources

For more information about the Open/Find Resource feature and its search capabilities, watch our video

demonstration:

https://www.youtube.com/embed/PENoDNdaGao

Related information

Open/Find Resource View (on page 434)

Open/Find Resource Preferences Page (on page 308)

Searching in Content

To perform a search through the content of your resources, open the Open/Find Resource dialog box (on

page 437) (from the Find menu or with Ctrl + Shift + R (Command + Shift + R on macOS)) or the Open/Find

Resource view (on page 434) (by default, located on the left side of the editor), select the in content option,

and in the search field enter the terms that you want to search for.

The Open/Find Resource feature is powered by Apache Lucene. Apache Lucene is a free open source

information retrieval software library.

You can use the Open/Find Resource feature to either perform a simple text search or a more complex search

using the Apache Lucene - Query Parser Syntax.

https://www.youtube.com/embed/PENoDNdaGao
http://lucene.apache.org/core/
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 441

Complex Query Patterns Using Lucene Syntax

Using the Apache Lucene - Query Parser Syntax means you can perform any of the following searches:

• Term Searches

Searching for plain text:

Garden Preparation

• Element-Specific Searches

Searching for content that belongs to a specific element:

title:"Garden Preparation"

• Wildcard Searches

Using wildcards to make your search more permissive:

Garden Prepar?tion

• Fuzzy Searches

If you are not sure of the exact form of a term that you are interested in, use the fuzzy search to find the

terms that are similar to the search term. To perform a fuzzy search, use the ~ symbol after the word

that you are not sure of:

Garden Preparing~

• Proximity Searches

Use proximity searches to find words that are within a specific distance away. To perform a proximity

search, use the ~ symbol at the end of your search. For example, to search for the word Garden and the

word Preparation within 6 words of each other use:

"Garden Preparation"~6

• Range Searches

Use range searches to match documents whose element values are between the lower and upper

bound specified in the range query. For example, to find all documents whose titles are between Iris

and Lilac, use:

title:{Iris TO Lilac}

The curly brackets denote an exclusive query. The results you get when using this query are all the

documents whose titles are between Iris and Lilac, but not including Iris and Lilac. To create an

inclusive query use square brackets:

title:[Iris to Lilac]

http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 442

• Term Boosting Searches

Use term prioritising searches if the fragment of text that you are searching for contains certain words

that are more important to your search than the rest of them. For example, if you are searching for

Autumn Flower, a good idea is to prioritize the word Autumn since the word Flower occurs more often.

To prioritize a word use the ^ symbol:

Autumn^6 Flower

• Searches Using Boolean Operators

You can use the AND, +, OR, -, and NOT operators.

To search for documents that contain both the words Garden and Preparation, use:

Garden AND Preparation

To search for documents that must contain the word Garden and may contain the word Preparation,

use:

+Garden Preparation

To search for documents that contain either the word Garden or the word Preparation, use:

Garden OR Preparation

To search for documents that contain Garden Preparation but not Preparation of the Flowers, use:

"Garden Preparation" - "Preparation of the Flowers"

• Searches Using Grouping

To search either for the word Garden or Preparation, and the word Flowers, use:

(Garden OR Preparation) AND Flowers

• Searches Using Element Grouping

To search for a title that contains both the word Flowers and the phrase Garden Preparation, use:

title:(+Flowers +"Garden Preparation")

• Searching for Special Characters

Sometimes you might need to search your content for special character, such as:

+ - && || ! () { } [] ^ ~ * ? : \

In this case, you should surround your search query with quotes. For example, to search for (Hydrogen

+ Oxygen)=Water, use:

"(Hydrogen + Oxygen)=Water"

Oxygen XML Editor 27.1 | 7 - Working With Documents | 443

Searching in File Paths

To perform a search in the file paths of your resources, open the Open/Find Resource dialog box (on page

437) (from the Find menu or with Ctrl + Shift + R (Command + Shift + R on macOS)) or the Open/Find

Resource view (on page 434) (by default, located on the left side of the editor), select the In file paths

option, and in the search field enter the terms that you want to search for.

The Open/Find Resource feature allows you to search for a resource either by its name or by its path (or by a

fragment of its path).

You can use wildcards when you perform such searches:

• Use "*" to match any sequence of characters.

• Use "?" to match any single character.

For example, if you search for *-preferences-page you will find all the resources that contain the -preferences-

page fragment in their name. If you search for */samples/*.gif, you will find all the .gif images from the

samples directory.

Searching in Reviews

To perform a search in the edits of your resources, open the Open/Find Resource dialog box (on page 437)

(from the Find menu or with Ctrl + Shift + R (Command + Shift + R on macOS)) or the Open/Find Resource

view (on page 434) (by default, located on the left side of the editor), select the In reviews option, and in the

search field enter the terms that you want to search for.

The following options are available:

• Type - Specifies whether you want to search for content in comments, tracked change insertions/

deletions, or highlighted content.

• Author - Displays all the authors of the edits in your resources. The authors are collected when

indexing. You can set a specific author for your search or search all of them.

• Time- Specifies the time when the edits that you are searching through were created.

Both the view and the dialog box display the edits that contain the search results and their parent topics along

with a short description. To hide this description, go to Settings and deselect the Show Description option.

Find/Replace Dialog Box

To open the Find/Replace dialog box, use the Find/Replace action that is available in the Find menu, on the

toolbar, or by pressing Ctrl + F (Command + F on macOS). It is also invoked by the Find/Replace contextual

menu action found in certain views.

You can use the Find/Replace dialog box to perform the following operations:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 444

• Replace occurrences of target defined in the Find area with a new fragment of text defined in Replace

with area.

• Find all the occurrences of a word or string of characters (that can span over multiple lines) in the

document you are editing. This operation also takes into account all the whitespaces contained in the

fragment you are searching for. The Find/Replace dialog box counts the number of occurrences of the

text you are searching for and displays it at the bottom of the dialog box, above the Close button. This

number is also displayed in the Results view (on page 560) view after you click the Find All button.

The find operation works on multiple lines, meaning that a find match can cover characters on multiple lines of

text. To input multiple-line text in the Find and Replace with areas, do one of the following:

• Press Ctrl + Enter (Command + Enter on macOS) on your keyboard.

• Use the Insert newline contextual menu action.

You can use Perl-like regular expressions syntax (on page 459) to define patterns. A content completion

assistance window is available in the Find and Replace with areas to help you edit regular expressions. It is

activated every time you type \(backslash key) or on-demand if you press Ctrl + Space on your keyboard.

The replace operation can bind regular expression capturing groups ($1, $2, etc.) from the find pattern.

Tip:

To replace the <tag-name> start tag and its attributes with the <new-tag-name> tag use as Find the

expression <tag-name(\s+)(.*)> and as Replace with the expression <new-tag-name$1$2>.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 445

Find/Replace Dialog Box

Figure 77. The Find/Replace Dialog Box

The Find/Replace dialog box contains the following options:

Find text area box

This is where you enter the character string to search for. You can search for Unicode characters

specified in the \uNNNN format. Also, hexadecimal notation (\xNNNN) and octal notation (\0NNNN)

can be used. In this case you have to select the Regular expression option (on page 447). For

example, to search for a space character you can use the \u0020 code.

You can use the History button to select from a list of the most recently used expressions.

Use the Clear history action from the bottom of the lists to remove these expressions.

Replace with text area box

The character string with which to replace the target. The string for replace can be on a line or

on multiple lines. It can contain Perl notation capturing groups, only if the search expression is a

regular expression and the Regular expression option (on page 447) is selected.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 446

Note:

Some regular expressions can indefinitely block the application. If the execution of the

regular expression does not end in about 5 seconds, the application displays a dialog

box that allows you to interrupt the operation.

Tip:

Special characters such as newline and tab can be inserted in the Find and Replace with

text boxes using dedicated actions in the contextual menu (Insert newline and Insert

tab).

Unicode characters in the \uNNNN format can also be used in the Replace with area.

You can use the History button to select from a list of the most recently used expressions.

Use the Clear history action from the bottom of the lists to remove these expressions.

XPath

The XPath 2.0 expression you input in this combo is used for restricting the search scope. The

cursor position does not affect the result of the XPath evaluation. The context of the XPath

expression evaluation from the Find/Replace dialog box is the XML document root. The XPath is

used for determining the intervals to be searched from the document, so the XPath result must

be a node-set.

Tip:

You can use the Content Completion Assistant (on page 3295) to help you input XPath

expressions that are valid in the current context. See Working with XPath Expressions

(on page 2109) for more information and some common examples of how to write

XPath expressions.

Clicking the XPath Options button opens a preferences page where you can configure some

XPath-related options.

Direction

Specifies if the search direction is from current position to end of file (Forward) or to start of file

(Backward).

Scope

Specifies whether the Find/Replace operation is executed over the entire content of the edited

document (All option), or over the selected content/lines.

Options section

Case sensitive

Oxygen XML Editor 27.1 | 7 - Working With Documents | 447

When selected, the search operation follows the exact letter case of the text

entered in the Find field.

Incremental

The search operation is started every time you type or delete a letter in the Find

text box.

Wrap around

When the end of the document is reached, the search operation is continued from

the start of the document, until its entire content is covered.

Ignore extra whitespaces

If selected, the application normalizes the content (collapses any sequence of

whitespace characters into a single space) and trims its leading and trailing

whitespaces when performing the search operation. This is helpful when searching

for spaced-separated words since line breaks and indentation between words

will not affect the results. This option is automatically disabled if the Regular

expression option is selected.

Whole words only

Only entire occurrences of a word are included in the search operation. This option

is automatically disabled if the Regular expression option is selected.

Regular expression

When this option is selected, you can use regular expressions in Perl-like regular

expressions syntax (on page 459) to look for specific pieces of text.

• Dot matches all - A dot used in a regular expression also matches end of

line characters.

• Canonical equivalence - If selected, two characters will be considered a

match if, and only if, their full canonical (on page 3295) decompositions

match. For example, the ã symbol can be inserted as a single character or

as two characters (the a character followed by the tilde ~ character). This

option is not selected by default.

Find All Elements link

Available when editing in Author mode, you can use this link to extend the

search scope to XML-specific markup (names and values of both attributes and

elements).

Find button

Executes a find operation for the next occurrence of the target. It stops after

highlighting the find match in the editor panel.

Replace/Find button

Oxygen XML Editor 27.1 | 7 - Working With Documents | 448

Executes a replace operation for the target followed by a find operation for the next

occurrence.

Replace button

Executes a replace operation for the target without going to the next occurrence.

Find All button

Executes a find operation and displays all results in the Results view (on page

560) view.

Replace All button

Executes a replace operation in the entire scope of the document.

Replace to End button

Executes a replace operation starting from current target until the end of the

document, in the direction specified by the current selection of the Direction switch

(Forward or Backward).

Find/Replace in Multiple Files

The Find/Replace in Files feature enables you to define Search for or Search for and Replace operations

across multiple files (for example, in DITA projects you can search in the scope of an entire DITA map (on

page 3296)). To open the Find/Replace in Files dialog box, use the Find/Replace in Files action that is

available in the following locations:

• The Find menu.

• The Find/Replace in Files button on the main toolbar.

• The contextual menu of the DITA Maps Manager view (on page 2950).

• The contextual menu of the Project view (on page 414).

• The contextual menu of the Data Source Explorer view (on page 2125) for most types of database

connections.

The operation works on both local and remote files from an SFTP, WebDAV, or CMS server.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 449

Find/Replace in Files Dialog Box

Figure 78. Find / Replace in Files Dialog Box (When Opened from the Toolbar Button)

The dialog box contains the following options:

Text to Find section

The first text field is where you enter the character string to search for. You can search for

Unicode characters specified in the \uNNNN format. Also, hexadecimal notation (\xNNNN) and octal

notation (\0NNNN) can be used. In this case you have to select the Regular expression option. For

example, to search for a space character you can use the \u0020 code.

The rest of the options in this section can be used to refine your search:

Case sensitive

When selected, the search operation follows the exact letter case of the value

entered in the Text to find field.

Whole words only

Oxygen XML Editor 27.1 | 7 - Working With Documents | 450

Only entire occurrences of a word are included in the search operation. This

option is automatically disabled if either the Ignore extra whitespaces or Regular

expression options are selected.

Ignore extra whitespaces

If selected, the application normalizes the content (collapses any sequence of

whitespace characters into a single space) and trims its leading and trailing

whitespaces when performing the search operation. This is helpful when searching

for spaced-separated words since line breaks and indentation between words

will not affect the results. This option is automatically disabled if the Regular

expression option is selected.

Regular expression

When this option is selected, you can use regular expressions in Perl-like regular

expressions syntax (on page 459) to look for specific pieces of text.

• Dot matches all - A dot used in a regular expression also matches end of

line characters.

• Canonical equivalence - If selected, two characters will be considered a

match if, and only if, their full canonical (on page 3295) decompositions

match. For example, the ã symbol can be inserted as a single character or

as two characters (the a character followed by the tilde ~ character). This

option is not selected by default.

Restrict to XPath

The XPath 2.0 expression you input in this combo is used for restricting the search

scope. The XPath is used for determining the intervals to be searched from the

document, so the XPath result must be a node-set.

Example: Use the XPath filter expression //*[not(local-name() = 'uicontrol')] to

skip over the contents of any <uicontrol> element.

Tip:

You can use the Content Completion Assistant (on page 3295) to help you

input XPath expressions that are valid in the current context. See Working

with XPath Expressions (on page 2109) for more information and some

common examples of how to write XPath expressions.

Clicking the XPath Options button opens a preferences page where you can

configure some XPath-related options.

Enable XML search options

Oxygen XML Editor 27.1 | 7 - Working With Documents | 451

This option is only available when editing in Text mode. It provides access to a set

of options that allow you to search specific XML component types:

• Element names - Only the element names are included in the search

operation that ignores XML-tag notations ('<', '/', '>'), attributes or white-

spaces.

• Element contents - Search in the text content of XML elements.

• Attribute names - Only the attribute names are included in the search

operation, without the leading or trailing white-spaces.

• Attribute values - Only the attribute values are included in the search

operation, without single quotes(') or double quotes(").

• Comments - Only the content of comments is included in the search

operation, excluding the XML comment delimiters ('<!--', '-->').

• PIs (Processing Instructions) - Only the content is searched, skipping '<?'...'?

>' (for example, <?processing instruction?>).

• CDATA - Searches inside content of CDATA sections.

• DOCTYPE - Searches inside content of DOCTYPE sections.

• Entities - Only the entity names are searched.

The two buttons Select All and Deselect All allow a simple activation and

deactivation of all types of XML components.

Note:

Even if you select all options of the Enable XML search options section,

the search is still XML-aware. If you want to perform the search over the

entire file content, deselect Enable XML search options.

Replace with section

Use the text field in this section to specify a character string to replace the target with. It may

contain regular expression group markers if the search expression is a regular expression and

the Regular expression checkbox is selected.

Tip:

If you want to change the XML structure, you could use the built-in XML refactoring

operations (on page 860). You can even customize your own refactoring operations

(on page 872).

Make backup files with extension

In the replace process Oxygen XML Editor makes backup files of the modified files.

The default extension is .bak, but you can change the extension as you prefer.

Scope section

Oxygen XML Editor 27.1 | 7 - Working With Documents | 452

The options available in this section depend on the context (how the dialog box was opened).

Select one of the listed options to specify the scope for the operation. The possible options

include:

Selected project resources

Searches only in the selected files.

Project files

Searches in all files from the current project.

All opened files

Searches in all files opened in Oxygen XML Editor (regular files or DITA maps). You

are prompted to save all modified files before any operation is performed.

Current file directory

The search is done in the directory of the file opened in the current editor panel. If

there is no open file, this option is not available.

Current DITA Map hierarchy (only available if opened from the DITA Maps Manager)

The search is done in all maps and topics referenced by the currently selected

DITA map, opened in the DITA Maps Manager view (on page 2950).

Selected references (only available if opened from the DITA Maps Manager)

Searches only in the selected DITA references.

Opened archive (only available if opened from the Archive Browser view)

The search is done in an archive opened in the Archive Browser (on page 2118)

view.

Specified path

Use this option to specify the search path.

Filters section

The options available in this section depend on the context (how the dialog box was opened)

and they can be used to filter the search operation. The possible options include:

Include files

Narrows the scope of the operation only to the files that match the given filters. For

example, you can choose to filter the search to only include files with a certain file

extension (such as *.xml).

Recurse subdirectories

When selected, the search is performed recursively for the specified scope. The

one exception is that this option is ignored if the scope is set to All opened files.

Recurse references (only available if opened from the DITA Maps Manager)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 453

When selected, the search is performed recursively for the selected scope.

Include hidden files

When selected, the search is also performed in the hidden files.

Include archives

When selected, the search is also done in all individual file entries from all

supported ZIP-type archives.

Show separate results for each search expression

When selected, the application opens a new tab to display the result of each new search

expression. When the option is unchecked, the search results are displayed in the Find in Files

tab, replacing any previous search results.

Always open selected results in Text mode

If selected, double-clicking results will always open the documents in Text mode (even if the

particular document type is set to open in Author mode, by default). If not selected (default

state), double-clicking results will open the documents in whatever editing mode is specified

as the default for that document type. For example, by default, DITA documents will open in

Author mode (as specified in the default framework configuration for DITA document types).

Specialized XML documents such as XSLT or XML Schema will continue being opened in the

Text editing mode.

Find All

Use the Find All button to execute the search operation. The results are displayed in a view that

allows grouping the results as a tree with two levels.

Replace All

Use the Replace All button to execute the search operation and replace all occurrences with

the specified string. When you replace a fragment of text, Oxygen XML Editor offers an option

to preview of the changes you make. The Preview dialog box is divided in two sections. The

first section presents a list of all the documents containing the fragment of text you want to

modify. The second section offers a view of the original file and a view of the final result. It also

allows you to highlight all changes using the vertical bar from the right side of the view. The Next

change and Previous change buttons allow you to navigate through the changes displayed in the

Preview dialog box.

CAUTION:

Use the Replace All option with caution. Global searches may result in matching strings

being replaced in instances that were not originally intended.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 454

Note:

• You can use Perl-like regular expression syntax (on page 459) to match patterns in text

content. The replace operation can bind regular expression capturing groups ($1, $2, etc.) from

the find pattern.

• Exclusion patterns are accepted. For example, *.java, !*Test.java would search for all files

with a .java extension, with the exception of any file whose name ends in Test.

• To replace the <tag-name> start tag and its attributes with the <new-tag-name> tag use as Text to

find the expression <tag-name(\s+)(.*)> and as Replace with the expression <new-tag-name

$1$2>.

• The encoding used to read and write the files is detected from the XML header or from the

BOM. If a file does not have an XML header or BOM Oxygen XML Editor uses by default the

UTF-8 encoding for files of type XML, that is for files with one of the extensions: .xml, .xsl,

.fo, .xsd, .rng, .nvdl, .sch, .wsdl or an extension associated with the XML editor type

(on page 307). For the other files it uses the encoding configured for non-XML files (on page

176).

• You can cancel a long operation at any time by pressing the Cancel button of the progress

dialog box or in the status bar, but doing so will not revert any replacements that have been

processed up to that point.

• Since the content of read-only files cannot be modified, the Replace operation does not

process those files. For every such file, a warning message is displayed in the message panel.

Related information

Built-in Refactoring Operations (on page 860)

Custom Refactoring Operations (on page 872)

Find All Elements Dialog Box

To open the Find All Elements dialog box, go to Find > Find All Elements(Ctrl + Shift + E (Command + Shift + E

on macOS)) or from the shortcut Find All Elements that is available in the Find / Replace dialog box (on page

443). It assists you in defining XML element / attribute search operations in the current document.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 455

Figure 79. Find All Elements Dialog Box

The dialog box can perform the following actions:

• Find all the elements with a specified name.

• Find all the elements that contain, or does not contain, a specified string in their text content.

• Find all the elements that have a specified attribute.

• Find all the elements that have an attribute with, or without, a specified value.

You can combine all of these search criteria to filter your results.

The following fields are available in the dialog box:

• Element name - The qualified name of the target element to search for. You can use the drop-down

menu to find an element or enter it manually. It is populated with valid element names collected from

the associated schema. To specify any element name, leave the field empty.

Note:

Use the qualified name of the element (<namespace prefix>:<element name>) when the

document uses this element notation.

• Element text - The target element text to search for. The drop-down menu beside this field allows you to

specify whether you are looking for an exact or partial match of the element text. For any element text,

select contains from the drop-down menu and leave the field empty. If you leave the field empty but

select equals from the drop-down menu, only elements with no text will be found. Select not contains

to find all elements that do not include the specified text.

• Attribute name - The name of the attribute that must be present in the element. You can use the

drop-down menu to select an attribute or enter it manually. It is populated with valid attribute names

collected from the associated schema. For any or no attribute name, leave the field empty.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 456

Note:

Use the qualified name of the attribute (<namespace prefix>:<attribute name>) when the

document uses this attribute notation.

• Attribute value - The drop-down menu beside this field allows you to specify that you are looking for

an exact or partial match of the attribute value. For any or no attribute value, select contains from the

drop-down menu and leave the field empty. If you leave the field empty but select equals from the drop-

down menu, only elements that have at least an attribute with an empty value will be found. Select not

contains to find all elements that have attributes without a specified value.

• Case sensitive - When this option is selected, operations are case-sensitive.

When you select Find All, Oxygen XML Editor tries to find the items that match all the search parameters. The

results of the operation are presented as a list in the message panel.

Find and Invoke Actions

Oxygen XML Editor includes a Find action feature that provides a quick way to find actions that are available

throughout the application. You can also assign shortcuts for particular actions and invoke actions using this

feature.

The Find action operation is available in the Find or Help menus and it opens a pop-up window where all the

actions are presented in a sortable, filterable table.

Figure 80. Find Action Pop-Up Window

This pop-up window includes the following features, options, and controls:

Search Field

You can use the search field at the top to search for a specific action and it includes a history

drop-down down menu for quickly preforming recently-used search criteria. You can use the

Oxygen XML Editor 27.1 | 7 - Working With Documents | 457

Delete button to the right of the search field to clear the current text from the search field.

You can also search for actions using certain keyboard shortcuts (excluding the common editing

commands such as Delete, Home, End, Delete, Ctrl+A, Ctrl+C, Ctrl+V, etc.)

Filtering Options

All actions

Filters the table to display all available actions.

Actions in editing context

Filters the table to display available actions based on the current editing context

where the application is focused (for example, if the current focus is a particular

side-view, the table displays actions that are available in that side-view).

Disabled actions

Filters the table to also display actions that are currently disabled.

Double-Click

You can double-click an action in the table (or select an action and press Enter) to execute the

particular action. Some actions will not have an effect if they are not allowed in the current

editing context.

Accessibility Shortcuts

The following keyboard shortcuts can be used to enjoy this feature using only a keyboard:

• Ctrl + Alt + K - Opens the Find action pop-up window feature.

• Up arrow / Down arrow - Navigates the table vertically and switches from the search field

to the table, and vice versa.

• Tab / Shift + Tab - Navigates between the radio filtering options and the checkbox option.

• Left arrow / Right arrow - Toggles the selection for the radio filtering options.

• Space - Toggles the checkbox option.

• Enter - Executes the selected action.

• Ctrl + Enter - Opens a dialog box where you can assign a keyboard shortcut for the

selected action.

• Ctrl + Up arrow / Ctrl + Down arrow - Accesses the history drop-down when the search

field is in focus.

• Esc - Closes the Find action pop-up window feature.

Actions Table

Displays the available actions based on the selected filtering options or search criteria. Some

actions might be disabled/deactivated depending on the current editing context. When the

Disabled action filtering option is selected, the disabled actions are displayed at the end of the

results in the table.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 458

Note:

It is possible for certain actions not to be displayed in the actions table if they are created and

implemented in other ways (for example, if they are implemented only to be available in a contextual

menu).

Quick Find Toolbar

A reduced version of the Find / Replace dialog box (on page 443) is available as a dockable toolbar (on

page 370). To display it, press the Alt + Shift + F (Command + Option + F on macOS) key combination or

select the Find > Quick Find action. By default, the toolbar is displayed at the bottom of the Oxygen XML

Editor window, above the status bar, but can be changed at any time by dragging (and docking) it to a different

location. To hide the toolbar, use the Close button.

All matches are highlighted in the current editor.

Figure 81. Quick Find Toolbar

The toolbar offers the following controls:

• Search input box - This is where you can insert the text you want to search for. The input box keeps a

history of the last used search text. The background color of the input box turns red when no match is

found.

• Next - Advances to the next match. You can also use the Enter key to jump forward to the next match.

• Previous - Jumps to the previous match. You can also use Shift+Enter to jump backward to the

previous match.

• All - Highlights all matches of the search string in the current document.

• Incremental - If selected, the search operation is started every time you type or delete a character in the

search input box.

• Case sensitive - If selected, the search operation follows the exact letter case of the search text.

• Find/Replace - Opens the Find/Replace dialog box (on page 443).

• Find/Replace in Files - Opens the Find/Replace in Files dialog box (on page 448).

• Close - Closes the Quick Find toolbar.

Keyboard Shortcuts for Finding the Next and Previous Match

Navigating from one match to the next or previous one is very easy to perform using the F3 and Shift + F3

(Command + Shift + G on macOS) keyboard shortcuts. They are useful for quickly repeating the last find

action performed in the Find / Replace dialog box (on page 443), taking into account the same find options.

Restriction:

These shortcuts only take XPath expressions into account if the Find / Replace dialog box remains

opened. Once you close it, the XPath expressions are no longer considered.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 459

Regular Expressions Syntax

Oxygen XML Editor uses the Java regular expression syntax. It is similar to that used in Perl 5, with several

exceptions. Thus, Oxygen XML Editor does not support the following constructs:

• The conditional constructs (?{X}) and (?(condition)X|Y).

• The embedded code constructs (?{code}) and (??{code}).

• The embedded comment syntax (?#comment).

• The preprocessing operations \l, \u, \L, and \U.

When using regular expressions, note that some sets of characters from XPath/XML Schema/Schematron are

slightly different than the ones used by Oxygen XML Editor/Java in the text searches from the Find/Replace

dialog box (on page 443) and Find/Replace in Files dialog box (on page 448). The most common example

is with the \w and \W set of characters. To ensure consistent results between the two, it is recommended that

you use the following constructs in the Find/Replace dialog box (on page 443) and Find/Replace in Files

dialog box (on page 448):

• /w - [#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}] instead of \w

• /W - [\p{P}\p{Z}\p{C}] instead of \W

There are some other notable differences that may cause unexpected results, including the following:

• In Perl, the ^ character matches at the beginning of the string, while in Java, it matches the beginning of

a line.

• In Perl, the $ character matches at the end of the string, while in Java, it matches the end of a line.

• In Perl, \1 through \9 are always interpreted as back references. A backslash-escaped number greater

than 9 is treated as a back reference if at least that many sub-expressions exist. Otherwise, it is

interpreted, if possible, as an octal escape. In this class octal escapes must always begin with a zero.

In Java, \1 through \9 are always interpreted as back references, and a larger number is accepted as

a back reference if at least that many sub-expressions exist at that point in the regular expression.

Otherwise, the parser will drop digits until the number is smaller or equal to the existing number of

groups or it is one digit.

• Perl uses the g flag to request a match that resumes where the last match left off.

• In Perl, embedded flags at the top level of an expression affect the whole expression. In Java,

embedded flags always take effect at the point where they appear, whether they are at the top level or

within a group. In the latter case, flags are restored at the end of the group just as in Perl.

• Perl is forgiving about malformed matching constructs, as in the expression *a, as well as dangling

brackets, as in the expression abc], and treats them as literals. This class also accepts dangling

brackets but is strict about dangling meta-characters such as +, ? and *.

Related information

Comparison between the Java and Perl 5 regular expression syntax

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://www.w3.org/TR/xmlschema-2/#dt-ccesN
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 460

Spell Checking
Oxygen XML Editor includes an automatic (as-you-type) spell checking feature (on page 469), as well as a

manual spell checking action to open a Spelling dialog box that offers a variety of options.

To manually check spelling in the current document, use the Check Spelling action on the toolbar or from

the Edit menu.

Figure 82. Check Spelling Dialog Box

The Spelling dialog box contains the following:

Unrecognized word

Displays the word that cannot be found in the selected dictionary. The word is also highlighted in

the XML document.

Replace with

The character string that will replace the misspelled word.

Guess

Displays a list of suggested words to replace the unknown word. Double-click a word to

automatically insert it in the document and resume the spell checking process.

Default language

Allows you to select the default language dictionary used by the spelling engine.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 461

Paragraph language

In an XML document, you can mix content written in multiple languages. You can set the

language code in the @lang or @xml:lang attribute for any particular section and Oxygen XML

Editor will automatically instruct the spell checker engine to apply the appropriate language

dictionary for that section.

Begin at cursor position

Instructs the spell checker to begin checking the document starting from the current cursor

position.

Action Buttons

Replace

Use this button to replace the unrecognized word with the selected word from the

Replace with field.

Replace All

Use this button to replace all occurrences of the unrecognized word with the

selected word from the Replace with field, starting from the cursor's position to the

end of the document.

Note:

This action is case-sensitive.

Ignore

Ignores the first occurrence of the unrecognized word and allows you to continue

checking the document. Oxygen XML Editor skips the content of the XML elements

marked to be ignored (on page 468).

Ignore All

Ignores all instances of the unrecognized word in the current document.

Learn

Adds the unrecognized word to the list of valid words.

Options

Opens the Spell Check preferences page (on page 239) where you can configure

various options regarding the feature.

Related information

AutoCorrect Misspelled Words (on page 472)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 462

Spell Check Dictionaries and Term Lists

Oxygen XML Editor uses the Hunspell engine for the spell checking feature. The Hunspell spell checking

engine is open source and has an LGPL license. It is designed for languages with rich morphology and

complex compounding or character encoding. Each language-country variant combination have their own

specific dictionaries. Oxygen XML Editor includes the following built-in dictionaries for the spell checker:

• English (US) [en_US]

• English (UK) [en_GB]

• French [fr]

• German [de_DE]

• Spanish [es_ES]

Other Hunspell Dictionaries

You can also download Hunspell dictionaries for other languages and add them to the Oxygen XML

Editor spell checker. An example of a website that includes numerous dictionary files is: http://

extensions.services.openoffice.org/dictionary.

If you cannot find a Hunspell dictionary that is already built for your language, you can build the dictionary you

need. To build a full Hunspell dictionary, follow these instructions and then add the dictionary to the Oxygen

XML Editor spell checker by following this procedure (on page 463).

Personalized Term Lists

Authoring in certain areas of expertise (for example, the pharmaceutical or automobile industries) might

require the use of specific terms that are not part of the standard spell checker dictionary. To avoid marking

these terms as errors, Oxygen XML Editor provides a way of adding personalized term lists (on page 466)

to the spell check engine. This involves creating a term list file that the spell checker will recognize and it is

similar to the file Oxygen XML Editor uses for storing learned words (on page 468).

The term list files are specific for each language and can be specific to each domain or area of expertise (for

example, legal, medical, automotive). They can also be used to control forbidden words.

Related information

Adding Custom Spell Check Dictionaries (on page 463)

Adding Custom Spell Check Term Lists (on page 466)

Building and Testing Hunspell Dictionaries

Adding Custom Dictionaries and Term Lists

The Oxygen XML Editor spell checker allows you to add customized Hunspell dictionaries and personalized

term lists. The Hunspell dictionary mechanism requires a dictionary file (with a .dic file extension) and

an affix file (with the .aff file extension). The personalized term lists are custom files (with the .tdi file

http://extensions.services.openoffice.org/dictionary
http://extensions.services.openoffice.org/dictionary
https://github.com/hunspell/hunspell
https://github.com/hunspell/hunspell

Oxygen XML Editor 27.1 | 7 - Working With Documents | 463

extension) that you can create to include specialized terms or specify forbidden words in the Oxygen XML

Editor spell checker.

You can add dictionaries (on page 463) and personalized term lists (on page 466) to the default folder

where they are stored or specify your own custom locations. You can view the default storage location in the

Spell Check Dictionaries preferences page (on page 242) and the Include dictionaries and term list from

option (on page 242) allows you to choose a custom storage location. All the dictionaries and term lists for a

particular language that are found in either location are merged and used by the spell checker in Oxygen XML

Editor.

Related information

Replacing a Spell Check Dictionary (on page 466)

Editing the Spell Checking Dictionaries

Adding Custom Spell Check Dictionaries

There are three possible scenarios for adding Hunspell dictionaries to the Oxygen XML Editor spell checker:

• You can download a pre-built Hunspell dictionary and add it to the spell checking mechanism.

• You can create a custom Hunspell dictionary file that defines your own list of words and add it to the

spell checking mechanism.

• You can build your own full Hunspell dictionary and add it to the spell checking mechanism.

Download and Add a Pre-Built Hunspell Dictionary

To add a downloaded pre-built dictionary, follow these steps:

1. Download the files needed for your dictionary. You will need a dictionary file (with a .dic file extension)

and an affix file (with the .aff file extension). If the dictionary does not include an affix file (.aff), you

can create one and leave it empty, but it is needed for the mechanism to work properly. An example of a

website that includes numerous dictionary files is: http://extensions.services.openoffice.org/dictionary.

Important:

The name of the files should begin with a two letter prefix for the language code, followed by

an underscore or hyphen, then two letters that indicate the country code, followed by another

underscore or hyphen, and then a descriptive name (for example, en_US_medical.dic for

a medical dictionary in the US version of the English language, or for a less specific English

medical dictionary, you could omit the country code like this: en_medical.dic). For a list of

language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Spell Check

> Dictionaries (on page 242).

3. Choose one of the following two options for adding the downloaded files.

https://www.chromium.org/developers/how-tos/editing-the-spell-checking-dictionaries
http://extensions.services.openoffice.org/dictionary
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Oxygen XML Editor 27.1 | 7 - Working With Documents | 464

a. Copy both files (.dic and .aff) to the default directory displayed in the Dictionaries and term

lists default folder option (on page 242).

b. Copy both files (.dic and .aff) to any other directory, select the Include dictionaries and term

list from option (on page 242), and select that directory. If you choose this option, make sure you

read this important note (on page 242).

4. Restart the application for the spell checker to start using the new dictionary.

Create a Custom Hunspell Dictionary that Defines a List of Words

To create a custom Hunspell dictionary that defines your own list of words, follow these steps:

1. Create a dictionary file (with a .dic file extension) and an affix file (with the .aff file extension). The

affix file (.aff) can be left empty, but it is needed for the mechanism to work properly.

Important:

The name of the files should begin with a two letter prefix for the language code, followed by

an underscore or hyphen, then two letters that indicate the country code, followed by another

underscore or hyphen, and then a descriptive name (for example, en_US_medical.dic for

a medical dictionary in the US version of the English language, or for a less specific English

medical dictionary, you could omit the country code like this: en_medical.dic). For a list of

language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. In the dictionary file (.dic extension), add the words you want to be included in your custom dictionary.

Add one word per row and the first line needs to contain the number of words, as in the following

example:

 2

 parabola

 asimptotic

Tip:

Words stored in dictionaries are not handled as case-sensitive. Therefore, you do not need to

include both uppercase and lowercase versions of the words.

Note:

If you save the .dic file using UTF-8 encoding, then the corresponding .aff file should

specify the encoding as a property inside it (if you do not specify the encoding, the default

platform encoding will be used):

SET UTF-8

3. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Spell Check

> Dictionaries (on page 242).

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Oxygen XML Editor 27.1 | 7 - Working With Documents | 465

4. Choose one of the following two options for saving the files.

a. Save both files (.dic and .aff) to the default directory displayed in the Dictionaries and term

lists default folder option (on page 242).

b. Save both files (.dic and .aff) to any other directory, select the Include dictionaries and term

list from option (on page 242), and select that directory. If you choose this option, make sure you

read this important note (on page 242).

5. Restart the application for the spell checker to start using the new dictionary.

Build and Add a Full Hunspell Dictionary

To build and add a full Hunspell dictionary, follow these steps:

1. Create your Hunspell dictionary. For more information on how to do this, see: Editing the Spell Checking

Dictionaries.

Step Result: You should end up with a dictionary file (with a .dic file extension) and an affix file (with

an .aff file extension). The affix file (.aff) can be empty, but it is needed for the mechanism to work

properly.

Important:

The name of the files should begin with a two letter prefix for the language code, followed by

an underscore or hyphen, then two letters that indicate the country code, followed by another

underscore or hyphen, and then a descriptive name (for example, en_US_medical.dic for

a medical dictionary in the US version of the English language, or for a less specific English

medical dictionary, you could omit the country code like this: en_medical.dic). For a list of

language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Spell Check

> Dictionaries (on page 242).

3. Choose one of the following two options for saving the files.

a. Save both files (.dic and .aff) to the default directory displayed in the Dictionaries and term

lists default folder option (on page 242).

b. Save both files (.dic and .aff) to any other directory, select the Include dictionaries and term

list from option (on page 242), and select that directory. If you choose this option, make sure you

read this important note (on page 242).

4. Restart the application for the spell checker to start using the new dictionary.

Related information

Adding Custom Spell Check Term Lists (on page 466)

Editing the Spell Checking Dictionaries

https://www.chromium.org/developers/how-tos/editing-the-spell-checking-dictionaries
https://www.chromium.org/developers/how-tos/editing-the-spell-checking-dictionaries
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://www.chromium.org/developers/how-tos/editing-the-spell-checking-dictionaries

Oxygen XML Editor 27.1 | 7 - Working With Documents | 466

Adding Custom Spell Check Term Lists

You can create personalized term lists that are used to store specialized terms or control forbidden words.

They can then be added to one of the directories that store the spell check dictionaries, and the spell checker

will merge them with all the dictionaries and other term lists for a particular language.

Create and Add Personalized Term Lists

To create and add a personalized term list, follow these steps:

1. Create a term list file (with the .tdi file extension). The name of the file must begin with a two letter

prefix that indicates the language it should be attached to, followed by an underscore or hyphen, and

then a descriptive name (for example, en_US_myterms.tdi for term list in the US version of the

English language or en_myterms.tdi for a less specific English term list). For a list of language

codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. In the term list file (.tdi extension), add the terms you want to be included in your custom dictionary. If

you need to specify forbidden terms, those words simply need to be preceded by an asterisk. Add one

word per row, as in the following example:

 parabola

 asimptotic

 *hyperbola

Note:

Words stored in term lists are not handled as case-sensitive. Therefore, you do not need to

include both uppercase and lowercase versions of the words.

3. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Spell Check

> Dictionaries (on page 242).

4. Choose one of the following two options for saving the file.

a. Save the file (.tdi) to the default directory displayed in the Dictionaries and term lists default

folder option (on page 242).

b. Save the file (.tdi) to any other directory, select the Include dictionaries and term list from

option (on page 242), and select that directory. If you choose this option, make sure you read

this important note (on page 242).

5. Restart the application for the spell checker to start using the new term list.

Related information

Adding Custom Spell Check Dictionaries (on page 463)

Replacing a Spell Check Dictionary

There are several possible scenarios for replacing an existing Hunspell dictionary for the Oxygen XML Editor

spell checker:

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Oxygen XML Editor 27.1 | 7 - Working With Documents | 467

• You can download a pre-built Hunspell dictionary and replace an existing dictionary with it.

• You can build your own full Hunspell dictionary and replace an existing dictionary with it.

Download a Pre-Built Hunspell Dictionary and Replace an Existing One

To replace an existing dictionary with a downloaded pre-built dictionary, follow these steps:

1. Download the files needed for your dictionary. You will need a dictionary file (with a .dic file extension)

and an affix file (with the .aff file extension). If the dictionary does not include an affix file (.aff), you

can create one and leave it empty, but it is needed for the mechanism to work properly. An example of a

website that includes numerous dictionary files is: http://extensions.services.openoffice.org/dictionary.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Spell Check

> Dictionaries (on page 242).

3. Choose one of the following two options to replace existing files.

a. Replace the existing files (.dic and .aff) for the particular language in the default directory

displayed in the Dictionaries and term lists default folder option (on page 242). Leave the

Include dictionaries and term list from option deselected.

b. Replace existing files (.dic and .aff) for the particular language in a directory specified in the

Include dictionaries and term list from option (on page 242). If you choose this option, make

sure you read this important note (on page 242).

Important:

Do not alter the naming convention. The name of the files must begin with a two letter prefix

that indicates the language it should be attached to (for example, en_US.dic for a US English

dictionary or en.dic for a less specific English dictionary). For a list of language codes, see

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

4. Restart the application for the spell checker to start using the new dictionary.

Build a Full Hunspell Dictionary and Replace an Existing One

To replace an existing dictionary with a full Hunspell dictionary that you build, follow these steps:

1. Follow these instructions: Building and Testing Hunspell Dictionaries.

Step Result: You should end up with a dictionary file (with a .dic file extension) and an affix file (with

the .aff file extension). The affix file (.aff) can be empty, but it is needed for the mechanism to work

properly.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Spell Check

> Dictionaries (on page 242).

3. Choose one of the following two options to replace existing files.

http://extensions.services.openoffice.org/dictionary
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://giellalt.uit.no/infra/hunspell.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 468

a. Replace the existing files (.dic and .aff) for the particular language in the default directory

displayed in the Dictionaries and term lists default folder option (on page 242). Leave the

Include dictionaries and term list from option deselected.

b. Replace existing files (.dic and .aff) for the particular language in a directory specified in the

Include dictionaries and term list from option (on page 242). If you choose this option, make

sure you read this important note (on page 242).

4. Restart the application for the spell checker to start using the new dictionary.

Related information

Adding Custom Dictionaries and Term Lists (on page 462)

Learned Words

Spell checker engines rely on dictionaries to decide if a word is spelled correctly. To instruct the spell checker

engine that an unknown word is actually correctly spelled, you need to add that word to a list of learned words.

There are two ways to do this:

• Invoke the contextual menu on an unknown word, then select Learn word.

• Click the Learn button from the Spelling dialog box (on page 460) that is invoked by using the

Check Spelling action on the toolbar.

Note:

To delete items from the list of learned words, use the Delete learned words option in the Editor >

Spell Check > Dictionaries preferences page (on page 242).

Related information

Adding Custom Spell Check Term Lists (on page 466)

Ignored Words (Elements)

You may want the content of certain XML elements to always be skipped during the spell check process (for

example, <programlisting>, <codeblock>, <codeph>, <filepath>, or <screen>). This can be done in one of several

ways:

• You can skip through them manually, word by word, using the Ignore button in the Spelling dialog box

(on page 460) that is invoked by using the Check Spelling action on the toolbar.

• You can automatically skip the content of certain elements by maintaining a set of known element

names that should never be checked. You can manage this set of element names by using the Ignore

elements section (on page 241) in the Spell Check preferences page.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 469

Automatic Spell Check

Oxygen XML Editor includes an option to automatically check the spelling as you type. Not only does it check

spelling when you are typing in the main editor, but also when you are typing in a comment (on page 667).

This feature is disabled by default, but it can be enabled and configured in the Spell Check preferences

page (on page 239). When the Automatic Spell Check option (on page 239) is selected, unknown words are

underlined and some actions are available in the contextual menu to help you correct the word or prevent the

word from being reported in the future.

Figure 83. Automatic Spell Checking in Author Mode

Figure 84. Automatic Spell Checking in Text Mode

The contextual menu includes the following actions:

Delete Repeated Word

Allows you to delete words that were repeated in consecutive order.

List of Suggestions

A list of words suggested by the spell checking engine as possible replacements for the

unknown word.

Learn Word

Oxygen XML Editor 27.1 | 7 - Working With Documents | 470

Allows you to add the current unknown word to the persistent dictionary of learned words (on

page 468).

Spell check options (Available in Author mode only)

Opens the Spell Check preferences page (on page 239).

Other actions

This submenu give you access to all the usual contextual menu actions.

Related information

Learned Words (on page 468)

Spell Check Multiple Files

The Check Spelling in Files action allows you to check the spelling on multiple local or remote documents.

This action is available in the following locations:

• The Edit menu.

• The contextual menu of the Project view (on page 414).

• The contextual menu of the DITA Maps Manager view (on page 2950), when editing DITA documents.

This action opens the Check Spelling in Files dialog box that allows you to define the scope and several other

options. After you configure the settings for the operation, click the Check All button to check the spelling

in all specified files. The spelling corrections are displayed in the Results view (on page 560) view at the

bottom of the editor and you can group the reported errors as a tree with two levels.

Tip:

If you want to instruct the spell checking engine to not report a particular word as being a spelling

error in the future, use the Learn Word(s) action from the contextual menu in the Results view.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 471

Figure 85. Check Spelling in Files Dialog Box (Invoked from Project View)

The following scopes are possible, depending on where the action was invoked:

• All opened files - The spell check is performed in all open files.

• Current file directory - All the files in the folder of the currently edited file.

• Current DITA map hierarchy - Option available when the dialog is invoked from the DITA Maps Manager

view. Checks the spelling in all references contained in the DITA map.

• Project - All files from the current project.

• Selected project resources - The selected files from the current project.

• Specified path - Checks the spelling in the files located at a path that you specify.

The Options section includes the following options:

• File filter - Allows you to filter the files from the selected scope.

• Recurse subdirectories - When selected, the spell check is performed recursively for the specified

scope. The one exception is that this option is ignored if the scope is set to All opened files.

• Include hidden files - When selected, the spell check is also performed in the hidden files.

• Spell Check Options - The spell check processor uses the options available in the Spell Check

preferences page (on page 239).

When working with DITA documents, if you invoke the Check Spelling in Files action in the DITA Maps

Manager view (on page 2950), a slightly different version of the dialog box is displayed:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 472

Figure 86. Check Spelling in Files Dialog Box (Invoked from the DITA Maps Manager View)

The following scopes are available when you check the spelling in files from the DITA Maps Manager (on page

2950):

• Current DITA Map hierarchy - All the files referenced in the currently selected DITA map (on page

3296) from in the DITA Maps Manager view.

• Selected references - Checks the spelling in the selected references.

• Specified path - Checks the spelling in the files located at a path that you specify.

AutoCorrect Misspelled Words
Oxygen XML Editor includes an AutoCorrect feature to automatically correct misspelled words, as well as to

insert certain symbols or other text, as you type in Author mode. Oxygen XML Editor includes a default list of

commonly misspelled words and symbols, but you can modify the list to suit your needs. You can also choose

to have the AutoCorrect feature use suggestions from the main spell checker. The suggestions will only be

used if the misspelled words are not found in the Replacements Table (on page 203).

When enabled, the AutoCorrect feature can be used to do the following:

• Automatically correct misspelled words while you edit in Author mode. The actual operation of

replacing a word is triggered by a space, dash, or certain punctuation characters (, . ; : ? ! ' ")] }).

• Easily insert symbols. For example, if you want to insert a ® character, you would type (R).

• Quickly insert text fragments.

• Quickly insert XML fragments. For example, if you enter a hyphen (-) in an empty paragraph followed by

a space, it will automatically be converted to a list with a list item.

AutoCorrect is enabled by default. To configure this feature, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Edit Modes > Author > AutoCorrect.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 473

AutoCorrect Drop-down Actions

After the automatic operation of replacing a misspelled word (triggered by a space, dash, or certain

punctuation characters), the affected string is highlighted. The highlight is removed upon the next editing

action (text insertion or deletion). If you hover over the highlight, a small widget appears below the word. If you

hover over the widget, it expands and you can click it to present a drop-down list that includes the following

actions:

• Change back to "[original word]" - Reverts the correction back to its original form.

• Stop Automatically Correcting "[original word]" - This option is presented if the correction is performed

based on the AutoCorrect Replacements Table (on page 203) and selecting it will delete the

corresponding entry from the Replacements Table.

• Learn Word "[original word]" - This option is presented if the Use additional suggestions from the spell

checker option (on page 202) is selected in the AutoCorrect preferences page (on page 202) and the

correction is performed based on the Spell Checker. Selecting this option will add the item to the list of

learned words (on page 468).

• AutoCorrect options - Opens the AutoCorrect preferences page (on page 202) that allows you to

configure the feature.

Figure 87. AutoCorrect Drop-down Actions

AutoCorrect Case-Sensitivity

The AutoCorrect feature results in the following types of substitutions regarding case-sensitivity:

• Words with all lower-case characters will be replaced with lower-case substitutions (for example,

"abotu" is replaced with "about").

• Words with irregular-case characters will be replaced with lower-case substitutions ("ABotU" is

replaced with "about").

• Words with all upper-case characters will be replaced with upper-case substitutions ("ABOTU" is

replaced with "ABOUT").

• Words starting with an upper-case character will be replaced with substitutions having the same

pattern ("Abotu" is replaced with "About").

Oxygen XML Editor 27.1 | 7 - Working With Documents | 474

Note:

The AutoCorrect feature also uses the list of ignored elements from the Spell Check preferences

page (on page 241). All elements (along with their descendant elements) included in this list will be

ignored by the AutoCorrect engine.

Related information

Spell Checking (on page 460)

Add Dictionaries for the AutoCorrect Feature

To add new dictionaries for the AutoCorrect mechanism (on page 472), or to replace an existing one, follow

these steps:

1. Download an AutoCorrect dictionary file for the desired language. The file needs to have a .dat file

extension. An example of a website that includes some AutoCorrect dictionary files is: OpenOffice

Extensions Search Page.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit Modes

> Author > AutoCorrect > Dictionaries (on page 204).

3. Choose one of the following two options for adding the downloaded files:

a. Copy the downloaded .dat file to the default directory displayed in the Dictionaries default

folder option. (on page 204). Note that if you are replacing an existing dictionary file, this is the

best option.

b. Copy the downloaded .dat file to any other directory, select the Include dictionaries from option

(on page 204), and select that directory. If you choose this option, make sure you read this

important note (on page 204).

4. Restart the application for the AutoCorrect mechanism to start using the new dictionary.

Working with Special Characters and Encoding
While regular characters make up the English and European alphabets and the corresponding basic set

of figures and symbols, there are many other special characters that belong to various other language

representations, such as Arabic, Indian, Japanese, Chinese, or Korean. Oxygen XML Editor provides support for

special characters in various ways:

Opening and Saving Documents

The Unicode standard provides support for all the character symbols in all known languages

andOxygen XML Editor provides support for all Unicode characters (on page 475). There

are various encoding options and features to help determine how to handle documents with

unsupported characters (on page 476).

Fonts

http://extensions.openoffice.org/en/search?query=autocorrect&sort_by=field_project_stats_year&sort_order=DESC
http://extensions.openoffice.org/en/search?query=autocorrect&sort_by=field_project_stats_year&sort_order=DESC
http://unicode.org/standard/standard.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 475

Oxygen XML Editor provides the ability to choose the fonts to be used in the various editing

modes (on page 141). In some cases, changing the font may be a solution when special

characters are not rendered as expected.

For special characters that are not included in any of the default fonts, Oxygen XML Editor tries

to find that symbol in a fallback font (on page 477). For the Author editing mode, you can

specify a set of fallback fonts in the font-family CSS property (in the particular CSS file used for

rendering your documents). For more information, see the CSS Support in Author Mode (on page

2417) section.

Tip:

For documents written in languages that use special characters (such as Japanese or

Chinese), change the font to one that supports the specific characters (a Unicode font).

For the Windows platform, Arial Unicode MS or MS Gothic is recommended. To change

the font in Oxygen XML Editor, open the Preferences dialog box (Options > Preferences)

(on page 132), go to Appearance > Fonts. You can select a font for each editing mode in

this preferences page.

Navigation and Layout

Oxygen XML Editor supports bidirectional text, such as Arabic, Hebrew, and certain Asian

languages, or other special characters that are combined into a single glyph. In Text mode, you

can enable or disable the support for special characters. See Special Character Support in Text

Mode (on page 576) for details about which option to choose.

Editing

Oxygen XML Editor includes a contextual menu action that converts a sequence of hexadecimal

characters to the corresponding Unicode character (on page 582).

If you do not have a special way of inserting special characters using your keyboard, you can

insert special characters using the Character Map feature (on page 478).

For more information about working with special characters in specific editing modes, see the following

sections:

• Special Character Support in Author Mode (on page 766)

• Special Character Support in Text Mode (on page 576)

• Special Character Support in Grid Mode (on page 599)

Unicode Support

Unicode is a standard for providing consistent encoding, representation, and handling of text. There is

a unique Unicode number for every character, independent of the platform and language. Unicode is

internationally recognized and is required by modern standards (such as XML, Java, JavaScript, LDAP, CORBA

3.0, WML, etc.).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 476

Oxygen XML Editor provides support for the Unicode standard, enabling your XML application to be targeted

across multiple platforms, languages, and countries without re-engineering. Internally, the Oxygen XML Editor

uses 16-bit characters covering the Unicode Character set.

As a Java application, Oxygen XML Editor includes a default Java input method for typing characters with

Unicode codes. However, the default input method does not cover all the Unicode codes (for example, the

codes for some accented characters or characters found in East Asian languages). Such characters can

be inserted in the editor panel of Oxygen XML Editor either with the Character Map dialog box (on page

479) available from Edit > Insert from Character Map or by installing a Java input method that supports

the insertion of the needed characters. The installation of a Java input method depends on the platform

(Windows, macOS, Linux, etc.) and is the same for any Java application.

Note:

Oxygen XML Editor may not be able to display characters that are not supported by the operating

system (either not installed or unavailable).

Tip:

On windows, you can enable the support for CJK (Chinese, Japanese, Korean) languages from Control

Panel / Regional and Language Options / Languages / Install files for East Asian languages.

Related information

Unicode Fallback Font Support (on page 477)

Inserting Special Characters with the Character Map (on page 478)

Opening and Saving Documents with Unsupported Characters

When loading documents, Oxygen XML Editor reads the document prolog to determine the specified encoding

type. This encoding is then used to instruct the Java Encoder to load support for and to save the document

using the specified code chart. When the encoding type cannot be determined, Oxygen XML Editor displays

the Available Java Encodings dialog box that provides a list of all encodings supported by the Java platform.

Opening Documents with Unsupported Characters

When opening a document in Oxygen XML Editor, if it contains characters that are not supported by the

specified encoding standard (these unrecognized characters are rendered as an empty box), the application

determines how to handle them based upon the setting specified in the Encoding Errors Handling option

in the Encoding preferences page (on page 177). The default setting is REPORT, which means an error

message is displayed for characters that cannot be represented in the specified encoding. If the option is set

to REPLACE, the character is replaced with a standard replacement character for the particular encoding. If

the option is set to IGNORE, the error is ignored and the character is not rendered.

http://java.sun.com/products/jfc/tsc/articles/InputMethod/inputmethod.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 477

Saving Documents with Unsupported Characters

When saving a document edited in the Text, Grid, or Design modes, if it contains characters that are not

supported by the encoding declared in the document prolog, Oxygen XML Editor displays a notification that

you need to resolve the conflict before saving the document.

When saving a document edited in the Author mode, all characters that fall outside the detected encoding will

be automatically converted to hexadecimal character entities.

When saving a document with UTF-16 encoding, the saved document has a Byte Order Mark (BOM) that

specifies the byte order of the document content. The default byte order is platform-dependent. That means

that a UTF-16 document created on a Windows platform (where the default byte order mark is UnicodeLittle)

has a different BOM than one created on a macOS platform (where the byte order mark is UnicodeBig). The

byte order and the BOM of an existing document are preserved when the document is edited and saved. This

behavior can be changed in Oxygen XML Editor from the Encoding preferences page (on page 176).

Unicode Fallback Font Support

Oxygen XML Editor provides fonts for most common Unicode ranges. However, if you use special symbols or

characters (on page 478) that are not included in the default fonts, they will be rendered as small rectangles.

A fallback font is a reserve typeface that contains symbols for as many Unicode characters (on page 475)

as possible. When a display system encounters a character that is not part of the range of any of the available

fonts, Oxygen XML Editor will try to find that symbol in a fallback font.

Example of a Scenario Where a Fallback Font is Needed

Suppose that you need to insert the wheelchair symbol (- U+267F) into your content in a Windows operating

system. By default, Oxygen XML Editor does not render this symbol correctly since it is not included in any of

the default fonts. It is included in Segoe UI Symbol, but this font is not part of the default fonts that come with

Oxygen XML Editor. To allow Oxygen XML Editor to recognize and render the symbol correctly, you can add

Segoe UI Symbol as a fallback font.

Adding a Fallback Font in Windows (7 or Later)

To add a fallback font to the Oxygen XML Editor installation, use the following procedure:

1. Start Windows Explorer and browse to the [OXYGEN_INSTALL_DIR]/jre/lib/fonts directory.

2. Create a directory called fallback (if it is not already there).

3. Copy a font file (True Type Font - TTF) that includes the special characters into this directory.

Tip:

You could, for example, copy the Segoe UI Symbol Regular font from C:\Windows\Fonts.

4. Restart Oxygen XML Editor for the changes to take full effect.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 478

Result: Whenever Oxygen XML Editor finds a character that cannot be rendered using its standard fonts, it will

look for the glyph in the fonts stored in the fallback folder.

Adding a Fallback Font in Other Platforms

For macOS or other platforms, you could use the following approach:

1. Use a font editor (such as FontForge) to combine multiple true type fonts into a single custom font.

2. Install the font file into the dedicated font folder of your operating system.

3. In Oxygen XML Editor, open the Preferences dialog box (Options > Preferences) (on page 132), go to

Appearance > Fonts.

4. Click the Choose button for the particular editing mode (Editor for Text mode) and select your custom

font from the drop-down list in the subsequent dialog box.

5. Restart Oxygen XML Editor for the font changes to take full effect.

Related information

Unicode Support (on page 475)

Inserting Special Characters with the Character Map (on page 478)

Inserting Special Characters with the Character Map

Oxygen XML Editor includes a Character Map for inserting special characters. It can also be used to find the

decimal, hexadecimal, or character entity equivalent for a particular character or symbol.

Inserting Special Characters

To insert a special character at the current location within a document, follow these steps:

1. Open the Character Map dialog box (on page 479) by selecting More symbols from the

Symbols drop-down menu on the toolbar (if this button is not displayed, right-click in the toolbar

area, select Configure Toolbars and chosen to display the Symbols toolbar (on page 375)).

2. Find the symbol you want to insert and double-click it (or select it and click Insert).

Tip:

The most recently used characters and some of the most common characters are listed when

you click the Symbols drop-down button so you can easily insert any of those characters

by simply selecting it from the drop-down.

Finding the Decimal, Hexadecimal, or Character Entity Equivalent

You can see the hexadecimal value for any character that is already inserted in your document by placing the

cursor right after the character and you can see its value in the status bar at the bottom of the application.

http://fontforge.github.io/en-US/
https://www.w3.org/TR/html4/sgml/entities.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 479

For other characters, or to find the decimal equivalent, or even the character entity equivalent, following these

steps:

1. Open the Character Map dialog box (on page 479) by selecting More symbols from the

Symbols drop-down menu on the toolbar (if this button is not displayed, right-click in the toolbar

area, select Configure Toolbars and chosen to display the Symbols toolbar (on page 375)).

2. Find the symbol and select it. You can use the filters and the Search field at the top of the dialog box to

narrow the search.

3. Click the Details tab on top of the preview window to see the decimal, hexadecimal, and description of

the character. The character entity equivalent (both its decimal and hexadecimal values) are displayed

at the bottom of the dialog box.

Character Map Dialog Box

Figure 88. Character Map Dialog Box

The Character Map dialog box allows you to visualize all characters that are available in a particular font,

pick the character you need, and insert it in the document you are editing. It includes the following fields and

sections:

https://www.w3.org/TR/html4/sgml/entities.html
https://www.w3.org/TR/html4/sgml/entities.html

Oxygen XML Editor 27.1 | 7 - Working With Documents | 480

Font

Use this drop-down list to choose the font that will have characters displayed.

Unicode Block

Use this drop-down list to only see a certain range of characters. This will filter the number

of characters displayed, showing only a contiguous range of characters corresponding to the

selected block. Unassigned characters are displayed as empty squares.

Search

Use this filter to search for a character by one of the following attributes:

• hexadecimal

• decimal

• description

Note:

Selecting description opens the Details tab (on page 480). If you enter

a character description in the Search field, the description is selected

automatically.

Character Table Section

The characters that are available to be inserted are listed in two tabs:

• Compact - Matrix-like table that displays a visual representation of the characters.

• Details - Displays the available characters in a tabular format, presenting their decimal

and hexadecimal value along with their description.

Recently Used Characters Section

Displays the symbols that you have used recently and you can also select one from there to

insert it in the current document.

Character Mode Section

The next section of the dialog box allows you to select how you want the character to appear in

the Text editing mode. You can choose between the following:

• Character

• Character entity - decimal

• Character entity - hexadecimal

You can see the character or code that will be inserted in Text mode next to the selections in this

section and a box on the right side of the dialog box allows you to see the character that will be

inserted in Author mode. You can also see the name and range name of a character either at the

bottom of the dialog box, or in a tooltip when hovering the cursor over the character.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 481

Click the Insert button to insert the selected character in the current editor at the cursor position. You will see

the character in the editor if the editor font (on page 141) is able to render it. The Copy button copies it to the

clipboard without inserting it in the editor.

Note:

The Character Map dialog box cannot be used to insert Unicode characters in the Grid editor (on page

364). Accordingly, the Insert button of the dialog box will be disabled if the current document is edited

in Grid mode.

Related information

Working with Special Characters and Encoding (on page 474)

Image Preview
Images and SVG files can be previewed in a separate pane. The supported image types are GIF, JPEG/JPG,

PNG, BMP.

There are several ways to open an image in the Image Preview pane:

• In the Project view (on page 414), double-click the image name.

• In the Project view (on page 414), right-click an image and select Preview.

• In the DITA Maps Manager view (on page 2950), double-click the key definition of the image.

• In the DITA Maps Manager view (on page 2950), right-click the key definition of the image and select

Open.

• In Text mode, Ctrl + Mouse Click or Ctrl + Enter with the cursor located within the image file path.

Once the image is displayed in the Image Preview pane, you have access to some contextual menu actions by

right-clicking anywhere in the Image Preview pane. You can scale the image to its original size (by selecting

the 1:1 action) or scale it down to fit in the pane (by selecting the Scale to fit action). Other actions include

Open in System Application, Print preview, and Print.

If the image is an SVG file (on page 1287), the Image Preview pane also includes the following other

contextual menu actions: Zoom in, Zoom out, Rotate, and Refresh.

While the Image Preview view is visible, selecting an image in the Project view (on page 414) or DITA

Reusable Components view (on page 3119) will automatically display the resource in the view. Also, as long

as the Link with Editor toggle action (located on the Project view's toolbar) is enabled, focusing on the

image in the Image Preview view will select the image file in the Project view.

Tip:

You can drag an image from the Image Preview view and drop it in a DITA, DocBook, or TEI document.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 482

Loading Large Documents
When you open a document with a file size larger than the limit configured in Open preferences (on page 209),

Oxygen XML Editor prompts you to choose whether you want to optimize the loading of the document for

large files or for huge files.

Figure 89. Large File Prompt Dialog Box

If your file has a size smaller than 300 MB, the recommended approach is Optimize loading for large files (on

page 482). For documents that exceed 300 MB, the recommended approach is Optimize loading for huge

files (on page 483).

Optimize Loading for Large Files

If you open a document that exceeds the limit configured in Open preferences (on page 209) (the default

limit is 30 MB), a dialog box will be displayed (on page 482) prompting you to choose whether you want to

optimize the loading of the document for large files or for huge files. If you choose the Optimize loading for

large files option (typically recommended for files smaller than 300 MB), a special memory optimization is

implemented so that the total memory allocated for the application is not exceeded. A temporary buffer file

is created on disk and the available free disk space needs to be at least double the size of the file you want to

open.

When opening a large file in this optimized editing environment, some editing features are disabled, including:

• The file can only be opened in Text mode.

• The automatic validation is not available.

• The XPath filter is disabled in the Find/Replace dialog box (on page 443).

• The bidirectional Unicode support (right-to-left writing) is disabled.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 483

• The Format and indent the document on open option (on page 211) is automatically deselected for

non-XML documents. For XML documents, the formatting is done while optimizing the memory usage

by ignoring the options set in the Format preferences page (on page 211).

• Localizations for the results of an XPath expression will be less precise.

Related information

Optimize Loading for Huge Files (on page 483)

Optimize Loading for Huge Files

If you open a document that exceeds the limit configured in Open preferences (on page 209) (the default

limit is 30 MB), a dialog box will be displayed (on page 482) prompting you to choose whether you want to

optimize the loading of the document for large files or for huge files. If you choose the Optimize loading for

huge files option (typically recommended for files larger than 300 MB), the file is split in multiple pages (each

approximately 1MB in size). Each page is individually loaded (and edited) in Text mode by using a special

horizontal slider located at the top of the editing area.

Figure 90. Huge File Editor Horizontal Slider

When opening a file in this special huge file editor, some editing features are disabled, including:

• For XML files, the UTF-8, UTF-16, ASCII, Windows-1252, and ISO 8859-1 encodings are supported. No

other encoding is supported.

• The file can only be opened in Text editing mode.

• The automatic validation is disabled.

• The XPath filter is disabled in the Find/Replace dialog box (on page 443).

• The bidirectional Unicode support (right-to-left writing) is disabled.

• The Format and indent the document on open option (on page 211) is automatically deselected for

non-XML documents. For XML documents, the formatting uses less memory by ignoring the options

set in the Format preferences page (on page 211).

• The Outline view is not supported.

• The file content is soft wrapped by default.

• The Find/Replace dialog box (on page 443) only supports the Find action.

• Saving changes is only possible if the Safe save option (on page 210) (in the Save preferences page) is

enabled.

• The undo operation is not available if you go to other pages and come back to the modified page.

Related information

Optimize Loading for Large Files (on page 482)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 484

Documents with Long Lines
When working with documents that contain lines of text that exceed the boundaries of your monitor, you might

want to see the text wrapped. To do so, use one of the following methods:

• Press Ctrl + Shift + Y (Command + Shift + Y on macOS) to toggle the line wrap feature for the current

document only.

• Select the Line wrap (on page 181) option in the Text preferences page to apply the line wrap to all

documents.

Features that Might be Affected by Wrapping Lines of Text

Documents that contain thousands of characters per line can affect the performance of Oxygen XML Editor

Text mode. When a certain line length limit is reached (controlled from the Optimize loading for documents

with lines longer than (Characters) (on page 210) option), Oxygen XML Editor prompts you to wrap the lines of

text. By doing so, the following features may be affected to maintain a reasonable level of productivity:

• The editor uses the Monospaced font.

• You cannot set font styles.

• Automatic validation is disabled.

• Automatic spell checking (on page 469) is disabled.

• When editing XML documents, the XPath field is disabled in the Find/Replace dialog box (on page

443).

• Less precise localization for executed XPath expressions in XML documents. The XPath executions

use SAX sources for a smaller memory footprint. It is recommended to use XPath 2.0 instead of XPath

1.0 because it features an increased execution speed and uses a smaller memory footprint. Running an

XPath expression requires additional memory of about 2 or 3 times the size of the document on disk.

Handling Read-Only Files
If a file marked as read-only is opened in Oxygen XML Editor you can by default perform modifications to it.

This behavior is controlled by the Can edit read only files option (on page 178). When attempting to save such

files you will be prompted to save them to another location.

You can check out the read-only state of the file by looking in the Properties view (on page 408). If you

modify the file properties from the operating system and the file becomes writable, you can modify it on the

spot without having to reopen it.

The read-only state is marked with a lock decoration that appears in the editor tab and specified in the tooltip

for a certain tab.

Scratch Buffer
The Scratch Buffer view can be used for storing fragments of arbitrary text during the editing process. It can

be used to drop bits of paragraphs (including arbitrary XML markup fragments) while rearranging and editing

Oxygen XML Editor 27.1 | 7 - Working With Documents | 485

the document and also to drag and drop fragments of text from the Scratch Buffer to the editor panel. The

Scratch Buffer is basically a text area offering XML syntax highlight. The view's contextual menu contains

basic edit actions such as Cut, Copy, and Paste.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Compare Files or Directories
Oxygen XML Editor provides a simple means of performing file and folder comparisons. You can see the

differences in your files and folders and merge the changes. You can also use the file comparison to compare

fragments or files inside zip-based archives.

There are two types of comparison tools: Compare Directories or Compare Files. These utilities are available

from the Tools menu or can be opened as stand-alone applications from the Oxygen XML Editor installation

folder (diffDirs.exe and diffFiles.exe).

Starting the Tools from a Command Line

The comparison tools can also be started by using command-line arguments. In the installation folder

there are two executable shells (diffFiles.bat and diffDirs.bat on Windows, diffFiles.sh and

diffDirs.sh on macOS and Linux). To specify files or directories to compare, you can pass command-line

arguments to each of these shells. The arguments can point to file or folder paths in directories or archives

(supported formats: zip, docx, and xlsx).

Directory Comparison Example

To start a comparison between the two directories (on page 506), use the following construct:

diffDirs.bat/diffDirs.sh [directory path 1] [directory path 2]

If you pass only one argument, you are prompted to manually choose the second directory or archive.

For example, to start a comparison between two Windows directories, the command line would look like this:

diffDirs.bat "c:\documents new" "c:\documents old"

Tip:

If there are spaces in the path names, surround the paths with quotes.

File Comparison Example

To start a comparison between 2 or 3 files (on page 486), use the following construct: diffFiles.bat/

diffFiles.sh [path to left file] [path to right file] [path to base file].

If three files are specified, the tool will start in the 3-way comparison mode (on page 489). If only two files

are specified, the tool will start in the 2-way comparison mode (on page 486). The first specified file will be

added to the left panel in the comparison tool, the second file to the right panel, and the optional third file will

Oxygen XML Editor 27.1 | 7 - Working With Documents | 486

be the base (ancestor) file used for a 3-way comparison. If you pass only one argument, you are prompted to

manually choose another file.

For example, to do a 3-way comparison on Windows, the command line would look like this:

diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile

Tip:

If there are spaces in the path names, surround the paths with quotes.

Compare Files Tool

The built-in Compare Files tool can be used to compare files or XML file fragments. The tool provides a

mechanism for comparing two files or fragments, as well as the mechanism for a three-way comparison. The

utility is available from the Tools > Comparison Tools menu or can be opened as a stand-alone application

from the Oxygen XML Editor installation folder (diffFiles.exe).

Figure 91. Compare Files Tool

Two-Way Comparisons

The Compare Files tool can be used to compare the differences between two files or XML fragments.

Compare Files

To perform a two-way comparison, follow these steps:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 487

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the

path by using the text field, the history drop-down, or the browsing actions in the Browse drop-

down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used

to offer a better view of the differences.

2. To highlight the differences between the two files, click the Perform File Differencing button from

the toolbar.

3. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page

488) for the operation.

4. You can also use the Diff Options button to access the Files Comparison preferences page where

you can choose to ignore certain types of markup and configure various options.

5. If you are comparing XML documents using the XML Fast or XML Accurate algorithms, you can enter

an XPath 2.0 expression in the Ignore nodes by XPath text field to ignore certain nodes from the

comparison.

The resulting comparison will show you differences between the two files. The line numbers on each side

and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences.

Adjacent changes are grouped into blocks of changes. This layout allows you to easily identify and focus on a

group of related changes.

Figure 92. Two-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines

connect the compared fragments in the middle section between the two panes. The highlighting colors can be

customized in the Files Comparison / Appearance preferences page (on page 299), but the default colors and

their shades mean the following:

• Pink - Identifies modifications on either side.

• Gray - Identifies an addition of a node in the left side (your outgoing changes).

• Blue - Identifies an addition of a node in the right side (incoming changes).

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Comparing Fragments (Copy/Paste)

To compare XML file fragments, you need to copy and paste the fragments you want to compare into each

side, without selecting a file. If a file is already selected, you need to close it using the Close (Ctrl + W

(Command + W on macOS)) button, before pasting the fragments. Other notes for pasting fragments:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 488

• As long as the fragment is more than 10 characters, the application will attempt to automatically detect

the content type. It can detect the following types: XML, DTD, CSS, JSON, and Markdown (if it starts

with #). If one of those content types is detected, the fragments will be displayed with syntax highlights.

• If you save modified fragments, a dialog box opens that allows you to save the changes as a new

document.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).

• Select a block of differences by clicking its small colored marker in the overview ruler located in the

right-most part of the window. At the top of the overview ruler there is a success indicator that turns

green where there are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File

Differencing button.

A variety of actions are available on the toolbar (on page 498) and in the various menus (on page 502)

(these same actions are also available in the contextual menu in both editing panes). The tool also includes

some inline actions to help you merge, copy, or remove changes. When you select a change, the following

inline action widgets are available, depending on the type of change:

Append left change to right and Append right change to left

Copies the content of the selected change from one side and appends it on the other, according

to the content of the corresponding change. As a result, the side where the arrow points to will

contain the changes from both sides.

Copy change from left to right and Copy change from right to left

Replaces the content of a change from one side with the content of the corresponding change

from the other side.

Remove change

Rejects the change on the particular side and preserves the particular content on the other side.

Two-Way Diff Algorithms

Oxygen XML Editor offers the following two-way diff algorithms to compare files or fragments:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 489

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• Characters - Computes the differences at character level, meaning that it compares two files or

fragments looking for identical characters. This algorithm is not available when the file comparison is in

Author comparison mode.

• Words - Computes the differences at word level, meaning that it compares two files or fragments

looking for identical words. This algorithm is not available when the file comparison is in Author

comparison mode.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments

looking for identical lines of text. This algorithm is not available when the file comparison is in Author

comparison mode.

• Syntax Aware - Computes differences for known file types or fragments. This algorithm splits the files

or fragments into sequences of tokens and computes the differences between them. The meaning of a

token depends on the type of compared files or fragments.

Known file types include those listed in the New dialog box, such as XML file types (XSLT files, XSL-FO

files, XSD files, RNG files, NVDL files, etc.), XQuery file types (.xquery, .xq, .xqy, .xqm extensions),

DTD file types (.dtd, .ent, .mod extensions), TEXT file type (.txt extension), or PHP file type (.php

extension).

For example:

◦ When comparing XML files or fragments, a token can be one of the following:

▪ The name of an XML tag

▪ The < character

▪ The /> sequence of characters

▪ The name of an attribute inside an XML tag

▪ The = sign

▪ The " character

▪ An attribute value

▪ The text string between the start tag and the end tag (a text node that is a child of the

XML element corresponding to the XML tag that encloses the text string)

◦ When comparing plain text, a token can be any continuous sequence of characters or any

continuous sequence of whitespaces, including a new line character.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Three-Way Comparisons

Oxygen XML Editor also includes a three-way comparison feature to help you solve conflicts and merge

changes between multiple modifications. It is especially helpful for teams who have multiple authors editing

Oxygen XML Editor 27.1 | 7 - Working With Documents | 490

and committing the same documents. It provides a comparison between a local change, another change, and

the original base revision. Some additional advantages include:

• Visualize and merge content that was modified by you and another member of your team.

• Marks differences correctly even when the document structure is rearranged.

• Allows you to merge XML-relevant modifications.

Figure 93. Three-Way Comparison

Compare Files

To perform a three-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the

path by using the text field, the history drop-down, or the browsing actions in the Browse drop-

down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used

to offer a better view of the differences.

2. Click the Three-Way Comparison button on the toolbar and select the base (original) file in the

Base field. You can specify the path by using the text field, the history drop-down, or the browsing

actions in the Browse drop-down menu.

3. To highlight the differences, click the Perform File Differencing button on the toolbar.

4. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page

488) for the operation.

5. You can also use the Diff Options button to access the Files Comparison preferences page where

you can choose to ignore certain types of markup and configure various options.

The resulting comparison will show you differences between the two files, as well as differences between

either of them and the base (original) file. The line numbers on each side and colored marks on the right-side

vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into

blocks of changes.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 491

Figure 94. Three-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines

connect the compared fragments in the middle section between the two panes. The highlighting colors can be

customized in the Files Comparison / Appearance preferences page (on page 299), but the default colors and

their shades mean the following:

• Pink - Identifies blocks of changes that include conflicts.

• Gray - Identifies your outgoing changes that do not include conflicts.

• Blue - Identifies incoming changes that do not include conflicts.

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).

• Select a block of differences by clicking its small colored marker in the overview ruler located in the

right-most part of the window. At the top of the overview ruler there is a success indicator that turns

green where there are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File

Differencing button.

A variety of actions are available on the toolbar (on page 498) and in the various menus (on page 502)

(these same actions are also available in the contextual menu in both editing panes). The tool also includes

some inline actions to help you merge, copy, or remove changes. When you select a change, the following

inline action widgets are available, depending on the type of change:

Append left change to right and Append right change to left

Copies the content of the selected change from one side and appends it on the other, according

to the content of the corresponding change. As a result, the side where the arrow points to will

contain the changes from both sides.

Copy change from left to right and Copy change from right to left

Oxygen XML Editor 27.1 | 7 - Working With Documents | 492

Replaces the content of a change from one side with the content of the corresponding change

from the other side.

Remove change

Rejects the change on the particular side and preserves the particular content on the other side.

Three-Way Diff Algorithms

Oxygen XML Editor offers the following three-way diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments

looking for identical lines of text. This algorithm is not available when the file comparison is in Author

comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Second-Level Comparisons

For both two-way and three-way comparisons, Oxygen XML Editor automatically performs a second-level

comparison for the Lines, XML Fast, and XML Accurate algorithms. After the first comparison is finished, the

second-level comparison for the Lines algorithm is processed on text nodes using a word level comparison,

meaning that it looks for identical words. For the XML Fast and XML Accurate algorithms, the second-

level comparison is processed using a syntax-aware comparison (on page 489), meaning that it looks for

identical tokens. This second-level comparison makes it easier to spot precise differences and you can merge

or reject the precise modifications.

Figure 95. Second-Level Diff Comparison

Note:

If a modified text fragment contains XML markup (such as processing instructions, XML comments,

CData, or elements), the second-level comparison will not automatically be performed. In this

case you can manually select a second-level comparison by doing a word level or character level

comparison.

To do a word level comparison, select Show word level details from the contextual menu or Compare

menu.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 493

Figure 96. Word Level Comparison

To do a character level comparison, select Show Character Level details from the contextual menu or

Compare menu.

Figure 97. Character Level Comparison

Author Visual Mode

The Compare Files tool includes an Author comparison mode that displays the files in a visual mode similar

to the Author editing mode in Oxygen XML Editor/Author. This makes it easier to see how the compared

changes will look in the final output. This visual mode is available when the compared files are detected as

being XML. To determine whether the files are initially opened in the merge tool's Text or Author comparison

mode, it detects the Initial Edit Mode in the Document Type Association configuration (on page 150) and the

mode the files were last opened in Oxygen XML Editor/Author.

Note:

This mode is not available if the Enable file comparison in Author mode option (on page 296) is not

selected in the Diff > Files Comparison preferences page.

This visual mode includes unique features such as a Tags Display Mode drop-down button (on page

500) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode

also presents differences that were made using the Track Changes feature (although the Track Changes

feature is not available in the comparison tool).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 494

Figure 98. File Comparison Tool - Author Mode

Author Mode Algorithms

The visual Author comparison mode offers the following diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Author Mode Second-Level Comparisons

The visual Author comparison mode automatically performs a second-level comparison for the XML Fast and

XML Accurate algorithms. After the first comparison is finished, the second-level comparisons is processed

on text nodes using a word-level comparison, meaning that it looks for identical words. This second-level

comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related information

Files Comparison Preferences Page (on page 296)

Compare Directories Tool (on page 506)

Toolbar and Contextual Menu Actions of the Compare Files Tool (on page 498)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 495

Starting File Comparison Tool from a Command Line

The file comparison tool can be started by using command-line arguments. In the installation folder there is an

executable shell (diffFiles.bat on Windows, diffFiles.sh on macOS and Linux). To specify the files to

compare, you can pass command-line arguments using the following construct: diffFiles.bat/diffFiles.sh

[path to left file] [path to right file] [path to 3-way base file].

If three files are specified, the tool will start in the 3-way comparison mode (on page 489). If only two files

are specified, the tool will start in the 2-way comparison mode (on page 486). The first specified file will be

added to the left panel in the comparison tool, the second file to the right panel, and the optional third file will

be the base (ancestor) file used for a 3-way comparison. If you pass only one argument, you are prompted to

manually choose another file.

If you want to launch the file comparison tool from an external application with specified files and you want

the file browsing buttons at the top of both panels to be hidden, you should use the -ext argument as the first

command. There are some additional arguments that are allowed and to see all the details for the command-

line construct, type diffFiles.bat --help in the command line.

Example:

To do a 3-way comparison, the command line might look like this:

Windows

diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile

Tip:

If there are spaces in the path names, surround the paths with quotes.

Linux

diffFiles.sh home/file1 home/file2 home/basefile

macOS

diffFiles.sh documents/file1 documents/file2 documents/basefile

How to Integrate the File Comparison Tool with Git

The file comparison tool can be integrated with Git clients. It requires that you configure your .gitconfig file

and then you can simply start the tool from the command line.

To integrate the Compare Files tool with your Git client, follow this procedure:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 496

1. Use one of the following methods to instruct your Git client to use the Oxygen Compare Files tool:

◦ Manual Configuration - Locate your Git user-specific configuration file (.gitconfig) and edit

it with a text editor (for example, in Windows, the .gitconfig file is most likely located in your

user home directory). Add (or replace) the following lines:

[diff]

 tool = oxygendiff

[merge]

 tool = oxygendiff

[difftool "oxygendiff"]

 cmd = '[pathToOxygenInstallDir]/diffFiles.exe' -ext $REMOTE $LOCAL $LOCAL

[mergetool "oxygendiff"]

 cmd = '[pathToOxygenInstallDir]/diffFiles.exe' -ext $LOCAL $REMOTE $BASE $MERGED

 trustExitCode = true

[difftool]

 prompt = false

Note:

For macOS, the cmd lines would start with something like: sh "/Applications/Oxygen

XML Editor/diffFiles.sh". For Linux, the cmd lines would start with something like: sh

"/Oxygen XML Editor/diffFiles.sh".

Tip:

On Redhat 7, the following command would work, where the whole command is quoted

and then inside that, the path to diffFiles.sh is quoted:

[difftool "oxygendiff"]

 cmd = '"/home/user/Oxygen XML Editor 21/diffFiles.sh"' -ext $REMOTE $LOCAL $LOCAL

[mergetool "oxygendiff"]

 cmd = '"/home/user/Oxygen XML Editor 21/diffFiles.sh"' -ext $LOCAL $REMOTE $BASE

 $MERGED trustExitCode = true

◦ Command Line Configuration - To automatically configure the .gitconfig file, you can run the

following commands from a command line:

git config --global diff.tool oxygendiff

git config --global difftool.oxygendiff.cmd '[Oxygen install dir]/diffFiles.exe -ext

$REMOTE $LOCAL $LOCAL'

git config --global merge.tool oxygendiff

git config --global mergetool.oxygendiff.cmd '[Oxygen install dir]/diffFiles.exe

Oxygen XML Editor 27.1 | 7 - Working With Documents | 497

-ext $LOCAL $REMOTE $BASE $MERGED'

git config --global mergetool.oxygendiff.trustExitCode true

Note:

For macOS, the Oxygen file comparison tool would be specified in the second and fourth

commands with something like: sh "/Applications/Oxygen XML Editor/diffFiles.sh". For

Linux, it would be something like: sh "/Oxygen XML Editor/diffFiles.sh".

2. To start the Compare Files tool and see a comparison of changes for a particular file, run the following

command from a command line:

git difftool [PathToFile]

Tip:

If the file you want to compare has conflicts, you can start the Compare Files tool as a merge

conflict resolution tool by running the following command:

git mergetool [PathToFile]

For more information about the Git difftool syntax, see https://git-scm.com/docs/git-difftool.

For more information about the Git mergetool syntax, see https://git-scm.com/docs/git-mergetool.

How to Integrate the File Comparison Tool with Sourcetree

The file comparison tool can be integrated with Sourcetree so that you can use it to compare changes. The

Oxygen Compare Files tool provides the following advantages when using it with Sourcetree:

• The files are presented side-by-side to make it much easier to determine real changes.

• XML comparison algorithms are available.

• Various options can be used to configure the comparison.

• You can navigate through changes, one by one.

To integrate the Compare Files tool with Sourcetree, use the following procedure, depending on your operating

system:

Windows

1. In Sourcetree, go to Tools > Options.

2. Go to the Diff tab.

3. In the External Diff/Merge section, configure the settings as follows:

◦ External Diff Tool - Select Custom.

◦ Diff Command - Enter the path of the Oxygen diffFiles.exe file (for example:

c:\Programs\Oxygen XML Editor\diffFiles.exe).

◦ Arguments - Enter -ext $REMOTE $LOCAL $LOCAL.

https://git-scm.com/docs/git-difftool
https://git-scm.com/docs/git-mergetool

Oxygen XML Editor 27.1 | 7 - Working With Documents | 498

◦ Merge Tool - Select Custom.

◦ Diff Command - Enter the path of the Oxygen diffFiles.exe file (for example:

c:\Programs\Oxygen XML Editor\diffFiles.exe).

◦ Arguments - Enter -ext $LOCAL $REMOTE $BASE $MERGED.

4. Click OK.

Result: In Sourcetree, you can now compare file changes with the Oxygen Compare Files tool by

simply selecting External Diff from the contextual menu, Actions menu, or Ctrl+D.

macOS

1. In Sourcetree, go to Sourcetree > Preferences.

2. Go to the Diff tab.

3. In the External Diff/Merge section, configure the settings as follows:

◦ External Diff Tool - Select Custom.

◦ Diff Command - Enter a command-line argument to launch the Oxygen

diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/

diffFiles.sh").

◦ Arguments - Enter -ext $REMOTE $LOCAL $LOCAL.

◦ Merge Tool - Select Custom.

◦ Diff Command - Enter a command-line argument to launch the Oxygen

diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/

diffFiles.sh").

◦ Arguments - Enter -ext $LOCAL $REMOTE $BASE $MERGED.

4. Close the preferences dialog box.

Result: In Sourcetree, you can now compare file changes with the Oxygen Compare Files tool by

simply selecting External Diff from the contextual menu or Actions menu.

Toolbar and Contextual Menu Actions of the Compare Files Tool

The toolbar of the Compare Files tool contains operations that can be performed on the source and target

files or XML fragments. Many of the actions are also available in the contextual menu.

Figure 99. Compare Toolbar

The following actions are available:

Algorithm

This drop-down menu allows you to select one of the following diff algorithms (depending on

whether it is a two-way or three-way comparison):

Oxygen XML Editor 27.1 | 7 - Working With Documents | 499

• Auto - Selects the most appropriate algorithm, based on the compared content and its

size (selected by default).

• Characters - Computes the differences at character level, meaning that it compares two

files or fragments looking for identical characters. This algorithm is not available when

the file comparison is in Author comparison mode.

• Words - Computes the differences at word level, meaning that it compares two files

or fragments looking for identical words. This algorithm is not available when the file

comparison is in Author comparison mode.

• Lines - Computes the differences at line level, meaning that it compares two files or

fragments looking for identical lines of text. This algorithm is not available when the file

comparison is in Author comparison mode.

• Syntax Aware - Computes differences for the file types or fragments known by Oxygen

XML Editor, taking the syntax (the specific types of tokens) into consideration. This

algorithm is not available when the file comparison is in Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise

than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed.

It compares two XML files or fragments looking for identical XML nodes.

Diff Options

Opens the Files Comparison preferences page (on page 296) where you can configure various

options.

Three-Way Comparison

Toggle action that allows you to perform a three-way comparison between the two files

displayed in the two editing panes and a base (ancestor) file.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Synchronized scrolling

Toggles synchronized scrolling on or off so that a selected difference can be seen on both sides

of the application window. This option is on by default.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before

performing the comparison, the application normalizes the content and trims its leading and

trailing whitespaces. This option is not available when in the Author comparison mode.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Oxygen XML Editor 27.1 | 7 - Working With Documents | 500

Formats and indents both files before comparing them. Use this option for comparisons that

contain long lines that make it difficult to spot differences. This option is not available when in

the Author comparison mode.

Note:

When comparing two JSON files, the Format and Indent Both Files action will

automatically sort the keys in both files the same to make it easier to compare.

Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual comparison

mode (on page 493). You can choose between: Full Tags with Attributes, Full Tags,

 Block Tags, Block Tags without Element Names, Inline Tags, Partial Tags, or

No Tags.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is positioned

on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the cursor is

positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last change from the

current block of changes is reached, it highlights the next block of changes. This action is not

available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first change from

the current block of changes is reached, it highlights the previous block of changes. This action

is not available when the cursor is positioned on the first change or when there are no changes.

Copy All Changes from Left to Right

Oxygen XML Editor 27.1 | 7 - Working With Documents | 501

Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Ignore Nodes by XPath

You can use this text field to enter an XPath expression (on page 2109) to ignore certain nodes

from the comparison. It will be processed as XPath version 2.0. You can also enter the name

of the node to ignore all nodes with the specified name (for example, if you want to ignore all

ID attributes from the document, you could simply enter @id). This field is only available when

comparing XML documents using the XML Fast or XML Accurate algorithms.

Note:

If an XPath expression is specified in the Ignore nodes by XPath option (on page 298)

in the Diff / File Comparison preferences page, that one is used as a default when the

application is started. If you then enter an expression in this field on the toolbar, this one

will be used instead of the default. If you delete the expression from this field, neither

will be used.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Base

Available for three-way comparisons (on page 489). It is the base file that will be compared

with the files opened in the left and right editors. You can specify the path to the file by using the

text field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Left-Side (Source) File

You can specify the path to the file to be compared on the left side (source) by using the text

field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Save

Saves the changes made in the source (left-side) file.

Reload

Reloads the source (left-side) file.

Close

Closes the source (left-side) file.

Right-Side (Target) File

You can specify the path to the file to be compared on the right side (target) by using the text

field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 502

Save

Saves the target (right-side) file.

Reload

Reloads the target (right-side) file.

Close

Closes the target (right-side) file.

Compare Files Tool Menus

The menus in the Compare Files tool contain some of the same actions that are on the toolbar, as well as

some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu

actions include:

File Menu

Source > Open

Browses for a file that will be displayed in the left panel.

Source > Open URL

Browses for a remote file that will be displayed in the left panel.

Source > Open File from Archive

Browses an archive for a file that will be displayed in the left panel.

Source > Reload

Reloads the file in the left panel.

Source > Save

Saves the changes made to the file in the left panel.

Source > Save As

Allows you to choose a destination to save the file in the left panel.

Source > Close

Closes the file in the left panel.

Target > Open

Browses for a file that will be displayed in the right panel.

Target > Open URL

Browses for a remote file that will be displayed in the right panel.

Target > Open File from Archive

Browses an archive for a file that will be displayed in the right panel.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 503

Target > Reload

Reloads the file in the right panel.

Target > Save

Saves the changes made to the file in the right panel.

Target > Save As

Allows you to choose a destination to save the file in the right panel.

Target > Close

Closes the file in the right panel.

Base > Open

Browses for a file that will be compared with both files in a three-way comparison (on page

489).

Base > Open URL

Browses for a remote file that will be compared with both files in a three-way comparison (on

page 489).

Base > Open File from Archive

Browses an archive for a file that will be compared with both files in a three-way comparison (on

page 489).

Save Results as HTML (Available in Text mode only)

Generates an HTML file that contains detailed information about the comparison result. See

an example of what the generated report look like in the Generate HTML Report for Directory

Comparison topic (on page 523).

Save Comparison as Document with Tracked Changes (Available for two-way comparison in Author

mode only)

Allows you to merge two compared documents based on the differences detected and save

the results as a specified file that includes the special change tracking marks. You can load

the resulting file in Oxygen's Author mode to review the changes that resulted from the merge

process and you can accept or reject them. Note that if the documents to be compared already

contain tracked changes, they will be automatically accepted before generating the output file.

Close (Ctrl + W (Command + W on macOS))

Closes the application.

Edit Menu

Cut

Cut the selection from the currently focused editor panel to the clipboard.

Copy

Oxygen XML Editor 27.1 | 7 - Working With Documents | 504

Copy the selection from the currently focused editor panel to the clipboard.

Paste

Paste content from the clipboard into the currently focused editor panel.

Select all

Selects all content in the currently focused editor panel.

Undo

Undo changes in the currently focused editor panel.

Redo

Redo changes in the currently focused editor panel.

Find Menu

Find/Replace

Perform find/replace operations in the currently focused editor panel.

Find Next

Go to the next match using the same options as the last find operation. This action runs in both

editor panels.

Find Previous

Go to the previous match using the same options as the last find operation. This action runs in

both editor panels.

Compare Menu

Three-Way Comparison

Toggle action that allows you to perform a three-way comparison between the two files

displayed in the two editing panes and a base (ancestor) file.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is positioned

on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Oxygen XML Editor 27.1 | 7 - Working With Documents | 505

Jumps to the previous block of changes. This action is not available when the cursor is

positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last change from the

current block of changes is reached, it highlights the next block of changes. This action is not

available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first change from

the current block of changes is reached, it highlights the previous block of changes. This action

is not available when the cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on macOS))

Jumps to the last change.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Copy All Changes from Left to Right

Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Show Word Level Details

Provides a word-level comparison of the selected change.

Show Character Level Details

Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Formats and indents both files before comparing them. Use this option for comparisons that

contain long lines that make it difficult to spot differences.

Note:

When comparing two JSON files, the Format and Indent Both Files action will

automatically sort the keys in both files the same to make it easier to compare.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 506

Options Menu

Preferences

Opens the preferences dialog box that includes numerous pages of options that can be

configured.

Menu Shortcut Keys

Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts

available for menu items.

Reset Global Options

Resets options to their default values. Note that this option appears only when the tool is

executed as a stand-alone application.

Import Global Options

Allows you to import an options set that you have previously exported.

Export Global Options

Allows you to export the current options set to a file.

Help Menu

Help (F1)

Opens a Help dialog box that displays the User Manual at a section that is appropriate for the

context of the current cursor position.

Use Online Help

If this option is selected, when you select Help or press F1 while hovering over any part of the

interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this

option is not selected or an internet connection fails, the help documentation is opened in offline

mode.

Report problem

Opens a dialog box that allows the user to write the description of a problem that was

encountered while using the application. You can change the URL where the reported problem is

sent by using the com.oxygenxml.report.problems.url system property. The report is sent in XML

format through the report parameter of the POST HTTP method.

Support Center

Opens the Oxygen XML Editor Support Center web page in a browser.

Compare Directories Tool

The Compare Directories tool can be used to compare and manage changes to files and folders within the

structure of your directories. The utility is available from the Tools > Comparison Tools menu or can be

opened as a stand-alone application from the Oxygen XML Editor installation folder (diffDirs.exe).

Oxygen XML Editor 27.1 | 7 - Working With Documents | 507

Figure 100. Diff Directories Dialog Box

Starting the Tool from a Command Line

The directory comparison tool can also be started by using command-line arguments. In the installation

folder there is an executable shell (diffDirs.bat on Windows, diffDirs.sh on macOS and Linux). To

specify the directories to compare, you can pass command-line arguments using the following construct:

diffDirs.bat/diffDirs.sh [directory path 1] [directory path 2].

If you pass only one argument, you are prompted to manually choose the second directory or archive.

Example:

To do a comparison between two directories, the command line would look like this:

Windows

diffDirs.bat "c:\documents new" "c:\documents old"

Tip:

If there are spaces in the path names, surround the paths with quotes.

Linux

diffDirs.sh home/documents1 home/documents2

macOS

diffDirs.sh documents1 documents2

Oxygen XML Editor 27.1 | 7 - Working With Documents | 508

Directory Comparisons

To perform a directory comparison, follow these steps:

1. Select a folder in the left panel and the folder you want to compare it to in the right panel. You can

specify the path by using the text field, the history drop-down, or the Browse for local directory action in

the Browse drop-down menu.

Step Result: The selected directory structures are opened in the two side-by-side panels.

2. To highlight the differences between the two folders, click the Perform Directories Differencing

button from the toolbar.

3. You can also use the Diff Options button to access the Directories Comparison preferences page

(on page 299) where you can configure various options.

To compare the content of two archives, follow these steps:

1. Use the Browse for archive file action in the Browse drop-down menu to select the archives in the

left and right panels.

2. By default, the supported archives are not treated as directories and the comparison is not performed

on the files inside them. To make Oxygen XML Editor treat supported archives as directories, select the

Look in archives option (on page 300) in the Directories Comparison preferences page.

3. To highlight the differences, click the Perform Directories Differencing button from the toolbar.

The directory comparison results are presented using two tree-like structures showing the files and folders,

including their name, size, and modification date. A column that contains graphic symbols separates the two

tree-like structures. The graphic symbols can be one of the following:

• An X symbol, when a file or a folder exists in only one of the compared directories.

• A ≠symbol, when a file exists in both directories but the content differs. The same sign appears when a

collapsed folder contains differing files.

The color used for the symbol and the directory or file name can be customized in the Directories

Comparison / Appearance preferences page (on page 300). You can double-click lines marked with the ≠

symbol to open a Compare Files window, which shows the differences between the two files.

The directories that contain files that differ are expanded automatically so that you can focus directly on the

differences. You can merge the contents of the directories by using the copy actions. If you double-click (or

press Enter) on a line with a pair of files, Oxygen XML Editor starts a file comparison (on page 486) between

the two files, using the Compare Files tool.

Related information

Compare Files Tool (on page 486)

Compare Directories Script (on page 3278)

Oxygen XML Editor 27.1 | 7 - Working With Documents | 509

Toolbar and Contextual Menu Actions of the Compare Directories Tool

The toolbar of the Compare Directories tool contains operations that can be performed on the compared

directory structure. Some of the toolbar actions are also available in the contextual menu.

Figure 101. Compare toolbar

Toolbar Actions

Perform Directories Differencing

Looks for differences between the two directories displayed in the left and right side of the

application window.

Perform Files Differencing

Opens the Compare Files tool (on page 486) that allows you to compare the currently selected

files.

Copy Change from Right to Left

Copies the selected change from the right side to the left side (if there is no file/folder in the

right side, the left file/folder is deleted).

Copy Change from Left to Right

Copies the selected change from the left side to the right side (if there is no file/folder in the left

side, the right file/folder is deleted).

Binary Compare

Performs a byte-level comparison on the selected files.

Diff Options

Opens the Directory Comparison preferences page (on page 299) where you can configure

various options.

Show Only Modifications

Displays a more uncluttered file structure by hiding all identical files.

Save Results as HTML

Generates an HTML file that contains detailed information about the comparison result.

File and folder filters

Differences can be filtered using three combo boxes: Include files, Exclude files, and Exclude

folders. They come with predefined values and are editable to allow custom values. All of them

accept multiple comma-separated values and the * and ? wildcards. For example, to filter out

Oxygen XML Editor 27.1 | 7 - Working With Documents | 510

all JPEG and GIF image files, edit the Exclude files filter box to read *.jpeg, *.png. Each filter

includes a drop-down menu with the latest 15 filters applied.

Contextual Menu Actions

Perform Files Differencing

Opens the Compare Files tool (on page 486) that allows you to compare the currently selected

files.

Binary Compare

Performs a byte-level comparison on the selected files.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Open

If the action is invoked on a file, the selected file is opened in Oxygen XML Editor. If the action

is invoked on a directory, the selected directory is opened in the default file browser for your

particular operating system.

Open in System Application

Opens the selected file in the system application that is associated with that type of file. The

action is available when launching the Compare Directories tool from the Tools menu in Oxygen

XML Editor.

Show in Explorer

Opens the default file browser for your particular operating system with the selected file

highlighted.

Compare Directories Tool Menus

The menus in the Compare Directories tool contain some of the same actions that are on the toolbar, as well

as some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu

actions include:

File Menu

Save Results as HTML

Generates an HTML file that contains detailed information about the comparison result. See

an example of what the generated report look like in the Generate HTML Report for Directory

Comparison topic (on page 523).

Close (Ctrl + W (Command + W on macOS))

Oxygen XML Editor 27.1 | 7 - Working With Documents | 511

Closes the application.

Compare Menu

Perform Directories Differencing

Looks for differences between the two directories displayed in the left and right side of the

application window.

Perform Files Differencing

Opens the Compare Files tool (on page 486) that allows you to compare the currently selected

files.

Copy Change from Right to Left

Copies the selected change from the right side to the left side (if there is no file/folder in the

right side, the left file/folder is deleted).

Copy Change from Left to Right

Copies the selected change from the left side to the right side (if there is no file/folder in the left

side, the right file/folder is deleted).

Options Menu

Preferences

Opens the preferences dialog box that includes numerous pages of options that can be

configured.

Menu Shortcut Keys

Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts

available for menu items.

Reset Global Options

Resets options to their default values. Note that this option appears only when the tool is

executed as a stand-alone application.

Import Global Options

Allows you to import an options set that you have previously exported.

Export Global Options

Allows you to export the current options set to a file.

Help Menu

Help (F1)

Opens a Help dialog box that displays the User Manual at a section that is appropriate for the

context of the current cursor position.

Use Online Help

Oxygen XML Editor 27.1 | 7 - Working With Documents | 512

If this option is selected, when you select Help or press F1 while hovering over any part of the

interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this

option is not selected or an internet connection fails, the help documentation is opened in offline

mode.

Report problem

Opens a dialog box that allows the user to write the description of a problem that was

encountered while using the application. You can change the URL where the reported problem is

sent by using the com.oxygenxml.report.problems.url system property. The report is sent in XML

format through the report parameter of the POST HTTP method.

Support Center

Opens the Oxygen XML Editor Support Center web page in a browser.

Compare Images

You can use the Compare Directories tool to compare images. If you double-click a line that contains two

different images, the Compare images window is displayed. This dialog box presents the images in the left

and right sides, scaled to fit the available view area. You can use the contextual menu actions to scale the

images to their original size or scale them down to fit in the view area.

The supported image types are: GIF, JPG, JPEG, PNG, and BMP.

Compare Directories Against a Base (3-Way) Tool

The Compare Directories Against a Base (3-way) tool allows you to perform three-way comparisons on

directories to help you identify and merge changes between multiple modifications of the same directory

structure. It is especially helpful for teams that have multiple authors contributing documents to the same

directory system. It offers information about conflicts and changes, and includes actions to easily merge,

accept, overwrite, or ignore changes to the directory system.

How to Perform 3-Way Directory Comparisons

To perform a 3-way directories comparison, follow these steps:

1. Select Compare Directories Against a Base (3-way) from the Tools > Comparison Tools menu.

Step Result: This opens a dialog box that allows you to select the 3 file sets that will be used for the

comparison.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 513

Figure 102. Compare Directories Against a Base File Set Chooser

2. Select the file sets to be compared:

◦ Base directory - This is the original (base) file set before any modifications were made by you or

others.

◦ Directory with your changes - This is the file set with changes that you have made. This file set

will be displayed in the left panel in the comparison tool.

◦ Directory with changes made by others - This is the file set with changes made by others that

you want to merge with your changes. This file set will be displayed in the right panel in the

comparison tool.

3. Click the Compare button to compare the file sets and open the comparison and merge tool.

4. Use the features and actions described in the next section to identify and merge the changes.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 514

3-Way Directory Comparison and Merge Tool

Figure 103. Comparison and Merge Tool

The 3-way directory comparison and merge tool includes the following information, features, and actions:

Number of Changes and Conflicts

The first thing you see in the top-left corner of the tool is the grand total of all the changes made

by others, changes made by you, and the number of conflicts.

Filter Buttons

In the top-right corner you can use the toggle buttons to filter the list of modifications:

Show all files

Use this button to show all modified and unmodified files, as well as conflicts.

Show only files modified by you and others

Filters the list to show all files that have been modified, including conflicts.

Show only files modified by others

Filters the list to only show the files that were modified by others.

Show only files modified by you

Filters the list to only show the files that were modified by you.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 515

Show only conflicting files

Filters the list to only show files that contain conflicts.

List of Files Panel

This panel shows the list of files in the compared file sets based upon the filter button that is

selected. This panel includes the following sortable columns:

• Name - The file names.

• Status - An icon that represents the file status. Red icons indicate some sort of conflict.

Gray icons indicate modifications made by you. Blue icons indicate modifications made

by others.

• Description - A description of the file status.

• Merge Action - This column provides a drop-down menu for each file that allows you to

choose some merge actions depending upon its status. A default action is always set to

Automatically merge the changes made by others with your changes. If there is a conflict,

the default is <Select action> and you are required to make a selection. Click this column

to access the drop-down menu where you can make a selection. The same actions are

available in the contextual menu.

Tip:

If the solution proposed in the Merge Action column for any particular file is not

satisfactory, you can change it directly in that column (even if that file is not selected)

without automatically re-triggering the comparison (except for in certain cases where re-

triggering the comparison is necessary).

You can click a file to open it in the file comparison panel (the file from your file set is shown in

the left panel while the file from the file set with changes made by others is shown in the right

panel). For image files, the comparison panel shows a preview of the image. For other binary

files, a preview is not available and you will just see its status.

File Comparison Panels

If you click a file in the top panel, the file is opened in this file comparison section. The file from

your file set is shown in the left panel and the file from the other file set is shown in the right

panel.

Note:

If Oxygen XML Editor does not recognize the file type, a dialog box will be displayed

that allows you to select the type of editor you want it to be associated with for this

comparison (if you want Oxygen XML Editor to remember this association, you can

select the Associate file type with editor option at the bottom of the dialog box).

This panel includes the following information and toolbar actions:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 516

File Path

The first thing you see in this panel is the file path where merge actions will be

applied if you make changes.

Close

Closes the file comparison panel.

Algorithm Drop-down Menu

This drop-down menu allows you to select one of the following diff algorithms to

be used for file comparisons:

• Auto - Selects the most appropriate algorithm, based on the compared

content and its size (selected by default).

• Lines - Computes the differences at line level, meaning that it compares two

files or fragments looking for identical lines of text. This algorithm is not

available when the file comparison is in Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is

less precise than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the

expense of speed. It compares two XML files or fragments looking for

identical XML nodes.

Diff Options

Opens the Files Comparison preferences page (on page 296) where you can

configure various options.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side

panels.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be

seen in both panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means

that before performing the comparison, the application normalizes the content and

trims its leading and trailing whitespaces. This option is not available when the file

comparison is in Author mode.

Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual

mode. You can choose between: Full Tags with Attributes, Full Tags,

Oxygen XML Editor 27.1 | 7 - Working With Documents | 517

Block Tags, Block Tags without Element Names, Inline Tags, Partial

Tags, or No Tags.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left

panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is

positioned on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least

one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the

cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last

change from the current block of changes is reached, it highlights the next block

of changes. This action is not available when the cursor is positioned on the last

change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first

change from the current block of changes is reached, it highlights the previous

block of changes. This action is not available when the cursor is positioned on the

first change or when there are no changes.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Left-Side File (Your changes)

Above the panel you can see the file path and the following two buttons:

Save

Saves changes made to the file.

Reload

Oxygen XML Editor 27.1 | 7 - Working With Documents | 518

Reloads the file.

Right-Side File (Changes made by others)

Above the panel you can see the file path and the following two buttons:

Reload

Reloads the file.

Displaying Changes in the File Comparison Panels

The line numbers on each side and colored marks on the right-side vertical stripe help you to

quickly identify the locations of the differences. Adjacent changes are grouped into blocks of

changes.

Figure 104. File Comparison Panels

The differences are also highlighted in several colors, depending on the type of change, and

dynamic lines connect the compared fragments in the middle section between the two panes.

The highlighting colors can be customized in the Files Comparison / Appearance preferences

page (on page 299), but the default colors and their shades mean the following:

• Pink - Identifies modifications on either side.

• Gray - Identifies an addition of a node in the left side (your outgoing changes).

• Blue - Identifies an addition of a node in the right side (incoming changes).

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

• Darker Shade - Identifies specific changes within the blocks that can be merged more

precisely.

Direct Editing Actions in the File Comparison Panels

In addition to selecting merge actions from the drop-down menus in the Merge Action column

in the top panel, you can also edit the files directly in the left pane (your local changes). The

two editors are constantly synchronized and the differences are refreshed when you save

the modified document (Save button or Ctrl+S) or when you click the Perform File

Differencing button.

A variety of actions are available in the contextual menu in both editing panes. The tool also

includes some inline actions to help you merge, copy, or remove changes. When you select a

change, the following inline action widgets are available, depending on the type of change:

Append right change to left

Oxygen XML Editor 27.1 | 7 - Working With Documents | 519

Copies the content of the selected change from the right side and appends it on

the left side.

Copy change from right to left

Replaces the content of a change in the left side with the content of the change in

the right side.

Remove change

Removes the change from the left side.

Anytime you save manual changes (Save button or Ctrl+S), the selection in the Merge Action

column in the top panel automatically changes to Use merged and a copy of the original file is

kept so that you can revert to the original file if necessary. To discard your manual changes and

revert to your original changes, select a different action in the Merge Action drop-down menu.

Open Merged Files

If you select this option, all the files that will be modified by the merge operation will be opened

in the editor after the operation is finished.

Applying Changes

When you click the Apply button, all the merge actions you have selected and the changes you

have made will be processed.

If there are unresolved conflicts (conflicts where no merge action is selected in the Merge Action

drop-down menu), a dialog box will be displayed that allows you to choose how to solve the

conflicts. You can choose between the following:

• Keep your changes - If you select this option and then click Apply, your local changes will

be preserved for the unresolved conflicts.

• Overwrite your changes - If you select this option and then click Apply, your local changes

will be overwritten with the changes made by others, for the unresolved conflicts.

• Cancel - You can click the Cancel button to go back to the merge tool to resolve the

conflicts individually.

Canceling Changes

If you click the Cancel button at the bottom of the merge tool, all the changes you made in the

tool will be lost.

Author Visual Mode

The Comparison and Merge tool includes an Author mode that displays the files in a visual mode similar

to the Author editing mode in Oxygen XML Editor/Author. This makes it easier to see how the compared

changes will look in the final output. This visual mode is available when the compared files are detected as

being XML. To determine whether the files are initially opened in the merge tool's Text or Author mode, it

Oxygen XML Editor 27.1 | 7 - Working With Documents | 520

detects the Initial Edit Mode in the Document Type Association configuration (on page 150) and the mode the

files were last opened in Oxygen XML Editor/Author.

Note:

This mode is not available if the Enable file comparison in Author mode option (on page 296) is not

selected in the Diff > Files Comparison preferences page.

This visual mode includes unique features such as a Tags Display Mode drop-down button (on page

516) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode

also presents differences that were made using the Track Changes feature (although the Track Changes

feature is not available in the comparison tool).

Figure 105. File Comparison Tool - Author Mode

Author Mode Algorithms

The visual Author mode offers the following diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 521

Author Mode Second-Level Comparisons

The visual Author mode automatically performs a second-level comparison for the XML Fast and XML

Accurate algorithms. After the first comparison is finished, the second-level comparison is processed on text

nodes using a word level comparison, meaning that it looks for identical words. This second-level comparison

makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related information

Compare Directories Tool (on page 506)

Compare Files Tool (on page 486)

Generate HTML Report for Directory Comparison

The Generate HTML report for directory comparison tool can be used to generate a report in the form of

an HTML file that contains the results of a directory comparison (for either 2-way or 3-way comparisons).

The Generate HTML report for directory comparison action for invoking the tool can be found in the Tools >

Comparison Tools menu. It opens a dialog box where you can specify the directories to compare as well as

some other options.

Figure 106. Generate HTML Report for Directory Comparison Dialog Box

The Generate HTML report for directory comparison dialog box contains the following options:

Base directory

Specifies the path of the base directory that the other two directories will be compared against in

a 3-way comparison. This field should be left empty for 2-way comparisons.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 522

First directory

Specifies the path of the first directory to be included in the comparison.

Second directory

Specifies the path of the second directory to be included in the comparison.

Diff options

Specifies which option set to use for generating the comparison report. If you choose Use the

current settings from Preferences, the options set in the Directories Comparison preferences

page (on page 299) and the include/exclude filter options in the Compare Directories tool (on

page 509) are taken into account when generating the comparison result. You can also click

the Diff options button to open the Directories Comparison preferences page where you can

see or modify the current settings. If you choose Use the default settings, the default values for

all settings are used.

Generate additional file comparison reports

Generates further comparison reports for all non-binary modified file pairs and provides links

to them in the main report (in the middle cells of the results table). See the example below (on

page 523). These additional file comparison reports are saved to a directory that will have the

same parent directory and the same name as the output file provided, suffixed by "-OXY-FC-

REPORTS". The links created in the main report are relative to this directory. If the main HTML

report is later copied or moved to another location, to retain full functionality in the browser, the

directory with the additional file comparison reports must also be copied/moved to the same

location.

Note:

Generating additional file comparison reports could significantly increase the execution

time. A progress tracker for the whole operation is available.

Tip:

An XPath expression specified in the Ignore nodes by XPath text field within the Files

Comparison preferences page (on page 296) is now taken into account if you enable the

Generate additional file comparison reports option.

Output file

Specifies the path for an output file to save the comparison results file.

Open in Browser/System Application

Opens the comparison results file in the browser or system application that is associated with

HTML files.

After clicking the Generate report button, a report in the form of an HTML file is generated with details about

the comparison results.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 523

Figure 107. HTML Report for Directory Comparison

Figure 108. Example of an Additional File Comparison Report

Resources

For more information about how to generate HTML comparison reports, watch our video demonstration:

https://www.youtube.com/embed/6jPccHKUNNk

https://www.youtube.com/embed/6jPccHKUNNk

Oxygen XML Editor 27.1 | 7 - Working With Documents | 524

Related information

Compare Directories Tool (on page 506)

Compare Directories Against a Base (3-Way) Tool (on page 512)

Compare Files Tool (on page 486)

Viewing Status Information
Status information generated by operations such as schema detection, manual validation, automatic validation,

and transformations are fed into the Information view, allowing you to monitor how the operation is being

executed.

Figure 109. Information view messages

Messages contain a timestamp, the name of the thread that generated it, and the actual status information.

The number of displayed messages can be controlled with the Maximum number of lines option (on page

316) in the Views preference page.

To make the view visible, select Window > Show View > Information.

Editor Highlights
An editor highlight is a text fragment emphasized by a colored background.

Highlights are generated in both Text and Author mode when the following actions generate results:

Oxygen XML Editor 27.1 | 7 - Working With Documents | 525

• Find/Replace in Files (on page 448)

• Find/Replace (on page 443)

• Open/Find Resource (on page 437)

• Find All

• Find All Elements (on page 454)

• XPath in Files (on page 421)

• Search References (on page 590)

• Search Declarations (on page 590)

By default, Oxygen XML Editor uses a different color for each type of highlight (XPath in Files, Find/Replace,

Search References, Search Declarations, etc.) You can customize these colors and the maximum number

of highlights displayed in a document on the Editor preferences page (on page 177). The default maximum

number of highlights is 10000.

You can navigate the highlights in the current document by using the following methods:

• Clicking the markers from the range ruler, located at the right side of the editor pane.

• Clicking the Next and Previous buttons () from the bottom of the range ruler, located at the right side

of the editor pane.

Note:

When there are multiple types of highlights in the document, the Next and Previous buttons

() navigate through highlights of the same type.

• Clicking the messages displayed in the Results view (on page 560) view at the bottom of the editor.

To remove the highlights, you can do the following:

• Click the Remove all button from bottom of the range ruler, located at the right side of the editor

pane.

• Close the results tab at the bottom of the editor that contains the output of the action that generated

the highlights.

• Click the Remove all button on the right side of the Results view (on page 560) view at the bottom

of the editor.

Note:

Use the Highlight all results in editor button (on the right side of the Results panel) to either

display all the highlights or hide them.

Printing a Document
Printing is supported in Text, Author, and Grid modes.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 526

The Print (Ctrl + P (Command + P on macOS)) action that is available from File menu displays a series of

dialog boxes that allow you to configure print settings. After defining the settings in each dialog box, click OK

to continue to the next one.

A Print Preview action is also available in the File menu. It first opens a Page Setup dialog box where you can

define some paper, orientation, and margin settings. After you click OK, it displays the Print Preview dialog box

where you can see a preview of how the document will look when it is printed..

Figure 110. Print Preview Dialog Box

The main window is split in three sections:

• Preview area - Displays the formatted document page as it will appear on printed paper.

• Left stripe - The left-side stripe that displays a list of thumbnail pages. Clicking any of them displays

the page content in the main preview area.

• Toolbar - The toolbar area at the top that contains controls for printing, page settings, page navigation,

print scaling, and zoom.

Oxygen XML Editor 27.1 | 7 - Working With Documents | 527

Other Printing Features

• If you are printing a document that is opened in the Author visual editing mode, you can use the CSS

print media type (on page 2421) to change the styling in the printed output.

• If you are printing a document that is opened in Author mode and it contains Tracked Changes (on

page 656), you can print (or print preview) a copy of the document as if all changes have been

accepted by switching the Track Changes Visualization Mode (on page 661) to View Final.

• If you are printing a document that is opened in Text mode and line numbers are displayed (the Show

line numbers option (on page 180) is selected), the printed output will include the line numbers.

• If you are printing an XML document that is opened in Text mode and the folding support is activated

(the Enable folding option (on page 181) is selected), the printed output will include the current folded

state. Note that this applies to printing an entire document and not selections within the document.

• If you are printing an XML document that is opened in Text mode and a block of content is selected,

you have the ability to print only the selection of text rather than the entire document. When you invoke

the print action with a block of content selected in Text mode, a dialog box will be presented that offers

you the choice to print the selection or the entire document.

8.
Editing Supported Document Types
Oxygen XML Editor includes built-in frameworks for the most popular XML document types (DITA, DocBook,

TEI, XHTML, JATS) (on page 1329) with a full set of features (full editing support, document templates,

enhanced CSS rendering, specific actions, validation, content completion, transformation scenarios, and

more). In addition, Oxygen XML Editor provides support for editing numerous other types of documents (all

XML document types and even some non-XML formats).

Each type of document has unique features and options and this chapter includes a large amount of

information about editing numerous types of documents and various editing features that are provided in

Oxygen XML Editor, including general information about editing XML documents in Text mode (on page

529), the visual Author mode (on page 601), and Grid mode (on page 592).

For extensive details about the DITA editing features included in Oxygen XML Editor, see the DITA Authoring

chapter (on page 2939).

Related information

Built-in Frameworks (Document Types) (on page 1329)

Editing XML Documents
The structure of an XML document and the required restrictions on its elements and their attributes are

defined with an XML schema. This makes it easier to edit XML documents in the visual Author editing mode.

For more information about schema association, see Associating a Schema to XML Documents (on page

831).

Oxygen XML Editor includes fully supported built-in frameworks (on page 3297) for the most popular XML

document types (DITA, DocBook, TEI, XHTML, JATS) (on page 1329) with a full set of features. These built-in

frameworks are defined according to a set of rules and a variety of settings that improve editing capabilities

for its particular file type. For extensive details about the DITA editing features included in Oxygen XML Editor,

see the DITA Authoring chapter (on page 2939).

This section includes information about the user interface components and actions that are available in the

various editing modes and numerous features to help you edit XML documents in any mode.

Related information

Text Editing Mode (on page 363)

Author Editing Mode (on page 364)

Grid Editing Mode (on page 364)

Built-in Frameworks (Document Types) (on page 1329)

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 529

Editing XML Documents in Text Mode

This section includes topics that describe how to work with XML documents in Text mode, including various

features, actions that are available, and much more.

The Oxygen XML Editor Text editing mode is designed to be a simple, yet powerful, XML source editor. You

can use this mode to edit XML code, markup, and text and it provides support to help you transform, and

debug XML-based documents. It is similar to other common text editors, but Oxygen XML Editor also includes

numerous specialized editing actions, a powerful Content Completion Assistant (on page 544), a helpful

Outline view (on page 551), and many other unique features.

To switch to this mode, select Text at the bottom of the editing area.

Navigating the Document Content in Text Mode

Oxygen XML Editor includes some useful features to help you navigate XML documents in Text mode.

Navigation Keyboard Shortcuts

Ctrl + CloseBracket (Command + CloseBracket on macOS)

Navigate to the next XML node.

Ctrl + OpenBracket (Command + OpenBracket on macOS)

Navigate to the previous XML node.

Ctrl + RightArrow (Command + RightArrow on macOS)

Navigate one word forward.

Ctrl + LeftArrow (Command + LeftArrow on macOS)

Navigate one word backward.

Ctrl + Home (Command + Home on macOS)

Position the cursor at the beginning of the document.

Ctrl + End (Command + End on macOS)

Position the cursor at the end of the document.

Navigating to a Modification

Oxygen XML Editor includes some actions that help you to quickly navigate to a particular modification. These

navigation buttons are available in the main toolbar (they can also be accessed from the Find menu):

Last Modification

Navigates to the last modification in any open tab.

Back

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 530

Navigates to the last selected editor tab or to the last selected element/content in the current

tab. You can also go back after clicking on links in Text or Author mode.

Forward

Available after you use the Back button at least once, and it navigates in the opposite direction

as the Back button.

Navigating with the Outline View

Oxygen XML Editor includes an Outline view (on page 551) that displays a hierarchical tag overview of the

currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree.

It is synchronized with the editor area, so when you make a selection in the Outline view, the corresponding

nodes are highlighted in the editor area.

Figure 111. Outline View Navigation in Text Mode

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It

can also be used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 112. Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current element

is also highlighted by a thin light blue bar for easy identification. Clicking an element from the breadcrumb

selects the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go to

dialog box. To open this dialog box, press (Ctrl+L (Command+L on macOS)) or select Find > Go to .

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 531

Figure 113. Go to Dialog Box

The dialog box includes the following fields for specifying a specific navigation location:

• Line - Destination line in the current document.

• Column - Destination column in the current document.

• Offset - Destination offset relative to the beginning of document.

Navigating with Bookmarks

By using bookmarks, you can mark positions in an edited document so that you can return to it later. This is

especially helpful for navigating through large documents or while editing multiple documents. You can place

up to nine distinct bookmarks in any document. Shortcut keys are available to navigate to any of the marked

positions (Ctrl+1 through Ctrl+9). There are also shortcuts for creating bookmarks (Ctrl+Shift+1 through Ctrl

+Shift+9). You can also configure these shortcut keys in the Options > Menu Shortcut Keys (on page 304)

menu.

Figure 114. Editor Bookmarks

To insert a bookmark in Text mode, do any of the following:

• Click in the vertical stripe on the left side of the editor (to the left of the line number).

• Press F9 on your keyboard or use any of the specific bookmark creation shortcuts (Ctrl+Shift+1

through Ctrl+Shift+9).

• Select the Create Bookmark action from the Edit > Bookmarks menu.

To remove bookmark in Text mode, do either of the following:

• Left-click its icon in the vertical stripe.

• Right-click its icon on the vertical stripe and select Remove or Remove all (Ctrl+F7 (Command+F7 on

macOS)).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 532

To navigate to a specific bookmark, do either of the following:

• Use any of the specific bookmark navigation shortcuts (Ctrl+1 through Ctrl+9).

• Use one of the actions available on the Edit > Bookmarks > Go to menu.

Tip:

The navigation shortcuts work even if the document where the bookmark was inserted has

been closed. In this case, using the shortcut will automatically re-open the document.

Smart Editing in Text Mode

Oxygen XML Editor includes smart editing features to help you edit XML documents in Text mode. The

following smart editing features are included:

• Closing tag auto-expansion - This feature helps save some keystrokes by automatically inserting a

closing tag when you insert a complete start tag and the cursor is automatically placed in between

the start and end tags. For instance, after entering a start <tag>, the corresponding closing </tag> is

automatically inserted and the cursor is placed between the two (<tag>|</tag>.

• Auto-rename matching tag - When you edit the name of a start tag, Oxygen XML Editor will mirror-edit

the name of the matching end tag. This feature can be controlled from the Content Completion option

page (on page 220).

• Auto-breaking the edited line - The Hard line wrap option (on page 213) automatically breaks the

edited line when its length exceeds the maximum line length defined for the format and indent

operation (on page 213).

• Indent on Enter - The Indent on Enter option (on page 212) indents the new line inserted when you

press Enter.

• Smart Enter - The Smart Enter option (on page 213) inserts an empty line between the start and

end tags. If you press Enter between a start and end tag, the action places the cursor in an indented

position on the empty line between the lines that contain the start and end tag.

• Double-click - A double-click selects certain text, depending on the position of the click in the

document:

◦ If the click position is on a start tag or end tag, then the element name is selected.

◦ If the click position is immediately after the opening quote or immediately before the closing

quote of an attribute value, then the entire attribute value is selected.

◦ Otherwise, a double-click selects contiguous text.

• Triple-click - A triple-click selects entire regions of text, depending on the click position:

◦ If the click position is on a start or end tag, then the entire tag is selected, including the start and

end tags, and the content in between.

◦ If the click position is after a start tag or before an end tag, then the entire content of the element

without the start and end tags is selected.

◦ If the click position is before a start tag or after an end tag, then the entire tag is selected,

including the start and end tags, and the content in between.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 533

◦ If the click position is immediately before an attribute, then the entire attribute and its value are

selected.

◦ If the click position is in between the opening and closing quotes of an attribute value, then the

entire attribute value is selected.

◦ Otherwise, it selects the entire current line.

Shortcut Actions in Text Mode

Oxygen XML Editor includes numerous shortcut actions to help you edit content in the Text editing mode.

Changing the Font Size (Zoom)

The font size of the editor panel can be changed with the following actions that are available with shortcuts or

in the Document > Font size menu:

Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on macOS) or Ctrl + MouseWheelForward

(Windows/Linux)

Increases the font size (zooms in) with one point for each execution of the action.

Note:

For macOS, if you activate the Enable mouse-wheel zooming option (on page 179) in

the Editor preferences page, you can use Command + MouseWheelForward to increase

the font size (zoom in). It is disabled by default due to the way inertia affects the mouse

wheel on macOS.

Decrease editor font (Ctrl + NumPad- (Command + NumPad- on macOS) or Ctrl +

MouseWheelBackwards (Windows/Linux)

Decreases the font size (zooms out) with one point for each execution of the action.

Note:

For macOS, if you activate the Enable mouse-wheel zooming option (on page 179)

in the Editor preferences page, you can use Command + MouseWheelBackwards to

decrease the font size (zoom out). It is disabled by default due to the way inertia affects

the mouse wheel on macOS.

Normal editor font (Ctrl + 0 (Command + 0 on macOS))

Resets the font size to the value of the editor font set in the Fonts preferences page (on page

141).

Undo/Redo Actions

The typical undo and redo actions are available with shortcuts or in the Edit menu:

Undo (Ctrl + Z (Command + Z on macOS))

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 534

Reverses a maximum of 200 editing actions (configurable with the Undo history size option (on

page 178) in the Editor preferences page) to return to the preceding state.

Note:

Complex operations such as Replace All or Indent selection count as single undo

events.

Redo (Ctrl + Y (Command + Shift + Z on macOS, Ctrl + Shift + Z on Linux/Unix))

Recreates a maximum of 100 editing actions that were undone by the Undo function.

Copy and Paste Actions

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit

menu):

Cut (Ctrl + X (Command + X on macOS))

Removes the currently selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on macOS))

Places a copy of the currently selected content in the clipboard.

Paste (Ctrl + V (Command + V on macOS))

Inserts the current clipboard content into the document at the cursor position.

Select All (Ctrl + A (Command + A on macOS))

Selects the entire content of the current document.

Moving XML Nodes

You can use the following shortcuts to move XML elements or XSLT variables up or down in Text mode:

Ctrl + Alt + UpArrow (Command + Option + UpArrow on macOS)

Moves the node up one line.

Ctrl + Alt + DownArrow (Command + Option + DownArrow on macOS)

Moves the node down one line.

Note:

The requirements for these node moving actions to work are as follows:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 535

• The mechanism is designed to work without a selection. If you use these actions on a selection

of content, it moves the entire selection. To make this mechanism work as intended, simply

position the cursor somewhere on the line that you want to move.

• A start tag must be the first text occurrence on the line where the cursor is positioned.

• On the line where the element ends, only whitespaces are allowed after the end tag.

Miscellaneous Shortcut Actions in Text Mode

Oxygen XML Editor also includes the following other miscellaneous shortcut actions in Text mode:

Ctrl + Delete (Command + Delete on macOS)

Deletes the next word.

Ctrl + Backspace (Command + Backspace on macOS)

Deletes the previous word.

Ctrl + W (Command + W on macOS)

Cuts the previous word.

Ctrl + K (Command + K on macOS)

Cuts to end of line.

Ctrl + Single-Click (Command + Single-Click on macOS)

Use this shortcut to open any of the following:

• Any absolute URL (URLs that have a protocol), regardless of their location in the

document.

• URI attributes such as: @schemaLocation, @noNamespaceSchemaLocation, @href and others.

• Open the target for DITA references (such as a @conref, @conkeyref, @keyref, and more).

• Processing instructions used for associating resources, xml-models, xml-stylesheets.

Ctrl + Shift + Y (Command + Shift + Y on macOS) (Document > Edit > Toggle Line Wrap)

Enables or disables line wrapping. When enabled, if text exceeds the width of the displayed

editor, content is wrapped so that you do not have to scroll horizontally.

Related information

Frequently Used Shortcut Keys (on page 54)

Editing XML Markup in Text Mode

Oxygen XML Editor includes some useful actions that allow you to easily edit XML markup in Text mode.

These actions are available in the Refactoring submenu of the contextual menu and in the Document >

Markup menu, and many of the actions can also be done with simple keyboard shortcuts.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 536

Using the Breadcrumb

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It

can also be used as a helpful tool to insert and edit specific elements in the document structure.

Figure 115. Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current element is

also highlighted by a thin light blue bar for easy identification. Clicking an element in the breadcrumb selects

the entire element in the editor area. Also, each element provides a contextual menu with access to the

following actions:

Append Child

Allows you to select an element (from a drop-down list) that is allowed by the associated

schema and inserts it as a child of the current element.

Insert Before

Allows you to select an element (from a drop-down list) that is allowed by the associated

schema and inserts it immediately before the current element, as a sibling.

Insert After

Allows you to select an element (from a drop-down list) that is allowed by the associated

schema and inserts it immediately after the current element, as a sibling.

Edit Attributes

Opens an editing window that allows you to edit the attributes of the currently selected element.

Toggle Comment

Encloses the currently selected element in a comment, if the element is not already commented.

If it is already commented, this action will remove the comment.

Cut

Removes the selected element and copies it to the clipboard.

Copy

Copies the selected element to the clipboard.

Delete

Deletes the currently selected element.

Move Nodes

You can easily move XML nodes in the current document by using the following shortcut keys:

Alt + UpArrow (Option + UpArrow on macOS)

Moves the current node or selected nodes in front of the previous node.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 537

Alt + DownArrow (Option + DownArrow on macOS)

Moves the current node or selected nodes after the subsequent node.

Rename Elements

You can rename elements by using the following actions in the Refactoring submenu of the contextual menu

(or from the Document > Markup menu):

Rename Element

The element from the cursor position, and any elements with the same name, can be renamed

according with the options from the Rename dialog box.

Rename Prefix (Alt + Shift + P (Command + Shift + P on macOS))

The prefix of the element from the cursor position, and any elements with the same prefix, can

be renamed according with the options from the Rename dialog box.

• If you select the Rename current element prefix option, the application will

recursively traverse the current element and all its children. For example, to change

the xmlns:p1="ns1" association in the current element to xmlns:p5="ns1", if the

xmlns:p1="ns1" association is applied on the parent element, then Oxygen XML Editor

will introduce xmlns:p5="ns1" as a new declaration in the current element and will change

the prefix from p1 to p5. If p5 is already associated with another namespace in the current

element, then the conflict will be displayed in a dialog box. By pressing OK, the prefix is

modified from p1 to p5 without inserting a new declaration.

• If you select the Rename current prefix in all document option, the application will apply

the change on the entire document.

• To also apply the action inside attribute values, select the Rename also attribute values

that start with the same prefix checkbox.

Surround Content with Tags (Wrap)

You can surround a selection of content with tags (wrap the content) by using the following action in the

Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Surround with submenu

Presents a drop-down menu that allows you to choose a tag to surround a selected portion of

content.

Surround with Tags (Ctrl + E (Command + E on macOS))

Allows you to choose a tag that encloses a selected portion of content. If there is no selection,

the start and end tags are inserted at the cursor position.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 538

• If the Position cursor between tags option (on page 221) is selected in the Content

Completion preferences page, the cursor is placed between the start and end tag.

• If the Position cursor between tags option (on page 221) is not selected in the Content

Completion preferences page, the cursor is placed at the end of the start tag, in an insert-

attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on macOS))

Surround the selected content with the last tag used.

Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the Refactoring submenu of the

contextual menu (or from the Document > Markup menu):

Delete element tags (Alt + Shift + X (Command + Option + X on macOS))

Deletes the start and end tag of the current element.

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring

submenu of the contextual menu (or from the Document > Markup menu):

Join elements (Alt + Shift + J (Command + Option + J on macOS))

Joins the left and right elements relative to the current cursor position. The elements must have

the same name, attributes, and attributes values.

Split element (Alt + Shift + D (Ctrl + Option + D on macOS))

Split the element from the cursor position into two identical elements. The cursor must be inside

the element.

Other Refactoring Actions

You can also manage the structure of the markup by using the other specific XML refactoring actions that are

available in the Refactoring submenu of the contextual menu:

Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of the

information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 539

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

Allows you to search for a text fragment inside an attribute value and change the

fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some of the

information preconfigured based upon the current context.

Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of the

information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while keeping the content

unchanged.

Wrap element

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with some of the

information preconfigured based upon the current context.

Insert XML fragment

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 540

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment

Allows you to replace elements with an XML fragment.

Related information

Refactoring XML Documents (on page 856)

Contextual Menu Actions in Text Mode (on page 579)

Frequently Used Shortcut Keys (on page 54)

Folding XML Elements in Text Mode

When working with a large document, the folding (on page 3297) support in Oxygen XML Editor can be used

to collapse some element content leaving only those that you need to edit in focus. Expanding and collapsing

works on individual elements. Expanding an element leaves the child elements unchanged.

By default, the folding (on page 3297) feature is enabled in Oxygen XML Editor, but it can be disabled in the

Text preferences page with the Enable folding option (on page 181).

Figure 116. Folding of XML Elements in Text Mode

The fact that the folds are persistent is a unique feature of Oxygen XML Editor. The next time you open the

document the folds are restored to its last state.

Folding Actions in Text Mode

Element folds are marked with a small triangle (/) in the left stripe. To toggle the fold, simply click the

icon. Also, if you right-click the icon, the following actions are available:

Collapse Other Folds

Folds all the elements except the current element.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 541

Collapse Child Folds

Folds the child elements that are indented one level inside the current element.

Expand Child Folds

Unfolds all child elements of the currently selected element.

Expand All

Unfolds all elements in the current document.

Resources

For more information about the folding support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/eR9HfN_peAE

Drag and Drop in Text Mode

To move a whole region of text to other location in the same edited document, just select the text, drag the

selection by holding down the left mouse button and drop it to the target location.

You can also copy content from other applications and paste it into the document.

Selecting Content in Text Mode

Oxygen XML Editor includes a variety of keyboard shortcuts that allow you to select content in Text mode.

These include numerous standard continuous selection possibilities that are common to many text editors, as

well as a selection feature that allows you to select a rectangular area within a document in Text mode.

Standard Continuous Selection Shortcuts

Ctrl + A (Meta + A on macOS)

Selects all content in the document.

Shift + Left/Right Arrow Keys

Begins a continuous selection at the cursor position and extends it one character at a time in the

direction that you press the arrow keys.

Shift + Up/Down Arrow Keys

Begins a continuous selection at the cursor position and extends it one line at a time in the

direction that you press the arrow keys.

Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on macOS)

Begins a continuous selection at the cursor position and extends it one word at a time in the

direction that you press the arrow keys.

Shift + Home

https://www.youtube.com/embed/eR9HfN_peAE

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 542

Begins a continuous selection at the cursor position and extends it to the beginning of the

current line (on macOS, it extends to the beginning of the document).

Shift + End

Begins a continuous selection at the cursor position and extends it to the end of the current line

(on macOS, it extends to the end of the document).

Ctrl + Shift + Home

Begins a continuous selection at the cursor position and extends it to the beginning of the

document.

Ctrl + Shift + End

Begins a continuous selection at the cursor position and extends it to the end of the document.

Shift + PageUp

Begins a continuous selection at the cursor position and extends it up one screen page.

Shift + PageDown

Begins a continuous selection at the cursor position and extends it down one screen page.

Double-Click

Selects certain text, depending on the position of the click in the document. See Smart Editing:

Double-Click (on page 532) for the specifics.

Triple-Click

Selects entire regions of text, depending on the position of the click in the document. See the

Smart Editing: Triple-Click (on page 532) for the specifics.

Right-Click > Select > Element

Selects the entire element at the current cursor position.

Right-Click > Select > Content

Selects the entire content of the element at the current cursor position, excluding the start

and end tag. Performing this action repeatedly will result in the selection of the content of the

ancestor of the currently selected element content.

Right-Click > Select > Attributes

Selects all the attributes of the element at the current cursor position.

Right-Click > Select > Parent

Selects the entire parent element at the current cursor position.

Rectangular Selection Shortcuts

Oxygen XML Editor also includes some keyboard shortcuts that allow you to select a rectangular block of

content in Text mode and you can then copy, cut, paste, delete, or edit the selection.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 543

Attention:

The rectangular selection shortcuts will not work if the Line Wrap option (on page 181) is selected in

the Text preferences page.

The following shortcuts can be used to create a rectangular selection:

Alt + Mouse Click + Mouse Movement (Option + Meta + Mouse Click + Mouse Movement on macOS)

Begins a rectangular selection at the mouse click position and extends it in the direction that you

move the mouse. Release Alt (Alt + Meta on macOS) to enter the in-place editing mode (on page

543).

Shift + Alt + Left/Right Arrow Keys (Shift + Option + Meta + Left/Right Arrow Keys on macOS)

Begins a rectangular selection at the cursor position and extends it one character at a time in the

direction that you press the arrow keys (you can also use the mouse to extend the selection).

Shift + Alt + Up/Down Arrow Keys (Shift + Option + Meta + Up/Down Arrow Keys on macOS)

Begins a rectangular selection at the cursor position and extends it one line at a time in the

direction that you press the arrow keys (you can also use the mouse to extend the selection).

Ctrl + Shift + Alt + Left/Right Arrow Keys (Ctrl + Shift + Option + Meta + Left/Right Arrow Keys on

macOS)

Begins a rectangular selection at the cursor position and extends it one word at a time in the

direction that you press the arrow keys.

Shift + Alt + Home (Shift + Option + Meta + Home on macOS)

Begins a rectangular selection at the cursor position and extends it to the beginning of the

current line.

Shift + Alt + End (Shift + Option + Meta + End on macOS)

Begins a rectangular selection at the cursor position and extends it to the end of the current line.

Shift + Alt + PageUp (Shift + Option + Meta + PageUp on macOS)

Begins a rectangular selection at the cursor position and extends it up one screen page.

Shift + Alt + PageDown (Shift + Option + Meta + PageDown on macOS)

Begins a rectangular selection at the cursor position and extends it down one screen page.

You can then use standard editing actions to copy, cut, paste, or delete the entire selection.

In-Place Editing Mode

To edit the content of the rectangular selection, you can enter an in-place editing mode by releasing the Alt

key (on macOS, release both Alt & Meta). Once you are in the editing mode, you can simply use your keyboard

to edit the entire selection of content, or click anywhere inside the selection to edit the content at the cursor

position for all lines within the selection at once (as if the rectangular selection is a selection of columns). To

exit the editing mode, press either Enter or Esc.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 544

Content Completion Assistant in Text Mode

Oxygen XML Editor includes an intelligent Content Completion Assistant (on page 3295) that offers proposals

for inserting structured language elements, attributes, and attribute values that are valid in the current editing

context.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Editor > Content Completion, and deselect the Enable content

completion option (on page 220).

Figure 117. Content Completion Assistant

Content Completion and the Associated Schema

The Content Completion Assistant feature is schema-driven and the list of proposals in the Content

Completion Assistant (on page 3295) depend on the associated schemas (DTD, XML Schema, Relax NG,

or NVDL schema). For information about the various ways to associate a schema and the order of their

precedence, see the Associating a Schema to XML Documents (on page 831) section.

Using the Content Completion Assistant in Text Mode

The feature is activated in Text mode in the following situations:

• After you enter the < character when inserting an element, it is automatically activated after a short

delay. You can adjust the activation delay with the Activation delay of the proposals window (ms)

option (on page 222) from the Content Completion preferences page.

• After typing a partial element or attribute name, you can manually activate it by pressing Ctrl + Space or

Alt + ForwardSlash (Command + Option + ForwardSlash on macOS). If there is only one valid proposal

at the current location, it is inserted without displaying the list of proposals.

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In some

cases, the Content Completion Assistant displays a documentation window with information about the

particular proposal and some of them have links to additional information (for example, DITA elements might

have a link to the DITA Style Guide). You can also change the size of the documentation window by dragging

its top, right, and bottom borders.

To insert the selected proposal in Text mode, do one of the following:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 545

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a

position suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on macOS) to insert both the start and end tags and positions the

cursor between the tags in a position where you can start typing content.

Note:

When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly

added element, they are inserted automatically only if the Add Element Content option (on page 221)

(in the Content Completion preferences page) is selected. The Content Completion Assistant can

also add optional content and first choice particle, as specified in the DTD, XML Schema, or RELAX

NG schema. To activate these features, select the Add optional content (on page 221) and Add first

Choice particle (on page 221) options in the Content Completion preferences page.

After inserting an element, the cursor is positioned:

• Before the > character of the start tag, if the element allows attributes, to allow rapid insertion of any

of the attributes supported by the element. Pressing the space bar displays the Content Completion

list once again. This time it contains the list of allowed attribute names. If the attribute supports a fixed

set of parameters, the assistant list displays the list of valid parameters. If the parameter setting is

user-defined and therefore variable, the assistant is closed to allow manual insertion. The values of the

attributes can be learned from the same elements in the current document.

• After the > character of the start tag, if the element has no attributes.

Where the Content Completion Assistant is Displayed

The Content Completion Assistant is displayed:

• Anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD,

or Relax NG (full or compact syntax) schema.

• Anywhere within an attribute name or at the beginning of an attribute name in any XML document with

an associated schema.

• Within attribute values or at the beginning of attribute values in XML documents where lists of possible

values have been defined for that element in the schema associated with the document.

Types of Proposals Listed in the Content Completion Assistant

The following things are considered for determining the proposals that are listed in the content completion

window:

Element Structure Specified in DTD or Schema

The proposals that populate the Content Completion Assistant depend on the element structure

specified in the DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema

associated with the edited document.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 546

Note:

The Content Completion Assistant is able to offer elements defined both by XML

Schemas version 1.0 and 1.1.

Current Cursor Position

The number and type of elements displayed by the Content Completion Assistant is dependent

on the cursor's current position in the structured document. The child elements displayed within

a given element are defined by the structure of the specified DTD, XML Schema, Relax NG (full or

compact syntax) schema, or NVDL schema.

Unique ID Attribute Values

A schema may declare certain attributes as ID or IDREF/IDREFS. When the document is

validated, Oxygen XML Editor checks the uniqueness and correctness of the @id attributes. It

also collects the attribute values declared in the document to prepare the list of proposals. This

is available for documents that use DTD, XML Schema, and Relax NG schema.

Values for xml:id Attributes

Values of all the @xml:id attributes are handled as @id attributes. They are collected and displayed

by the Content Completion Assistant as possible values for anyURI attributes defined in the

schema of the edited document. This works only for XML Schema and Relax NG schemas.

Links/References in DITA

When entering values for the various types of links and references in DITA (for example, values

for @href or @conref elements), the Content Completion Assistant will propose potential targets

when you use the forward slash key (/).

ID Values for DITA Key References

In DITA, when inserting key references (@keyref) or content key references (@conkeyref), the ID

values that are defined in the key reference are presented as possible targets. The Content

Completion Assistant will only propose targets that are valid in the current context.

Element and Attribute Values

For documents that use an XML Schema or Relax NG schema, the Content Completion Assistant

offers proposals for attribute and element values as long as the allowed values are defined in the

schema. Also, if a default value or fixed value is defined in the schema, then that value is offered

in the Content Completion Assistant.

Related information

Customizing the Content Completion Assistant Using a Configuration File (on page 2302)

Schema Annotations in Text Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a

schema. If such a schema is associated with an XML document, the annotations are displayed in:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 547

• The Content Completion Assistant (on page 3295).

• A small tooltip window shown when the mouse hovers over an element or attribute. The tooltip window

can be invoked at any time by using the F2 shortcut.

The schema annotations support is available if the schema type is one of the following:

• XML Schema

• Relax NG

• NVDL schema

• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content

Completion Assistant (on page 226) option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves

the visual appearance and readability of the documentation window displayed when editing XML documents

validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least

one HTML element (such as <div>, <body>, <p>,
, <table>, , or).

The HTML rendering is controlled by the Show annotations using HTML format, if possible (on page 226)

option in the Annotations preferences page. When this option is deselected, the annotations are converted

and displayed as plain text and if the annotation contains one or more HTML tags (<p>,
, ,), they

are rendered as an HTML document loaded in a web browser. For example, <p> begins a new paragraph,

breaks the current line, encloses a list of items, and encloses an item of the list.

Collecting Annotations from XML Schemas

In an XML Schema, the annotations are specified in an <xs:annotation> element like this:

<xs:annotation>

 <xs:documentation>

 Description of the element.

 </xs:documentation>

</xs:annotation>

If an element or attribute does not have a specific annotation, then Oxygen XML Editor looks for an annotation

in the type definition of that element or attribute.

Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the <documentation> element from the

http://relaxng.org/ns/compatibility/annotations/1.0 namespace like this:

<define name="person" >

 <element name="person">

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 548

 <a:documentation xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">

 Information about a person. </a:documentation>

 <ref name="name"/>

 <zeroOrMore>

 <ref name="email"/>

 </zeroOrMore>

 </element>

</define>

However, any element outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as

annotation and the text content is displayed in the annotation window. To activate this behavior, select the Use

all Relax NG annotations as documentation (on page 226) option in the Annotations preferences page.

Collecting Annotations from Relax NG Compact Syntax Schemas

For Relax NG Compact Syntax schema, annotations are made using comments like this:

Information about a person.

element person { name, email*}

Collecting Annotation from DTDs

For DTD, Oxygen XML Editor defines a custom mechanism for annotations using comments enabled by

the Prefer DTD comments that start with "doc:" as annotations (on page 226) option in the Annotations

preferences page. The following is an example of a DTD annotation:

<!--doc:Description of the element. -->

Content Completion Helper Views (Text Mode)

Information about the current element being edited is also available in various dockable (on page 3295)

views, such as the Model view (on page 557), Attributes view (on page 554), Elements view (on page

558), and Entities view (on page 559). By default, they are located on the right-hand side of the main

editor window. These views, along with the powerful Outline view (on page 551), provide spatial and insight

information about the edited document and the current element. If any particular view is not displayed, it can

be opened by selecting it from the Window > Show View menu.

Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position. Oxygen XML

Editor includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, JSON, HTML, and

XML Schema document types. You can also define your own code templates for any type of file and share

them with others.

Code templates are displayed with a symbol in the content completion list (Enter in Author mode or

Ctrl + Space in Text mode). Also, in Text mode you can press Ctrl + Shift + Space to see a complete list of

the available code templates. To enter the code template at the cursor position, select it from the content

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 549

completion list or type its code and press Enter. If a shortcut key has been assigned to the code template, you

can also use the shortcut key to enter it.

How to Create Code Templates

To create a code template, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Content

Completion > Code Templates.

2. Click New to open a code template configuration dialog box.

Tip:

You can use one of the existing code templates as a starting point by selecting that template

and clicking Duplicate.

Figure 118. Code Template Configuration Dialog Box

3. Configure your template using the fields in the code template configuration dialog box:

◦ Name - The name of the code template.

◦ Description - [Optional] The description of the code template that will appear in the Code

Templates preferences page and in the tooltip message when selecting it from the Content

Completion Assistant (on page 3295). HTML markup can be used for better rendering.

◦ Associate with - You can choose to set the code template to be associated with a specific type

of editor or for all editor types.

◦ Shortcut key - [Optional] If you want to assign a shortcut key that can be used to insert the code

template, place the cursor in the Shortcut key field and press the desired key combination on

your keyboard. Use the Clear button if you make a mistake. If the Enable platform-independent

shortcut keys checkbox is selected, the shortcut is platform-independent and the following

modifiers are used:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 550

▪ M1 represents the Command key on macOS, and the Ctrl key on other platforms.

▪ M2 represents the Shift key.

▪ M3 represents the Option key on macOS, and the Alt key on other platforms.

▪ M4 represents the Ctrl key on macOS, and is undefined on other platforms.

◦ Content - Text box where you define the content that is used when the code template is inserted.

An editor variable (on page 333) can be inserted in the text box using the Insert Editor

Variables button.

4. Click OK to save your new code template.

Result: Your code template can now be selected using the Content Completion Assistant (on page 3295)

(Enter in Author mode or Ctrl + Space in Text mode). The code templates are displayed with a symbol.

How to Share Code Templates

There are two ways to easily share all of your code templates with other members of your team:

Method 1: Export/Import

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Templates >

Code Templates.

2. Click the Export button to export all of your code templates into an XML file.

3. Save the XML file.

4. Share the XML file with other members of your team.

5. Instruct them to open the Preferences dialog box (Options > Preferences) (on page 132), go to Editor >

Templates > Code Templates, click the Import button, and select the file you sent them.

Result: The code templates will be now available in their content completion list.

Method 2: Share Project

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Templates >

Code Templates.

2. Select Project Options at the bottom of the dialog box. This stores the preferences in the project file

(.xpr).

3. Share the project file with the other members of your team. For example, you can commit it to your

version control system and have them update their working copy.

Result: When they open the updated project file in their Project view (on page 414), the code templates

will be available in their content completion list.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 551

Tip:

It is also possible to configure certain actions that function similar to code templates and add them

to the content completion list (on page 2302) for a particular framework. You could then share the

whole framework (on page 2399) with other members of your team.

Text Mode Views

There is a variety of dockable (on page 3295) helper views that are displayed by default in Text mode.

There are also a large selection of additional views available in the Window > Show View menu. This section

presents some of the most helpful views for editing in Text mode.

Outline View for XML Documents

The Outline view displays a general tag overview of the currently edited XML document. When you edit

a document, the Outline view dynamically follows the changes that you make, displaying the node that

you modify. This functionality gives you great insight on the location of your modifications in the current

document. It also shows the correct hierarchical dependencies between elements. This makes it easy for you

to be aware of the document structure and the way element tags are nested.

Outline View Features

The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.

• Insert or delete nodes using contextual menu actions.

• Move elements by dragging them to a new position in the tree structure.

• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a

selection in the editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.

• View document errors, as they are highlighted in the Outline view. A tooltip also provides more

information about the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by

selecting it from the Window > Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components.

Type a text fragment in the filter box and only the components that match it are presented. For advanced

usage you can use wildcard characters (such as * or ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents a variety of options to help you filter

the view even further.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 552

Drag and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view

with drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element

will be moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target

element will be expanded first and the dragged element will be moved inside the drop target element

after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards

the upper or lower part of the targeted element. A marker will indicate whether the drop will be

performed before or after the target element.

• If you hold down the Ctrl (Command on macOS) key after dragging, a copy operation will be performed

instead of a move.

Figure 119. Outline View

Outline View Filters

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components.

Type a text fragment in the filter box and only the components that match it are presented. For advanced

usage you can use wildcard characters (such as * or ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view:

Filter returns exact matches

The text filter of the Outline view returns only exact matches.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 553

Selection update on cursor move (Available in Text mode)

Controls the synchronization between Outline view and source document. The selection in the

Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting

one of the components from the Outline view also selects the corresponding item in the source

document.

Flat presentation mode of the filtered results

When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions

Show/hide comments and processing instructions in the Outline view.

Show element name

Show/hide element name.

Show text

Show/hide additional text content for the displayed elements.

Show attributes

Show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel (on page 316).

Configure displayed attributes

Displays the XML Structured Outline preferences page (on page 316).

Outline View Contextual Menu Actions

The contextual menu of the Outline view contains the following actions:

Edit Attributes

Displays an in-place attributes editor that allows you to edit the attributes of a selected node.

Edit Profiling Attributes (Available in Author mode)

Allows you to change the profiling attributes (on page 683) defined on all selected elements.

Append Child

Invokes a content completion list with the names of all the elements that are allowed by the

associated schema and inserts your selection as a child of the current element.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed by the

associated schema and inserts your selection immediately before the current element, as a

sibling.

Insert After

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 554

Invokes a content completion list with the names of all the elements that are allowed by the

associated schema and inserts your selection immediately after the current element, as a

sibling.

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy

operations preserve the styles of the copied content.

Paste before (Available in Author mode)

Inserts a well-formed copied element before the currently selected element.

Paste after (Available in Author mode)

Inserts a well-formed copied element after the currently selected element.

Paste as XML (Available in Author mode)

Pastes copied content that is considered to be valid XML, preserving its XML structure.

Toggle Comment

Encloses the currently selected element in a comment, if the element is not already commented.

If it is already commented, this action will remove the comment.

Rename Element (Available in Author mode)

Invokes a Rename dialog box that allows you to rename the currently selected element, siblings

with the same name, or all elements with the same name.

Expand More

Expands the structure tree of the currently selected element.

Collapse All

Collapses all of the structure tree of the currently selected node.

Tip:

You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting

multiple nodes in the tree.

Attributes View in Text Mode

The Attributes view presents all the attributes of the current element determined by the schema of the

document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened

from the Window > Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 555

• The names of the attributes are rendered with a bold font, and their values with a plain font.

• Default values are rendered with a plain font, painted gray.

• Empty values display the text "[empty]", painted gray.

• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values

of the attribute are specified as list in the schema of the edited document, the Value column acts as a

combo box that allows you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as

follows:

• By attribute name in ascending order.

• By attribute name in descending order.

• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending

order, followed by the rest of the allowed elements sorted in ascending order.

Figure 120. Attributes View

Expand/Collapse Button

There is an Expand/Collapse (/) button at the top-right of the view. When expanded, this presents the

following additional combo boxes:

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible

attributes allowed by the schema of the document, as in the Attributes view. You can use the

Remove button to delete an attribute and its value from the selected element.

Value Combo Box

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 556

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has

predefined values in the schema, the drop-down list displays those possible values. You can

use the Browse button to select a URL for the value of an attribute. You can also press Ctrl +

Space to open a content completion window that offers a list of possible choices and allows you

to select multiple values. After you have entered or selected a value, use the Update button

(or press Enter) to add the value to the attribute.

Note:

For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the

Browse button is replaced by a Generate Unique ID Value button. Clicking this

button will automatically generate a unique ID for the selected element.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Text mode:

Add

Allows you to insert a new attribute. Adding an attribute that is not in the list of all defined

attributes is not possible when the Allow only insertion of valid elements and attributes (on page

189) schema-aware option is selected.

Set empty value

Specifies the current attribute value as empty.

Remove

Removes the attribute (action available only if the attribute is specified). You can invoke this

action by pressing the Delete or Backspace keys.

Copy

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

• The value of the attribute.

• The value of the default attribute, if the attribute does not appear in the edited document.

• Empty, if the attribute does not appear in the edited document and has no default value

set.

Paste

Depending on the content of the clipboard, the following cases are possible:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 557

• If the clipboard contains an attribute and its value, both of them are introduced in the

Attributes view. The attribute is selected and its value is changed if they exist in the

Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced

in the Attributes view and you can start editing it. The attribute is selected and you can

start editing it if it exists in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as

annotation in the schema of the current document. By default, it is located on the right side of the editor. If the

view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 121. Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format.

The information includes the name, model, and attributes of the current tag. The allowed attributes are shown

along with imposed restrictions, if any.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 558

Figure 122. Element Structure Panel

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information

is collected from the XML schema.

Figure 123. Annotation panel

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position

according to the schema associated to the document. By default, it is located on the right side of the editor. If

the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor

position. Pressing F2 with an element selected will display information about that particular element.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 559

Figure 124. Elements View in Text Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting

certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the

DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Predefined - Entities that are part of the predefined XML markup (<, >, &, ', ").

• Internal - Defined in the DOCTYPE declaration header of the current XML.

• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE

declaration.

Note:

If you want to add internal entities, you would need to switch to the Text editing mode and manually

modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD

module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By

default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it

from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can

also sort entities by name and value by clicking the column headers.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 560

Figure 125. Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you

can choose to display the internal or external entities.

Note:

When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by

separating them with a comma.

Results View

The Results view displays the messages generated as a result of user actions such as validations,

transformations, search operations, and others. Each message is a link to the location related to the event that

triggered the message. Double-clicking a message opens the file containing the location and positions the

cursor at the location offset. The Results view is automatically opened when certain actions generate result

messages. By default, the view normally opens at the bottom of the editor, but it is dockable (on page 3295),

so it can be moved to another UI location alongside other side views.

Tip:

To shift focus to the open Results view without using the mouse, there is an action in the Window >

Results menu called Focus Results that can be used for this purpose and you can assign a keyboard

shortcut (on page 304) to this action.

The actions that contribute messages to this view include:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 561

• Validation actions (on page 790)

• Transformation actions (on page 1472)

• Check Spelling in Files action (on page 470)

• Find All action from the Find/Replace dialog box (on page 443)

• Find/Replace in Files dialog box (on page 448)

• Search References action (on page 930)

• XPath expression results (on page 2110)

• SQL results (on page 2176)

Figure 126. Results View

Results View Toolbar Actions

The view includes a toolbar with the following actions:

Settings drop-down menu

This drop-down menu also includes the following options:

Group by "Severity"

Groups the results based upon the severity of the validation issues.

Group by "Resource"

Groups the results based upon the type of resource.

Group by "System ID"

Groups the results based upon the system ID of the resource.

Group by "Operation description"

Groups the results based upon the description of the validation issue.

Ungroup all

Removes the grouping rules so that the messages are presented in a continuous

list.

Show group columns

If any of the Group by options are selected, you can use this option to show or hide

grouping columns.

Restore default grouping

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 562

Restores the column size for each column and the grouping rules that were saved

in the user preferences the last time when this view was used. If it is the first time

this view is used, the action sets an initial default column size for each column and

a grouping rule that is appropriate for the type of messages. For example:

• Group the messages by the path of the validated file if there are error

messages from a validation action or spelling errors reported by the Check

Spelling in Files action (on page 470).

• No grouping rule for the results of applying an XPath expression (on page

2109).

Include problem ID in description

If this option is selected, validation issues will include the problem ID (as provided

by the validation engine) in the Description column.

Show Ignored Problems

If you have ignored validation problems (on page 827), you can deselect this

option to hide the ignored problems. Likewise, you can select this option to show

the ignored problems.

Highlight all results in editor

Oxygen XML Editor highlights all matches obtained after executing an XPath expression, or

performing one of the following operations: Find All, Find in Files, Search References, and

Search Declarations. Click Highlight all results in editor again to turn off highlighting.

Note:

To customize highlighting behavior, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Highlights category. You can do the

following customizations:

• Set a specific color of the highlights depending on the type of action you make.

• Set a maximum number of highlights that the application displays at any given

time.

Remove selected

Removes the current selection from the view. This can be helpful if you want to reduce the

number of messages, or remove those that have already been addressed or not relevant to your

task.

Remove all

Removes all messages from the view.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 563

Results View Contextual Menu Actions

The following actions are available when the contextual menu is invoked in this view:

Learn Word(s) (Available when spelling errors are reported in the Results view)

Adds the word(s) to a list of learned words to instruct the spell checker engine to not report the

word(s) as spelling errors in the future.

Show message

Displays a dialog box with the full error message, which is useful for a long message that does

not have enough room to be displayed completely in the view.

Previous message

Navigates to the message above the current selection.

Next message

Navigates to the message below the current selection.

Apply all default quick fix proposals

This action is available for the tabs in the Results view that displays the problems reported

after a single file or batch validation operation. In the first phase, the quick fix proposals

associated with the presented validation errors are automatically identified and mapped to the

corresponding document (if multiple quick fix proposals are available for the same validation

error, only the first one is considered). Depending on the number of quick fixes to be applied,

the next phase analyzes the impact of their application and may take some time (an operation

progress tracker shows the status).

Once complete, a preview dialog box is presented that provides an overview of the content

changes that will be made for each document. The comparison panel also informs you of any

problems encountered. In addition, you can choose to exclude certain files from the set of files

that the quick fixes will be applied to if you do not agree with the proposed changes to be made.

If you do agree with the changes presented, click Apply to trigger the procedure of applying the

quick fixes and updating the contents of the documents.

Important:

Oxygen XML Editor does not provide an automatic means for reverting changes made by

this action so make sure you agree with the previewed changed for applying them.

Remove selected

Removes selected messages from the view.

Remove all

Removes all messages from the view.

Copy

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 564

Copies information associated with the selected messages. For example:

• The file path of the document that triggered the output message.

• The path of the main file (on page 3298) (in the case of a validation scenario (on page

802), it is the path of the file where the validation starts and can be different from the

validated file).

• Error severity (error, warning, info message, etc.)

• Name of validating processor.

• Name of validation scenario (on page 802).

• The line and column in the file that triggered the message.

Copy Description

Copies the description values for all selected items. It is possible to assign a shortcut key (on

page 306) for this action.

Select All

Extends the selection to all the messages from the view.

Print Results

Sends the complete list of messages to a printer. For each message, the included details are

the same as the ones for the Copy action (on page 563). This action is also available in the

Window > Results menu.

Save Results

Saves the complete list of messages in a file in text format. For each message, the included

details are the same as the ones for the Copy action (on page 563). This action is also

available in the Window > Results menu.

Save Results as XML

Saves the complete list of messages in a file in XML format. For each message, the included

details are the same as the ones for the Copy action (on page 563).

Save Results as HTML

Saves the complete list of messages in a file in HTML format. For each message, the included

details are the same as the ones for the Copy action (on page 563).

Group by

A set of Group by toggle actions that allow you to group the messages according to a selected

criteria so that they can be presented in a hierarchical layout. The criteria used for grouping

can be the severity of the errors (error, warning, info message, etc.), the resource name, the

description of the message, and so on.

Ungroup all

Removes the grouping rules so that the messages are presented in a continuous list.

Show group columns

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 565

If any of the Group by options are selected, you can use this option to show or hide grouping

columns.

Restore default grouping

Restores the column size for each column and the grouping rules that were saved in the user

preferences the last time when this view was used. If it is the first time this view is used, the

action sets an initial default column size for each column and a grouping rule that is appropriate

for the type of messages. For example:

• Group the messages by the path of the validated file if there are error messages from a

validation action or spelling errors reported by the Check Spelling in Files action (on page

470).

• No grouping rule for the results of applying an XPath expression (on page 2109).

Expand All

Expands all the nodes of the tree, which is useful when the messages are presented in a

hierarchical mode.

Collapse All

Collapses all the nodes of the tree, which is useful when the messages are presented in a

hierarchical mode.

Making a Persistent Copy of Results

The Results view (on page 560) displays the results from the following operations:

• Document validation (on page 790)

• Checking the form of documents (on page 788)

• XSLT or FO transformations (on page 1472)

• Finding all occurrences of a string in a file (on page 443)

• Finding all occurrences of a string in multiple files (on page 448)

• Applying an XPath expression to the current document (on page 2112)

To make a persistent copy of the Results view (on page 560), use one of these actions:

File > Save Results

Displays the Save Results dialog box, used to save the result list of the current message tab. The

action is also available on the right-click menu of the Results panel.

File > Print Results

Displays the Page Setup dialog box used to define the page size and orientation properties for

printing the result list of the current Results panel. The action is also available on the right-click

menu of the Results panel.

Save Results as XML from the contextual menu

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 566

Saves the content of the Results panel in an XML file with the format:

<Report>

 <Incident>

 <engine>The engine reporting the error.<engine>

 <severity>The severity level<severity>

 <Description>Description of output message.</Description>

 <SystemID>The location of the file linked to the message.</SystemID>

 <Location>

 <start>

 <line>Start line number in file.<line>

 <column>Start column number in file<column>

 </start>

 <end>

 <line>End line number in file.<line>

 <column>End column number in file<column>

 </start>

 </Location>

 </Incident>

</Report>

Related Information:

Results View (on page 560)

Syntax Highlighting in XML Documents

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the

structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for XML files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132).

2. Go to Editor > Syntax Highlight (on page 234).

3. Select and expand the XML section in the top pane.

4. Select the component you want to change and customize the colors or styles using the selectors to the

right of the pane.

5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip:

Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements

and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight >

Elements/Attributes by Prefix preferences page (on page 235).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 567

Related Information:

Customize Syntax Highlight colors (on page 234)

Syntax Highlight Depending on Namespace Prefix

The syntax highlight scheme of an XML file type (on page 234) allows the configuration of a color per

each type of token that can appear in an XML file. Distinguishing between the XML tag tokens based on

the namespace prefix brings additional visual help in editing some XML file types. For example, in XSLT

stylesheets, elements from various namespaces (such as XSLT, XHTML, XSL:FO, or XForms) are inserted in

the same document and the editor panel can become cluttered. Marking tags with different colors based on

the namespace prefix (on page 235) allows easier identification of the tags.

Figure 127. Example of Coloring XML Tags by Prefix

Related Information:

Changing the colors displayed in the Text Mode Editor (on page 234)

Formatting and Indenting XML Documents

In Text mode (on page 363), you can decide how the XML file is formatted and indented. In the other modes,

and when you switch between modes, Oxygen XML Editor automatically formats and indents the XML.

You can trigger a format and indent operation for your XML document (in Text mode) using one of the

following actions:

• Format and Indent toolbar button - Formats and indents the current document.

• Document > Source > Format and Indent - Formats and indents the whole document.

• Document > Source > Indent Selection - Indents the current selection (but does not add line

breaks). This action is also available in the Source submenu of the contextual menu.

• Document > Source > Format and Indent Element - Formats and indents the current element (the

inmost nested element that currently contains the cursor) and its child-elements. This action is also

available in the Source submenu of the contextual menu.

Various settings affect how Oxygen XML Editor formats and indents XML. Many of these settings have to do

with how whitespace is handled.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 568

Significant and Insignificant Whitespace in XML

XML documents are text files that describe complex documents. Some of the white space (spaces, tabs, line

feeds, etc.) in the XML document belongs to the document it describes (such as the space between words in

a paragraph) and some of it belongs to the XML document (such as a line break between two XML elements).

Whitespace belonging to the XML file is called insignificant whitespace. The meaning of the XML would be the

same if the insignificant whitespace were removed. Whitespace belonging to the document being described is

called significant whitespace.

Knowing when whitespace is significant or insignificant is not always easy. For instance, a paragraph in an

XML document might be laid out like this:

<p>NO Free man shall be taken or imprisoned, or be stripped of his Freedom,

or Liberties, or free Customs, or be outlawed, or exiled, or any otherwise

destroyed; nor will we not pass upon him, nor condemn him, but by lawful

judgment of his Peers, or by the <xref

href="http://en.wikipedia.org/wiki/Law_of_the_land" format="html"

scope="external">Law of the land</xref>.

We will sell to no man, we will not deny to any man either Justice or Right.</p>

By default, XML considers a single whitespace between words to be significant, and all other whitespace to

be insignificant. The paragraph above could have been written on one line because the XML parser would see

it as exactly the same paragraph since all multiple consecutive whitespaces will be replaced with a single

whitespace. Removing the insignificant space in markup like this is called normalizing space.

In some cases, all the spaces inside an element should be treated as significant. For example, in a code

sample:

<codeblock>

class HelloWorld

{

 public static void main(String args[])

 {

 System.out.println("Hello World");

 }

}

</codeblock>

Here every whitespace character between the <codeblock> tags should be treated as significant.

How Oxygen XML Editor Determines When Whitespace is Significant

When Oxygen XML Editor formats and indents an XML document, it introduces or removes insignificant

whitespace to produce a layout with reasonable line lengths and elements indented to show their place in the

hierarchy of the document. To correctly format and indent the XML source, Oxygen XML Editor needs to know

when to treat whitespace as significant and when to treat it as insignificant. However it is not always possible

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 569

to tell this from the XML source file alone. To determine what whitespace is significant, Oxygen XML Editor

assigns each element in the document to one of four categories:

Ignore space

In the ignore space category, all whitespace is considered insignificant. This generally applies to

content that consists only of elements nested inside other elements, with no text content.

Normalize space

In the normalize space category, a single whitespace character between character strings

is considered significant and all other spaces are considered insignificant. Therefore, all

consecutive whitespaces will be replaced with a single space. This generally applies to elements

that contain text content only.

Mixed content

In the mixed content category, a single whitespace between text characters is considered

significant and all other spaces are considered insignificant.

Notes:

• Whitespace between two child elements embedded in the text is normalized to a

single space (rather than to zero spaces as would normally be the case for a text

node with only whitespace characters, or the space between elements generally).

• The lack of whitespace between a child element embedded in the text and either

adjacent text or another child element is considered significant. That is, no

whitespace can be introduced here when formatting and indenting the file.

For example:

<p>The file is located in <i>HOME</i>/<i>USER</i>/hello.

 This is a big

<emphasis>deal</emphasis>.

</p>

In this example, whitespace should not be introduced around the i tags as it would introduce

extra significant whitespace into the document. The space between the end tag and the

beginning <emphasis> tag should be normalized to a single space, not zero spaces.

Preserve space

In the preserve space category, all whitespace in the element is regarded as significant. No

changes are made to the spaces in elements in this category. However, child elements may be in

another category, and may be treated differently.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 570

Attribute values are always in the preserve space category. The spaces between attributes in an element tag

are always in the default space category.

Oxygen XML Editor evaluates several pieces of information to assign an element to one of these categories.

An element is always assigned to the most restrictive category (from Ignore to Preserve) that it is assigned

to by any of the sources Oxygen XML Editor consults. For instance, if the element is named on the Default

elements list (as described below) but it has an @xml:space="preserve" attribute in the source file, it will be

assigned to the preserve space category. If an element has the @xml:space="default" attribute in the source, but

is listed on the Mixed content elements list, it will be assigned to the mixed content category.

To assign elements to these categories, Oxygen XML Editor consults information from the following sources:

xml:space

If the XML element contains the @xml:space attribute, the element is promoted to the appropriate

category based on the value of the attribute.

CSS whitespace property

If the CSS stylesheet controlling the Author mode editor applies the whitespace: pre setting to

an element, it is promoted to the preserve space category.

CSS display property

If a text node contains only white-spaces:

• If the node has a parent element with the CSS display property set to inline then the

node is promoted to the mixed content category.

• If the left or right sibling is an element with the CSS display property set to inline then

the node is promoted to the mixed content category.

• If one of its ancestors is an element with the CSS display property set to table then the

node is assigned to the ignore space category.

Schema-aware formatting

If a schema is available for the XML document, Oxygen XML Editor can use information from the

schema to promote the element to the appropriate category. For example:

• If the schema declares an element to be of type xs:string, the element will be promoted

to the preserve space category because the string built-in type has the whitespace facet

with the value preserve.

• If the schema declares an element to be mixed content, it will be promoted to the mixed

content category.

Schema-aware formatting can be turned on and off.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 571

• To turn it on or off for Author mode, open the Preferences dialog box (Options >

Preferences) (on page 132), go to Editor > Edit modes > Author > Schema-Aware, and

select/deselect the Schema-aware normalization, format and indent option (on page

189).

• To turn it on or off for the Text editing mode,open the Preferences dialog box (Options

> Preferences) (on page 132), go to Editor > Format > XML, and select/deselect the

Schema-aware format and indent option (on page 217).

Preserve space elements list

If an element is listed in the Preserve space tab of the Element Spacing list (on page 216) in the

XML formatting preferences (on page 214), it is promoted to the preserve space category.

Default space elements list

If an element is listed in the Default space tab of the Element Spacing list (on page 216) in the

XML formatting preferences (on page 214), it is promoted to the default space category

Mixed content elements list

If an element is listed in the Mixed content tab of the Element Spacing list (on page 216) in the

XML formatting preferences (on page 214), it is promoted to the mixed content category.

Element content

If an element contains mixed content, that is, a mix of text and other elements, it is promoted to

the mixed content category. (Note that, in accordance with these rules, this happens even if the

schema declares the element to have element only content.)

If an element contains text content, it is promoted to the default space category.

Text node content

If a text node contains any non-whitespace characters then the text node is promoted to the

normalize space category.

Exception to the Rule

In general, an element can only be promoted to a more restrictive category (one that treats more whitespace

as significant). However, there is one exception. In Author mode, if an element is marked as mixed content in

the schema, but the actual element contains no text content, it can be demoted to the space ignore category

if all of its child elements are displayed as blocks by the associated CSS (that is, they have a CSS property of

display: block). For example, in some schemas, a section or a table entry can be defined as having mixed

content but in many cases they contain only block elements (on page 3294). In these cases, any whitespace

they contain cannot be significant and they can be treated as space ignore elements. This exception can be

turned on or off using the Schema-Aware Editing option (on page 189) in the Schema-Aware preferences

page.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 572

How Oxygen XML Editor formats and indents XML

You can control how Oxygen XML Editor formats and indents XML documents. This can be particularly

important if you store your XML document in a version control system, as it allows you to limit the number

of trivial changes in spacing between versions of an XML document. The following preference pages include

options that control how XML documents are formatted:

• Format preferences page (on page 211)

• XML Formatting preferences page (on page 214)

• Whitespaces preferences page (on page 217)

When Oxygen XML Editor formats and indents XML

Oxygen XML Editor formats and indents a document, or part of it, on the following occasions:

• In Text mode when you select one of the format and indent actions (Document > Source > Format and

Indent, Document > Source > Indent Selection, or Document > Source > Format and Indent Element).

• When saving documents in Author mode.

• When switching from Author mode to another mode.

• When saving documents in Design mode.

• When switching from Design mode to another mode.

• When saving or switching to Text mode from Grid mode, if the Format and indent when passing from

grid to text or on save option (on page 183) is selected in the Grid preferences page.

Setting an Indent Size to Zero

Oxygen XML Editor will automatically format and indent (on page 567) documents at certain times. This

includes indenting the content from the margin to reflect its structure. In some cases, you may not want your

content indented. To avoid your content being indented, you can set an indent size of zero.

Note:

Changing the indent size does not override the rules that Oxygen XML Editor uses for handling

whitespace when formatting and indenting XML documents. Therefore, changing the indent size will

have no effect on elements that require whitespaces to be maintained.

There are two cases to consider.

Maintaining zero indent in documents with zero indent

If you have existing documents with zero indent and you want Oxygen XML Editor to maintain a

zero indent when editing or formatting those documents:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 573

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor

> Format (on page 211).

2. Select Detect indent on open.

3. Select Use zero-indent if detected.

Oxygen XML Editor will examine the indent of each document as it is opened and if the indent is

zero for all lines, or for nearly all lines, a zero indent will be used when formatting and indenting

the document. Otherwise, Oxygen XML Editor will use the indent closest to what it detects in the

document.

Enforcing zero indent for all documents

If you want all documents to be formatted with zero indent, regardless of their current indenting:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor

> Format (on page 211).

2. Deselect Detect indent on open.

3. Set Indent size to 0.

All documents will be formatted and indented with an indent of zero.

Warning:

Setting the indent size to zero can change the meaning of some file types, such as

Python source files.

Format and Indent (Pretty-Print) Multiple Files

Oxygen XML Editor provides support for formatting and indenting (pretty-print (on page 3299)) multiple files

at once. This action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and

JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the

contextual menu of the Project view (on page 414) or from the Tools menu. This opens the Format and Indent

Files dialog box that allows you to configure options for the action.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 574

Figure 128. Format and Indent Files Dialog Box

The Scope section allows you to choose from the following scopes:

• All opened files - The pretty-print (on page 3299) is performed in all opened files.

• Directory of the current file - All the files in the folder of the currently edited file.

• Project files - All files from the current project.

• Selected project files - The selected files from the current project.

• Specified path - the pretty-print (on page 3299) is performed in the files located at a specified path.

The Options section includes the following options:

• File filter - Allow you to filter the files from the selected scope.

• Recurse subdirectories - When selected, the pretty-print (on page 3299) is performed recursively for

the specified scope. The one exception is that this option is ignored if the scope is set to All opened

files.

• Include hidden files - When selected, the pretty-print (on page 3299) is also performed in the hidden

files.

• Make backup files with extension - When selected, Oxygen XML Editor makes backup files of the

modified files. The default extension is .bak, but you can change the extension as you prefer.

Managing Highlighted Content

While working with XML documents you often have frequent changes to the structure and content. You are

often faced with a situation where you need to make a slight change in multiple places in the same document.

Oxygen XML Editor includes a feature, Manage Highlighted Content, that is designed to help you achieve this.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 575

When you are in Text mode and you perform a search operation or apply an XPath that highlights multiple

results, you can access the Manage Highlighted Content submenu by right-clicking any of the highlights in the

editing pane. If the results are displayed only in the Results panel at the bottom of the screen, you can use the

Highlight all results in editor button (on the right side of the Results panel) to display all the highlights in

the editor (then you can access the Manage Highlighted Content submenu from the contextual menu of any

highlight.

The following options are available in the Manage Highlighted Content submenu:

Modify All

Use this option to modify (in-place) all the occurrences of the selected content. When you use

this option, a thin rectangle replaces the highlights and allows you to start editing. If matches

with different letter cases are found, a dialog box is displayed that allows you select whether you

want to modify only matches with the same letter case or all matches.

Note:

If you select a very large number of highlights that you want to modify using this feature,

a dialog box informs you that you may experience performance issues. You have

the option to either use the Find/Replace operation (on page 443), or continue the

operation.

Surround All

Use this option to surround the highlighted content with a specific tag. This option opens the Tag

dialog box. The Specify the tag drop-down menu presents all the available elements that you can

choose from.

Remove All

Removes all the highlighted content.

If you right-click content in another part of the document, other than a highlight, you have the option to select

the following option:

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the

contiguous fragment where the cursor is located). When you use this option, a thin rectangle

replaces the highlights and allows you to start editing. If matches with different letter cases are

found, a dialog box is displayed that allows you select whether you want to modify only matches

with the same letter case or all matches.

Adjusting the Transparency of XML Markup

Most of the time you want the content of a document displayed on screen with zero transparency. However,

if you want to focus your attention only on editing text content inside XML markup, Oxygen XML Editor offers

the option of reducing the visibility of the markup by increasing their transparency when displayed in Text

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 576

mode. To change the level of transparency, use the Tags Transparency Selector drop-down menu that is

available from the Source toolbar. By default, this drop-down menu is not visible. You can add it to the toolbar

by using the Configure Toolbars action (on page 375). There are several levels of transparency that can be

adjusted to make the content more or less visible:

• Normal Contrast - Resets the transparency level back to normal.

• Semi-transparent Text - Slightly reduces the visibility of text to place greater emphasis on the

visibility of the XML markup.

• Transparent Text - Greatly reduces the visibility of text to place even greater emphasis on the

visibility of the XML markup.

• Semi-transparent Markup - Slightly reduces the visibility of the XML markup to place greater

emphasis on the visibility of the text.

• Transparent Markup - Greatly reduces the visibility of the XML markup to place even greater

emphasis on the visibility of the text.

Figure 129. Tags Transparency Selector

Locking and Unlocking XML Markup

For documents with fixed markup, such as forms that do now allow the XML tags to be modified (only their

text content), the possibility to edit the XML tag names can be toggled on or off with the Lock / Unlock

the XML tags action available in Text editing mode from the Source submenu from the contextual menu (or

Document > Source menu).

You can set the default lock state for all opened editors using the Lock the XML tags option in the Text

preferences page (on page 181).

Special Character Support in Text Mode

If bidirectional text, such as Arabic or Hebrew languages, certain Asian languages (such as Devanagari,

Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Khmer), or other special

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 577

characters (such as combining characters) are detected in a document, Oxygen XML Editor displays a Special

Characters Detected dialog box that prompts you to Enable or Disable support for these special characters

(you can also enable or disable the support for special characters in the Open preferences page (on page

209).

Enabled

If you choose to enable support for special characters and as long as you chose a font (on page

141) that supports the particular special characters, this means that the glyphs will be rendered

properly in Text mode and the cursor navigation mechanism will recognize them as they are

shown.

Example: The Ậ glyph could be inserted using a consecutive combination of two characters (U

+00C2 followed by U+0323). With the special characters support enabled and the SansSerif font

chosen, that glyph will be rendered properly (a capital letter A with a circumflex above it and a

dot below) and you can navigate through the glyph in one step (pressing the right/left arrow key

once).

Restriction:

When support for special characters is enabled, the folding support (on page 540) is not available.

Disabled

If you choose to disable support for special characters, it may affect text rendering, cursor

navigation, and text management operations. However, this is helpful if you need to open very

large documents (on page 482) since disabling the bidirectional editing support can enhance

performance.

Example: The Ậ glyph could be inserted using a consecutive combination of two characters (U

+00C2 followed by U+0323). With the special characters support disabled, that glyph may or

may not be rendered properly and when navigating through the glyph, it would take two steps

(pressing the right/left arrow key twice).

Restriction:

Bidirectional content in the Text mode cannot be rendered using Bold or Italic.

Related Information:

Special Character Support in Author Mode (on page 766)

Special Character Support in Grid Mode (on page 599)

Inserting Special Characters with the Character Map (on page 478)

Inserting or Opening a File at Cursor Location

When editing content in Text mode, the following actions (with regard to inserting, opening, or comparing files)

are available in the Document > File menu:

https://en.wikipedia.org/wiki/Glyph

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 578

Insert File

Inserts the content of the file with the specified file path into the current document at the current

position of the cursor.

Open File at Cursor

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it

will be opened in system file browser. If the file at the specified location does not exist, an error

dialog box is displayed and it includes a Create new file button that starts the New document

wizard. This allows you to choose the type or the template for the file. If the action succeeds, the

file is created with the referenced location and name and is opened in a new editor panel. If the

file is an image file, it will be opened in the Image Preview pane (on page 481).

Open File at Cursor in System Application

Opens the file (identified by its link) or web page (identified by a web link) found at the cursor

position. The target is opened in the default system application associated with that file type.

Compare

Opens the current file in the Compare Files tool (on page 486).

Ctrl + Single-Click (Command + Single-Click on macOS)

Use this shortcut to open any of the following:

• Any absolute URL (URLs that have a protocol), regardless of their location in the

document.

• URI attributes such as: @schemaLocation, @noNamespaceSchemaLocation, @href and others.

• Open the target for DITA references (such as a @conref, @conkeyref, @keyref, and more).

• Processing instructions used for associating resources, xml-models, xml-stylesheets.

Quick Assist Support for IDs and IDREFS

The Quick Assist support (on page 3300) is activated automatically when you place the cursor inside an

ID or IDREF in Text mode. To access it, click the yellow bulb help marker placed on the current line, in the

line number stripe of the editor. You can also invoke the Quick Assist menu from the contextual menu or by

pressing Alt+1 (Command+Alt+1 on macOS) on your keyboard.

The following actions are available:

Rename in

Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog

box. This dialog box lets you insert the new ID value and choose the scope of the rename

operation. For a preview of the changes you are about to make, click Preview. This opens the

Preview dialog box, which presents a list with the files that contain changes and a preview zone

of these changes.

Search Declarations

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 579

Searches for the declaration of the ID reference. By default, the scope of this action is the

current project. If you configure a scope using the Select the scope for the Search and Refactor

operations dialog box, this scope will be used instead.

Search References

Searches for the references of the ID. By default, the scope of this action is the current project. If

you configure a scope using the Select the scope for the Search and Refactor operations dialog

box, this scope will be used instead.

Change scope

Opens the Select the scope for the Search and Refactor operations (on page 847) dialog box.

Rename in File

Renames the ID you are editing and all its occurrences from the current file.

Search Occurrences

Searches for the declaration an references of the ID located at the cursor position in the current

document.

Related Information:

Modular Contextual XML Editing Using 'Main Files' Support (on page 845)

Highlight ID Occurrences in Text Mode

To see the occurrences of an ID in an XML document in the Text mode, place the cursor inside the ID

declaration or reference. The occurrences are marked in the vertical side bar at the right of the editor. Click a

marker on the side bar to jump to the occurrence that it corresponds to. The occurrences are also highlighted

in the editing area.

Note:

Highlighted ID declarations are rendered with a different color than highlighted ID references.

To customize these colors or disable this feature, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Mark Occurrences (on page 235).

Related Information:

Modular Contextual XML Editing Using 'Main Files' Support (on page 845)

Contextual Menu Actions in Text Mode

When editing XML documents in Text mode, Oxygen XML Editor provides the following actions in the

contextual menu (many of them also appear in the submenus of the Document menu):

Add File to Review Task

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 580

This action can be used to add the current document to a task in the Content Fusion Tasks

Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to

adapt to any type of documentation review workflow. This functionality is available through a

connector add-on. To fully take advantage of all of the benefits and features of Content Fusion,

your organization will need an Oxygen Content Fusion Enterprise Server. For more information,

see the Oxygen Content Fusion website.

Cut, Copy, Paste

Executes the typical editing actions on the currently selected content.

Copy XPath

Copies the XPath expression of the current element or attribute (or property for JSON

documents) to the clipboard.

Toggle Line Wrap (Ctrl + Shift + Y (Command + Shift + Y on macOS))

Enables or disables line wrapping. When enabled, if text exceeds the width of the displayed

editor, content is wrapped so that you do not have to scroll horizontally.

Toggle Comment (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Comments the current selection of the current editor. If the selection already contains a

comment the action removes the comment from around the selection. If there is no selection

in the current editor and the cursor is not positioned inside a comment, the current line

is commented. If the cursor is positioned inside a comment, then the commented text is

uncommented.

Go to submenu

This submenu includes the following actions:

Go to Matching Tag (Ctrl + Shift + G (Command + Shift + G on macOS))

Moves the cursor to the end tag that matches the start tag, or vice versa.

Go after Next Tag (Ctrl + CloseBracket (Command + CloseBracket on macOS))

Moves the cursor to the end of the next tag.

Go after Previous Tag (Ctrl + OpenBracket (Command + OpenBracket on macOS))

Moves the cursor to the end of the previous tag.

Select submenu

This submenu allows you to select the following:

Element

Selects the entire element at the current cursor position.

Content

https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion/get_started.html
https://www.oxygenxml.com/content_fusion/get_started.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 581

Selects the entire content of the element at the current cursor position, excluding

the start and end tag. Performing this action repeatedly will result in the selection

of the content of the ancestor of the currently selected element content.

Attributes

Selects all the attributes of the element at the current cursor position.

Parent

Selects the parent element at the current cursor position.

Source submenu

This submenu includes the following actions:

Shift Right (Tab)

Shifts the currently selected block to the right.

Shift Left (Shift + Tab)

Shifts the currently selected block to the left.

Indent selection (Ctrl + I (Command + I on macOS))

Corrects the indentation of the selected block of lines if it does not follow the

current indenting preferences (on page 211).

Escape Selection

Escapes a range of characters by replacing them with the corresponding character

entities.

Unescape Selection

Replaces the character entities with the corresponding characters.

Format and Indent Element (Ctrl + Shift + I (Command + Shift + I on macOS))

Pretty-prints (on page 3299) the element that surrounds the current cursor

position.

To Upper Case

Converts the selected content to upper case characters. This works with

contiguous and multiple selections.

To Lower Case

Converts the content selection to lower case characters. This works with

contiguous and multiple selections.

Capitalize Lines

It capitalizes the first letter found on every new line that is selected. Only the first

letter is affected, the rest of the line remains the same. If the first character on the

new line is not a letter then no changes are made.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 582

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on

macOS))

Converts a sequence of hexadecimal characters to the corresponding Unicode

character (on page 475). The action can be invoked if there is a selection

containing a valid hexadecimal sequence or if the cursor is placed at the right side

of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed

of 2 to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X

prefix. Examples of valid sequences and the characters they will be converted to:

• 0x0045 will be converted to E

• 0X0125 to ĥ

• 265 to ɥ

• 2190 to ←

Note:

For more information about finding the hexadecimal value of a

character, see Finding the Decimal, Hexadecimal, or Character Entity

Equivalent (on page 478).

Base64 Encode/Decode submenu

This submenu include the following actions for encoding or decoding base 64

schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current

document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then

exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that

selection. By default, a dialog box is displayed that allows you to

select the encoding to use. There is an option to choose to not

show this dialog box in the future. In this case, the encoding that

is specified in the Encoding for Base64, Base32, Hex conversions

option in the Encoding preferences page (on page 177) will be used.

Likewise, the same is true if the Show the dialog box for choosing

the encoding for Base64, Base 32, Hex conversions option is not

selected in the Messages preference page (on page 318).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 583

Decode Selection

Replaces a selection of text with the result of decoding that

selection. By default, a dialog box is displayed that allows you to

select the encoding to use. There is an option to choose to not

show this dialog box in the future. In this case, the encoding that

is specified in the Encoding for Base64, Base32, Hex conversions

option in the Encoding preferences page (on page 177) will be used.

Likewise, the same is true if the Show the dialog box for choosing

the encoding for Base64, Base 32, Hex conversions option is not

selected in the Messages preference page (on page 318).

Modify All Matches

Use this option to modify (in-place) all the occurrences of the

selected content (or the contiguous fragment where the cursor is

located). When you use this option, a thin rectangle replaces the

highlights and allows you to start editing. If matches with different

letter cases are found, a dialog box is displayed that allows you

select whether you want to modify only matches with the same letter

case or all matches.

Base32 Encode/Decode submenu

This submenu include the following actions for encoding or decoding base32

schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current

document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then

exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that

selection. By default, a dialog box is displayed that allows you to

select the encoding to use. There is an option to choose to not

show this dialog box in the future. In this case, the encoding that

is specified in the Encoding for Base64, Base32, Hex conversions

option in the Encoding preferences page (on page 177) will be used.

Likewise, the same is true if the Show the dialog box for choosing

the encoding for Base64, Base 32, Hex conversions option is not

selected in the Messages preference page (on page 318).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 584

Decode Selection

Replaces a selection of text with the result of decoding that

selection. By default, a dialog box is displayed that allows you to

select the encoding to use. There is an option to choose to not

show this dialog box in the future. In this case, the encoding that

is specified in the Encoding for Base64, Base32, Hex conversions

option in the Encoding preferences page (on page 177) will be used.

Likewise, the same is true if the Show the dialog box for choosing

the encoding for Base64, Base 32, Hex conversions option is not

selected in the Messages preference page (on page 318).

Modify All Matches

Use this option to modify (in-place) all the occurrences of the

selected content (or the contiguous fragment where the cursor is

located). When you use this option, a thin rectangle replaces the

highlights and allows you to start editing. If matches with different

letter cases are found, a dialog box is displayed that allows you

select whether you want to modify only matches with the same letter

case or all matches.

Hex Encode/Decode submenu

This submenu include the following actions for encoding or decoding hex

schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current

document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then

exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that

selection. By default, a dialog box is displayed that allows you to

select the encoding to use. There is an option to choose to not

show this dialog box in the future. In this case, the encoding that

is specified in the Encoding for Base64, Base32, Hex conversions

option in the Encoding preferences page (on page 177) will be used.

Likewise, the same is true if the Show the dialog box for choosing

the encoding for Base64, Base 32, Hex conversions option is not

selected in the Messages preference page (on page 318).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 585

Decode Selection

Replaces a selection of text with the result of decoding that

selection. By default, a dialog box is displayed that allows you to

select the encoding to use. There is an option to choose to not

show this dialog box in the future. In this case, the encoding that

is specified in the Encoding for Base64, Base32, Hex conversions

option in the Encoding preferences page (on page 177) will be used.

Likewise, the same is true if the Show the dialog box for choosing

the encoding for Base64, Base 32, Hex conversions option is not

selected in the Messages preference page (on page 318).

Modify All Matches

Use this option to modify (in-place) all the occurrences of the

selected content (or the contiguous fragment where the cursor is

located). When you use this option, a thin rectangle replaces the

highlights and allows you to start editing. If matches with different

letter cases are found, a dialog box is displayed that allows you

select whether you want to modify only matches with the same letter

case or all matches.

Join and Normalize Lines (Ctrl + J (Command + J on macOS))

For the current selection, this action joins the lines by replacing the line separator

with a single space character. It also normalizes the whitespaces by replacing a

sequence of such characters with a single space.

Insert new line after (Ctrl + Alt + Enter (Command + Option + Enter on macOS))

This action has the same result as moving the cursor to the end of the current line

and pressing the ENTER key.

Insert XInclude

Displays a dialog box that allows you to browse and select the content to be

included and automatically generates the corresponding XInclude instruction.

Note:

In the Author mode, this dialog box presents a preview of the inserted

document as an author page in the Preview tab and as a text page in the

Source tab. In the Text mode, the Source tab is presented.

Import entities list

Displays a dialog box that allows you to select a list of files as sources for

external DTD entities. The internal subset of the DOCTYPE declaration of your

document will be updated with the chosen entities. For instance, choosing the

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 586

files chapter1.xml and chapter2.xml inserts the following section in the

DOCTYPE:

 <!ENTITY chapter1 SYSTEM "chapter1.xml">

 <!ENTITY chapter2 SYSTEM "chapter2.xml">

Lock / Unlock the XML Tags

Disables or enables the ability to edit XML tags.

Canonicalize

Opens the Canonicalize dialog box that allows you to select a canonicalization (on

page 3295) algorithm to standardize the format of the document.

Sign

Opens the Sign dialog box that allows you to configure a digital signature for the

document.

Verify Signature

Allows you to specify the location of a file to verify its digital signature.

Manage Highlighted Content submenu

This submenu is available from the contextual menu when it is invoked from a highlight after you

perform a search operation or apply an XPath expression that highlights more than one result.

The following options are available in this submenu:

Modify All

Allows you to modify (in-place) all the occurrences of the selected content. A thin

rectangle replaces the highlights and allows you to start editing. If matches with

different letter cases are found, a dialog box is displayed that allows you select

whether you want to modify only matches with the same letter case or all matches.

Surround All

Surround the highlighted content with a specific tag. This option opens the

Tag dialog box. The Specify the tag drop-down menu presents all the available

elements that you can choose from.

Remove All

Removes all the highlighted content.

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the

contiguous fragment where the cursor is located). When you use this option, a thin rectangle

replaces the highlights and allows you to start editing. If matches with different letter cases are

found, a dialog box is displayed that allows you select whether you want to modify only matches

with the same letter case or all matches.

Go to Definition (Ctrl + Shift + Enter)

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 587

Navigates to the definition of the current element or attribute in the schema (DTD, XML Schema,

Relax NG schema) associated with the edited XML document. If the current attribute is a

“type” belonging to the “http://www.w3.org/2001/XMLSchema-instance” namespace, the

cursor is moved in the XML schema to the definition of the type referenced in the value of the

attribute. For JSON documents, it navigates to the definition of the current JSON property in the

associated JSON Schema.

Refactoring submenu

This submenu includes the following actions:

Rename Element

The element from the cursor position, and any elements with the same name, can

be renamed according with the options from the Rename dialog box.

Rename Prefix (Alt + Shift + P (Command + Shift + P on macOS))

The prefix of the element from the cursor position, and any elements with the same

prefix, can be renamed according with the options from the Rename dialog box.

• If you select the Rename current element prefix option, the application will

recursively traverse the current element and all its children. For example,

to change the xmlns:p1="ns1" association in the current element to

xmlns:p5="ns1", if the xmlns:p1="ns1" association is applied on the parent

element, then Oxygen XML Editor will introduce xmlns:p5="ns1" as a new

declaration in the current element and will change the prefix from p1 to p5.

If p5 is already associated with another namespace in the current element,

then the conflict will be displayed in a dialog box. By pressing OK, the prefix

is modified from p1 to p5 without inserting a new declaration.

• If you select the Rename current prefix in all document option, the

application will apply the change on the entire document.

• To also apply the action inside attribute values, select the Rename also

attribute values that start with the same prefix checkbox.

Surround with submenu

Presents a drop-down menu that allows you to choose a tag to surround a selected

portion of content.

Surround with Tags (Ctrl + E (Command + E on macOS))

Allows you to choose a tag that encloses a selected portion of content. If there is

no selection, the start and end tags are inserted at the cursor position.

http://www.w3.org/2001/XMLSchema-instance

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 588

• If the Position cursor between tags option (on page 221) is selected in the

Content Completion preferences page, the cursor is placed between the

start and end tag.

• If the Position cursor between tags option (on page 221) is not selected in

the Content Completion preferences page, the cursor is placed at the end of

the start tag, in an insert-attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on macOS))

Surround the selected content with the last tag used.

Delete element tags (Alt + Shift + X (Command + Option + X on macOS))

Deletes the start and end tag of the current element.

Split element (Alt + Shift + D (Ctrl + Option + D on macOS))

Split the element from the cursor position into two identical elements. The cursor

must be inside the element.

Join elements (Alt + Shift + J (Command + Option + J on macOS))

Joins the left and right elements relative to the current cursor position. The

elements must have the same name, attributes, and attributes values.

Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of

the information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

Allows you to search for a text fragment inside an attribute value and

change the fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some

of the information preconfigured based upon the current context.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 589

Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of

the information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while

keeping the content unchanged.

Wrap element

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with

some of the information preconfigured based upon the current context.

Insert XML fragment

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment

Allows you to replace elements with an XML fragment.

Manage IDs submenu

This submenu is available for XML documents that have an associated DTD, XML Schema, or

Relax NG schema (not available for DITA). It includes the following actions:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 590

Rename in

Renames the ID and all its occurrences. Selecting this action opens the Rename

XML ID dialog box. This dialog box lets you insert the new ID value and choose

the scope of the rename operation. For a preview of the changes you are about to

make, click Preview. This opens the Preview dialog box, which presents a list with

the files that contain changes and a preview zone of these changes.

Rename in File

Renames the ID you are editing and all its occurrences from the current file.

Search References

Searches for the references of the ID. By default, the scope of this action is the

current project. If you configure a scope using the Select the scope for the Search

and Refactor operations dialog box, this scope will be used instead.

Search References in

Searches for the references of the ID. Selecting this action opens the Select the

scope for the Search and Refactor operations (on page 847).

Search Declarations

Searches for the declaration of the ID reference. By default, the scope of this action

is the current project. If you configure a scope using the Select the scope for the

Search and Refactor operations dialog box, this scope will be used instead.

Search Declarations in

Searches for the declaration of the ID reference. Selecting this action opens the

Select the scope for the Search and Refactor operations (on page 847).

Search Occurrences in file

Searches for the declaration and references of the ID in the current document.

Quick Fix/Assist (Alt + 1 (Command + Option + 1 on macOS))

When the cursor is inside the value of an @id or @idref attribute, this action opens the Quick Fix/

Assist (on page 3300) window with some search and refactoring actions available for the ID or

IDREF. When the contextual menu is invoked on an error where Oxygen XML Editor can provide a

Quick Fix (on page 828), this action open the Quick Fix/Assist (on page 3300) window with a

list of quick fix suggestions to choose from.

Apply all default quick fix proposals

This action is available when invoking the contextual menu (right-click) on a document that has

one or more quick fix proposals detected for reported validation errors. If multiple quick fixes are

available for the same validation error, the default quick fix defined in the Schematron validation

schema using the sqf:default-fix attribute is automatically selected to be applied. If no default

quick fix is explicitly specified, the first quick fix proposal in the list is considered. All quick fix

proposals are then automatically executed in bulk, one after the other.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 591

Important Notes to Consider:

• To maintain the accuracy of the initially calculated error validation ranges, the

quick fix proposals are applied in the reverse order of their selection.

• If two or more quick fixes act on the same "area" within the document, only one is

applied (no changes can be made to changes already made).

• Quick fixes that involve "user-entered values" that normally present a dialog box

to facilitate data entry will not be executed (the automatic process of applying

all selected quick fixes cannot be interrupted by the presence of the respective

dialog boxes).

Once the analysis of the impact of applying the quick fixes on the content is complete, a preview

dialog box is presented that provides an overview of the content changes that will be made,

according to the quick fixes that will be applied. If you agree with the changes presented, click

Apply to trigger the quick fixes and update the content.

Tip:

This action is also available in the contextual menu when right-clicking the status bar

at the bottom of the editor (if the currently highlighted validation issue has at least one

detected quick fix suggestion available). Specific quick fix suggestions that are defined

for the particular validation issue are also available in this menu.

Open submenu

The following actions are available in this submenu:

Open File at Cursor

Opens the file at the cursor position in a new panel. If the file path represents a

directory path, it will be opened in system file browser. If the file at the specified

location does not exist, an error dialog box is displayed and it includes a Create

new file button that starts the New document wizard. This allows you to choose

the type or the template for the file. If the action succeeds, the file is created with

the referenced location and name and is opened in a new editor panel. If the file is

an image file, it will be opened in the Image Preview pane (on page 481).

Open File at Cursor in System Application

Opens the file (identified by its link) or web page (identified by a web link) found

at the cursor position. The target is opened in the default system application

associated with that file type.

Compare

Opens the current file in the Compare Files tool (on page 486).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 592

Show referenced resources

Opens the Referenced/Dependent Resources view (on page 848) that allows you to see the

referenced resource hierarchy for an XML document.

Show dependent resources

Opens the Referenced/Dependent Resources view (on page 848) that allows you to see the

resource dependencies for an XML document.

Editing XML Documents in Grid Mode

This section includes topics that describe how to work with XML documents in Grid mode, including various

features, actions that are available, and much more.

The Grid mode in Oxygen XML Editor displays the XML document as a structured grid of nested tables where

the text content can be modified without directly interacting with the XML markup. This is helpful for non-

technical users who want to edit text content without modifying the XML markup.

To switch to this mode, select Grid at the bottom of the editing area.

You can easily expand or collapse elements within the table and the document structure can be changed

with simple contextual menu actions, drag/drop, or copy/paste operations. The text content can be modified

simply by editing the value of cells that contain the text and a useful Content Completion Assistant (on page

3295) is also available to help you edit or insert XML elements.

Resources

For more information about some of the features available in the Grid editor, watch our video demonstration:

https://www.youtube.com/embed/PoYm2VqisWk

Layouts: Grid and Tree

The Grid editor offers two layout modes. The default one is the grid layout. This smart layout detects the

recurring elements in the XML document and creates tables having the children (including the attributes)

of these elements as columns. This way, it is possible to have tables nested in other tables, reflecting the

structure of your document.

Figure 130. Grid Layout

The other layout mode is tree-like. It does not create any tables and it only presents the structure of the

document.

https://www.youtube.com/embed/PoYm2VqisWk

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 593

Figure 131. Tree Layout

To switch between the two modes, select Document > Grid Layout > Grid mode/Tree mode.

Grid Mode Navigation

When you first open a document in Grid mode, the content is collapsed. Only the root element and its

attributes are displayed. An arrow sign () displayed at the left of the node name indicates that this node has

child nodes. To display the children, click this arrow sign. To collapse a node, click the reverse arrow sign ().

The expand/collapse actions can also be invoked with the NumPad+ and NumPad- keys, or from the Expand/

Collapse submenu of the contextual menu or from Document > Grid Expand/Collapse.

Expand/Collapse Submenu

The following actions are available on the Expand/Collapse submenu:

Expand All

Expands the selection and all its children.

Collapse All

Collapses the selection and all its children.

Expand Children

Expands all the children of the selection but not the selection.

Collapse Children

Collapses all the children of the selection but not the selection.

Collapse Others

Collapses all the siblings of the current selection but not the selection.

Keyboard Shortcuts

A variety of other keyboard shortcuts are also available in Grid mode:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 594

Table 4. Shortcuts in the Grid Mode

Key Action

Tab Moves the cursor to the next editable value in a table row.

Shift + Tab Moves the cursor to the previous editable value in a table row.

Enter Begins editing and lets you insert a new value. Also commits the

changes after you finish editing.

UpArrow/PageUp Navigates toward the beginning of the document.

DownArrow/PageDown Navigates toward the end of the document.

Shift Used in conjunction with the navigation keys to create a continuous se

lection area.

Ctrl (Command on macOS) key Used in conjunction with the mouse cursor to create discontinuous se

lection areas.

The following key combinations can be used to scroll the grid:

• Ctrl + UpArrow (Command + UpArrow on macOS) - scrolls the grid upwards.

• Ctrl + DownArrow (Command + DownArrow on macOS) - scrolls the grid downwards.

• Ctrl + LeftArrow (Command + LeftArrow on macOS) scrolls the grid to the left.

• Ctrl + RightArrow (Command + RightArrow on macOS) scrolls the grid to the right.

Related Information:

Editing Actions in Grid Mode (on page 594)

Editing Actions in Grid Mode

Since Grid mode presents XML content in a structured grid of nested tables, editing content in this mode can

be done with a combination of the Content Completion Assistant (on page 599) and actions that allow you

to work with the structure or content of the nested tables much like you would with any table. Oxygen XML

Editor provides ways to edit content in the cells of the nested tables or to edit the structure of the tables.

Tip:

There are two different types of layouts available in Grid mode. Most people prefer to leave it on

the default Grid mode layout, but there is also a Tree mode layout that presents the structure of the

document in more of a vertical tree-like manner. You can switch between the two layouts to see which

one works best for you particular situation from the Document > Grid Layout menu.

Expanding/Collapsing Nodes

An arrow sign () displayed at the left of a node indicates that it has child nodes. To display the children,

click this arrow sign. To collapse a node, click the reverse arrow sign (). The expand/collapse actions

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 595

can also be invoked with the NumPad+ and NumPad- keys, or from the Expand/Collapse submenu of the

contextual menu.

To expand all child nodes, right-click the cell that contains the parent node and select Expand All from

the Expand/Collapse submenu. To collapse all node, right-click any cell and select Collapse All from the

Expand/Collapse submenu.

Editing Elements or Attributes

To edit elements or attributes in Grid mode, simply double-click the cell that contains the element or attribute

(or select the cell and press Enter) to invoke the Content Completion Assistant (on page 599). This opens a

pop-up window that offers a list of proposals that are valid for that particular node.

Editing Text Content in Cells

To edit the text value of a cell, simply select the grid cell and press Enter (or double-click the cell), and start

editing.

To stop editing a cell value, press Enter again.

To cancel the editing without saving the current changes in the document, press the Esc key.

Editing the Structure of the Nested Tables

To edit the structure of the nested tables in Grid mode, Oxygen XML Editor provides the following actions in

the contextual menu (many of them also appear in the submenus of the Document menu, or the toolbar):

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy

operations preserve the styles of the copied content.

Paste as Child

Pastes the copied content as the last child of the current selection.

Duplicate

Creates a new node by duplicating the currently selected one.

Insert Before

Offers a list of valid nodes, depending on the context, and inserts your selection before the

currently selected node, as a sibling.

Insert After

Offers a list of valid nodes, depending on the context, and inserts your selection after the

currently selected node, as a sibling.

Append Child

Offers a list of valid nodes, depending on the context, and appends your selection as a child of

the currently selected node.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 596

Sort Ascending, Sort Descending

The sorting result depends on the data type of the column content. It could be a numerical

sorting for numbers or an alphabetical sorting for text information. The editor automatically

analyzes the content and decides what type of sorting to apply. When a mixed set of values is

present in the sorted column, a dialog box is displayed that allows you to choose the desired

type of sorting between numerical and alphabetical.

Insert Row

Inserts a new row below the current selection. To insert a new row, you could also select the row

header (the zone to the left of the row that holds the row number) and press Enter.

Insert Column

Inserts a column after the current selection.

Clear Content

Removes all content from the current cell.

Expand/Collapse > Expand All

Expands the selection and all its children.

Expand/Collapse > Collapse All

Collapses the selection and all its children.

Expand/Collapse > Expand Children

Expands all the children of the selection but not the selection.

Expand/Collapse > Collapse Children

Collapses all the children of the selection but not the selection.

Expand/Collapse > Collapse Others

Collapses all the siblings of the current selection but not the selection.

Refresh Selected

Forces the layout to be recomputed.

Related Information:

Grid Mode Navigation (on page 593)

Copy and Paste in the Grid Editing Mode (on page 597)

Drag and Drop in the Grid Editing Mode (on page 596)

Content Completion Assistant in Grid Mode (on page 599)

Drag and Drop in the Grid Editing Mode

You can easily arrange sections in your XML document in the Grid mode by using drag and drop actions.

You can do the following with drag and drop:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 597

• Copy or move a set of nodes.

• Change the order of columns in the tables.

• Move the rows from the tables.

These operations are available for both single and multiple selections. To deselect one of the selected

fragments, use Ctrl + Single-Click (Command + Single-Click on macOS).

While dragging, the editor paints guide-lines showing the locations where you can drop the nodes. You can

also drag nodes outside the Grid editor and text from other applications into the Grid.

Tip:

When using drag and drop to reorganize the document, the resulting layout can be different from what

you expected. For instance, the layout can contain a set of sibling tables that can be joined together.

To force the layout to be recomputed, you can use the Refresh Selected action that is available in

the contextual menu and in the Document > Grid Edit menu.

Copy and Paste in the Grid Editing Mode

Selecting content in the Grid mode is similar to working with any table with a little more complexity.

Specifically, depending on the type of node, when you select a cell, the selection may automatically include

additional cells that are implied by the currently selected node. For example, if you click a node that contains

any child nodes, all cells that contain the parent and child nodes will be selected. In this case, the currently

selected cell is painted with a color that is different from the rest of the selection.

You can also select discontinuous regions of nodes and place them in the clipboard with the copy action. To

deselect one of the selected fragments, use Ctrl + Single-Click (Command + Single-Click on macOS).

Pasting Content Within Grid Mode

You can paste copied nodes relative to the currently selected cell using one of the following actions (available

in the contextual menu):

• Paste (Ctrl + V (Command + V on macOS)) - Pastes copied content, as a sibling, just below (after)

the current selection.

• Paste as Child - Pastes copied content as the last child of the current selection.

Pasting Content from Grid Mode to Other Editors

Nodes that are copied from the Grid editor can also be pasted into Text mode or other external applications.

When pasting copied content from Grid mode, the inserted string represents the nodes serialization. The

nodes from tables can be copied using HTML or RTF in table format. The resulting cells contain only the

concatenated values of the text nodes.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 598

Figure 132. Copying from Grid to Other Editors

Pasting Content from Other Editors into Grid Mode

You can also paste well-formed XML content or tab-separated values from other editors into the Grid editor. If

you paste XML content, the result will be the insertion of the nodes obtained by parsing this content.

Figure 133. Pasting XML Data into Grid

If the pasted text contains multiple lines of tab-separated values, it can be considered as a matrix of values.

By pasting this matrix of values into the Grid editor, the result will be a matrix of cells. If the operation is

performed inside existing cells, the existing values will be overwritten and new cells will be created when

needed.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 599

Figure 134. Pasting Tab-Separated Values into Grid

If you need to add copied content to your existing content (rather than overwriting existing cells), you need to

first insert new cells by using the Insert row or Insert column actions from the contextual menu. This is

useful, for example, when trying to transfer data from spreadsheet-like editors to the Grid editor.

Content Completion Assistant in Grid Mode

If the edited document is associated with a schema (DTD, XML Schema, Relax NG, etc.), the Grid editing mode

offers a Content Completion Assistant (on page 3295) for the names and values of elements and attributes. If

you choose to insert an element that has required content, the sub-tree of needed elements and attributes are

also automatically included.

To display the content completion pop-up menu, simply double-click a cell that contains an element or

attribute (or press Enter on your keyboard).

Figure 135. Content Completion in Grid Editing Mode

Special Character Support in Grid Mode

If you are editing documents with a bidirectional text orientation or other special characters (such as

combining characters), you can change the way the text is rendered and edited in the grid cells by using the

Change Text Orientation(Ctrl + Shift + O (Command + Shift + O on macOS)) action that is available from the

Edit menu in the Grid editing mode. Use this action to switch from the default left to right text orientation to

the right to left orientation, and vice versa.

Note:

This change applies only to the text from the cells, and not to the layout of the grid editor.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 600

Figure 136. Default left to right text orientation

Figure 137. Right to left text orientation

Related Information:

Special Character Support in Text Mode (on page 576)

Special Character Support in Author Mode (on page 766)

Inserting Special Characters with the Character Map (on page 478)

Exporting XML Content to Excel

For use-cases where you have XML content that needs to be exported to Excel (or any other spreadsheet

application) but the content is not already in some sort of table format, Grid mode offers you a way to display

the content of an XML document as a structured grid of nested tables and you can work with the cells in those

tables much like you would with any spreadsheet application. This makes it possible to export content to

Excel by copying cells that contain the specific content and then pasting the copied cells in Excel the same as

you would when working with any table or spreadsheet.

To export XML content from Grid mode to Excel or other spreadsheet applications, follow this procedure:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 601

1. Open the XML document in Oxygen XML Editor and switch to Grid mode.

2. Expand the nodes (on page 594) to gain access to the particular nested table that contains the

content you want to export.

3. Copy the cells that contain the content you want to export (Copy from the contextual menu or Ctrl

+C).

4. Switch to your spreadsheet application and paste the copied cells.

5. You may need to make some manual adjustments depending on the complexity of the structure in the

original XML document.

Note that Oxygen XML Editor also supports the reverse scenario (copying cells from a spreadsheet application

and pasting them in Grid mode). For more information, see Import from MS Excel Files – Grid Mode Method

(on page 2199).

Resources

For more information about exchanging data between Oxygen XML Editor and spreadsheet applications,

watch our video demonstration:

https://www.youtube.com/embed/8VwsF58zLkU

Related Information:

Import from MS Excel Files - Grid Mode Method (on page 2199)

Pasting Content from Other Editors into Grid Mode (on page 598)

Editing XML Documents in Author Mode

This section includes topics that describe how to work with XML documents in Author mode, including its

various features, actions that are available, and much more.

The Author editing mode in Oxygen XML Editor allows you to visually edit XML documents in a user-friendly

interface that is similar to a WYSIWYG word processor. This makes structured authoring easier for people who

are not familiar with XML and it also provides easier access to the XML structure for XML experts. Oxygen

XML Editor provides support for visually editing the most commonly used XML vocabularies in Author mode,

including DITA, Doc Book, TEI, and XHTML.

Adding text content in Author mode is as simple as doing so in a standard text editor but the content is

rendered similar to how you see it in the output. Tables, images, and media objects (such as videos) are also

rendered comparable to the output. You can even play audio and video objects directly in Author mode and it

includes an intuitive Image Map Editor (on page 738). You can easily change the rendering by selecting one

of the preset main styles (on page 3298) from the Styles drop-down menu (on page 603) (available on the

toolbar) and combine multiple alternate styles (on page 3294) that behave like layers. You can also use the

options in the Tags Display Mode drop-down menu (on page 607) to control how much XML markup

is displayed in Author mode and there are various features and views that provide information about the XML

structure based on your current location within the document.

https://www.youtube.com/embed/8VwsF58zLkU

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 602

Author mode provides numerous helpful editing actions, many of which are specific to the type of document

you are editing and it includes a variety of other powerful editing features, such as keyboard shortcuts, drag

and drop support (on page 625), a Smart Paste mechanism (on page 626), and an intelligent Content

Completion Assistant (on page 629). Author mode also allows you to visualize and manage profiled content

(on page 683), you can collaborate with others with various review features (on page 656) (such as the

ability to add comments, track changes, or highlight content), and includes many other unique features.

To switch to this mode, click the Author button at the bottom of the editing area.

Resources

For more information about some of the features available in the visual Author editing mode, watch our video

demonstration:

https://www.youtube.com/embed/bnQwJZD58wY

Author Mode User Roles

There are two main types of users for the Author mode: framework developers and content authors.

Framework Developers

A framework developer is a technical person with advanced XML knowledge who defines the framework (on

page 3297) for authoring XML documents in the visual editor. Once the framework is created or edited by

the developer, it is distributed as a deliverable component ready to plug into the application for the content

authors.

The framework (document type) configuration defines a type of XML document by specifying all the details

needed for editing the content of XML documents in Author mode.

The framework details that are created and customized by the developer include:

• The CSS stylesheet that drives the visual rendering of the document.

• The rules for associating an XML schema with the document, which is needed for the content

completion assistance and validation of the document.

• Transformation scenarios for the document.

• Configuration of XML Catalogs (on page 3302).

• Custom actions available as buttons on the toolbar or in menus.

Oxygen XML Editor includes some ready-to-use built-in document types for XML frameworks, such as

DocBook, DITA, TEI, JATS, and XHTML.

Content Authors

A content author does not need to have advanced knowledge about XML markup, operations such as

validation of XML documents, or applying XPath expressions to an XML document. The content author

https://www.youtube.com/embed/bnQwJZD58wY

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 603

just uses the framework set up by the developer in the application and starts editing the content of XML

documents without editing the XML tags directly.

Changing the Look of Documents in Author Mode Using the Styles Menu

The Author mode renders the content of the XML documents visually, based on CSS stylesheets associated

with the document.

Oxygen XML Editor provides a Styles drop-down menu on the toolbar that allows you to select one main (non-

alternate) CSS style (on page 3298) and multiple alternate CSS styles (on page 3294). This makes it easy to

change the look of the document as it appears in Author mode.

The list of CSS styles that are available in the Styles menu depend on the framework (on page 3297)

(document type).

Figure 138. Styles Drop-down Menu in a DITA Document

You can use the Styles drop-down menu to select a main css style (on page 3298) that applies to the whole

document and then select one or more alternate css styles (on page 3294) that behave like layers and are

merged sequentially with the main style. Each of the styles that are listed in this drop-down menu have a

corresponding CSS file that defines how your documents are rendered in Author mode and in the output. Also,

the selections from this drop-down menu are persistent, meaning that Oxygen XML Editor remembers them

when subsequent documents are opened.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 604

Main CSS Styles

The main styles are listed in the top section and each of their corresponding CSS files contain all the styles

associated with the XML elements for the particular type of document. You can only select one main style at a

time.

Alternate CSS Styles

The alternate styles are listed in the bottom section and their corresponding CSS files contain additional

styling for certain XML elements and are merged with the selected main styles. You can select as many

alternate styles as you wish (they are applied sequentially as layers). If you are unsure about how each of the

styles with change the look of your documents based solely upon their name, there is no harm in selecting

them to see the difference. You can simply deselect them to revert to the previous look.

Note:

If you deselect the Enable multiple selection of alternate CSSs option (on page 155) in the CSS

subtab of the Document Type configuration dialog box (on page 148), the alternate styles are treated

like main CSS styles and you can only select one at a time.

Tip:

For information about configuring the Styles drop-down menu, see Configuring and Managing Multiple

CSS Styles for a Framework (on page 2254).

Related information

Associating a Schema to XML Documents (on page 831)

Configuring and Managing Multiple CSS Styles for a Framework (on page 2254)

Navigating the Document Content in Author Mode

Oxygen XML Editor includes some useful features to help you navigate XML documents.

Navigation Keyboard Shortcuts

Tab

Navigate to the next XML node.

Tip:

If you encounter a space-preserved element (on page 3301) when you navigate through

a document and you do not press another key, pressing the Tab key will continue the

navigation. However, if the cursor is positioned in a space-preserved element and you

press another key or you position the cursor inside such an element using the mouse,

the Tab key can be used to arrange the text.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 605

Shift + Tab

Navigate to the previous XML node.

Ctrl + RightArrow (Command + RightArrow on macOS)

Navigate one word forward.

Ctrl + LeftArrow (Command + LeftArrow on macOS)

Navigate one word backward.

Ctrl + Home (Command + Home on macOS)

Position the cursor at the beginning of the document.

Ctrl + End (Command + End on macOS)

Position the cursor at the end of the document.

Navigating to a Modification

Oxygen XML Editor includes some actions that help you to quickly navigate to a particular modification. These

navigation buttons are available in the main toolbar (they can also be accessed from the Find menu):

Last Modification

Navigates to the last modification in any open tab.

Back

Navigates to the last selected editor tab or to the last selected element/content in the current

tab. You can also go back after clicking on links in Text or Author mode.

Forward

Available after you use the Back button at least once, and it navigates in the opposite direction

as the Back button.

Navigating with the Outline View

Oxygen XML Editor includes an Outline view (on page 551) that displays a hierarchical tag overview of the

currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree.

It is synchronized with the editor area, so when you make a selection in the Outline view, the corresponding

nodes are highlighted in the editor area.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 606

Figure 139. Outline View Navigation in Author Mode

Using the Breadcrumb to Navigate

A breadcrumb on the stripe at the top of the document indicates the path from document root to the current

element. It can also be used as a helpful tool to navigate to specific elements throughout the structure of the

document.

Figure 140. Breadcrumb in Author Mode

The last element listed in the breadcrumb is the element at the current cursor position. The last element is

also highlighted by a thin light blue bar for easier identification. Clicking an element from the breadcrumb

selects the entire element and navigates to it in the editor area.

Using the Linking Support

When working on multiple documents that reference each other (references, external entities, XInclude, DITA

conref, etc.), the linking support is useful for navigating between the documents. In the built-in frameworks

that are bundled with Oxygen XML Editor, links are marked with the icon (or the icon for key-based

references). When hovering over the icon, the mouse pointer changes its shape to indicate that the link can be

accessed and a tooltip presents the destination location. Click the link to open the referenced resource in the

editor or system browser. The same effect can be obtained by using the Document > File > Open file at cursor

(Ctrl + Enter (Command + Enter on macOS)) action when the cursor is inside a link element.

Note:

Depending on the referenced file type, the target link will either be opened in the Oxygen XML Editor or

in the default system application. If the target file does not exist, Oxygen XML Editor prompts you to

create it.

Navigating with Bookmarks

A position in a document can be marked with a bookmark. You can then quickly go to the marked position with

a keyboard shortcut or a menu action. This is useful when navigating large documents or working on multiple

documents where the cursor needs to move between several marked positions. The bookmarks are displayed

with a small icon on the vertical strip to the left of the editor. You can place up to nine distinct bookmarks in

any document. Shortcut keys are available to navigate to any of the marked positions (Ctrl+1 through Ctrl+9).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 607

There are also shortcuts for creating bookmarks (Ctrl+Shift+1 through Ctrl+Shift+9). You can also configure

these shortcut keys in the Options > Menu Shortcut Keys (on page 304) menu.

Figure 141. Editor Bookmarks

To insert a bookmark in Author mode, do any of the following:

• Click in the vertical stripe on the left side of the editor (to the left of the line number).

• Press F9 on your keyboard or use any of the specific bookmark creation shortcuts ((Ctrl+Shift+1

through Ctrl+Shift+9).

• Select the Create Bookmark action from the Edit > Bookmarks menu.

To remove bookmark in Author mode, do either of the following:

• Left-click its icon in the vertical stripe.

• Right-click its icon on the vertical stripe and select Remove or Remove all (Ctrl+F7 (Command+F7 on

macOS)).

To navigate to a specific bookmark, do either of the following:

• Use any of the specific bookmark navigation shortcuts (Ctrl+1 through Ctrl+9).

• Use one of the actions available on the Edit > Bookmarks > Go to menu.

Tip:

The navigation shortcuts work even if the document where the bookmark was inserted has

been closed. In this case, using the shortcut will automatically re-open the document.

Displaying the Markup

You can control the amount of markup that is displayed in the Author mode with various levels of tag modes

for both block and in-line elements.

Tags Display Mode

The following dedicated tag modes are available from the Tags Display Mode drop-down menu

(available on the toolbar):

Full Tags with Attributes

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 608

Displays full tag names with attributes for both block (on page 3294) and inline elements (on

page 3297).Oxygen XML Editor

Full Tags

Displays full tag names without attributes for both block elements and inline elements.

Block Tags

Displays full tag names for block elements and simple tags without names for inline elements.

Block Tags without Element Names

Displays tags for block elements but without element names for a more compact version of

Block Tags mode. You can still see the element names by hovering over the tags.

Inline Tags

Displays full tag names for inline elements, while block elements are not displayed.

Partial Tags

Displays simple tags without names for inline elements, while block elements are not displayed.

No Tags

No tags are displayed. This is the most compact mode and is as close as possible to a word-

processor view.

Configure Tags Display Mode

Use this option to go to the Author preferences page where you can configure the Tags Display

Mode options.

Note:

The associated CSS information is used to determine whether a tag should be considered inline or

block. If the current document does not have an associated CSS stylesheet, then the Full Tags mode

will be used.

Displaying Referenced Content

The references to external entities, XInclude, DITA conrefs, and constructs in other vocabularies with

displayable referenced content (on page 2353) are expanded by default in Author mode and the referenced

content is displayed. The referenced resources are loaded and displayed inside the element or entity that

references them, but the displayed content cannot be modified directly in the document. You can control this

behavior from the Author preferences page (on page 184). If the Display referenced content option (on page

187) is not selected, the referenced resources are not automatically loaded and displayed, but each reference

can be expanded on demand by using the small expansion button located next to each element that contains

references.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 609

Figure 142. XInclude reference

Figure 143. External entity reference

If the referenced resource cannot be resolved, an error will be presented inside the element that refers them

instead of the content.

If you want to make modifications to the referenced content, you must open the source where the referenced

resource resides. The referenced resource can be opened quickly by clicking the link (marked with the icon,

or the icon for key-based references) that is displayed before the referenced content or by using the Edit

Reference action from the contextual menu (in this case, the cursor is placed at the precise location where the

action was invoked). The referenced resource is resolved through the XML Catalog (on page 3302) set in the

XML Catalog preferences page (on page 244).

The referenced content is refreshed as follows:

• Automatically, when it is modified and saved from Oxygen XML Editor.

• On demand, by using the Refresh references action (on page 769). This is useful when the

referenced content is modified outside the Oxygen XML Editor scope.

Related Information:

Configuring a Reference Resolver (on page 2353)

Visual Hints for the Cursor Position

When the cursor is positioned inside a new context, a tooltip will be shown for a couple of seconds displaying

the position of the cursor relative to the context of the current element.

Here are some of the common situations that can be encountered:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 610

• Before first block - The cursor is positioned before the first block (on page 3294) child of the current

node.

• Between two block elements - The cursor is positioned between two block elements (on page 3294).

• After last block - The cursor is positioned after the last block element (on page 3294) child of the

current node.

• Inside a node - The cursor is positioned inside a node.

• Before an inline element - The cursor is positioned inside an element, before a child inline element (on

page 3297).

• Between two inline elements - The cursor is positioned between two inline elements (on page 3297).

• After an inline element - The cursor is positioned inside an element, after a child inline element (on

page 3297).

The nodes in these cases are displayed in the tooltip window using the element names.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 611

To deactivate this feature, open the Preferences dialog box (Options > Preferences) (on page 132), go to

Author > Cursor Navigation, and deselect the Show cursor position tooltip option (on page 188). Even if this

option is deselected, you can still display the position tooltip by pressing Shift+F2.

Note:

The position information tooltip is not displayed if Full Tags with Attributes or Full Tags is selected in

the Tags display mode drop-down menu (on page 607).

Location Tooltip

When editing XML documents in a visual environment, you might find it difficult to position the cursor between

certain tags that do not have a visual representation. To counterbalance this, Oxygen XML Editor displays a

transparent preview of the position information, called the Location Tooltip:

Figure 144. Location Tooltip

Oxygen XML Editor displays a Location Tooltip when the following conditions are met:

• You are editing the document in one of the following tags display modes (on page 607): Inline Tags,

Partial Tags, No Tags.

• The mouse pointer is moved between block elements (on page 3294).

To activate or deactivate this feature, use the Show location tooltip on mouse move option (on page 188) in

the Cursor Navigation preferences page (on page 188).

Whitespace Handling in Author Mode

When you edit a document in Author mode, Oxygen XML Editor must serialize the resulting document as XML.

Oxygen XML Editor serializes the document when you save it or switch to another editing mode. When the

document is serialized, Oxygen XML Editor formats and indents the XML document (on page 567) according

to the current format and indent settings (on page 211).

Minimizing Whitespace Differences Between Versions

When serializing a document to XML, Author mode will only format and indent those elements of the

document that have been edited. Any element that has not been edited will be serialized exactly as it was

loaded from disk. This is useful when your content is managed in a version control systems, as it avoids

introducing insignificant whitespace differences between version, which in turn makes diff output easier to

read.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 612

Entering Whitespace in Author Mode

Oxygen XML Editor controls the entry of whitespace characters in Author mode according the XML

whitespace rules (on page 567), which means it will not let you insert insignificant whitespace. This means

that it will not let you insert extra line-breaks or spaces inside a typical paragraph element, for instance. (Any

such whitespace would be normalized away when the document was serialized to XML, so Oxygen XML Editor

is saving you from any surprises when this happens.)

Of course, you will legitimately want to enter additional spaces and returns in some cases, such as code

samples. Oxygen XML Editor will allow this in elements that are configured as preserve space elements

according to the XML whitespace rules. For all of its built-in document types (on page 1329), Oxygen XML

Editor is correctly configured to recognize preserve space elements (on page 214) and to allow you to enter

additional spaces in them.

If you are using a built-in document type and you are unable to enter additional whitespace, make sure that

you are using an element from that document type that is intended to be a preserve-space element.

If you are using a custom document type, make sure that it is configured correctly (on page 2240) so that

Oxygen XML Editor recognizes that the current element is a preserve-space element.

Serialization Options for Author Mode

The Options > Preferences > Editor > Edit modes > Author > Serialization page contains some options that

control how the formatting and indenting is applied when a document is saved in Author mode or when

switching from Author to Text mode. It also includes a Compatibility with other tools option (on page 206)

that controls how line breaks are handled when a document is serialized to help obtain better compatibility

with other applications.

Editing Content in Author Mode

The Author mode includes a large variety of user-friendly authoring features to help you work with XML

content, including numerous toolbar, menu, and shortcut actions and some specialized content editing

features.

Undo/Redo Actions

The typical undo and redo actions are available with shortcuts or in the Edit menu:

Undo (Ctrl + Z (Command + Z on macOS))

Reverses a maximum of 200 editing actions (configurable with the Undo history size option (on

page 178) in the Editor preferences page) to return to the preceding state.

Note:

Complex operations such as Replace All or Indent selection count as single undo

events.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 613

Redo (Ctrl + Y (Command + Shift + Z on macOS, Ctrl + Shift + Z on Linux/Unix))

Recreates a maximum of 100 editing actions that were undone by the Undo function.

Copy and Paste Actions

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit

menu):

Cut (Ctrl + X (Command + X on macOS))

Removes the currently selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on macOS))

Places a copy of the currently selected content in the clipboard.

Paste (Ctrl + V (Command + V on macOS))

Inserts the current clipboard content into the document at the cursor position.

Select All (Ctrl + A (Command + A on macOS))

Selects the entire content of the current document.

Entering Text in Elements

By default, you can only enter text in elements that accept text content. If the element is declared as empty or

element only in the associated schema, you are not allowed to insert text in it. Instead, a warning message is

displayed.

Figure 145. Editing in empty element warning

To allow text to be inserted in these instances, go to the Schema-Aware preferences page and deselect the

Reject action when its result is invalid option in the Typing actions section (on page 190).

Editing Text Content Without Modifying the XML Markup

You can use the options in the Tags Display Mode drop-down menu (on page 607) (available on the

toolbar) to control how tags are displayed in Author mode. This can help you to clearly see where the current

cursor position is within the tag structure so that you can avoid making unintended modifications to the

XML markup. You can also switch to the Grid editing mode (on page 592) to modify text content without

affecting the XML tags.

Changing the Font Size (Zoom)

The font size of the editor panel can be changed with the following actions that are available with shortcuts or

in the Document > Font size menu:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 614

Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on macOS) or Ctrl + MouseWheelForward

(Windows/Linux)

Increases the font size (zooms in) with one point for each execution of the action.

Note:

For macOS, if you activate the Enable mouse-wheel zooming option (on page 179) in

the Editor preferences page, you can use Command + MouseWheelForward to increase

the font size (zoom in). It is disabled by default due to the way inertia affects the mouse

wheel on macOS.

Decrease editor font (Ctrl + NumPad- (Command + NumPad- on macOS) or Ctrl +

MouseWheelBackwards (Windows/Linux)

Decreases the font size (zooms out) with one point for each execution of the action.

Note:

For macOS, if you activate the Enable mouse-wheel zooming option (on page 179)

in the Editor preferences page, you can use Command + MouseWheelBackwards to

decrease the font size (zoom out). It is disabled by default due to the way inertia affects

the mouse wheel on macOS.

Normal editor font (Ctrl + 0 (Command + 0 on macOS))

Resets the font size to the value of the editor font set in the Fonts preferences page (on page

141).

Related Information:

Editing XML Markup in Author Mode (on page 614)

Drag and Drop in Author Mode (on page 625)

Smart Paste in Author Mode (on page 626)

Content Completion Assistant in Author Mode (on page 629)

Contextual Menu Actions in Author Mode (on page 774)

Frequently Used Shortcut Keys (on page 54)

Editing XML Markup in Author Mode

Oxygen XML Editor includes some useful actions that allow you to easily edit XML markup in Author

mode. Most of these actions are available in the contextual menu and some of them have simple keyboard

shortcuts.

Selecting XML Markup in Author Mode

Selecting XML tags in Oxygen XML Editor is very simple with several methods for selecting entire elements:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 615

• Breadcrumb - Click the element (XML tag) on the breadcrumb (on page 615) displayed at the top of

the editing window.

• Outline View - Click the element name in the Outline view (on page 551).

• Full Tags Mode - While editing in Full Tags mode (on page 607), click the start or end tag of the

element in the editor.

• Mouse Selection - While editing in Full Tags mode (on page 607), click before the start tag of the

element, drag the selection, and release the mouse button after the end tag.

• Shift + Arrow Keys - While editing in Full Tags mode (on page 607), place the cursor before the start

tag of the element, press and hold Shift, and use the arrow keys to make the selection (including the

end tag).

Note:

If the selection does not include the entire element (for example you do not include the end tag of the

element), Oxygen XML Editor will automatically close the appropriate tags when pasting the copied

selection. This ensures that the pasted content will always result in well-formed XML (on page 788).

Using the Breadcrumb in Author Mode

A breadcrumb on the top stripe indicates the path from document root to the current element. It can also be

used as a helpful tool to insert and edit specific elements in the document structure.

Figure 146. Breadcrumb in Author Mode

The last element listed in the breadcrumb is the element at the current cursor position. The last element is

also highlighted by a thin light blue bar for easier identification. Clicking an element from the breadcrumb

selects the entire element in the editor area and each element provides a contextual menu with access to the

following actions:

Edit Attributes

Opens the in-place attributes editor (on page 643) that allows you to easily edit the attributes

of an element.

Edit Profiling Attributes

Allows you to select the profiling attributes (on page 683) that apply to a certain element.

Append child

Opens a content completion list that allows you to select an element to be inserted as a child of

the selected element.

Insert before

Opens a content completion list that allows you to select an element to be inserted (as a sibling)

before the selected element.

Insert after

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 616

Opens a content completion list that allows you to select an element to be inserted (as a sibling)

after the selected element.

Cut

Removes the selected element and copies it to the clipboard, while preserving the styles of the

content.

Copy

Copies the selected element to the clipboard, while preserving the styles of the copied content.

Paste

Pastes a well-formed element from the clipboard at currently selected position in the

breadcrumb.

Paste before

Insert a well-formed element (from the clipboard) before the currently selected element.

Paste after

Insert a well-formed element (from the clipboard) after the currently selected element.

Paste as XML

Inserts clipboard content that is considered to be well-formed XML content, preserving its XML

structure.

Delete

Deletes the currently selected element.

Toggle Comment

Encloses the currently selected element in a comment if the element is not commented, or

removes the comment if it is commented.

Rename Element

Opens the Rename dialog box that allows you to rename the currently selected element and

other elements with the same name.

Tip:

The tag names displayed in the breadcrumb can be customized with an Author mode extension class

that implements the AuthorBreadCrumbCustomizer API. See the Oxygen SDK for more details.

Move Nodes

You can move XML nodes in the current document by using the following actions in the Refactoring submenu

of the contextual menu (or from the Document > Markup menu):

Move Up (Alt + UpArrow (Option + UpArrow on macOS))

Moves the current node or selected nodes in front of the previous node.

https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 617

Move Down (Alt + DownArrow (Option + DownArrow on macOS))

Moves the current node or selected nodes after the subsequent node.

Tip:

The easiest way to move nodes is to use the Alt + UpArrow (Option + UpArrow on macOS) and Alt +

DownArrow (Option + DownArrow on macOS) shortcut keys.

Promote/Demote Nodes

You can easily promote or demote selected nodes (for example, within ordered lists or unordered lists) by

using the following keyboard shortcuts:

Promote (Shift + Tab)

Promotes an entirely selected node to be a sibling of its parent node (the list item is moved to

the left). It also works for selections of multiple nodes as long as all the selected nodes are

siblings (on the same hierarchical level).

Demote (Tab)

Demotes an entirely selected node (the list item is moved to the right). It also works for

selections of multiple nodes as long as all the selected nodes are siblings (on the same

hierarchical level).

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring

submenu of the contextual menu (or from the Document > Markup menu):

Join Elements

Joins two adjacent block elements (on page 3294) that have the same name. The action is

available only when the cursor position is between the two adjacent block elements. Also, joining

two block elements can be done by pressing the Delete or Backspace keys and the cursor is

positioned between the boundaries of these two elements.

Tip:

Specifically, the Delete or Backspace keys can be used to join block elements in the following

situations:

• The cursor is located before the end position of the first element and Delete key is pressed.

• The cursor is located after the end position of the first element and Backspace key is pressed.

• The cursor is located before the start position of the second element and Delete key is

pressed.

• The cursor is located after the start position of the second element and Backspace key is

pressed.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 618

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be

performed.

Split Element (Alt + Shift + D (Ctrl + Option + D on macOS))

Splits the content of the closest element that contains the position of the cursor. Thus, if the

cursor is positioned at the beginning or at the end of the element, the newly created sibling will

be empty.

Rename Elements

You can rename elements by using the following action in the Refactoring submenu of the contextual menu

(or from the Document > Markup menu):

Rename Element

The element from the cursor position, and any elements with the same name, can be renamed

according with the options from the Rename dialog box.

Surround Content with Tags (Wrap)

You can surround a selection of content with tags (wrap the content) by using the following action in the

Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Surround with Tags (Ctrl + E (Command + E on macOS))

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the

start and end tags are inserted at the cursor position.

• If the Position cursor between tags option (on page 221) is selected in the Content

Completion preferences page, the cursor is placed between the start and end tag.

• If the Position cursor between tags option (on page 221) is not selected in the Content

Completion preferences page, the cursor is placed at the end of the start tag, in an insert-

attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on macOS))

Surround the selected content with the last tag used.

Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the Refactoring submenu of the

contextual menu (or from the Document > Markup menu):

Delete Element Tags

Deletes the tags of the closest element that contains the position of the cursor. This operation

is also executed if the start or end tags of an element are deleted by pressing the Delete or

Backspace keys.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 619

Tip:

Specifically, the Delete or Backspace keys can be used to unwrap the content of an element in the

following situations:

• The cursor is located before the start position of the element and Delete key is pressed.

• The cursor is located after the start position of the element and Backspace key is pressed.

• The cursor is located before the end position of the element and Delete key is pressed.

• The cursor is located after the end position of the element and Backspace key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be

performed.

Remove Markup from Blocks of Content

You can remove the markup from the current element by highlighting the appropriate block of content and

using the following action in the Refactoring submenu of the contextual menu (or from the Document >

Markup menu):

Remove All Markup

Removes all the XML markup inside the selected block of content and keeps only the text

content.

Tip:

You can use the Delete or Backspace keys to remove markup, in which case the elements in the

selected block will be unwrapped or joined with their sibling, or if the current element is empty, the

element tags will be deleted.

Remove Text from Selected Markup

You can remove the text from elements by highlighting the appropriate block of content and using the

following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Remove Text

Removes the text content of the selected block of content and keeps the markup intact with

empty elements.

Other Refactoring Actions

You can also manage the structure of the markup by using the other specific XML refactoring actions that are

available in the Refactoring submenu of the contextual menu:

DITA-related Refactoring Actions

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 620

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the

information preconfigured based upon the current context.

Change Topic ID to File Name

Use this operation to change the ID of a topic to be the same as its file name.

Convert CALS Tables to Simple Tables

Use this operation to convert DITA CALS tables to simple tables. If you invoke this

operation from a nested table (a table inside a table), only the nested table will be

affected. If it is invoked on a parent table that contains nested tables, all of the

contained tables will be converted.

Convert conrefs to conkeyrefs

Use this operation to convert @conref attributes to @conkeyref attributes.

Convert Simple Tables to CALS Tables

Use this operation to convert DITA simple tables to CALS tables. If you invoke this

operation from a nested table (a table inside a table), only the nested table will be

affected. If it is invoked on a parent table that contains nested tables, all of the

contained tables will be converted.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic

type (for example, Topic to Concept).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA General Task

topic type (for example, Task to General Task). A DITA General Task is a less

restrictive alternative to the Strict Task information type.

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic

type (for example, Topic to Reference).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type

(for example, Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for

example, Task to Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting

topic type (for example, Topic to Troubleshooting).

Rename Key

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 621

Available when invoked on a key, and can be used to quickly rename a key. It also

updates all references to it. Note that it does not work on DITA 1.3 key scopes.

Generate IDs

Use this operation to automatically generate unique IDs for elements.

Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of the

information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

Allows you to search for a text fragment inside an attribute value and change the

fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some of the

information preconfigured based upon the current context.

Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of the

information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 622

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while keeping the content

unchanged.

Wrap element

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with some of the

information preconfigured based upon the current context.

Insert XML fragment

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment

Allows you to replace elements with an XML fragment.

Copying XML Content in Author Mode to the Clipboard

It is possible to copy the XML structure of a document to the system clipboard. Simply select the XML content

in Author mode (for example, by selecting an element in the breadcrumb), and select Document > Edit > Copy

as XML. The system clipboard will now contain the corresponding XML structure.

Related Information:

Editing Content in Author Mode (on page 612)

Displaying the Markup (on page 607)

Refactoring XML Documents (on page 856)

Selecting Content in Author Mode (on page 627)

Content Completion Assistant in Author Mode (on page 629)

Contextual Menu Actions in Author Mode (on page 774)

Frequently Used Shortcut Keys (on page 54)

Editing Attributes in Author Mode

You can easily edit attributes in Author mode by using the Attributes View (on page 641) and Oxygen XML

Editor also allows you to edit attribute and element values in-place, directly in the Author mode, using an in-

place attribute editor.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 623

In-place Attributes Editor

Oxygen XML Editor includes an in-place attributes editor in Author mode. To edit the attributes of an XML

element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.

• Double-click any named start tag when the document is edited in one of the following display modes:

Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this

editor presents the Name and Value fields, with the list of all the possible attributes collapsed.

Figure 147. In-place Attributes Editor

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible

attributes allowed by the schema of the document, as in the Attributes view.

Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has

predefined values in the schema, the drop-down list displays those possible values. You can

use the Browse button to select a URL for the value of an attribute. You can also press Ctrl +

Space to open a content completion window that offers a list of possible choices and allows you

to select multiple values.

Note:

For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the

Browse button is replaced by a Generate Unique ID Value button. Clicking this

button will automatically generate a unique ID for the selected element.

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 624

Figure 148. In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Atributes view, that presents all the attributes for the

selected element.

Note:

If the cursor is located inside read-only content, the attribute names and values are faded and you

cannot add, edit, or remove values.

Related Information:

Attributes View in Author Mode (on page 641)

Folding XML Elements in Author Mode

When working with a large document, the folding (on page 3297) support in Oxygen XML Editor can be

used to collapse some element content leaving only the parts that you need to edit in focus. Expanding and

collapsing works on individual elements. Expanding an element leaves the child elements unchanged.

Figure 149. Folding of XML Elements in Author Mode

The fact that the folds are persistent is a unique feature of Oxygen XML Editor, meaning the next time you

open the document the folds are restored to its last state.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 625

Folding Actions in Author Mode

Foldable elements (on page 3297) are marked with a small triangle (/) on the left side of the editor

panel. If you hover over that arrow, the entire content of the element is highlighted by a dotted border for quick

identification of the foldable area. To toggle the fold, simply click the icon. Also, the following actions are

available in the Folding sub-menu of the contextual menu or from the Document > Folding menu:

Toggle Fold (or you can simply click on the / arrow)

Toggles the state of the current fold.

Collapse Other Folds

Folds all the elements except the current element.

Collapse Child Folds

Folds the child elements that are indented one level inside the current element.

Expand Child Folds

Unfolds all child elements of the currently selected element.

Expand All

Unfolds all elements in the current document.

Resources

For more information about the folding support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/eR9HfN_peAE

Related Information:

Folding Elements: -oxy-foldable / -oxy-folded / -oxy-not-foldable-child (on page 2459)

Drag and Drop in Author Mode

The Oxygen XML Editor Author mode includes support for dragging and dropping content in XML documents.

When editing content in Author mode, entire sections or chunks of data can be moved or copied by using the

drag and drop feature. The following situations can be encountered:

• When both of the drag and drop sources are from the Author mode editor, a well-formed XML fragment

is transferred. The section is balanced before dropping it by adding matching tags when needed.

• When the drag source is from the Author mode editor but the drop target is a text-based editor, only the

text inside the selection is transferred as it is.

• The text dropped from another text editor or another application into the Author mode editor is inserted

without changes.

https://www.youtube.com/embed/eR9HfN_peAE

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 626

Related Information:

Smart Paste in Author Mode (on page 626)

Smart Paste in Author Mode

The Author editing mode includes a Smart Paste feature that preserves certain style and structure information

when copying content and pasting it into document types that support the feature. You can copy content from

various sources, including web pages, external applications (such as Office-type applications), Markdown

documents, or other types of documents and then paste it into DITA, TEI, DocBook, JATS, and XHTML

documents. Oxygen XML Editor preserves the original text styling (such as bold, italics, underline) and

formatting (such as lists, tables, paragraphs) and considers various pasting solutions to keep the resulting

document valid.

The styles and general layout of the pasted content are converted to the equivalent XML markup for the target

document type while preserving certain style and structure information. For example, if you copy content that

includes multiple paragraphs and then paste it in Author mode, the multiple paragraph structure is preserved.

If you paste the content in a location where the resulting XML would not be valid, Oxygen XML Editor will

attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.

Notes:

• When pasting text fragments formatted with the Courier New font, the Smart Paste

mechanism will wrap it in an inline code element (for example, in DITA it would be wrapped in a

<codeph> element).

• Review comments that exist in the copied Word content are intentionally ignored when pasting

the content in Author mode.

Smart Paste Options

By default, the Smart Paste feature is enabled in Oxygen XML Editor. There are several options in the Schema

Aware preferences page (on page 189) that control the Smart Paste mechanism:

• Smart paste and drag and drop (on page 190) - This option determines whether or not Oxygen XML

Editor will try to find an appropriate insert position when the current location is not valid for the pasted

content. This option is selected by default.

• Reject action when its result is invalid (on page 190) - If you select this option, Oxygen XML Editor will

not let you paste content into a position where it would be invalid. This option is deselected by default.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 627

• Convert external content on paste (on page 191) - This option determines whether or not Oxygen XML

Editor will convert the styling and formatting of copied content from external sources when pasting it

into a document type that supports the feature. This option is selected by default.

• Convert even when pasting inside space-preserve elements (on page 191) - If you select this option,

the Smart Paste feature will also work when pasting external content into a space-preserve element

(such as a <codeblock>). This option is deselected by default.

Smart Paste Supported Document Types

The Smart Paste feature is supported for the following document types (frameworks (on page 3297)):

• DITA

• DocBook 4

• DocBook 5

• TEI

• XHTML

• JATS

Resources

For more information about the Smart Paste support, watch our video demonstration:

https://www.youtube.com/embed/bpiXZQwzBfA

Related Information:

Customizing Smart Paste Support (on page 2299)

Migrating MS Office Documents to DITA (on page 3252)

Oxygen Batch Converter add-on (Convert Markdown/HTML to DITA or DocBook)

Selecting Content in Author Mode

Oxygen XML Editor includes a variety of features and keyboard shortcuts to help you select content in Author

mode.

Selection Shortcuts in Author Mode

Ctrl + A (Meta + A on macOS)

Selects all content in the document.

Shift + Left/Right Arrow Keys

Begins a continuous selection at the cursor position and extends it one character at a time in the

direction that you press the arrow keys.

Shift + Up/Down Arrow Keys

Begins a continuous selection at the cursor position and extends it one line at a time in the

direction that you press the arrow keys.

https://www.youtube.com/embed/bpiXZQwzBfA
https://github.com/oxygenxml/oxygen-resources-converter
https://github.com/oxygenxml/oxygen-resources-converter

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 628

Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on macOS)

Begins a continuous selection at the cursor position and extends it one word at a time in the

direction that you press the arrow keys.

Shift + Home

Begins a continuous selection at the cursor position and extends it to the beginning of the

current line (on macOS, it extends to the beginning of the document).

Shift + End

Begins a continuous selection at the cursor position and extends it to the end of the current line

(on macOS, it extends to the end of the document).

Ctrl + Shift + Home

Begins a continuous selection at the cursor position and extends it to the beginning of the

document.

Ctrl + Shift + End

Begins a continuous selection at the cursor position and extends it to the end of the document.

Shift + PageUp

Begins a continuous selection at the cursor position and extends it up one screen page.

Shift + PageDown

Begins a continuous selection at the cursor position and extends it down one screen page.

Double-Click

Selects the word at the cursor position.

Triple-Click

Selects the node at the cursor position.

Right-Click > Select > Element

Selects the entire element at the current cursor position.

Right-Click > Select > Content

Selects the entire content of the element at the current cursor position, excluding the start

and end tag. Performing this action repeatedly will result in the selection of the content of the

ancestor of the currently selected element content.

Right-Click > Select > Parent

Selects the entire parent element at the current cursor position.

Intelligent Selection in Author Mode

Oxygen XML Editor supports all usual content selection methods using the mouse or keyboard shortcuts (for

example Shift + Arrow Keys). When selecting content in Author mode, there may be instances where you want

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 629

to select an element (along with its content) rather than just inline text content. There are several ways to

select an element, including:

• You can select an element by clicking the element name in the breadcrumb (on page 606).

• You can select an element using the Outline view (on page 551).

• If you have the Tags Display Mode (on page 607) set to any of the modes other than Partial

Tags or No Tags, you can select an element directly in the main editing pane by clicking on the

element's tag.

• If you have the Tags Display Mode (on page 607) set to Partial Tags (and the Compact tag

layout option is enabled in the Author preferences page (on page 187)), you can still select certain

block elements directly in the main editing pane by spanning the selection to the right of the end of the

content that is inside a block element so that the selection includes the element's invisible end tag. In

this mode, the end tag is normally not visible, but when your selection includes the invisible end tag, a

tooltip displays the selected element name and the selection includes the whole element (along with its

content).

Content Completion Assistant in Author Mode

One of the most useful features in Author mode is the Content Completion Assistant (on page 3295). It offers

a list of elements, attributes, attribute values, and other options that are valid in the current editing context.

Figure 150. Content Completion Assistant in Author Mode

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Editor > Content Completion, and deselect the Enable content

completion option (on page 220).

Using the Content Completion Assistant in Author Mode

To activate the feature in Author mode, use any of the following shortcut keys:

• Enter

• Ctrl + Space

• Alt + ForwardSlash (Command + Option + ForwardSlash on macOS)

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 630

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In same

cases, the Content Completion Assistant displays a documentation window with information about the

particular proposal and some of them have links to additional information (for example, DITA elements might

have a link to the DITA Style Guide). You can use Tab and Shift + Tab to navigate to those links and Space to

trigger them. You can also change the size of the documentation window by dragging its top, right, and bottom

borders.

To insert the selected proposal in Author mode, simply press Enter.

Types of Proposals Listed in the Content Completion Assistant

The Content Completion Assistant offers the following types of proposed actions depending on the current

context:

• Insert allowed elements for the current context schema and the list of proposals contains elements

depending on the elements inserted both before and after the cursor position.

• Insert element values if such values are specified in the schema for the current context.

• Insert new undeclared elements by entering their name in the text field.

• Insert CDATA sections, comments, processing instructions.

• Insert code templates (on page 548).

• If invoked on a selection that only contains an element start or end tag (remember that you can see

all element tags while working in Full Tags mode (on page 607)), it will allow you to rename the

element.

• If invoked on a selection of multiple elements or other content, it will allow you to surround the content

with certain tags.

• If invoked on an empty list item that is the last element of the list, it will allow you to convert the list

item to a paragraph.

• If the Show all possible elements in the content completion list option from the Schema-Aware

preferences page (on page 191) is selected, the content completion pop-up window will present all the

elements defined by the schema. When choosing an element from this section, the insertion will be

performed using the schema-aware smart editing features.

Note:

By default, you are not allowed to insert element names that are not defined by the schema.

This can be changed by deselecting the Allow only insertion of valid elements and attributes

check box from the Schema-Aware preferences page (on page 191).

Examples of How the Content Completion Assistant Works

To illustrate how the feature works, consider the following examples of invoking the Content Completion

Assistant in certain contexts:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 631

• If the cursor is positioned at the beginning or at the end of the element, the first item offered in the

Content Completion Assistant is a New <Element> item. Selecting this item will insert an empty

element.

Figure 151. Example (New [Element Name])

• If the cursor is positioned somewhere inside the element, the first entry in the Content Completion

Assistant is a Split <Element> item. In most cases, you can only split the closest block element (on

page 3294) to the cursor position, but if it is inside a list item, the list item will also be proposed for

split. Selecting Split <Element> splits the content of the specified element around the cursor position.

Figure 152. Example (Split [Element Name])

• If the cursor is positioned inside a space-preserved element (on page 3301) (for example, a

codeblock), the first choice in the Content Completion Assistant is Enter, which will insert a new line in

the content of the element, followed by New <Element>.

Figure 153. Example ('ENTER' New Line)

• If invoked on a selection that only contains an element start or end tag (remember that you can see

all element tags while working in Full Tags mode (on page 607)), it will allow you to rename the

element.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 632

Figure 154. Example (Rename)

• If invoked on a selection of multiple elements or other content, it will allow you to surround the content

with certain tags.

Figure 155. Example (Surround)

Related Information:

Customizing the Content Completion Assistant Using a Configuration File (on page 2302)

Set the Schema to be Used for Content Completion

The proposals that are presented in the Content Completion Assistant (on page 3295) depend on the

associated schemas. The DTD, XML Schema, Relax NG, or NVDL schema used to populate the Content

Completion Assistant is specified in the following methods, in the order of their precedence:

• The schema specified explicitly in the document (on page 839). In this case, Oxygen XML Editor

reads the beginning of the document and resolves the location of the DTD, XML Schema, Relax NG

schema, or NVDL schema.

• The default schema declared (on page 841) in the Schema tab of the Document Type configuration

dialog box (on page 152) for the particular document type.

Schema Annotations in Author Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a

schema. If such a schema is associated with an XML document, the annotations are displayed in the Content

Completion Assistant (on page 3295).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 633

Figure 156. Schema Annotation in the Content Completion Assistant

The schema annotations support is available if the schema type is one of the following:

• XML Schema

• Relax NG

• NVDL schema

• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content

Completion Assistant (on page 226) option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves

the visual appearance and readability of the documentation window displayed when editing XML documents

validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least

one HTML element (such as <div>, <body>, <p>,
, <table>, , or).

The HTML rendering is controlled by the Show annotations using HTML format, if possible (on page 226)

option in the Annotations preferences page. When this option is deselected, the annotations are converted

and displayed as plain text and if the annotation contains one or more HTML tags (<p>,
, ,), they

are rendered as an HTML document loaded in a web browser. For example, <p> begins a new paragraph,

breaks the current line, encloses a list of items, and encloses an item of the list.

Collecting Annotations from XML Schemas

In an XML Schema, the annotations are specified in an <xs:annotation> element like this:

<xs:annotation>

 <xs:documentation>

 Description of the element.

 </xs:documentation>

</xs:annotation>

If an element or attribute does not have a specific annotation, then Oxygen XML Editor looks for an annotation

in the type definition of that element or attribute.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 634

Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the <documentation> element from the

http://relaxng.org/ns/compatibility/annotations/1.0 namespace like this:

<define name="person" >

 <element name="person">

 <a:documentation xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">

 Information about a person. </a:documentation>

 <ref name="name"/>

 <zeroOrMore>

 <ref name="email"/>

 </zeroOrMore>

 </element>

</define>

However, any element outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as

annotation and the text content is displayed in the annotation window. To activate this behavior, select the Use

all Relax NG annotations as documentation (on page 226) option in the Annotations preferences page.

Collecting Annotations from Relax NG Compact Syntax Schemas

For Relax NG Compact Syntax schema, annotations are made using comments like this:

Information about a person.

element person { name, email*}

Collecting Annotation from DTDs

For DTD, Oxygen XML Editor defines a custom mechanism for annotations using comments enabled by

the Prefer DTD comments that start with "doc:" as annotations (on page 226) option in the Annotations

preferences page. The following is an example of a DTD annotation:

<!--doc:Description of the element. -->

Related Information:

Customizing the Rendering of Elements (on page 2318)

Customizing Annotations in the Content Completion Assistant (on page 2323)

Content Completion Helper Views (Author Mode)

Information about the current element being edited is also available in various dockable (on page 3295)

views, such as the Model view (on page 557), Attributes view (on page 641), Elements view (on page

646), and Entities view (on page 559). By default, they are located on the right-hand side of the main

editor window. These views, along with the powerful Outline view (on page 551), provide spatial and insight

information about the edited document and the current element. If any particular view is not displayed, it can

be opened by selecting it from the Window > Show View menu.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 635

Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position. Oxygen XML

Editor includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, JSON, HTML, and

XML Schema document types. You can also define your own code templates for any type of file and share

them with others.

Code templates are displayed with a symbol in the content completion list (Enter in Author mode or

Ctrl + Space in Text mode). Also, in Text mode you can press Ctrl + Shift + Space to see a complete list of

the available code templates. To enter the code template at the cursor position, select it from the content

completion list or type its code and press Enter. If a shortcut key has been assigned to the code template, you

can also use the shortcut key to enter it.

How to Create Code Templates

To create a code template, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Content

Completion > Code Templates.

2. Click New to open a code template configuration dialog box.

Tip:

You can use one of the existing code templates as a starting point by selecting that template

and clicking Duplicate.

Figure 157. Code Template Configuration Dialog Box

3. Configure your template using the fields in the code template configuration dialog box:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 636

◦ Name - The name of the code template.

◦ Description - [Optional] The description of the code template that will appear in the Code

Templates preferences page and in the tooltip message when selecting it from the Content

Completion Assistant (on page 3295). HTML markup can be used for better rendering.

◦ Associate with - You can choose to set the code template to be associated with a specific type

of editor or for all editor types.

◦ Shortcut key - [Optional] If you want to assign a shortcut key that can be used to insert the code

template, place the cursor in the Shortcut key field and press the desired key combination on

your keyboard. Use the Clear button if you make a mistake. If the Enable platform-independent

shortcut keys checkbox is selected, the shortcut is platform-independent and the following

modifiers are used:

▪ M1 represents the Command key on macOS, and the Ctrl key on other platforms.

▪ M2 represents the Shift key.

▪ M3 represents the Option key on macOS, and the Alt key on other platforms.

▪ M4 represents the Ctrl key on macOS, and is undefined on other platforms.

◦ Content - Text box where you define the content that is used when the code template is inserted.

An editor variable (on page 333) can be inserted in the text box using the Insert Editor

Variables button.

4. Click OK to save your new code template.

Result: Your code template can now be selected using the Content Completion Assistant (on page 3295)

(Enter in Author mode or Ctrl + Space in Text mode). The code templates are displayed with a symbol.

How to Share Code Templates

There are two ways to easily share all of your code templates with other members of your team:

Method 1: Export/Import

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Templates >

Code Templates.

2. Click the Export button to export all of your code templates into an XML file.

3. Save the XML file.

4. Share the XML file with other members of your team.

5. Instruct them to open the Preferences dialog box (Options > Preferences) (on page 132), go to Editor >

Templates > Code Templates, click the Import button, and select the file you sent them.

Result: The code templates will be now available in their content completion list.

Method 2: Share Project

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 637

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Templates >

Code Templates.

2. Select Project Options at the bottom of the dialog box. This stores the preferences in the project file

(.xpr).

3. Share the project file with the other members of your team. For example, you can commit it to your

version control system and have them update their working copy.

Result: When they open the updated project file in their Project view (on page 414), the code templates

will be available in their content completion list.

Tip:

It is also possible to configure certain actions that function similar to code templates and add them

to the content completion list (on page 2302) for a particular framework. You could then share the

whole framework (on page 2399) with other members of your team.

Author Mode Views

The content author is supported by a variety of dockable (on page 3295) helper views that are displayed by

default when editing in Author mode. These views are automatically synchronized with the current editing

context of the editor panel. They present additional information about this context thus helping the author to

see quickly the current location in the overall document structure and the available editing options.

There is also a large selection of additional useful views available in the Window > Show View menu. This

section presents some of the most helpful views for editing in Author mode.

Outline View for XML Documents

The Outline view displays a general tag overview of the currently edited XML document. When you edit

a document, the Outline view dynamically follows the changes that you make, displaying the node that

you modify. This functionality gives you great insight on the location of your modifications in the current

document. It also shows the correct hierarchical dependencies between elements. This makes it easy for you

to be aware of the document structure and the way element tags are nested.

Outline View Features

The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.

• Insert or delete nodes using contextual menu actions.

• Move elements by dragging them to a new position in the tree structure.

• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a

selection in the editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.

• View document errors, as they are highlighted in the Outline view. A tooltip also provides more

information about the nature of the error when you hover over the faulted element.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 638

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by

selecting it from the Window > Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components.

Type a text fragment in the filter box and only the components that match it are presented. For advanced

usage you can use wildcard characters (such as * or ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents a variety of options to help you filter

the view even further.

Drag and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view

with drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element

will be moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target

element will be expanded first and the dragged element will be moved inside the drop target element

after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards

the upper or lower part of the targeted element. A marker will indicate whether the drop will be

performed before or after the target element.

• If you hold down the Ctrl (Command on macOS) key after dragging, a copy operation will be performed

instead of a move.

Figure 158. Outline View

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 639

Outline View Filters

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components.

Type a text fragment in the filter box and only the components that match it are presented. For advanced

usage you can use wildcard characters (such as * or ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view:

Filter returns exact matches

The text filter of the Outline view returns only exact matches.

Selection update on cursor move (Available in Text mode)

Controls the synchronization between Outline view and source document. The selection in the

Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting

one of the components from the Outline view also selects the corresponding item in the source

document.

Flat presentation mode of the filtered results

When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions

Show/hide comments and processing instructions in the Outline view.

Show element name

Show/hide element name.

Show text

Show/hide additional text content for the displayed elements.

Show attributes

Show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel (on page 316).

Configure displayed attributes

Displays the XML Structured Outline preferences page (on page 316).

Outline View Contextual Menu Actions

The contextual menu of the Outline view contains the following actions:

Edit Attributes

Displays an in-place attributes editor that allows you to edit the attributes of a selected node.

Edit Profiling Attributes (Available in Author mode)

Allows you to change the profiling attributes (on page 683) defined on all selected elements.

Append Child

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 640

Invokes a content completion list with the names of all the elements that are allowed by the

associated schema and inserts your selection as a child of the current element.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed by the

associated schema and inserts your selection immediately before the current element, as a

sibling.

Insert After

Invokes a content completion list with the names of all the elements that are allowed by the

associated schema and inserts your selection immediately after the current element, as a

sibling.

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy

operations preserve the styles of the copied content.

Paste before (Available in Author mode)

Inserts a well-formed copied element before the currently selected element.

Paste after (Available in Author mode)

Inserts a well-formed copied element after the currently selected element.

Paste as XML (Available in Author mode)

Pastes copied content that is considered to be valid XML, preserving its XML structure.

Toggle Comment

Encloses the currently selected element in a comment, if the element is not already commented.

If it is already commented, this action will remove the comment.

Rename Element (Available in Author mode)

Invokes a Rename dialog box that allows you to rename the currently selected element, siblings

with the same name, or all elements with the same name.

Expand More

Expands the structure tree of the currently selected element.

Collapse All

Collapses all of the structure tree of the currently selected node.

Tip:

You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting

multiple nodes in the tree.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 641

Attributes View in Author Mode

The Attributes view presents all the attributes of the current element determined by the schema of the

document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened

from the Window > Show View menu.

You can use this view to edit or add attribute values. The attributes of an element are editable if any one of the

following is true:

• The CSS stylesheet associated with the document does not specify a false value for the -oxy-editable

(on page 2458) property associated with the element.

• The element is entirely included in a deleted Track Changes (on page 656) marker.

• The element is part of a content fragment that is referenced in Author mode from another document.

The attributes are rendered differently depending on their state:

• The names of the attributes are rendered with a bold font, and their values with a plain font.

• Default values are rendered with a plain font, painted gray.

• Empty values display the text "[empty]", painted gray.

• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values

of the attribute are specified as list in the schema of the edited document, the Value column acts as a

combo box that allows you to either select the value from a list or manually enter it.

Note:

If the cursor is located inside read-only content, the attribute names and values are faded and you

cannot add, edit, or remove values.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as

follows:

• By attribute name in ascending order.

• By attribute name in descending order.

• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending

order, followed by the rest of the allowed elements sorted in ascending order.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 642

Figure 159. Attributes View

A drop-down list located in the upper part of the view allows you to select the current element or its ancestors.

Expand/Collapse Button

There is an Expand/Collapse (/) button at the top-right of the view. When expanded, this presents the

following additional combo boxes:

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible

attributes allowed by the schema of the document, as in the Attributes view. You can use the

Remove button to delete an attribute and its value from the selected element.

Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has

predefined values in the schema, the drop-down list displays those possible values. You can

use the Browse button to select a URL for the value of an attribute. You can also press Ctrl +

Space to open a content completion window that offers a list of possible choices and allows you

to select multiple values. After you have entered or selected a value, use the Update button

(or press Enter) to add the value to the attribute.

Note:

For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the

Browse button is replaced by a Generate Unique ID Value button. Clicking this

button will automatically generate a unique ID for the selected element.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Author mode:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 643

Set empty value

Specifies the current attribute value as empty.

Remove

Removes the attribute (action available only if the attribute is specified). You can invoke this

action by pressing the Delete or Backspace keys.

Copy

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

• The value of the attribute.

• The value of the default attribute, if the attribute does not appear in the edited document.

• Empty, if the attribute does not appear in the edited document and has no default value

set.

Paste

Depending on the content of the clipboard, the following cases are possible:

• If the clipboard contains an attribute and its value, both of them are introduced in the

Attributes view. The attribute is selected and its value is changed if they exist in the

Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced

in the Attributes view and you can start editing it. The attribute is selected and you can

start editing it if it exists in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

In-place Attributes Editor

Oxygen XML Editor includes an in-place attributes editor in Author mode. To edit the attributes of an XML

element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.

• Double-click any named start tag when the document is edited in one of the following display modes:

Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this

editor presents the Name and Value fields, with the list of all the possible attributes collapsed.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 644

Figure 160. In-place Attributes Editor

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible

attributes allowed by the schema of the document, as in the Attributes view.

Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has

predefined values in the schema, the drop-down list displays those possible values. You can

use the Browse button to select a URL for the value of an attribute. You can also press Ctrl +

Space to open a content completion window that offers a list of possible choices and allows you

to select multiple values.

Note:

For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the

Browse button is replaced by a Generate Unique ID Value button. Clicking this

button will automatically generate a unique ID for the selected element.

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Figure 161. In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Atributes view, that presents all the attributes for the

selected element.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 645

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as

annotation in the schema of the current document. By default, it is located on the right side of the editor. If the

view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 162. Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format.

The information includes the name, model, and attributes of the current tag. The allowed attributes are shown

along with imposed restrictions, if any.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 646

Figure 163. Element Structure Panel

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information

is collected from the XML schema.

Figure 164. Annotation panel

Elements View in Author Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position

according to the schema associated to the document. By default, it is located on the right side of the editor. If

the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the view features a combo box that contains the ordered ancestors of the current element.

Selecting a new element in this combo box updates the list of the allowed elements. By default, only the

elements that are allowed at the current cursor position are listed. However, if the Show only allowed items

option (on page 316) is not selected in the Views preferences page (on page 316), all elements allowed by the

schema will be listed.

Double-clicking any of the listed elements inserts that element into the edited document at the current cursor

position.

Pressing F2 with an element selected will display information about that particular element.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 647

Figure 165. Elements View in Author Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting

certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the

DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Predefined - Entities that are part of the predefined XML markup (<, >, &, ', ").

• Internal - Defined in the DOCTYPE declaration header of the current XML.

• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE

declaration.

Note:

If you want to add internal entities, you would need to switch to the Text editing mode and manually

modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD

module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By

default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it

from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can

also sort entities by name and value by clicking the column headers.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 648

Figure 166. Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you

can choose to display the internal or external entities.

Note:

When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by

separating them with a comma.

Results View

The Results view displays the messages generated as a result of user actions such as validations,

transformations, search operations, and others. Each message is a link to the location related to the event that

triggered the message. Double-clicking a message opens the file containing the location and positions the

cursor at the location offset. The Results view is automatically opened when certain actions generate result

messages. By default, the view normally opens at the bottom of the editor, but it is dockable (on page 3295),

so it can be moved to another UI location alongside other side views.

Tip:

To shift focus to the open Results view without using the mouse, there is an action in the Window >

Results menu called Focus Results that can be used for this purpose and you can assign a keyboard

shortcut (on page 304) to this action.

The actions that contribute messages to this view include:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 649

• Validation actions (on page 790)

• Transformation actions (on page 1472)

• Check Spelling in Files action (on page 470)

• Find All action from the Find/Replace dialog box (on page 443)

• Find/Replace in Files dialog box (on page 448)

• Search References action (on page 930)

• XPath expression results (on page 2110)

• SQL results (on page 2176)

Figure 167. Results View

Results View Toolbar Actions

The view includes a toolbar with the following actions:

Settings drop-down menu

This drop-down menu also includes the following options:

Group by "Severity"

Groups the results based upon the severity of the validation issues.

Group by "Resource"

Groups the results based upon the type of resource.

Group by "System ID"

Groups the results based upon the system ID of the resource.

Group by "Operation description"

Groups the results based upon the description of the validation issue.

Ungroup all

Removes the grouping rules so that the messages are presented in a continuous

list.

Show group columns

If any of the Group by options are selected, you can use this option to show or hide

grouping columns.

Restore default grouping

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 650

Restores the column size for each column and the grouping rules that were saved

in the user preferences the last time when this view was used. If it is the first time

this view is used, the action sets an initial default column size for each column and

a grouping rule that is appropriate for the type of messages. For example:

• Group the messages by the path of the validated file if there are error

messages from a validation action or spelling errors reported by the Check

Spelling in Files action (on page 470).

• No grouping rule for the results of applying an XPath expression (on page

2109).

Include problem ID in description

If this option is selected, validation issues will include the problem ID (as provided

by the validation engine) in the Description column.

Show Ignored Problems

If you have ignored validation problems (on page 827), you can deselect this

option to hide the ignored problems. Likewise, you can select this option to show

the ignored problems.

Highlight all results in editor

Oxygen XML Editor highlights all matches obtained after executing an XPath expression, or

performing one of the following operations: Find All, Find in Files, Search References, and

Search Declarations. Click Highlight all results in editor again to turn off highlighting.

Note:

To customize highlighting behavior, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Editor > Highlights category. You can do the

following customizations:

• Set a specific color of the highlights depending on the type of action you make.

• Set a maximum number of highlights that the application displays at any given

time.

Remove selected

Removes the current selection from the view. This can be helpful if you want to reduce the

number of messages, or remove those that have already been addressed or not relevant to your

task.

Remove all

Removes all messages from the view.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 651

Results View Contextual Menu Actions

The following actions are available when the contextual menu is invoked in this view:

Learn Word(s) (Available when spelling errors are reported in the Results view)

Adds the word(s) to a list of learned words to instruct the spell checker engine to not report the

word(s) as spelling errors in the future.

Show message

Displays a dialog box with the full error message, which is useful for a long message that does

not have enough room to be displayed completely in the view.

Previous message

Navigates to the message above the current selection.

Next message

Navigates to the message below the current selection.

Apply all default quick fix proposals

This action is available for the tabs in the Results view that displays the problems reported

after a single file or batch validation operation. In the first phase, the quick fix proposals

associated with the presented validation errors are automatically identified and mapped to the

corresponding document (if multiple quick fix proposals are available for the same validation

error, only the first one is considered). Depending on the number of quick fixes to be applied,

the next phase analyzes the impact of their application and may take some time (an operation

progress tracker shows the status).

Once complete, a preview dialog box is presented that provides an overview of the content

changes that will be made for each document. The comparison panel also informs you of any

problems encountered. In addition, you can choose to exclude certain files from the set of files

that the quick fixes will be applied to if you do not agree with the proposed changes to be made.

If you do agree with the changes presented, click Apply to trigger the procedure of applying the

quick fixes and updating the contents of the documents.

Important:

Oxygen XML Editor does not provide an automatic means for reverting changes made by

this action so make sure you agree with the previewed changed for applying them.

Remove selected

Removes selected messages from the view.

Remove all

Removes all messages from the view.

Copy

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 652

Copies information associated with the selected messages. For example:

• The file path of the document that triggered the output message.

• The path of the main file (on page 3298) (in the case of a validation scenario (on page

802), it is the path of the file where the validation starts and can be different from the

validated file).

• Error severity (error, warning, info message, etc.)

• Name of validating processor.

• Name of validation scenario (on page 802).

• The line and column in the file that triggered the message.

Copy Description

Copies the description values for all selected items. It is possible to assign a shortcut key (on

page 306) for this action.

Select All

Extends the selection to all the messages from the view.

Print Results

Sends the complete list of messages to a printer. For each message, the included details are

the same as the ones for the Copy action (on page 651). This action is also available in the

Window > Results menu.

Save Results

Saves the complete list of messages in a file in text format. For each message, the included

details are the same as the ones for the Copy action (on page 651). This action is also

available in the Window > Results menu.

Save Results as XML

Saves the complete list of messages in a file in XML format. For each message, the included

details are the same as the ones for the Copy action (on page 651).

Save Results as HTML

Saves the complete list of messages in a file in HTML format. For each message, the included

details are the same as the ones for the Copy action (on page 651).

Group by

A set of Group by toggle actions that allow you to group the messages according to a selected

criteria so that they can be presented in a hierarchical layout. The criteria used for grouping

can be the severity of the errors (error, warning, info message, etc.), the resource name, the

description of the message, and so on.

Ungroup all

Removes the grouping rules so that the messages are presented in a continuous list.

Show group columns

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 653

If any of the Group by options are selected, you can use this option to show or hide grouping

columns.

Restore default grouping

Restores the column size for each column and the grouping rules that were saved in the user

preferences the last time when this view was used. If it is the first time this view is used, the

action sets an initial default column size for each column and a grouping rule that is appropriate

for the type of messages. For example:

• Group the messages by the path of the validated file if there are error messages from a

validation action or spelling errors reported by the Check Spelling in Files action (on page

470).

• No grouping rule for the results of applying an XPath expression (on page 2109).

Expand All

Expands all the nodes of the tree, which is useful when the messages are presented in a

hierarchical mode.

Collapse All

Collapses all the nodes of the tree, which is useful when the messages are presented in a

hierarchical mode.

Making a Persistent Copy of Results

The Results view (on page 560) displays the results from the following operations:

• Document validation (on page 790)

• Checking the form of documents (on page 788)

• XSLT or FO transformations (on page 1472)

• Finding all occurrences of a string in a file (on page 443)

• Finding all occurrences of a string in multiple files (on page 448)

• Applying an XPath expression to the current document (on page 2112)

To make a persistent copy of the Results view (on page 560), use one of these actions:

File > Save Results

Displays the Save Results dialog box, used to save the result list of the current message tab. The

action is also available on the right-click menu of the Results panel.

File > Print Results

Displays the Page Setup dialog box used to define the page size and orientation properties for

printing the result list of the current Results panel. The action is also available on the right-click

menu of the Results panel.

Save Results as XML from the contextual menu

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 654

Saves the content of the Results panel in an XML file with the format:

<Report>

 <Incident>

 <engine>The engine reporting the error.<engine>

 <severity>The severity level<severity>

 <Description>Description of output message.</Description>

 <SystemID>The location of the file linked to the message.</SystemID>

 <Location>

 <start>

 <line>Start line number in file.<line>

 <column>Start column number in file<column>

 </start>

 <end>

 <line>End line number in file.<line>

 <column>End column number in file<column>

 </start>

 </Location>

 </Incident>

</Report>

Related Information:

Results View (on page 560)

CSS Inspector View

The purpose of the CSS Inspector view is to display information about the styles applied to the currently

selected element. You can use this view to examine the structure and layout of the CSS rules that match the

element. The matching rules displayed in this view include a link to the line in the CSS file that defines the

styles. With this tool you can see how the CSS rules were applied and the properties defined, and use the link

to open the associated CSS for editing purposes.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 655

Figure 168. CSS Inspector View

Displaying the CSS Inspector View

You can open this view by selecting the Inspect Styles action from the contextual menu in Author mode, or

selecting the CSS Inspector view in the Window > Show View menu. This action makes the view visible and

also initializes it for the currently selected element.

Displaying Rules

All rules that apply to the current element are displayed in sections, which are listed in order of importance

(from most specific to least specific). Rules that are overridden by other rules are crossed out. If you click the

link in the top-right corner of a rule Oxygen XML Editor opens the associated CSS file at the line number where

the properties of the rule are defined.

Figure 169. CSS Inspector View - Displaying Rules

The CSS Inspector view has six possible tabs (depending on the current context):

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 656

• Element - Displays the CSS rules matching the currently selected element in the Author page (ordered

from most-specific to least-specific).

• :marker - Displays the rules matching the :marker pseudo-element.

• :before - Displays the rules matching the :before pseudo-element.

• :after - Displays the rules matching the :after pseudo-element.

• Computed - Displays all the styling properties that apply to the current element, as a result of all the

CSS rules matching the element.

• Path - Displays the path for the current element, and its attributes, allowing you to quickly see the

attributes on all parent elements, and allows you to copy fragments from this view and paste it into the

associated CSS to easily create new rules.

The information displayed in each of the five tabs is updated when you click other elements in the Author

editing view. The first three tabs include the link to the associated CSS source, while the other two tabs simply

display the style properties that match the current element.

Each of the tabbed panes include a contextual menu with the following actions:

• Copy - copies the current selection

• Select all - selects all information listed in the pane

• Show empty rules - forces the view to show all the matching rules, even if they do not declare any CSS

properties (by default, the empty rules are not displayed)

Reviewing Documents

Oxygen XML Editor includes a variety of helpful review tools that improve your ability to collaborate with other

members of your team, track changes, mark content for various reasons, add comments in your content, and

to manage the review features.

Tracking Document Changes

The Track Changes feature (on page 3301) is a way to keep track of the changes you make in a document.

The Track Changes feature highlights changes that you make to the content in a document, as well as

changes to attributes. Changes can be tracked for insertions and deletions. When the Track Changes feature

is activated (on page 658), insertions are rendered in Author mode with an underline while deletions are

rendered with a strike through.

The tracked changes are also displayed in the Review view (on page 678) and you can also choose to

present the changes in callouts (on page 672) by selecting the Track Changes Deletions (on page 195) and

Track Changes Insertions (on page 195) options in the Callouts preferences page (on page 195).

Adding Comments in Documents

You can associate a comment to a selected area of content. Comments can highlight virtually any content

from your document, with the exception of read-only text. The difference between using comments and

change tracking is that a comment can be associated to an area of text without modifying or deleting the text.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 657

Comments are presented in callouts (on page 672) with persistent highlights and a colored background. The

background color is assigned automatically by the application, but it can also be customized from the Review

preferences page (on page 192).

Highlighting Content

Oxygen XML Editor includes a highlighting feature that allows you to create digital markers to emphasize

important fragments of your documents. This is especially useful when you want to mark content that needs

additional work or the attention of others.

Using the Review View

Oxygen XML Editor includes a Review view (on page 678) that provides a simplified way of monitoring all

the insertions, deletions, comments, and highlights in an XML document. This handy tool is especially useful

for large teams that need to gather and manage all the edits from all team members who are working on the

same project.

The Review view is also useful for managing tracked changes and comments in a single panel. In this view,

the changes and comments are presented in a compact form, in the order they appear in the document, and

they are synchronized with the changes and comments in the main editing area.

You can use this view to quickly navigate through changes, accept or reject them, or to view and manage

comments or highlights. You can also search for specific changes or comments and it includes some filtering

options (for example, you can filter it to only show certain types of edits or to only show edits for a particular

author).

Printing Review Information

When you print a document from Author mode, whatever review information is shown in the main editing

area will be included in the printed output. For example, tracked changes will be included and as long as

the Comments option (on page 195) is selected in the Callouts preferences page (on page 195), comment

callouts will also be included (same with tracked change callouts if their corresponding options are selected in

the Callouts preferences page (on page 195).

Managing Tracked Changes

Oxygen XML Editor includes a Track Changes feature (on page 3301) that allows you to review changes that

you or other authors have made and then accept or reject them. You can also manage the visualization mode

of the tracked changes, add comments to changes, and mark them as being done. These actions are easily

accessible from contextual menus, the toolbar, or the Review view (on page 678).

The Track Changes feature is also able to keep track of changes you make to attributes in a document and

the changes are presented in the Review view (on page 678) and Attributes view (on page 641).

Types of Tracked Changes

The types of tracked changes include:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 658

• Inserting, deleting content (text or elements)

• Drag and drop content (text or elements)

• Cutting or pasting content (text or elements)

• Inserting, deleting, and changing the structure of tables

• Inserting and editing lists and their content

• Inserting and deleting entities

• Inserting and deleting element tags

• Editing attributes

• Performing a Split operation

• Performing a Surround with operation

• Changes in referenced content (for example, XInclude fragments or DITA conrefs)

Important:

If you copy content in Author mode that contains tracked changes, the changes will automatically

be accepted prior to the content being copied to the clipboard. This filtering is performed only if the

selection is not entirely inside a tracked change.

Activating the Change Tracking Feature

To activate the Track Changes feature for the current document, use any of the following methods:

• Click the Track Changes button on the toolbar.

• Select Track Changes from the Review submenu of the contextual menu in the main editing area in

Author mode.

• Select Track Changes from the Edit > Review menu.

To activate the Track Changes feature globally for all documents that you open in Oxygen XML Editor, change

the Initial State option to Always On (on page 192) in the Review preferences page (on page 192).

Rendering Tracked Changes in Author Mode

When Track Changes (on page 3301) is enabled, your modifications are highlighted using a distinctive color.

The colors can be customized from the Review preferences page (on page 192), along with the name of

the author and the initial state of the feature when you open a document. Insertions are rendered with an

underline while deletions are rendered with a strike through.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 659

Figure 170. Change Tracking in Author Mode

When hovering over a change a tooltip displays information about the author and modification time.

Change Tracking Contextual Menu Actions

You can right-click any change in Author mode to access the following contextual menu actions:

Accept Change(s)

Accepts the Tracked Change (on page 3301) located at the cursor position or all of the changes

in a selection. If you select a part of a deletion or insertion change, only the selected content is

accepted. If you select multiple changes, all of them are accepted. For an insertion change, it

keeps the inserted text and for a deletion change, it removes the content from the document.

Reject Change(s)

Rejects the Tracked Change (on page 3301) located at the cursor position or all of the changes

in a selection. If you select a part of a deletion or insertion change, only the selected content

is rejected. If you select multiple changes, all of them are rejected. For an insertion change, it

removes the inserted text and for a deletion change, it preserves the original content.

Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page

3301). The comment will appear in a callout and a tooltip when hovering over the change. If the

action is selected on an existing commented change, the dialog box will allow you to edit the

comment.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 660

Change Tracking Toolbar Actions

By default, the toolbar includes the following actions and options for reviewing or tracking changes (on page

3301) (similar actions are also available in the Edit > Review menu and the Review submenu of the contextual

menu):

Track Changes

Enables or disables the Track Changes (on page 3301) support for the current document.

Accept Change(s) combo box

This combo box is both a button and a drop-down menu that includes the following actions

(when you select an action from the drop-down menu, that action becomes the default action for

the combo box button):

• Accept Change(s) and Move to Next - Accepts the Tracked Change (on page 3301)

located at the cursor position or all of the changes in a selection and then moves to

the next change. If you select a part of a deletion or insertion change, only the selected

content is accepted.

• Accept Change(s) - Accepts the Tracked Change (on page 3301) located at the

cursor position or all of the changes in a selection.

• Accept All Changes - Accepts all Tracked Changes (on page 3301) in the current

document.

Tip:

You can assign shortcut keys (on page 304) for these actions to make it easier to

access them.

Reject Change(s) combo box

This combo box is both a button and a drop-down menu that includes the following actions

(when you select an action from the drop-down menu, that action becomes the default action for

the combo box button):

• Reject Change(s) and Move to Next - Rejects the Tracked Change (on page 3301)

located at the cursor position or all of the changes in a selection and then moves to

the next change. If you select a part of a deletion or insertion change, only the selected

content is rejected.

• Reject Change(s) - Rejects the Tracked Change (on page 3301) located at the cursor

position or all of the changes in a selection.

• Reject All Changes - Rejects all Tracked Changes (on page 3301) in the current

document.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 661

Tip:

You can assign shortcut keys (on page 304) for these actions to make it easier to

access them.

Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page

3301). The comment will appear in a callout and a tooltip when hovering over the change. If the

action is selected on an existing commented change, the dialog box will allow you to edit the

comment.

Track Changes Visualization Modes Drop-Down Menu

This drop-down menu includes specialized actions that allow you to switch between the

following visualization modes:

• View All Changes/Comments - This mode is active by default. When you use this

mode, all tracked changes are represented in the Author mode.

• View only Changes/Comments by - Only the tracked changes made by the author you

select are presented.

• View Final - This mode offers a preview of the document as if all tracked changes

(both inserted and deleted) were accepted.

• View Original - This mode offers a preview of the document as if all tracked changes

(both inserted and deleted) were rejected. If you attempt to edit the document in this

mode, the view mode will switch to View All Changes/Comments.

• Review Settings - Opens the Review Preferences (on page 192) page where the Initial

display mode setting can be configured.

Note:

If you use View Final mode and View Original mode, callouts (on page 3295)

are not displayed for comments or changes. To display callouts, use the View All

Changes/Comments mode.

Highlight

Enables or disables the Highlight tool (on page 671). Use the Highlight drop-down menu

to select a new color.

Add Comment

Inserts a comment at the cursor position. The comment appears in a callout box and a tooltip

(when hovering over the change).

Show/Edit Comment

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 662

Opens a dialog box that displays the discussion thread and allows the current user to edit

comments that do not have replies. If you are not the author who inserted the original comment,

the dialog box just displays the comment without the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies

will also be removed.

Manage Reviews

Opens the Review view (on page 678).

Tracked Change Callouts

You can also choose to display insertion and deletion changes in callouts (on page 3295) in Author mode.

By default, tracked changes are not displayed in callouts, but you can change this behavior by selecting

the Track Changes Deletions (on page 195) and Track Changes Insertions (on page 195) options in the

Callouts preferences page (on page 195). You can also choose to display the actual content of the deletion or

insertion.

By displaying the changes in callouts, you then have access to even more actions, such as the ability to reply

or mark them as being done. For more information, see Author Callouts (on page 672).

Tracked Changes in the Review View

The Review view (on page 678) is also useful for managing tracked changes and comments. In this view, the

edits are presented in a compact form, in the order they appear in the document and each edit is marked with

a type-specific icon. You can use this view to quickly navigate through changes, accept or reject them, or to

add and manage comments for the changes. You can also search for specific changes and it includes some

filtering options (for example, you can filter it to only show certain types of changes or to only show changes

for a particular author).

For more information, see Review View (on page 678).

Tracked Changes XML Source Code

The changes are stored in the document source code as processing instructions and they do not interfere with

validation or transformations. For each change, the author name and the modification time are preserved.

Example - Insertion Change: The following processing instruction is an example of how an insertion change is

stored in a document:

<?oxy_insert_start author="John Doe" timestamp="20090408T164459+0300"?>all<?oxy_insert_end?>

Example - Deletion Change: The following processing instruction is an example of how a deletion change is

stored in a document:

<?oxy_delete author="John Doe" timestamp="20090508T164459+0300" content="belong"?>

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 663

Resources

For more information about the Track Changes support, watch our video demonstration:

https://www.youtube.com/embed/L_ESxRMfnek

Related Information:

Managing Comments (on page 667)

Author Callouts (on page 672)

Review View (on page 678)

Tracked Changes Behavior

The behavior of the Track Changes feature (on page 3301) depends on the context, the type of change, and

whether or not it is activated.

Inserting Content

If the Track Changes feature is disabled and you insert content, the following behavior is possible:

• Making an insertion in a Delete change results in the change being split in two and the content is

inserted without being marked as change.

• Making an insertion in an Insert change results in the change being split in two and the content is

inserted without being marked as change.

• Making an insertion in regular content results in a regular insertion.

If the Track Changes feature is enabled and you insert content, the following behavior is possible:

• Making an insertion in a Delete change results in the change being split in two and the current inserted

content appears marked as an INSERT.

• Making an insertion in an Insert change results in the following:

◦ If the original insertion was made by another user, the change is split in two and the current

inserted content appears marked as an INSERT by the current author.

◦ If the original Insert change was made by the same user, the change is just expanded to contain

the inserted content. The creation time-stamp of the previous insert is preserved.

• If inserted in regular content, the current inserted content appears marked as an Insert change.

Surrounding Content

If the Track Changes feature is enabled and you surround content in a new XML element, the following

behavior is possible:

• Making a surround in a Delete change results in nothing happening.

• Making a surround in an Insert change results in the following:

https://www.youtube.com/embed/L_ESxRMfnek

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 664

◦ If the original insertion was made by another user, the change is split in two and the surround

operation appears marked as being performed by the current author.

◦ If the original Insert change was made by the same user, the existing change is just expanded to

contain the surrounded content.

• Making a surround in regular content results in the operation being marked as a surround change.

Deleting Characters

If the Track Changes feature is disabled and you delete content character by character, the following behavior

is possible:

• Deleting content in an existing Delete change results in nothing happening.

• Deleting content in an existing Insert change results in the content being deleted without being marked

as a deletion and the INSERT change shrinks accordingly.

• Deleting in regular content results in a regular deletion.

If the Track Changes feature is enabled and you delete content character by character, the following behavior

is possible:

• Deleting content in an existing Delete change results in the following:

◦ If the same author created the Delete change, the previous change is marked as deleted by the

current author.

◦ If another author created the Delete change, nothing happens.

• Deleting content in an existing Insert change results in the following:

◦ If the same author created the Insert change, the content is deleted and the Insert change

shrinks accordingly.

◦ If another author created the Insert change, the Insert change is split in two and the deleted

content appears marked as a Delete change by the current author.

• Deleting in regular content results in the content being marked as a Delete change by the current

author.

Deleting Selections of Content

If the Track Changes feature is disabled and you delete a selection of content, the following behavior is

possible:

• If the selection contains an entire Delete change, the change disappears and the content is deleted.

• If the selection intersects with a Delete change (starts or ends in one), it results in nothing happening.

• If the selection contains an entire Insert change, the change disappears and the content is deleted.

• If the selection intersects with an Insert change (starts or ends in one), the Insert change is shrunk and

the content is deleted.

If the Track Changes feature is enabled and you delete a selection of content, the following behavior is

possible:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 665

• If the selection contains an entire Delete change, the change is considered as rejected and then marked

as deleted by the current author, along with the other selected content.

• If the selection intersects a Delete change (starts or ends in one), the change is considered as rejected

and marked as deleted by the current author, along with the other selected content.

• If the selection contains an entire Insert change, the following is possible:

◦ If the Insert is made by the same author, the change disappears and the content is deleted.

◦ If the Insert is made by another author, the change is considered as accepted and then marked

as deleted by the current author, along with the other selected content.

• If the selection intersects an Insert change (starts or ends in one), the Insert change shrinks and the

part of the Insert change that intersects with the selection is deleted.

Deleting Tags

Assuming you are using any of the Tag Display Modes (on page 607) other than No Tags and the Track

Changes feature is disabled, if you delete a start or end tag, both the start and end tag will be removed, while

any content that was inside the element is preserved.

Assuming you are using any of the Tag Display Modes (on page 607) other than No Tags and the Track

Changes feature is enabled, if you delete a start tag of an inline element (on page 3297), both the start and

end tag are marked as a Delete change by the current author, while any content that was inside the element is

preserved.

Copying Content

If the Track Changes feature is disabled and you copy content, if the copied area contains Insert or Delete

changes (or attribute edits), these are also copied to the clipboard.

If the Track Changes feature is enabled and you copy content, if the copied area contains Insert or Delete

changes (or attribute edits), these are all accepted in the content of the clipboard (the changes will no longer

be in the clipboard).

Pasting Content

If the Track Changes feature is disabled and you paste content, if the clipboard content contains Insert or

Delete changes (or attribute edits), they will be preserved on paste.

If the Track Changes feature is enabled and you paste content, if the clipboard content contains Insert or

Delete changes (or attribute edits), all the changes are accepted and then the paste operation proceeds

according to the insertion rules.

Track Changes Limitations

There are some inherent limitations to the Change Tracking (on page 3301) feature. These limitations include

the following:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 666

• Limitations to rejected changes - Recording changes has limitations and there is no guarantee that

rejecting all changes will return the document exactly to its original state.

• Limitations to hierarchical changes - Recorded changes are not hierarchical, a change cannot contain

other changes inside. For example, if you delete an insertion made by another user, then reject the

deletion, the information about the author who made the previous insertion is not preserved.

• Limitations to using certain actions - Some actions cannot be implemented with the Track Changes

feature (on page 3301) enabled. For example, some table-related actions (Delete Row(s),

Delete Column(s), Join Cells, Split Cell) ignore the Track Changes feature.

• Possible Serialization Limitation - If you have equivalent adjacent tracked changes, for example,

you see two back-to-back changes in the Review pane that have identical properties (the same user,

timestamp, content, etc.), when you save the document, it is sometimes possible for the document to

only contain a single processing instruction.

DITA-Specific Track Changes Limitations

• When presenting cross references or related links in the Author visual editing mode, if the link target

element has a title that contains change tracking, the presented link reference content is shown as if all

tracked changes in the target element's title have been accepted.

• When presenting phrases with key references in the Author visual editing mode, if the defined key has a

keyword that contains change tracking, the presented referenced keyword reference content is shown

as if all track changes inside it have been accepted.

Publishing-Specific Track Changes Limitations

• Deletion Change Tracking Limitation - When displaying tracked changes in published outputs

(for example, when enabling the show.changes.and.comments DITA parameter in WebHelp and PDF

publications), the deleted content will be presented as plain XML with the tag names serialized as plain

text. Key references and content key references are also not resolved in the presented deleted content.

Tracked Changes XML Markup

Depending on the type of edits, the following markup appears in the document source code when you activate

the Track Changes feature (on page 3301):

Edit Type
Processing Instruc

tion Start Marker

Processing Instruc

tion End Marker
Attributes

Insertion <?oxy_insert_start?> <?oxy_insert_end?> Common Attributes (on page

667)

Split <?oxy_insert_start?> <?oxy_insert_end?> Common Attributes (on page

667), type="split"

Surround <?oxy_insert_start?> <?oxy_insert_end?> Common Attributes (on page

667), type="surround"

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 667

Edit Type
Processing Instruc

tion Start Marker

Processing Instruc

tion End Marker
Attributes

Deletion <?oxy_delete?> _ Common Attributes (on page

667), content

Comment <?oxy_comment_start?> <?oxy_comment_end?> Common Attributes (on page

667), mid, parentID

Attribute

Change

<?oxy_attributes?> _ Attributes of the Processing In

struction have the name as the

attribute that was changed on

the XML element. The value is

an attribute change descriptor

(on page 667).

If a comment intersects another, the @mid attribute is used to correctly identify start and end processing

instruction markers.

Common Attributes

The following attributes can be added on both change tracking and comment processing instructions:

• @id - Used to link a reply to its parent comment or change.

• @comment - The comment message associated with a comment or change.

• @timestamp - The time when the change or comment was created.

• @author - The name of the author that created the change or comment.

• @flag - The value done means that the item is Marked as Done.

Attribute Change Descriptor

The value of the attributes for a Processing Instruction is an (escaped) XML element as in:

<change type="modified" oldValue="word" author="John" timestamp="20210520T091038+0000" />

Related information

dita-classic-pdf-review - an open-source project that contains XSLT stylesheets to process the review

markup

Managing Comments

You can add comments to any selected area of content within XML documents, with the exception of read-

only content. The difference between using comments and tracked changes (on page 3301) is that a

comment is associated to a selection without modifying or deleting the content.

By default, when you annotate your XML documents, the comments are displayed in the Author mode as

callouts (on page 3295) (balloons) and they are rendered with a unique name and background for each user.

https://github.com/oxygenxml/dita-classic-pdf-review/tree/master/com.oxygenxml.pdf.review/review
https://github.com/oxygenxml/dita-classic-pdf-review/tree/master/com.oxygenxml.pdf.review/review
https://github.com/oxygenxml/dita-classic-pdf-review/tree/master/com.oxygenxml.pdf.review/review

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 668

If comments are not currently displayed in callouts, select the Comments option (on page 195) in the Callouts

preferences page (on page 195). Comments are also displayed in the Review view (on page 678).

Figure 171. Comments in Author Mode

Managing Comments in the Main Editor

You can insert and manage comments directly in the main editing area in Author mode.

Add Comment

To insert a comment at the cursor position or on a specific selection of content, select the

Add Comment action from the toolbar (or in the Review submenu of the contextual menu).

Tip:

When adding or editing a comment, you can use Enter to insert line breaks and Oxygen

XML Editor will take the line breaks into account when presenting the callout. You can

also use Ctrl + Enter to accept your changes and close the dialog box.

Show/Edit Comments

To edit an existing comment that you have added in the main editing area in Author mode,

select the Show/Edit Comments action from the toolbar (or in the Review submenu of the

contextual menu). The action opens a dialog box that allows you to see and edit your comment

at the cursor position. Note that you cannot edit a comment that was added by another user, so

in that case, the dialog box just displays the comment without the possibility of editing it.

Remove Comments

To remove a comment at the cursor position or multiple comments in a selection, select

Remove Comment(s) from the toolbar (or in the Review submenu of the contextual menu).

Copy/Paste

If you copy content that includes comments, they will be preserved when you paste it.

Managing Comments in Callouts

As long as the Comments option (on page 195) is selected in the Callouts preferences page (on page 195),

comments are also displayed in callouts (on page 672). By displaying the comments in callouts, you then

have access to even more actions, such as the ability to reply or mark them as being done. When you right-

click a specific comment in its callout, the contextual menu includes the following actions.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 669

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on

page 3301). When replying to a comment, the dialog box shows the entire conversation in the

comment thread, starting with the first comment added in the particular thread, followed by all

the replies. After replies are added to a comment thread, they are displayed with an indentation

in the callouts and Review view (on page 678).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being done. It is also

available for Tracked Changes (on page 3301) that are displayed in a callout. When a comment

or change is marked as done, the callout is grayed out and cannot be edited unless the action

is toggled to the unmarked state. The action applies to the particular comment and all of its

descendents. This is useful for marking comments or changes that have been addressed,

leaving only those that still need some attention.

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current user to edit

comments that do not have replies. If you are not the author who inserted the original comment,

the dialog box just displays the comment without the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies

will also be removed.

Callouts Options

Select this option to open the Callouts preference page (on page 195) where you can configure

various callout options.

Tip:

When adding, editing, or replying to a comment, you can use Enter to insert line breaks and Oxygen

XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl +

Enter to accept your changes and close the dialog box.

Managing Comments in the Review View

The Review view (on page 678) is also useful for managing comments. In this view, comments are

presented in a compact form, in the order they appear in the document, along with tracked changes. You can

also use this view to search for specific comments and it includes some filtering options (for example, you

can filter it to only show comments for a particular author). When you right-click a specific comment in the

Review view, the contextual menu includes the following actions.

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on

page 3301). When replying to a comment, the dialog box shows the entire conversation in the

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 670

comment thread, starting with the first comment added in the particular thread, followed by all

the replies. After replies are added to a comment thread, they are displayed with an indentation

in the callouts and Review view (on page 678).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being done. It is also

available for Tracked Changes (on page 3301) that are displayed in a callout. When a comment

or change is marked as done, the callout is grayed out and cannot be edited unless the action

is toggled to the unmarked state. The action applies to the particular comment and all of its

descendents. This is useful for marking comments or changes that have been addressed,

leaving only those that still need some attention.

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current user to edit

comments that do not have replies. If you are not the author who inserted the original comment,

the dialog box just displays the comment without the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies

will also be removed.

Show only reviews by '<author name>'

Filters the comments to only show comments for the particular author.

Remove all Comments

Removes all comments from the document.

Comments XML Source Code

The comments are stored in the document source code as processing instructions that contain information

about the author name and the comment time:

<?oxy_comment_start author="John Doe" timestamp="20090508T164459+0300"

 comment="Do not change this content"?>

 Important content

<?oxy_comment_end?>

Replies to comments are stored in the document source code as a comment (with information about the

author name and time), but with a @parentID attribute and its value is the same as the @id value of the parent

comment.

<?oxy_comment_start author="Tom" timestamp="20160217T102630+0200"

comment="We should not forget about recycling the oil and oil filter!"

parentID="vws_x4l_1v" mid="4"?>

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 671

Related Information:

Author Callouts (on page 672)

Review View (on page 678)

Managing Highlights

Use the Highlight tool to mark fragments in your document using various colors. This is especially useful

when you want to mark sections that need additional editing or to draw the attention of others to particular

content.

Using the Highlight Tool

You can find the Highlight action on the main toolbar, in the Edit > Review menu, or in the Review

submenu of the contextual menu of a document. You can also choose the color to use for the highlight or

choose to Stop highlighting from the same menus.

To highlight content, follow these steps:

1. Click the Highlight icon on the toolbar.

Step Result: The highlighting mode is on and the cursor changes to a dedicated symbol.

2. Click the small arrow next to the Highlight icon and select the color that you want to use for the

highlighting.

3. Select the content you want to highlight. To mark multiple parts of a document, press and hold Ctrl

(Meta on macOS) and select the parts you want to highlight.

4. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

To remove highlighting from a document, follow these steps:

1. Either select the text you want to remove highlighting from using your cursor, or press Ctrl + A

(Command + A on macOS) if you want to select all of the text.

2. Click the small arrow next to the Highlight icon and select No color (erase), or right-click the

highlighted content and select Remove highlight(s).

3. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

Note:

Oxygen XML Editor preserves the highlighting of a document between working sessions. Also, if you

copy content that includes highlights, the highlighting will be preserved when you paste it.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 672

Review View

The Review view (on page 678) is also useful for managing highlights. In this view, the highlights are

presented in a compact form, in the order they appear in the document, along with tracked changes (on page

3301) and comments. The following actions are available in the contextual menu of each highlight in the

Review view:

Change Color

Allows you to change the color of an existing highlight by selecting the new color from this

menu.

Remove Highlight

Removes the selected highlight.

Remove Highlights with the Same Color

Removes the selected highlight and all others that have the same color.

Remove All Highlights

Removes all highlights from the document.

Highlights XML Source Code

The highlights are stored in the document source code as processing instructions that contain information

about the color:

<?oxy_custom_start type="oxy_content_highlight" color="0,128,255"?>

 The highlights are stored<?oxy_custom_end?>

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

Review View (on page 678)

Author Callouts

Oxygen XML Editor uses callouts (on page 3295) to present comments and tracked change (on page 3301)

modifications that you or other members of your team have added to the document.

Displaying Callouts in Author Mode

The callouts are displayed in the right side of the editing area in Author mode. They are decorated with a

colored border and also have a colored background. The background color is assigned automatically by the

application depending on the user who is editing the document and the type of change, but it can also be

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 673

customized from the Review preferences page (on page 192). This preferences page allows you to configure

the colors for tracked change insertions or deletions, and for comments.

You can also choose to use the same color for all changes of that particular type of change, regardless of

who makes the change. To do this, select the Fixed option for the particular type of change and choose a

color from the color box. If the Automatic option is selected, Oxygen XML Editor automatically assigns a color

based upon the Colors for automatic assignment list (on page 194).

The horizontal line that connects the callouts to their corresponding text fragments has the same color as the

border. If this horizontal line is not visible, select the Show all connecting lines option (on page 195) in the

Callouts preferences page. If you hover over a callout, it is highlighted and a tooltip is displayed that contains

additional information.

Figure 172. Multiple Author Callouts

Note:

Oxygen XML Editor displays callouts only if View All Changes/Comments or View Only

Changes/Comments by is selected in the Track Changes Visualization Modes drop-down

menu. Oxygen XML Editor does not display callouts in View Final and View Original modes.

In some cases, the text you are editing can span into the callouts area. For example, this situation can appear

for callouts associated with wide images or space-preserved elements (on page 3301) that contain long

fragments (such as a DITA <codeblock> element or <programlisting> in DocBook). To help you view the text

under the covered area, Oxygen XML Editor applies transparency to these callouts. When the cursor is located

under a callout, the transparency is enhanced, allowing you to both edit the covered content and access the

contextual menu of the editing area.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 674

Figure 173. Transparent Callout

Adjusting Callout Width

To display more of the content in all the callouts in the current document, you can adjust the width by dragging

the left side of any of the callouts. This will adjust the width for all comments in the current document. When

you end the current editing session, the width of all callouts will revert back to the default value, which is the

value of the Initial Width option (on page 195) in the Callouts preferences page.

You can also adjust the maximum number of lines to be shown in the callouts using the Text Lines Count

Limit option (on page 195). Note that this does not limit the number of lines in the actual comment. It only

limits the number of lines shown without opening or editing it.

Type of Callouts in Oxygen XML Editor

Oxygen XML Editor uses callouts to display comments and Tracked Changes (on page 3301) that you

associate with fragments of the document you are editing. You can choose which types of edits will be shown

in callouts by configuring the options in the Callouts preferences page (on page 195). You can choose to

enable the following types of review callouts:

• Comment Callouts - As long as the Comments option (on page 195) is selected in the Callouts

preferences page (on page 195), comments are displayed in callouts. A comment callout contains

the name of the author who inserts the callout and the comment itself. You can also select the Show

review time option (on page 195) to include timestamp information in the comment callouts.

Figure 174. Comment Callouts

There are several types of comments that can be added in Author mode:

◦ Author Review Comments - Comments that you associate with specific content. To insert this

type of comment, select the content and use the Add Comment action that is available on

the toolbar (or in the Review submenu of the contextual menu).

◦ Comments Added to Tracked Changes - Comments that you add to an already existing tracked

change insertion or deletion. To insert this type of comment, right-click the change in the main

editor or its callout and select Comment Change.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 675

◦ Replies to Comments - You can use this type of comment to create discussion threads. To insert

this type of comment, right-click the change in its callout and select Reply. A single callout

is presented for a root comment or change and its replies. The replies are displayed with an

indentation in the callouts and those that are on the same level are sorted depending on the

timestamp.

Figure 175. Callout for a Comment with Replies

Tip:

When adding, editing, or replying to a comment, you can use Enter to insert line breaks

and Oxygen XML Editor will take the line breaks into account when presenting the

callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

• Tracked Change Deletion Callouts - As long as the Track Changes Deletions option (on page 195)

is selected in the Callouts preferences page (on page 195), deletions that are made while the Track

Changes feature is enabled are displayed in callouts. A deletion callout contains the type of callout

(Deleted) and the name of the author that made the deletion. You can also select the Show deleted

content in callout option (on page 195) to display the actual deleted content in the callout. Additionally,

you can select the Show review time option (on page 195) to include timestamp information in the

deletion callouts.

Figure 176. Deletion Callouts

• Tracked Change Insertion Callouts - As long as the Track Changes Insertions option (on page 195)

is selected in the Callouts preferences page (on page 195), insertions that are done while the Track

Changes feature is enabled are displayed in callouts. An insertion callout contains the type of callout

(Inserted) and the name of the author that inserted the content. You can also select the Show inserted

content in callout option (on page 195) to display the actual deleted content in the callout. Additionally,

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 676

you can select the Show review time option (on page 195) to include timestamp information in the

deletion callouts.

Figure 177. Insertion Callouts

Callout Contextual Menu Actions

Some useful actions are available when the contextual menu is invoked on a callout. The actions depend on

the type of callout.

Insertion or Deletion Callout Actions

The following actions are available in the contextual menu of an insertion or deletion callout:

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked

Changes (on page 3301). When replying to a comment, the dialog box shows the

entire conversation in the comment thread, starting with the first comment added

in the particular thread, followed by all the replies. After replies are added to a

comment thread, they are displayed with an indentation in the callouts and Review

view (on page 678).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being

done. It is also available for Tracked Changes (on page 3301) that are displayed

in a callout. When a comment or change is marked as done, the callout is grayed

out and cannot be edited unless the action is toggled to the unmarked state. The

action applies to the particular comment and all of its descendents. This is useful

for marking comments or changes that have been addressed, leaving only those

that still need some attention.

Accept Change

Accepts the tracked change, removes the callout, and moves to the next change.

For an insertion change, it keeps the inserted text and for a deletion change, it

removes the content from the document.

Reject Change

Rejects the tracked change, removes the callout, and moves to the next change.

For an insertion change, it removes the inserted text and for a deletion change, it

preserves the original content.

Comment Change

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 677

Opens a dialog box that allows you to add a comment to an existing Tracked

Change (on page 3301). The comment will appear in a callout and a tooltip when

hovering over the change. If the action is selected on an existing commented

change, the dialog box will allow you to edit the comment.

Edit Reference

If the fragment that contains a callout is a reference, use this option to go to the

reference and edit the callout.

Callouts Options

Select this option to open the Callouts preference page (on page 195) where you

can configure various callout options.

Comment Callout Actions

The following options are available in the contextual menu of a comment callout:

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked

Changes (on page 3301). When replying to a comment, the dialog box shows the

entire conversation in the comment thread, starting with the first comment added

in the particular thread, followed by all the replies. After replies are added to a

comment thread, they are displayed with an indentation in the callouts and Review

view (on page 678).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being

done. It is also available for Tracked Changes (on page 3301) that are displayed

in a callout. When a comment or change is marked as done, the callout is grayed

out and cannot be edited unless the action is toggled to the unmarked state. The

action applies to the particular comment and all of its descendents. This is useful

for marking comments or changes that have been addressed, leaving only those

that still need some attention.

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current

user to edit comments that do not have replies. If you are not the author who

inserted the original comment, the dialog box just displays the comment without

the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all

of the replies will also be removed.

Edit Reference

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 678

If the fragment that contains a callout is a reference, use this option to go to the

reference and edit the callout.

Callouts Options

Select this option to open the Callouts preference page (on page 195) where you

can configure various callout options.

Printing Callouts

When you print a document from Author mode, all callouts that you or other authors have added to the

document are printed. For a preview of the document and its callouts, go to File > Print Preview.

Review View

The Review view (on page 678) is also useful for managing the information in callouts. In this view, changes

and comments are presented in a compact form, in the order they appear in the document, and they are

synchronized with the changes in the callouts. You can also search for specific changes or comments and

it includes some filtering options (for example, you can filter it to only show certain types of edits or to only

show edits for a particular author).

For more information, see Review View (on page 678).

Resources

For more information about the Callouts support in Oxygen XML Editor, see our video demonstration:

https://www.youtube.com/embed/kCCWyFqBaUM

Related information

Managing Tracked Changes (on page 657)

Managing Comments (on page 667)

Review View (on page 678)

Review View

The Review view is an independent panel, available both for built-in and custom XML document frameworks

(on page 3297). It is designed to offer an enhanced way of monitoring all the changes that you make to a

document. This means you can view and manage highlights, comments, and tracked changes (on page 3301)

using a single view.

The Review view is useful when you are working with documents that contain large number of edits. The

edits are presented in a compact form, in the order they appear in the document. Each type of edit is marked

with a specific icon. This view and the editing area are synchronized. When you select an edit listed in the

Review view, its corresponding fragment of text is highlighted in the editing area and the reverse is also true.

For example, when you place the cursor inside an area of text marked as inserted, its corresponding edit is

selected in the list.

https://www.youtube.com/embed/kCCWyFqBaUM

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 679

You can use this view to quickly navigate through changes and it includes some useful hover actions and

contextual menu actions to help you manage changes, comments, and highlights. You can also search for

specific changes or comments and it includes some filtering options (for example, you can filter it to only

show certain types of edits or to only show edits for a particular author).

Figure 178. Review View

Activating the Review View

To activate the Review view, do one of the following:

• Click the Manage reviews button on the toolbar.

• Right-click anywhere in a document and select Review > Manage reviews.

• Open it from the Window > Show View menu.

Review View Toolbar Actions and Settings

The upper part of the view contains a filtering area that allows you to search for specific edits. The filter field

also includes a search history drop-down list. The toolbar also includes Previous and Next navigation

buttons and a Settings menu button.

Previous

Use this button to navigate to the previous review item.

For DITA projects, as long as the Link with Editor toolbar button (on page 2954) is enabled

in the DITA Maps Manager, if you reach the first review item in the document, clicking this button

will open a dialog box asking if you want to open the previous document (from the current DITA

map hierarchy) that contains review items. This default behavior can be changed by choosing

one of the options in the When navigating items in the Review view and you reach the last/first

item section of the DITA preferences page (on page 283).

Next

Use this button to navigate to the next review item.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 680

For DITA projects, as long as the Link with Editor toolbar button (on page 2954) is enabled

in the DITA Maps Manager, if you reach the last review item in the document, clicking this button

will open a dialog box asking if you want to open the next document (from the current DITA map

hierarchy) that contains review items. This default behavior can be changed by choosing one of

the options in the When navigating items in the Review view and you reach the last/first item

section of the DITA preferences page (on page 283).

Settings

The Settings menu includes the following options:

Show highlights

Controls whether or not the Review view displays the highlighting in your

document.

Show comments

Controls whether or not the Review view displays the comments in the document

you are editing.

Show track changes

Controls whether or not the Review view displays the inserted and deleted content

in your document.

Show reviews in read-only content

Controls whether or not the Review view displays review items from content

referenced with a @conref or @conkeyref attribute.

Show review time

Displays the time when the edits from the Review view were made.

Sort by date

Expands to offer the following sorting options: Oldest to newest, Newest to oldest,

and No sorting.

Configure review options

Opens the Review preferences page (on page 192) where you can configure

various options for review information.

Hover Actions in the Review View

You can use this view to easily manage changes, highlights, and comments that have been added by you or

other users. The following actions are available when you hover over the changes in the Review view:

Remove

Available for highlights and comments presented in the Review view and it removes the

particular highlight or comment from your document and moves to the next change.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 681

Accept

Available for inserted and deleted content presented in the Review view and it accepts the

particular change in your document and moves to the next change.

Reject

Available for inserted and deleted content presented in the Review view and it rejects the

particular change in your document and moves to the next change.

Contextual Menu Actions in the Review View

Depending on the type of an edit, the following additional actions are available in the contextual menu of the

Review view:

Reply

Opens the Reply dialog box where you can add a reply to comment or change. The replies are

displayed with an indentation in this view.

Mark as Done

Toggles the comment or change as being done and grays it out. You can mark a whole

discussion thread as being done by selecting the action on the first (parent) comment in the

thread.

Show Comment

Available for comments added by other users and you can use this option to view it in a Show

comment dialog box.

Edit Comment

Available for comments you have added and you can use this action to edit a comment.

Remove Comment

Use this action to remove the selected comment.

Show only Reviews by '<author name>'

Use this action to filter the edits to only show them for a certain author.

Remove All Comments

Use this action to remove all the comments that appear in the edited document.

Change Color

Available for highlights and it opens a palette where you can choose a new color for the

highlighted content.

Remove Highlight

Available for highlights and you can use this action to remove the selected highlight.

Remove Highlights with the Same Color

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 682

Available for highlights and you can use this action to remove all the highlights with the same

color from the entire document.

Remove All Highlights

Available for highlights and you can use this action to remove all the highlights in your

document.

Accept Change

Accepts the selected change and moves to the next change.

Reject change

Rejects the selected change and moves to the next change.

Comment change

Available for insertions or deletions and you can use this option to add a comment for the

particular change.

Accept all changes

Accepts all the changes in the current document.

Reject all changes

Rejects all the changes in the current document.

Resources

For more information about the Review view, watch our video demonstration:

https://www.youtube.com/embed/W22jkbwlh60

Related Information:

Managing Tracked Changes (on page 657)

Managing Comments (on page 667)

Managing Highlights (on page 671)

Author Callouts (on page 672)

Publishing Tracked Changes, Comments, and Color Highlights

By default, tracked changes do not influence the published output. However, certain parameters can be

enabled to display tracked changes and comments in WebHelp Responsive and PDF output:

• WebHelp Responsive - Enable the webhelp.show.changes.and.comments publishing parameter. For more

details, see: WebHelp Responsive Transformation Parameters (on page 1810).

• PDF (CSS based) - Enable the show.changes.and.comments publishing parameter. For more details, see:

DITA Map PDF - based on HTML5 & CSS Transformation (on page 1489).

• PDF (XSL-FO based) - Enable the show.changes.and.comments publishing parameter.

https://www.youtube.com/embed/W22jkbwlh60

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 683

Profiling and Conditional Text

Profiling text is a way to mark blocks of text meant to appear in some renditions of the document but not in

others. Conditional text differs from one variant of the document to another, while unconditional text appears

in all document versions. For example, you can mark a section of a document that is to be included in a

manual to be designated for expert users and another section for novice users, while unmarked sections are

included in all renditions.

Profiling Attributes and Condition Sets

Oxygen XML Editor allows you to define values for the profiling attributes and they can be easily managed

to filter content in the published output. You can switch between profile sets to see how the edited content

looks like before publishing. You can also conditionally profile parts of a document so that certain parts are

displayed when certain profiling conditions are set. You can even customize the colors and styling of how the

profiling is displayed in Author mode.

You can use profiling and conditional text to help you create documentation for multiple output scenarios,

including:

• Multiple outputs for a series of similar products.

• Multiple outputs for various releases of a product.

• Multiple outputs for various audiences.

This feature helps to reduce the effort for updating and translating your content and provides an easy way to

customize the output for various audiences.

Figure 179. Example: Profiling Content

Oxygen XML Editor includes a preconfigured set of profiling attribute values for some of the most popular

document types. These attributes can be redefined to match your specific needs in the Attributes and

Condition Sets preferences page (on page 196). You can also define your own profiling attributes and

condition sets for each document type (framework (on page 3297)) and your profiling configuration can be

shared among content authors through the project file.

For information about creating and editing profiling attributes, see Creating and Editing Profiling Attributes

(on page 684) (for information about sharing them, see Sharing Profiling Attribute Configurations (on page

687)Sharing Profiling Attribute Configurations (on page 3200)).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 684

For information about creating and editing condition sets, see Creating and Editing Profiling Condition Sets (on

page 689) (for information about sharing them, see Sharing Condition Set Configurations (on page 691)).

Related Information:

Customizing Elements that Wrap Profiled Content (on page 2374)

Creating and Editing Profiling Attributes

Oxygen XML Editor includes support for defining your own profiling attributes, or modifying existing ones, for

each particular document type (framework (on page 3297)). You can then apply the profiling attributes to

content in Author mode to see how the profiling will affect the output.

Create or Editing Profiling Attributes

To create or edit profiling attributes for a specific document type, follow these steps:

1. If you are creating a new attribute, make sure the attribute is already defined in the document DTD or

schema before continuing with the procedure.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes

> Author > Profiling/Conditional Text > Attributes and Condition Sets.

Information:

The Profiling Attributes section (on page 197) is used to define the attributes and their values

for each document type.

3. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table.

To customize existing attributes and their values, select an attribute and click the Edit button.

Step Result: In either case, this opens a Profiling Attribute configuration dialog box where you can

define attributes that exist in your schema.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 685

Figure 180. Profiling Attribute Dialog Box

The following options are available in this dialog box:

Document type

Select the document type (framework (on page 3297)).

Tip:

You can use the * or ? wildcards in this combo box. For example, DITA* would

match any document type that starts with "DITA". You can also specify multiple

document types by using commas to separate them.

Attribute name

The name of the profiling attribute.

Display name

This optional field is used for descriptive rendering in profiling dialog boxes.

Attribute Values Table

This table displays information about the values for the profiling attribute. You can

configure them by using the buttons at the bottom of the table (New, Edit, Delete).

The columns are as follows:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 686

◦ Value - The attribute value.

◦ Label - You can specify a label for the attribute value that will be rendered as its

name in various components in Author mode (Edit Profiling Attributes dialog

box (on page 687), Condition Set dialog box (on page 689), and other UI

components where the profiling is shown (on page 694)). If the Label is not

specified, the Value will be used as its rendered name.

◦ Description - A description for the attribute value that will be displayed in this table.

Single value

Select this option if you want the attribute to only accept a single value.

Multiple values separated by

Select this option if you want the attribute to accept multiple values, and you can choose

the type of delimiter to use. You can choose between space, comma, and semicolon, or

you can enter a custom delimiter in the text field. A custom delimiter must be supported

by the specified document type. For example, the DITA document type only accepts

spaces as delimiters for attribute values.

4. After defining or configuring the attributes and their values according to your needs, click OK to confirm

your selections and close the Profiling Attributes configuration dialog box.

5. Click Apply to save the changes.

Adding Profiling Attribute Values Directly in a Document

You can add values directly to the existing profiling attributes in a document using the In-Place Attributes

Editor (on page 622) in Author mode, the Attributes view (on page 641), or in the source code in Text

mode. However, this just adds them to the document and does not change the conditional text configuration.

If you invoke the Edit Profiling Attributes action (from the contextual menu in Author mode) on the new value,

the Profiling Values Conflict dialog box will appear and it includes an Add these values to the configuration

action that will automatically add the new value to the particular profiling attribute. It also includes an Edit the

configuration action that opens the Attributes and Condition Sets preferences page (on page 196) where you

can edit the profiling configuration.

Note:

If the Allow contributing extra profiling attribute values option (on page 198) is not selected in the

Attributes and Condition Sets preferences page, the Profiling Values Conflict dialog box will never

appear, so this automatically adding value not be possible.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 687

Figure 181. Profiling Values Conflict Dialog Box

Sharing Profiling Attribute Configurations

Your profiling configuration can be shared with other users through a project file. If you select Project Options

(on page 3300) at the bottom of the Profiling/Conditional Text preferences page, your configuration is

stored in the project file and can be shared with others. For instance, if your project file is saved on a version

control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option

configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 427).

Related Information:

Applying Profiling Attributes (on page 687)

Creating and Editing Profiling Condition Sets (on page 689)

Applying Profiling Condition Sets (on page 691)

Showing and Filtering Profiled Content in Author Mode (on page 694)

Applying Profiling Attributes

Profiling attributes are applied on element nodes. You can apply profiling attributes on a text fragment (it will

automatically be wrapped into a phrase-type element), on a single element, or on multiple elements at the

same time. If there is no selection in your document, the profiling attributes are applied on the element at the

cursor position.

To apply a profiling attribute to content in Author mode, follow these steps:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 688

1. To apply a profiling attribute to content in Author mode, highlight the content and select Edit Profiling

Attributes from the contextual menu. To profile an entire element, position the cursor inside the

element, right-click, and select Edit Profiling Attributes (you can also right-click the element in the

breadcrumb (on page 615) or Outline (on page 551) view).

Step Result: The Edit Profiling Attributes dialog box is displayed and shows all the profiling attributes

and their values, as defined for the particular document type (framework). If you have a large list of

profiling attributes, you can use the text filter field to search for attributes or values, and you can expand

or collapse attributes by using the Expand All / Collapse All buttons to the right of the text filter

or the arrow button to the left of the profiling attribute name.

The attributes and values that appear in the dialog box are determined as follows:

◦ If you have defined profiling attribute values (on page 684) for the DITA document type in the

Attributes and Condition Sets preferences page (on page 196) and you store them at project-

level (on page 3300), those values are displayed in the dialog box.

◦ If you have defined profiling attribute values (on page 684) for the DITA document type in the

Attributes and Condition Sets preferences page (on page 196) and you store them at global-

level (on page 3297), those values are displayed in the dialog box.

◦ Otherwise, a generic default set of profiling attributes and values are available.

Figure 182. Edit Profiling Attributes Dialog Box

2. In the Edit Profiling Attributes dialog box, select the checkboxes that correspond to the attribute values

you want to apply on the document fragment (on page 3296).

3. Click OK to finish the profiling configuration.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 689

Result: The attribute names and values selected in the Edit Profiling Attributes dialog box are set on

the elements contained in the profiled fragment. If you only select a fragment of content (rather than

the entire element), this fragment is wrapped in phrase-type elements where the profiling attributes are

set.

If the Show Profiling Attributes option (on page 694) (available in the Profiling / Conditional Text

toolbar menu) is selected, a green border is painted around profiled text in the Author mode and all

profiling attributes set on the current element are listed at the end of the highlighted block. To edit the

attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and

allows you to add or remove attribute values.

Figure 183. Profiling Attribute Value Form Control Pop Up

Related Information:

Creating and Editing Profiling Attributes (on page 684)

Creating and Editing Profiling Condition Sets (on page 689)

Applying Profiling Condition Sets (on page 691)

Showing and Filtering Profiled Content in Author Mode (on page 694)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Creating and Editing Profiling Condition Sets

Multiple profiling attributes can be aggregated into a profiling condition set that allows you to apply more

complex filters on the document content. A Profiling Condition Set is a very powerful and convenient tool that

can be used to preview the content that goes into the published output. For example, an installation manual

available in both Windows and Linux variants can be profiled to highlight only the Linux procedures for more

advanced users.

Create Profiling Condition Sets

To create a new profiling condition set, follow these steps:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 690

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes

> Author > Profiling/Conditional Text > Attributes and Condition Sets.

Information:

The Profiling Condition Sets section (on page 198) is used to define condition sets.

2. To add new condition set, click the New button at the bottom of the Profiling Condition Sets table. To

customize existing condition sets, select an existing condition set and click the Edit button.

Step Result: In either case, this opens a Condition Set configuration dialog box where you can define

attributes that exist in your schema.

Figure 184. Condition Set Configuration Dialog Box

The following options are available in this dialog box:

Name

The name of the new condition set.

Document type

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 691

Select the document type (framework (on page 3297)) that has profiling attributes

defined.

Use DITAVAL file

For DITA projects, select this option if you want the Profiling Condition Set to reference a

DITAVAL file (on page 3219). You can specify the path by using the text field, its history

drop-down, the Insert Editor Variables (on page 333) button, or the browsing actions

in the Browse drop-down list.

Include the content matching the following conditions

You can select this option to define the combination of attribute values for your condition

set by selecting the appropriate checkboxes for the values you want to be included in this

particular condition set. If you have defined a lot of profiling attributes, you can use the

filter text field to search for specific conditions.

Shortcut key

You can click the Choose button to open a dialog box that allows you to define a shortcut

key for this particular condition set. You can then use that shortcut key anytime you want

to select this condition set to filter content.

3. After defining or configuring the condition sets according to your needs, click OK to confirm your

selections and close the Condition Set configuration dialog box.

4. Click Apply to save the condition set.

Sharing Condition Set Configurations

Your condition set configuration can be shared with other users through a project file. If you select Project

Options (on page 3300) at the bottom of the Profiling/Conditional Text preferences page, your configuration

is stored in the project file and can be shared with others. For instance, if your project file is saved on a version

control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option

configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 427).

Related Information:

Applying Profiling Condition Sets (on page 691)

Creating and Editing Profiling Attributes (on page 684)

Applying Profiling Attributes (on page 687)

Showing and Filtering Profiled Content in Author Mode (on page 694)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Applying Profiling Condition Sets

All defined Profiling Condition Sets (on page 689) are available as shortcuts in the Profiling / Conditional

Text toolbar menu (on page 694). Select a menu entry to apply the condition set. The filtered content is then

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 692

grayed-out in the Author mode and Outline view (on page 551). An element is filtered-out when one of its

attributes is part of the condition set and its value does not match any of the values covered by the condition

set.

EXAMPLE:

Suppose that you have the following document:

If you apply the following condition set, it means that you want to filter out the content to only include content

profiled with the expert value for the @audience attribute and content that has the prop1 value for the @other

attribute.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 693

This is how the document looks in Author mode after you apply the condition set:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 694

Related Information:

Creating and Editing Profiling Condition Sets (on page 689)

Creating and Editing Profiling Attributes (on page 684)

Applying Profiling Attributes (on page 687)

Showing and Filtering Profiled Content in Author Mode (on page 694)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 696)

Showing and Filtering Profiled Content in Author Mode

You can visualize the effects of profiled content in Author mode by using the options in the Profiling/

Conditional Text drop-down menu that is located on toolbar. This drop-down menu includes the following

filtering options:

Show Profiling Colors and Styles

Select this option to show colors and styles for profiled content in Author mode. You can

configure the colors and styles or specify whether or not this option is selected by default in the

Profiling/Conditional Text > Colors and Styles preferences page (on page 198).

Show Profiling Attributes

Select this option to display the values of the profiling attributes at the end of profiled content in

Author mode. You can specify whether or not this option is selected by default in the Profiling/

Conditional Text preferences page (on page 196).

Show Excluded Content

Controls whether the content filtered out by a particular condition set is hidden or grayed-out in

Author mode and the Outline (on page 551) view. When this option is selected and a condition

set is selected in this drop-down menu (on page 694), the filtered content is grayed-out. If this

option is not selected and a condition set is selected in this drop-down menu (on page 694),

the filtered content is hidden. You can specify whether or not this option is selected by default in

the Profiling/Conditional Text preferences page (on page 196).

Choose Condition Set (Available if more than 15 condition sets are defined)

This option is available if you have more than 15 conditions sets defined. It opens a dialog box

that makes it easier to find and select condition sets that are not displayed in this drop-down

menu.

List of Defined Condition Sets

Up to 15 defined condition sets are listed and you can toggle each one of them on to filter the

content in Author mode to only show content that will appear in the output for that particular

condition set. If there are more than 15 defined condition sets, the rest of them can be accessed

in the More submenu or by using the Choose Condition Set option (on page 694) to access a

dialog box that presents all of them.

Profiling Settings

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 695

Opens the Attributes and Condition Sets preferences page (on page 196) where you can add

and edit profiling attributes and condition sets.

Figure 185. Example: Profiling Controls in Author Mode

If the Show Profiling Attributes option is selected, a green border is painted around profiled text in the Author

mode. Also, all profiling attributes set on the current element are listed at the end of the highlighted block and

in its tooltip message. To edit the attributes of a profiled fragment, click one of the listed attribute values. A

form control pops up and allows you to add or remove attribute values.

Figure 186. Profiling Attribute Value Form Control Pop Up

Related Information:

Creating and Editing Profiling Attributes (on page 684)

Applying Profiling Attributes (on page 687)

Creating and Editing Profiling Condition Sets (on page 689)

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 696

Applying Profiling Condition Sets (on page 691)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 696)

Customizing Colors and Styles for Rendering Profiling in Author Mode

In Author mode, profiling colors and styles can be applied to mark profiled content. This enables the user

to distinguish between multiple variants of the output and preview the content that will be published. The

excluded text is grayed-out or hidden, making it easy to identify the differences.

Figure 187. Example: Profiling Colors and Styles in Author Mode

Choosing the right style for a specific profiling attribute is a matter of personal taste, but be aware of the

following:

• If the same block of text is profiled with two or more profiling attributes, their associated styles

combine. Depending on the styling, this might result in an excessively styled content that may prove

difficult to read or work with.

• It is recommended that you only profile the differences. There is no need to profile common content,

since excessive profiling can visually pollute the document.

• A mnemonic associated with a style will help you instantly spot differences in the types of content.

Styling Profiling Attribute Values

To set colors and styles for profiling attribute values, follow these steps:

1. Select the Show Profiling Colors and Styles option (on page 694) from the Profiling /

Conditional Text toolbar drop-down menu.

2. Select Profiling Settings (on page 694) from the Profiling / Conditional Text toolbar drop-

down menu. This is a shortcut to the Attributes and Condition Sets preferences page (on page 196).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 697

3. Go to the Colors and Styles preferences page (on page 198) to configure the colors and styling for the

profiling attributes.

4. Go to the Attributes preferences page (on page 200) to configure how you want the profiling attributes

to appear in Oxygen XML Editor.

Result: The styling is now applied in the Author editing mode and the Outline view (on page 551). Also, to

help you more easily identify the profiling you want to apply in the current context, the styling is applied in the

Edit Profiling Attributes dialog box (on page 684) and in the inline form control pop-up that allows you to

quickly set the profiling attributes.

Figure 188. Profiling Attribute Value Form Control Pop Up

Related Information:

Creating and Editing Profiling Attributes (on page 684)

Applying Profiling Attributes (on page 687)

Creating and Editing Profiling Condition Sets (on page 689)

Applying Profiling Condition Sets (on page 691)

Showing and Filtering Profiled Content in Author Mode (on page 694)

Adding Tables in Author Mode

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in various

frameworks (on page 3297) (DITA, DocBook, TEI, and XHTML). This opens the Insert Table dialog box. Each

framework has a different set of options that are available in this dialog box for configuring the properties of

the tables. In all cases, Oxygen XML Editor includes some general editing actions for configuring tables in

Author mode.

This section explains those general actions and the various configuration options and layouts for tables that

are inserted in the most commonly used document types.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 698

Editing Tables in Author Mode

Oxygen XML Editor provides support for editing data in a tabular form. A variety of features and operations are

available for editing tables in Author mode and they include the following:

Adjusting Column Width

To adjust the width of a column or table, drag the border of the column or table. The changes you make

to a table are committed into the source document. You can also manage table width and column width

specifications from the source document, and some types of tables include a colspecs section that appears

above the table in Author mode that allows you to easily configure some column specifications (such

as column width). These column width specifications are supported in fixed, dynamic, and proportional

dimensions. The built-in DITA, DocBook, and XHTML frameworks (on page 3297) support this feature.

The layout of the tables for these document types takes into account the table width and the column width

specifications particular to them.

Figure 189. Resizing a Table Column in Author Mode

Selecting Columns and Rows

To select a row or a column of a table, place the mouse cursor above the column or in front of the row you

want to select, then click. When hovering the mouse cursor in front of rows or above column headers, the

cursor changes to for row selection and to for column selection and that specific row or column is

highlighted.

You can use the Ctrl and Shift keys to select multiple rows.

Selecting Cells

To select a cell in a table, press and hold the Ctrl key and click anywhere inside the cell. You can also use the

Ctrl and Shift keys to select multiple cells or to deselect cells from a selection. Alternatively, you can click the

left corner of a cell (right corner if you are editing an RTL document (on page 767)) to select it. The cursor

changes to when you hover over the corner of the cell.

You can also select multiple rectangular blocks of cells by using your mouse to select a cell and drag it to

expand the selection.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 699

Drag and Drop

You can use the drag and drop action to edit the content of a table. You can select a column and drag it to

another location in the table you are editing. When you drag a column and hover the cursor over a valid drop

position, Oxygen XML Editor decorates the target location with bold rectangles. The same drag and drop

action is also available for entire rows or columns by hovering the mouse cursor in front of rows or above

column headers, then selecting the row or column and dragging them to the desired location.

Copy/Cut and Paste

In Oxygen XML Editor, you can copy/cut entire rows or columns of the table you are editing and paste the

copied columns or rows inside the same table or inside other tables. You can also use the copy or cut actions

for tables located in other documents. If you paste a row or column into non-table content, Oxygen XML Editor

introduces a new table that contains the fragments of the copied row or column content.

For copied columns, the fragments are introduced starting with the header of the column. Also, if the copied

column is from a CALS table (DITA or DocBook), Oxygen XML Editor preserves column width information.

This information is then used when you paste the column into another CALS table.

For copied cells, when pasting them into another cell without a selection (the cursor is just placed in the

new cell), the copied cells are pasted while preserving their initial order and spacing. If pasting them into a

selection of cells, first the content of the selected cells is deleted, then the copied cells are pasted with their

initial order and spacing preserved and if there are more cells in the selection than in the copied content, the

pasting will repeat the copied cells until the end of the selection.

Deleting Content

To delete the content of a cell, select the cell and press the Delete or Backspace key on your keyboard. If you

press Delete or Backspace again, the selected table structure will also be removed.

To delete an entire row or column, place the cursor inside the row or column (or select it) and use the

Delete Row(s) or Delete Column(s) actions from the toolbar or contextual menu. This will delete both

the content and the table structure for the current row or column.

To delete a selection of multiple rows or columns, select them and use the Delete Row(s) or Delete

Column(s) actions from the toolbar or contextual menu. This will delete both the content and the table

structure for all rows or columns that exist in the current selection.

Navigating Cells

Along with the normal mouse navigation, you can also navigate between cells by using the arrow keys on your

keyboard. By default, when using the arrow keys to navigate between table cells, the cursor jumps from one

cell to another. However, if the Quick navigation in tables option (on page 188) is not selected in the Cursor

Navigation preferences page, using the arrow keys to navigate between table cells will cause the cursor to

navigate between XML nodes, rather than jumping from cell to cell.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 700

Related information

Adding Tables in DocBook (on page 700)

Adding Tables in DITA Topics (on page 3042)

Adding Tables in XHTML Documents (on page 724)

Sample Plugin: Add CALS Support for any XML Document

Adding Tables in DocBook

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a

DocBook document.

DocBook supports two types of tables:

• CALS table model - This is used for more advanced functionality.

• HTML table model - This is used for inserting a formal (captioned) HTML table.

Inserting a CALS Table Model in DocBook

To insert a CALS table model in DocBook documents, select the Insert Table action on the toolbar or from

the contextual menu. The Insert Table dialog box appears. Select CALS for the table Model. This model allows

you to configure a few more properties than the HTML model.

Figure 190. Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

Title

https://github.com/oxygenxml/web-author-sample-plugins/blob/master/web-author-CALS-table-plugin/README.md

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 701

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Generate table footer

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @colwidth attribute with the values listed as

the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%,

and 66.7%. When entering content into a cell in one column, the width proportions of the

other columns are maintained. If you change the width by dragging a column in Author

mode, the values of the @colwidth attribute are automatically changed accordingly. By

default, when you insert, drag and drop, or copy/paste a column, the value of the @colwidth

attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width

(@colwidth attribute). Entering content into a cell changes the rendered width dynamically.

If you change the width by dragging a column in Author mode, a dialog box will be

displayed that asks you if you want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can

change the units in the colspecs (column specifications) section above the table or in

Text mode. The following units are allowed: pt (points), cm (centimeters), mm (millimeters),

pi (picas), in (inches).

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table

specifications.

Row separator

Specifies whether or not to include row separators (@rowsep attribute). The allowed values are: 0

(no separator) and 1 (include separators).

Column separator

Specifies whether or not to include column separators (@colsep attribute). The allowed values are:

0 (no separator) and 1 (include separators).

http://www.docbook.org/tdg5/en/html/cals.table.html
http://www.docbook.org/tdg5/en/html/cals.table.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 702

Alignment

Specifies the alignment of the text within the table (@align attribute). The allowed values are:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width. Note that this value cannot be

rendered in Author mode, so you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

Note:

The options in the Insert Table dialog box for DocBook documents are persistent, so changes made in

one session will carry over to another.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the <colspecs> (column specifications) of your table.

Click the link to open the controls that allow you to adjust various column properties. Although they appear as

part of the Author mode (on page 364), the colspecs link and its controls will not appear in your output. They

are just there to make it easier to adjust how the columns of your table are formatted.

Figure 191. CALS Table in DocBook

Inserting an HTML Table Model

To insert an HTML table model in DocBook documents, select the Insert Table action on the toolbar or

from the contextual menu. The Insert Table dialog box appears. Select HTML for the table Model.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 703

Figure 192. Insert Table Dialog Box - Simple Model

The dialog box allows you to configure the following options when you select the HTML table model:

Title

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Generate table footer

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

Column widths

Allows you to specify the type of properties for column widths (@width attribute). You can choose

one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @width attribute (in a <col> element) with the

values listed as the number of shares followed by an asterisk. The value of the shares

is totaled and rendered as a percent. For example, width="1* 2* 3*" causes widths of

16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width

proportions of the other columns are maintained. If you change the width by dragging

a column in Author mode, the values of the @width attribute are automatically changed

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 704

accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value

of the @width attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width.

Entering content into a cell changes the rendered width dynamically. If you change the

width by dragging a column in Author mode, a dialog box will be displayed that asks you if

you want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you

can change the units in the section above the table or in Text mode. In addition to the

standard pixel, percentage, and relative values, this attribute also allows the special form

“0*” (zero asterisk), which means that the width of each column in the group should be

the minimum width necessary to hold the contents.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. There are a variety of allowed values, as specified in the DocBook HTML

table specifications.

Alignment

Specifies the alignment of the text within the table (@align attribute). The allowed values are:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width. Note that this value cannot be

rendered in Author mode, so you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

Note:

The options in the Insert Table dialog box for DocBook documents are persistent, so changes made in

one session will carry over to another.

When you click Insert, an HTML style of table is inserted into your document at the current cursor position.

When you insert an HTML table, you see a section above the table that allows you to easily configure some

properties without opening the Table Properties dialog box. Although this section appears as part of the

Author mode (on page 364), it will not appear in your output. It is just there to make it easier to adjust how the

columns of your table are formatted.

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual

menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be

http://www.docbook.org/tdg5/en/html/html.table.html
http://www.docbook.org/tdg5/en/html/html.table.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 705

used to fine-tune the formatting of your tables by using the Attributes view (on page 641) (Window > Show

View > Attributes).

You can also use the Table Properties (Ctrl + T (Command + T on macOS)) (on page 3052) action from

the toolbar or contextual menu to modify many of the properties of the table (on page 707).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary,

you can edit the XML directly by switching to Text mode (on page 363).

DocBook Table Layouts

The DocBook framework (on page 3297) supports the following two table model layouts:

• CALS table model (on page 705)

• HTML table model (on page 706)

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing

a CALS table model from the Insert Table dialog box, you have access to more configurable properties. The

layout of a CALS table includes a colspecs section that allows you to easily configure some properties without

opening the Table Properties dialog box. For example, you can change the value of column widths (@colwidth

attribute) or the text alignment (@align attribute). Although they appear as part of the Author mode (on page

364), the colspecs link and its controls will not appear in your output. They are just there to make it easier to

adjust how the columns of your table are formatted.

Figure 193. CALS Table in DocBook

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 706

Tip:

A sample plugin is available that can be used as inspiration to add support for CALS tables in any

XML document: Sample Plugin: Add CALS Support for any XML Document.

HTML Table Model Layout

Choosing an HTML table model from the Insert Table dialog box in a DocBook document inserts a formal

(captioned) HTML table. The layout of an HTML table includes a section above the table that allows you to

easily configure some properties without opening the Table Properties dialog box. For example, you can

change the value of column widths (@width attribute) or the text alignment (@align attribute). Although these

properties appear as part of the Author mode (on page 364), they will not appear in your output. They are just

there to make it easier to adjust how the columns of your table are formatted.

Figure 194. HTML Table in DocBook

Pasting Tables in DocBook

Tables that are pasted into a DocBook file are automatically converted to the CALS model. If you want

to overwrite this behavior and instruct Oxygen XML Editor to convert them to HTML tables, set the

docbook.html.table parameter to 1. You can find this parameter in the following stylesheet:

• [OXYGEN_INSTALL_DIR]/frameworks/docbook/resources/xhtml2db5Driver.xsl for

DocBook 5

• [OXYGEN_INSTALL_DIR]/frameworks/docbook/resources/xhtml2db4Driver.xsl for

DocBook 4

Table Validation in DocBook

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. The

types of errors that may be reported for DocBook table layout problems include:

CALS Tables

• A row has fewer cells than the number of columns detected from the table @cols attribute.

• A row has more cells than the number of columns detected from the table @cols attribute.

• A cell has a vertical span greater than the available rows count.

https://github.com/oxygenxml/web-author-sample-plugins/blob/master/web-author-CALS-table-plugin/README.md

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 707

• The number of <colspecs> is different than the number of columns detected from the table @cols

attribute.

• The number of columns detected from the table @cols attribute is different than the number of columns

detected in the table structure.

• The value of the @cols, @rowsep, or @colsep attributes are not numeric.

• The @namest, @nameend, or @colname attributes point to an incorrect column name.

HTML Tables

• A row has fewer cells than the number of table columns.

• The value of the @colspan, @rowspan, or @span attributes are not numeric.

• A cell has a vertical span greater than the available rows count.

Editing Table Properties in DocBook

You can edit the structure of an existing table using the table buttons on the toolbar (or from the contextual

menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be

used to fine-tune the formatting of your tables by using the Attributes view (on page 641) (Window > Show

View > Attributes).

You can use the Table Properties (Ctrl + T (Command + T on macOS)) action to modify many of the

properties of the table. You can also adjust some of the properties in the specification section above the table.

The Table properties dialog box allows you to set specific properties to the table elements. The options that

are available depend on the context and location within the table where the action was invoked.

Note:

Some properties allow the following special values, depending on the context and the current

properties or values:

• <not set> - Use this value if you want to remove a property.

• <preserve> - If you select multiple elements that have the same property set to different values,

you can choose this value to keep the values that are already set. In some cases it can also be

used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.

• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at

the bottom of the tab tells you how many rows will be affected.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 708

• Column tab - The options in this tab apply to the current column or selection of multiple columns. A

message at the bottom of the tab tells you how many columns will be affected.

• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the

bottom of the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Figure 195. Table Properties Dialog Box with Cell Tab Selected (DocBook CALS Table Model)

The options in the four tabs include the following:

Horizontal alignment (Available in the Table, Column, and Cell tabs)

Specifies the horizontal alignment of text within the current table/column/cell or selection of

multiple columns/cells (@align attribute). The allowed values are as follows:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width. Note that this value cannot be

rendered in Author mode, so you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

Vertical alignment (Available in the Row and Cell tabs)

Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/

cells (@valign attribute). The allowed values are as follows:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 709

• top - Aligns the text at the top of the cell.

• middle - Aligns the text in a vertically centered position.

• bottom - Aligns the text at the bottom of the cell.

Column separator (Available in the Table, Column, and Cell tabs)

Specifies whether or not to include column separators (borders/grid lines) in the form of the

@colsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

Row separator (Available in all four tabs)

Specifies whether or not to include row separators (borders/grid lines) in the form of the @rowsep

attribute. The allowed values are: 0 (no separator) and 1 (include separators).

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table

specifications.

Row type (Available in the Row tab only)

Allows you change the row to a header, body, or footer type of row (within a @thead, @tbody, or

@tfoot attribute).

Edit Table Properties for an HTML Table Model

For an HTML table model, the Table properties dialog box includes four tabs of options (Table, Row, Column,

and Cell) and the options include a Preview pane that shows a representation of the modification.

The options in the four tabs include the following:

Frame (Available only in the Table tab)

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. There are a variety of allowed values, as specified in the DocBook HTML

table specifications.

Row type (Available in the Row tab only)

Allows you change the row to a header, body, or footer type of row (within a @thead, @tbody, or

@tfoot attribute).

Horizontal alignment (Available in the Row, Column, and Cell tabs)

Specifies the horizontal alignment for the text in the current row/column/cell or selection of

multiple rows/columns/cells (@align attribute). The allowed values are:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

http://www.docbook.org/tdg5/en/html/cals.table.html
http://www.docbook.org/tdg5/en/html/cals.table.html
http://www.docbook.org/tdg5/en/html/html.table.html
http://www.docbook.org/tdg5/en/html/html.table.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 710

• justify - Stretches the line of text so that it has equal width. Note that this value cannot be

rendered in Author mode, so you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

Vertical alignment (Available in the Row, Column, and Cell tabs)

Specifies the vertical alignment for the text in the current row/column/cell or selection of

multiple rows/columns/cells (@valign attribute). The allowed values are:

• top - Aligns the text at the top of the cell.

• middle - Aligns the text in a vertically centered position.

• bottom - Aligns the text at the bottom of the cell.

• baseline - Sets the row so that all the table data share the same baseline. This often has

the same effect as the bottom value. However, if the fonts are different sizes, the baseline

value often makes the table look better.

Related Information:

Editing Tables in Author Mode (on page 698)

Adding Tables in DITA Topics

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a DITA

topic. By default, DITA supports four types of tables:

• DITA Simple table model (on page 3042) - This is the most commonly used model for basic tables.

• CALS table model (OASIS Exchange Table Model) (on page 3044) - This is used for more advanced

functionality.

• DITA Choice table model (on page 3046) - This is used within a <step> element in a DITA Task

document to describe a series of optional choices that a user must make before proceeding.

• DITA Properties table model (on page 3048) - This is used in DITA Reference documents to describe a

property (for example, its type, value, and description).

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables

are allowed. The Oxygen XML Editor toolbar provides support for entering and editing tables. It also helps to

indicate where you are allowed to insert a table or its components by disabling the appropriate buttons.

Inserting a Simple Table Model

To insert a Simple DITA table, select the Insert Table action on the toolbar or from the contextual menu

(or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table

Model.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 711

Figure 196. Insert Table Dialog Box - Simple Model

The dialog box allows you to configure the following options when you select the Simple table model:

Title

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @relcolwidth attribute with the values listed

as the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%,

33.3%, and 66.7%. When entering content into a cell in one column, the width proportions

of the other columns are maintained. If you change the width by dragging a column

in Author mode, the values of the @relcolwidth attribute are automatically changed

accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value

of the @relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width.

Entering content into a cell changes the rendered width dynamically. If you change the

width by dragging a column in Author mode, a dialog box will be displayed that asks you if

you want to switch to proportional or fixed column widths.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 712

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Note:

The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one

session will carry over to another.

When you click Insert, a simple table is inserted into your document at the current cursor position.

Inserting a CALS Table Model (OASIS Exchange Table)

To insert an OASIS Exchange Table (CALS), select the Insert Table action on the toolbar or from the

contextual menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select

CALS for the table Model. This model allows you to configure more properties than the Simple model.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 713

Figure 197. Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

Title

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @colwidth attribute with the values listed as

the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%,

and 66.7%. When entering content into a cell in one column, the width proportions of the

other columns are maintained. If you change the width by dragging a column in Author

mode, the values of the @colwidth attribute are automatically changed accordingly. By

default, when you insert, drag and drop, or copy/paste a column, the value of the @colwidth

attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width

(@colwidth attribute). Entering content into a cell changes the rendered width dynamically.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 714

If you change the width by dragging a column in Author mode, a dialog box will be

displayed that asks you if you want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can

change the units in the colspecs (column specifications) section above the table or in

Text mode. The following units are allowed: pt (points), cm (centimeters), mm (millimeters),

pi (picas), in (inches).

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Row separator

Specifies whether or not to include row separators (@rowsep attribute). The allowed values are: 0

(no separator) and 1 (include separators).

Column separator

Specifies whether or not to include column separators (@colsep attribute). The allowed values are:

0 (no separator) and 1 (include separators).

Alignment

Specifies the alignment of the text within the table (@align attribute). The allowed values are:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width.

Note:

The justify value cannot be rendered in Author mode, so you will only see it in

the output.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 715

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Note:

The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one

session will carry over to another.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table.

Click the link to open the controls that allow you to adjust various column properties. Although they appear as

part of the Author mode (on page 364), the colspecs link and its controls will not appear in your output. They

are just there to make it easier to adjust how the columns of your table are formatted.

Figure 198. CALS Table in DITA

Inserting a Choice Table Model

To insert a Choice table within a <step> element in a DITA Task document, select the Insert Table action on

the toolbar or in the Insert submenu from the contextual menu (or the Table submenu from the DITA menu),

or select choicetable from the Content Completion Assistant (on page 3295). The Insert Table dialog box

appears. Select Simple for the table Model.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 716

Figure 199. Insert Table Dialog Box - Choice Model

The dialog box allows you to configure the following options when you insert a Choice table model within a

DITA Task:

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @relcolwidth attribute with the values listed

as the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%,

33.3%, and 66.7%. When entering content into a cell in one column, the width proportions

of the other columns are maintained. If you change the width by dragging a column

in Author mode, the values of the @relcolwidth attribute are automatically changed

accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value

of the @relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width.

Entering content into a cell changes the rendered width dynamically. If you change the

width by dragging a column in Author mode, a dialog box will be displayed that asks you if

you want to switch to proportional or fixed column widths.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 717

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Choice table is inserted into your DITA Task document at the current cursor position

(within a <step> element).

Inserting a Properties Table Model

To insert a Properties table within a <refbody> element in a DITA Reference document, select the Insert

Table action on the toolbar or in the Insert submenu from the contextual menu (or the Table submenu from

the DITA menu), or select properties(wizard) from the Content Completion Assistant (on page 3295). The

Insert Table dialog box appears. Select Properties for the table Model.

Figure 200. Insert Table Dialog Box - Properties Model

The dialog box allows you to configure the following options when you insert a Properties table model within a

DITA Reference:

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 718

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Properties table is inserted into your DITA Reference document at the current cursor

position (within a <refbody> element).

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual

menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be

used to fine-tune the formatting of your tables by using the Attributes view (on page 641) (Window > Show

View > Attributes). See the DITA documentation for a full explanation of these attributes.

You can also use the Table Properties (Ctrl + T (Command + T on macOS)) (on page 3052) action from

the toolbar or contextual menu (or DITA menu) to modify many of the properties of the table (on page 3052).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary,

you can edit the XML directly by switching to Text mode (on page 363).

You can use normal copy/paste shortcuts to move content between cells. Oxygen XML Editor includes a

Smart Paste feature (on page 626) that preserves certain style and structure information when pasting

content.

Tip:

When copying a multiple selection of table cells and pasting them outside the table, a new table will

be created. When pasting into space-preserved elements, the cell content will be pasted as plain text.

Related Information:

Editing Tables in Author Mode (on page 698)

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/table-elements.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 719

DITA Table Layouts

Depending on the context, DITA accepts the following table layouts:

• CALS table model (on page 719)

• Simple table model (on page 719)

• Choice table model (on page 720)

• Properties table model (on page 720)

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing

a CALS table model from the Insert Table dialog box, you have access to more configurable properties. The

layout of a CALS table includes a colspecs section that allows you to easily configure some properties without

opening the Table Properties dialog box. For example, you can change the value of column widths (@colwidth

attribute) or the text alignment (@align attribute). Although they appear as part of the Author mode (on page

364), the colspecs link and its controls will not appear in your output. They are just there to make it easier to

adjust how the columns of your table are formatted.

Figure 201. CALS Table in DITA

Tip:

A sample plugin is available that can be used as inspiration to add support for CALS tables in any

XML document: Sample Plugin: Add CALS Support for any XML Document.

Simple Table Model Layout

When choosing a Simple table model from the Insert Table dialog box, you only have access to configure a

few properties. For example, you can choose the number of rows and columns, specify values for frames, and

https://github.com/oxygenxml/web-author-sample-plugins/blob/master/web-author-CALS-table-plugin/README.md

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 720

choose from a few types of properties for the column width. The layout of this type of table is very simple, as

the name suggests.

Figure 202. DITA Simple Table

Choice Table Model Layout

A Choice table model is used within a <step> element in a DITA Task document to describe a series of

optional choices that a user must make before proceeding. The <choicetable> element is a useful device for

documenting options within a single step of a task. You can insert Choice tables in DITA Task documents

either by selecting choicetable from the Content Completion Assistant (on page 3295) (within a <step>

element) or by using the Insert Table action on the toolbar or from the contextual menu). The options and

layout of a Choice table is similar to the Simple table model.

Figure 203. DITA Choice Table

Properties Table Model Layout

A Properties table model is used within a <refbody> element in a DITA Reference document to describe a

property (for example, its type, value, and description). You can insert Properties tables in DITA Reference

documents either by selecting properties(wizard) from the Content Completion Assistant (on page 3295)

(within a <refbody> element) or by using the Insert Table action on the toolbar (or from the contextual

menu) and selecting Properties for the Model. The layout of a Properties table is very simple. It allows for a

maximum of 3 columns (typically for property type, value, and description) and the only options available are

for whether or not you want a header row and for specifying frames (borders).

Figure 204. DITA Properties Table

Table Validation in DITA

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. When

you validate a DITA map (on page 3296) with the Validate and Check for Completeness action, if the

Report table layout problems option (on page 3000) is selected in the DITA Map Completeness Check dialog

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 721

box, table layout problems will be reported in the validation results. The types of errors that may be reported

for DITA table layout problems include:

CALS Tables

• A row has fewer cells than the number of columns detected from the table @cols attribute.

• A row has more cells than the number of columns detected from the table @cols attribute.

• A cell has a vertical span greater than the available rows count.

• The number of <colspecs> is different than the number of columns detected from the table

@cols attribute.

• The number of columns detected from the table @cols attribute is different than the

number of columns detected in the table structure.

• The value of the @cols, @rowsep, or @colsep attributes are not numeric.

• The @namest, @nameend, or @colname attributes point to an incorrect column name.

Simple or Choice Tables

A row has fewer cells than the number of table columns.

Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the Table

Properties (Ctrl + T (Command + T on macOS)) action from the toolbar or the Table submenu of the

contextual menu (or DITA menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that

are available depend on the context and location within the table where the action was invoked.

Note:

Some properties allow the following special values, depending on the context and the current

properties or values:

• <not set> - Use this value if you want to remove a property.

• <preserve> - If you select multiple elements that have the same property set to different values,

you can choose this value to keep the values that are already set. In some cases it can also be

used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.

• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at

the bottom of the tab tells you how many rows will be affected.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 722

• Column tab - The options in this tab apply to the current column or selection of multiple columns. A

message at the bottom of the tab tells you how many columns will be affected.

• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the

bottom of the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Figure 205. Table Properties Dialog Box with Cell Tab Selected (DITA CALS Table Model)

The options in the four tabs include the following:

Horizontal alignment (Available in the Table, Column, and Cell tabs)

Specifies the horizontal alignment of text within the current table/column/cell or selection of

multiple columns/cells (@align attribute). The allowed values are as follows:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width.

Note:

The justify value cannot be rendered in Author mode, so you will only see it in

the output.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 723

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Vertical alignment (Available in the Row and Cell tabs)

Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/

cells (@valign attribute). The allowed values are as follows:

• top - Aligns the text at the top of the cell.

• middle - Aligns the text in a vertically centered position.

• bottom - Aligns the text at the bottom of the cell.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Column separator (Available in the Table, Column, and Cell tabs)

Specifies whether or not to include column separators (borders/grid lines) in the form of the

@colsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

Row separator (Available in all four tabs)

Specifies whether or not to include row separators (borders/grid lines) in the form of the @rowsep

attribute. The allowed values are: 0 (no separator) and 1 (include separators).

Frame (Available only in the Table tab)

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 724

Edit Table Properties for a Simple, Choice, or Properties Table Model

For a Simple, Choice, Properties table model, the Table properties dialog box only allows you to edit a few

options.

Table tab

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a

border should appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of

attributes specified locally are preserved. You can choose this option to

override this behavior and pull the value of this particular attribute from

the @conref target. For more information, see https://www.oxygenxml.com/

dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Row tab (not available for Properties tables)

Row type

Allows you change the row to a body or header type of row.

Related Information:

Adding Tables in DITA Topics (on page 3042)

Editing Tables in Author Mode (on page 698)

Adding Tables in XHTML Documents

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in an XHTML

document. This action opens the Insert Table dialog box.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 725

Figure 206. Insert Table Dialog Box in XHTML

The dialog box allows you to configure the following options:

Caption

If this checkbox is selected, you can specify a title (caption) for your table in the adjacent text

box.

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Generate table footer

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

Column widths

Allows you to specify the type of properties for column widths (@width attribute). You can choose

one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @width attribute (in a <col> element) with the

values listed as the number of shares followed by an asterisk. The value of the shares

is totaled and rendered as a percent. For example, width="1* 2* 3*" causes widths of

16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width

proportions of the other columns are maintained. If you change the width by dragging

a column in Author mode, the values of the @width attribute are automatically changed

accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value

of the @width attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width.

Entering content into a cell changes the rendered width dynamically. If you change the

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 726

width by dragging a column in Author mode, a dialog box will be displayed that asks you if

you want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you

can change the units in the section above the table or in Text mode. In addition to the

standard pixel, percentage, and relative values, this attribute also allows the special form

“0*” (zero asterisk), which means that the width of each column in the group should be

the minimum width necessary to hold the contents.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. There are a variety of allowed values, as specified in HTML specifications.

Alignment

Specifies the alignment of the text within the table (@align attribute). The allowed values are:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width. Note that this value cannot be

rendered in Author mode, so you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

Note:

The options in the Insert Table dialog box for XHTML documents are persistent, so changes made in

one session will carry over to another.

When you click Insert, an HTML style of table is inserted into your XHTML document at the current cursor

position.

When you insert an HTML table, you see a link for setting the <colspecs> (column specifications) of your table.

Click the link to open the controls that allow you to adjust various column properties. Although they appear as

part of the Author mode (on page 364), the colspecs link and its controls will not appear in your output. They

are just there to make it easier to adjust how the columns of your table are formatted.

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual

menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be

used to fine-tune the formatting of your tables by using the Attributes view (on page 641) (Window > Show

View > Attributes). Also, remember that underneath the visual representation, the table is really just XML. If

necessary, you can edit the XML directly by switching to Text mode (on page 363).

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 727

XHTML Table Layout

When you insert a table in an XHTML document, an HTML type of table is added. The layout of an XHTML

table includes a colspecs section that allows you to easily configure some properties. For example, you can

change the value of column widths (@width attribute) or the text alignment (@align attribute). Although they

appear as part of the Author mode (on page 364), the colspecs link and its controls will not appear in your

output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 207. Table Layout in XHTML Documents

Table Validation in XHTML

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. The

types of errors that may be reported for XHTML table layout problems include:

HTML Tables

• A row has fewer cells than the number of table columns.

• The value of the @colspan, @rowspan, or @span attributes are not numeric.

• A cell has a vertical span greater than the available rows count.

Adding Tables in TEI Documents

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a TEI

document. This action opens the Insert Table dialog box.

Figure 208. Insert Table Dialog Box in TEI

The dialog box allows you to configure the following options:

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 728

Head

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Note:

The options in the Insert Table dialog box for TEI documents are persistent, so changes made in one

session will carry over to another.

When you click Insert, a simple table is inserted into your TEI document at the current cursor position.

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual

menu) to add or remove cells, rows, or columns. Additional attributes can be used to fine-tune the formatting

of your tables by using the Attributes view (on page 641) (Window > Show View > Attributes). Also,

remember that underneath the visual representation, the table is really just XML. If necessary, you can edit the

XML directly by switching to Text mode (on page 363).

Adding Tables in JATS Documents

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a

JATS document. This action inserts a simple HTML-type table into your document at the current cursor

position. Once inserted, you can edit the structure of the table using the table buttons on the toolbar (or in

the contextual menu). For example you can add or remove cells, rows, and columns, or split or join cells.

Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on

page 641) (Window > Show View > Attributes).

Also, remember that underneath the visual representation, the table is really just XML. If necessary, you can

edit the XML directly by switching to Text mode (on page 363).

Sorting Content in Tables and List Items

Oxygen XML Editor offers support for sorting the content of tables and list items of ordered and unordered

lists.

Sorting a Table

To sort rows in a table, select the entire table (or specific rows) and use the Sort action from the main

toolbar or the contextual menu. This opens the Sort dialog box.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 729

Figure 209. Sort Dialog Box

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected

depending on whether you sort an entire table or only a selection of its rows.

Note:

When you invoke the sorting operation over an entire table, the Selected rows option is disabled.

The Criteria section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by

the following:

• A name, which is collected from the column heading.

• The type of the information that is sorted. You can choose between the following:

◦ Text - Alphanumeric characters.

◦ Numeric - Regular integer or floating point numbers are accepted.

◦ Date - Default date and time formats from the local OS are accepted (such as short, medium,

long, full, xs:date, and xs:dateTime).

• The sorting direction (either ascending or descending).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting

operation is invoked.

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation.

If you want to revert to the initial order of your content, press Ctrl + Z (Command + Z on macOS) on your

keyboard.

Note:

The sorting support takes the value of the @xml:lang attribute into account and sorts the content in a

natural order.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 730

Sorting a Selection of Rows

To sort a selection of rows in a table, select the rows that you want to sort and either right-click the selection

and choose Sort, or click Sort on the main toolbar. This opens the Sort dialog box.

Figure 210. Sort Selected Rows

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected

depending on whether you sort an entire table or only a selection of its rows.

The Sort dialog box also allows you to apply the sorting operation to the entire table, using the All rows option.

The Criteria section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by

the following:

• A name, which is collected from the column heading.

• The type of the information that is sorted. You can choose between the following:

◦ Text - Alphanumeric characters.

◦ Numeric - Regular integer or floating point numbers are accepted.

◦ Date - Default date and time formats from the local OS are accepted (such as short, medium,

long, full, xs:date, and xs:dateTime).

• The sorting direction (either ascending or descending).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting

operation is invoked.

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation.

If you want to revert to the initial order of your content, press Ctrl + Z (Command + Z on macOS) on your

keyboard.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 731

Note:

The sorting support takes the value of the @xml:lang attribute into account and sorts the content in a

natural order.

Sort Using Multiple Criteria

You can also sort an entire table or a selection of its rows based on multiple sorting criteria. To do so, select

the rest of boxes in the Criteria section of the Sort dialog box, configure the applicable items, and click OK to

complete the sorting operation.

Figure 211. Sorting Based on Multiple Criteria

Sorting a Table that Contains Merged Cells

If a table contains cells that span over multiple rows, you can not perform the sorting operation over the entire

table. Still, the sorting mechanism works over a selection of rows that do not contain rowspans.

Note:

For this type of table, the Sort dialog box keeps the All rows option disabled even if you perform the

sorting operation over a selection of rows.

Sorting List Items

A sorting operation can be performed on various types of lists and list items. The types of lists that can be

sorted in Oxygen XML Editor depend on the framework (document type), but examples of the types that can

be sorted include:

• Ordered list (DITA, DocBook, XHTML, TEI)

• Unordered list (DITA, DocBook, XHTML, TEI)

• Definition list (DITA)

• Variable list (DocBook)

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 732

• Parameter list (DITA)

• Simple list (DITA)

• Required conditions (DITA Machinery Task)

• Supplies list (DITA Machinery Task)

• Spare parts list (DITA Machinery Task)

• Safety conditions (DITA Machinery Task)

The sorting mechanism works on an entire list or on a selection of list items. To sort items in a list, select the

items or list and use the Sort action from the main toolbar or the contextual menu. This opens the Sort

dialog box.

Figure 212. Sorting List Items

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected

depending on whether you sort an entire list or only a selection of its items.

Note:

When you invoke the sorting operation over an entire list, the Selected rows option is disabled.

The Criteria section specifies the sorting criteria, defined by the following:

• The name of the type of item being sorted.

• The type of the information that is sorted. You can choose between the following:

◦ Text - Alphanumeric characters.

◦ Numeric - Regular integer or floating point numbers are accepted.

◦ Date - Default date and time formats from the local OS are accepted (such as short, medium,

long, full, xs:date, and xs:dateTime).

• The sorting direction (either ascending or descending).

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation.

If you want to revert to the initial order of your content, press Ctrl + Z (Command + Z on macOS) on your

keyboard.

Oxygen XML Editor 27.1 | 8 - Editing Supported Document Types | 733

Note:

The sorting support takes the value of the @xml:lang attribute into account and sorts the content in a

natural order.

Inserting Images

To insert an image in a document while editing in Author mode, use one of the following methods:

• Click the Insert Image action from the toolbar. This opens a dialog box that allows you to choose

the image file you want to insert and configure some properties. Oxygen XML Editor tries to reference

the image with a path that is relative to that of the document you are currently editing. For example, if

you want to add the file:/C:/project/xml/dir/img1.jpg image into the file:/C:/project/xml/doc1.xml

document, Oxygen XML Editor inserts a reference to dir/img1.jpg. This is useful when multiple users

work on a common project and they have it stored in multiple locations.

Note:

The Insert Image action is available for the following document types: DITA, DocBook, TEI,

XHTML, JATS.

• Drag an image from other application and drop it in the Author editing mode. If it is an image file, it

is inserted as a reference to the image file. For example, in a DITA topic the path of the image file is

inserted as the value of the @href attribute in an 

Long Descriptions of Images

For complex images, when a short text equivalent does not suffice to adequately convey the function or role of

an image, provide additional information in a file designated by the <longdescref> element.

<image href="puffin.jpg">

 <alt>Puffin figure</alt>

 <longdescref href="http://www.example.org/birds/puffin.html"

 scope="external"

 format="html"/>

</image>

Related Information:

Darwin Information Typing Architecture (DITA) Specification 

 <area>

 <shape>circle</shape>

 <coords>172, 265, 14</coords>

 <xref href="parts/bushings.dita#bushings_topic/bushings"

 format="dita">Bushings</xref>

 </area>

 <area>

 <shape>circle</shape>

 <coords>324, 210, 14</coords>

 <xref href="parts/ports.dita#ports_topic/sucction_port" format="dita"

 >Suction Port</xref>

 </area>

</imagemap>

Related Information:

Darwin Information Typing Architecture (DITA) Specification <imagemap> element

Accessible Tables

Accessible HTML tables need markup that indicates header cells and data cells and defines their relationship.

Header cells must be marked with <th>, and data cells with <td>, to make tables accessible. For more complex

tables, explicit associations may be needed using @scope, @id, and @headers attributes.

When you implement the table, it is best to use the <table> element (CALS table or OASIS Table Exchange

Model). The <table> element includes all that you need to make a fully accessible table.

Related Information:

Darwin Information Typing Architecture (DITA) Specification <table> element

Table with Header Cells in the Top Row Only

For this type of table, you have to embed the table rows in the <thead> element.

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/table.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/table.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/table.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1646

Table 39. Example: Oxygen Events

Event Date Location

Evolution of TC 2018 May 31 - June 1, 2018 Sofia, Bulgaria

Markup UK June 9 - 10, 2018 London, United Kingdom

Balisage 2018 - The Markup Con

ference

July 31 - August 3, 2018 Rockville, Maryland, USA

<table colsep="1" rowsep="1" frame="all">

 <title>

 Oxygen Events

 </title>

 <tgroup cols="3">

 <colspec colname="COLSPEC0" colwidth="1*"/>

 <colspec colname="COLSPEC1" colwidth="1.1*"/>

 <colspec colname="newCol3" colwidth="1*"/>

 <thead>

 <row>

 <entry colname="COLSPEC0" valign="top">Event</entry>

 <entry colname="COLSPEC1" valign="top">Date</entry>

 <entry>Location</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>Evolution of TC 2018</entry>

 <entry>May 31 - June 1, 2018</entry>

 <entry>Sofia, Bulgaria</entry>

 </row>

 <row>

 <entry>Markup UK</entry>

 <entry>June 9 - 10, 2018</entry>

 <entry>London, United Kingdom</entry>

 </row>

 <row>

 <entry>Balisage 2018 - The Markup Conference</entry>

 <entry>July 31 - August 3, 2018</entry>

 <entry>Rockville, Maryland, USA</entry>

 </row>

 </tbody>

 </tgroup>

</table>

Oxygen XML Editor 27.1 | 11 - Publishing | 1647

Table with Header Cells in the First Column Only

For this type of table, you have to set the rowheader="firstcol" attribute on the <table> element to identify the

header column.

Table 40. Example: Oxygen Events

Event
Evolution of TC 2018 Markup UK Balisage 2018 - The

Markup Conference

Date May 31 - June 1, 2018 June 9 - 10, 2018 July 31 - August 3, 2018

Location Sofia, Bulgaria London, United Kingdom Rockville, Maryland, USA

<table rowheader="firstcol" colsep="1" rowsep="1" frame="all">

 <title>

 Oxygen Events

 </title>

 <tgroup cols="4">

 <colspec colname="COLSPEC0" colwidth="1*"/>

 <colspec colname="COLSPEC1" colwidth="1.1*"/>

 <colspec colname="newCol3" colwidth="1*"/>

 <colspec colname="newCol4" colwidth="1*"/>

 <tbody>

 <row>

 <entry>Event</entry>

 <entry>Evolution of TC 2018</entry>

 <entry>Markup UK</entry>

 <entry>Balisage 2018 - The Markup Conference</entry>

 </row>

 <row>

 <entry>Date</entry>

 <entry>May 31 - June 1, 2018</entry>

 <entry>June 9 - 10, 2018</entry>

 <entry>July 31 - August 3, 2018</entry>

 </row>

 <row>

 <entry>Location</entry>

 <entry>Sofia, Bulgaria</entry>

 <entry>London, United Kingdom</entry>

 <entry>Rockville, Maryland, USA</entry>

 </row>

 </tbody>

Oxygen XML Editor 27.1 | 11 - Publishing | 1648

 </tgroup>

</table>

Table with Header Cells in the Top Row and First Column

For this type of table, you can use <thead> to identify header rows and @rowheader to identify a header column.

Table 41. Example: Bus Timetable

Mon

day

Tues

day

Wednes

day

Thurs

day
Friday

09:00 - 11:00 Closed Open Open Closed Closed

11:00 - 13:00 Open Open Closed Closed Closed

13:00 - 15:00 Open Open Open Closed Closed

15:00 - 17:00 Closed Closed Closed Open Open

<table id="table_dqk_n24_vdb" rowheader="firstcol" colsep="1" rowsep="1" frame="all">

 <title>Example: Bus Timetable</title>

 <tgroup cols="6">

 <colspec colnum="1" colname="col1"/>

 <colspec colnum="2" colname="col2"/>

 <colspec colnum="3" colname="col3"/>

 <colspec colnum="4" colname="col4"/>

 <colspec colnum="5" colname="col5"/>

 <colspec colnum="6" colname="col6"/>

 <thead>

 <row>

 <entry/>

 <entry>Monday</entry>

 <entry>Tuesday</entry>

 <entry>Wednesday</entry>

 <entry>Thursday</entry>

 <entry>Friday</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>09:00 - 11:00</entry>

 <entry>Closed</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Closed</entry>

Oxygen XML Editor 27.1 | 11 - Publishing | 1649

 <entry>Closed</entry>

 </row>

 <row>

 <entry>11:00 - 13:00</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 </row>

 <row>

 <entry>13:00 - 15:00</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 </row>

 <row>

 <entry>15:00 - 17:00</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 </row>

 </tbody>

 </tgroup>

</table>

WebHelp Responsive VPAT Accessibility Conformance Report

International Edition

VPAT® Version 2.5 – November 2023

Product Name/Version

Oxygen XML WebHelp Responsive

Product Description

Oxygen XML WebHelp Responsive enables you to publish DITA content on the web and present

it in a user-friendly interface that is easy to navigate. You can design your WebHelp Responsive

output to be available on desktop systems or various mobile devices. With Oxygen XML

WebHelp Responsive, your published content is accessible, interactive, and convenient.

Oxygen XML Editor 27.1 | 11 - Publishing | 1650

Date

February 2025

Contact Information

support@oxygenxml.com

Notes

Oxygen XML WebHelp Responsive has been designed and enhanced to adhere to the U.S.

Government Section 508 accessibility standards and the Web Content Accessibility Guidelines

(WCAG). For details, see WebHelp Responsive Accessibility (on page 1644).

Evaluation Methods Used:

The following applications were used for testing Oxygen XML WebHelp Responsive:

• Desktop browsers: Chrome, Firefox, Safari, Edge.

• Assistive technologies: NVDA, VoiceOver, JAWS, Microsoft Narrator.

Applicable Standards/Guidelines

This report covers the degree of conformance for the following accessibility standards/guidelines:

Standard/Guideline Included In Report

Web Content Accessibility Guidelines 2.0
Level A - Yes

Level AA - Yes

Level AAA - No

Web Content Accessibility Guidelines 2.1
Level A - Yes

Level AA - Yes

Level AAA - No

Web Content Accessibility Guidelines 2.2 Level A - Yes

Level AA - Yes

Level AAA - No

Revised Section 508 standards published January 18, 2017 and corrected January

22, 2018

Yes

EN 301 549 Accessibility requirements for ICT products and services - V3.1.1

(2019-11) AND EN 301 549 Accessibility requirements for ICT products and services

- V3.2.1 (2021-03)

No

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
http://www.w3.org/TR/2008/REC-WCAG20-20081211
https://www.w3.org/TR/WCAG21
https://www.w3.org/TR/WCAG22/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.01.01_60/en_301549v030101p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.01.01_60/en_301549v030101p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_60/en_301549v030201p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_60/en_301549v030201p.pdf

Oxygen XML Editor 27.1 | 11 - Publishing | 1651

Terms

The terms used in the Conformance Level information are defined as follows:

• Supports: The functionality of the product has at least one method that meets the criterion without

known defects or meets with equivalent facilitation.

• Partially Supports: Some functionality of the product does not meet the criterion.

• Does Not Support: The majority of product functionality does not meet the criterion.

• Not Applicable: The criterion is not relevant to the product.

• Not Evaluated: The product has not been evaluated against the criterion. This can only be used in

WCAG Level AAA criteria.

WCAG 2.x Report

Tables 1 and 2 also document conformance with:

• Revised Section 508: Chapter 5 – 501.1 Scope, 504.2 Content Creation or Editing, and Chapter 6 –

602.3 Electronic Support Documentation.

Note:

When reporting on conformance with the WCAG 2.x Success Criteria, they are scoped for full pages,

complete processes, and accessibility-supported ways of using technology as documented in

theWCAG 2.0 Conformance Requirements.

Table 1: Success Criteria, Level A

Criteria Conformance Level Remarks and Explanations

1.1.1 Non-text Content (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Text alternatives are provided for

many instances of non-text content,

with exceptions that include perma

links for subtopics and sections.

1.2.1 Audio-only and Video-only (Prere

corded) (Level A)

Also applies to:

Revised Section 508

Supports The authors of the input DITA docu

ment are responsible for providing a

transcript of the media content in the

document.

https://www.w3.org/TR/WCAG20/#conformance-reqs
http://www.w3.org/TR/WCAG20/#text-equiv-all
http://www.w3.org/TR/WCAG20/#media-equiv-av-only-alt
http://www.w3.org/TR/WCAG20/#media-equiv-av-only-alt

Oxygen XML Editor 27.1 | 11 - Publishing | 1652

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

1.2.2 Captions (Prerecorded) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not provide prere

corded media that requires captions.

1.2.3 Audio Description or Media Alterna

tive (Prerecorded) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
The authors of the input DITA docu

ment are responsible for providing an

alternative for time-based media or

audio description of the prerecorded

video content in the document.

See: G58: Placing a link to the alterna

tive for time-based media immediately

next to the non-text content

1.3.1 Info and Relationships (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports
Information, structure, and relation

ships conveyed through presentation

can be programmatically determined

or are available in text, with excep

tions that include:

• Some landmarks are not

marked with the corresponding

role or do not have an associat

ed label.

• Some link groups are not struc

tured using lists or are not

marked as navigation regions.

The authors of the input DITA docu

ment are responsible for:

http://www.w3.org/TR/WCAG20/#media-equiv-captions
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc
https://www.w3.org/TR/WCAG20-TECHS/G58.html
https://www.w3.org/TR/WCAG20-TECHS/G58.html
https://www.w3.org/TR/WCAG20-TECHS/G58.html
http://www.w3.org/TR/WCAG20/#content-structure-separation-programmatic

Oxygen XML Editor 27.1 | 11 - Publishing | 1653

Criteria Conformance Level Remarks and Explanations

• Using semantic elements to

mark up structure.

• Using semantic markup to

mark emphasized or special

text.

• Using caption elements to as

sociate data table captions

with data tables.

1.3.2 Meaningful Sequence (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
The product presents content in a

meaningful sequence.

Authors should use Unicode right-to-

left mark (RLM) or left-to-right mark

(LRM) to mix text direction inline.

1.3.3 Sensory Characteristics (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Authors should ensure that items are

referenced in the content in ways that

do not depend on sensory perception.

1.4.1 Use of Color (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports (Cobalt template) Color is not used

as the only visual means of convey

ing information, indicating an action,

prompting a response, or distinguish

ing a visual element.

1.4.2 Audio Control (Level A)

Also applies to:

Supports There is no sound that plays automat

ically.

http://www.w3.org/TR/WCAG20/#content-structure-separation-sequence
http://www.w3.org/TR/WCAG20/#content-structure-separation-understanding
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-without-color
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-dis-audio

Oxygen XML Editor 27.1 | 11 - Publishing | 1654

Criteria Conformance Level Remarks and Explanations

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

2.1.1 Keyboard (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Most of the content is operable

through a keyboard interface, with ex

ceptions that include:

• The top-level links in the main

page accordion cannot be ac

cessed.

• The facets component does

not have full keyboard support.

2.1.2 No Keyboard Trap (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
The product does not contain content

that traps the keyboard focus.

2.1.4 Character Key Shortcuts (Level A

2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The product does not include charac

ter key shortcuts.

2.2.1 Timing Adjustable (Level A)

Also applies to:

Revised Section 508

Supports The product does not include time lim

its.

http://www.w3.org/TR/WCAG20/#keyboard-operation-keyboard-operable
http://www.w3.org/TR/WCAG20/#keyboard-operation-trapping
https://www.w3.org/TR/WCAG21/#character-key-shortcuts
http://www.w3.org/TR/WCAG20/#time-limits-required-behaviors

Oxygen XML Editor 27.1 | 11 - Publishing | 1655

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

2.2.2 Pause, Stop, Hide (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not include ele

ments that move, blink, scroll, or au

to-update.

2.3.1 Three Flashes or Below Threshold

(Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not contain flashing

content.

2.4.1 Bypass Blocks (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Supports Each page contains a link at the top

that goes directly to the main content

area. Each page contains ARIA land

marks that identify the available re

gions.

2.4.2 Page Titled (Level A)

Also applies to:

Revised Section 508

Supports Each page contains a non-empty <ti

tle> element in the <head> section.

http://www.w3.org/TR/WCAG20/#time-limits-pause
http://www.w3.org/TR/WCAG20/#seizure-does-not-violate
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-skip
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-title

Oxygen XML Editor 27.1 | 11 - Publishing | 1656

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

2.4.3 Focus Order (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Focusable components receive focus

in an order that preserves meaning

and operability.

2.4.4 Link Purpose (In Context) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
The purpose of each link can be deter

mined from the link text alone or from

the link text together with its program

matically-determined link context.

The authors can create hypertext links

using text that describes the purpose

of the hypertext.

There is no control that allows the

user to choose between short or long

link text (G189 / SCR30).

2.5.1 Pointer Gestures (Level A 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The WebHelp Responsive output does

not rely on path-based or multipoint

gestures and does not provide con

trols that require complex gestures.

2.5.2 Pointer Cancellation (Level A 2.1

only)

Also applies to:

Revised Section 508 – Does not apply

Supports The product has operations that are

activated on the pointer up event.

2.5.3 Label in Name (Level A 2.1 only)
Supports The names of the user interface com

ponents contain the text that is pre

sented visually.

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-focus-order
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-refs
https://www.w3.org/TR/WCAG21/#pointer-gestures
https://www.w3.org/TR/WCAG21/#pointer-cancellation
https://www.w3.org/TR/WCAG21/#label-in-name

Oxygen XML Editor 27.1 | 11 - Publishing | 1657

Criteria Conformance Level Remarks and Explanations

Also applies to:

Revised Section 508 – Does not apply

2.5.4 Motion Actuation (Level A 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The product does not contain func

tionality that can be operated by de

vice or user motion.

3.1.1 Language of Page (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The web pages indicate the language

of the content when the content lan

guage has been specified by authors.

3.2.1 On Focus (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports No changes of context occur when

any component receives focus.

3.2.2 On Input (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Changing the setting of any user inter

face component does not automati

cally cause a change of context.

3.3.1 Error Identification (Level A)

Also applies to:

Partially Supports If a search operation is performed

leaving the search input empty, an

error message is automatically dis

https://www.w3.org/TR/WCAG21/#motion-actuation
http://www.w3.org/TR/WCAG20/#meaning-doc-lang-id
http://www.w3.org/TR/WCAG20/#consistent-behavior-receive-focus
http://www.w3.org/TR/WCAG20/#consistent-behavior-unpredictable-change
http://www.w3.org/TR/WCAG20/#minimize-error-identified

Oxygen XML Editor 27.1 | 11 - Publishing | 1658

Criteria Conformance Level Remarks and Explanations

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

played to the user, but no aria-invalid

information is provided.

3.3.2 Labels or Instructions (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The search input does not have a vis

ible label specified using a label ele

ment.

4.1.1 Parsing (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Several HTML validation errors are re

ported by the W3C validator.

4.1.2 Name, Role, Value (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The Home link from the breadcrumb

does not have an associated aria-la

bel.

Table 2: Success Criteria, Level AA

Criteria Conformance Level Remarks and Explanations

1.2.4 Captions (Live) (Level AA)
Supports No live audio content is used.

http://www.w3.org/TR/WCAG20/#minimize-error-cues
http://www.w3.org/TR/WCAG20/#ensure-compat-parses
http://www.w3.org/TR/WCAG20/#ensure-compat-rsv
http://www.w3.org/TR/WCAG20/#media-equiv-real-time-captions

Oxygen XML Editor 27.1 | 11 - Publishing | 1659

Criteria Conformance Level Remarks and Explanations

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

1.2.5 Audio Description (Prerecorded)

(Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The authors of the input DITA docu

ment can ensure that the output docu

ment meets this criterion.

1.3.4 Orientation (Level AA 2.1 and 2.2)

Also applies to:

Revised Section 508 – Does not apply

Supports Content does not restrict its view and

operation to a single display orienta

tion.

1.3.5 Identify Input Purpose (Level AA

2.1 and 2.2)

Also applies to:

Revised Section 508 – Does not apply

Supports The content does not contain input

fields that collect information about

the user.

1.4.3 Contrast (Minimum) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The missing words element from the

search results page does not have the

contrast ratio 4.5:1.

http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc-only
https://www.w3.org/TR/WCAG21/#orientation
https://www.w3.org/TR/WCAG21/#identify-input-purpose
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-contrast

Oxygen XML Editor 27.1 | 11 - Publishing | 1660

Criteria Conformance Level Remarks and Explanations

1.4.4 Resize text (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports
Text can be resized up to 200 percent

without loss of content or functionali

ty and without using assistive technol

ogy.

Some text content has dimensions

specified in pixels rather that em

units.

1.4.5 Images of Text (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The output does not contain images

of text. The authors of the input DITA

content can ensure that this criterion

is met.

1.4.10 Reflow (Level AA 2.1 and 2.2)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports
The majority of the content can be

presented without loss of information

or functionality, and without requiring

scrolling in two dimensions.

Long URLs determine the page to dis

play the horizontal scroll bar.

1.4.11 Non-text Contrast (Level AA 2.1

and 2.2)

Also applies to:

Revised Section 508 – Does not apply

Supports
(Cobalt template) There is no contrast

issue regarding user interface compo

nents or graphical objects.

1.4.12 Text Spacing (Level AA 2.1 and

2.2)

Also applies to:

Revised Section 508 – Does not apply

Supports There is no loss of content or func

tionality that occurs by setting line

height (line spacing), spacing follow

ing paragraphs, letter spacing, and

word spacing.

http://www.w3.org/TR/WCAG20/#visual-audio-contrast-scale
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-presentation
https://www.w3.org/TR/WCAG21/#reflow
https://www.w3.org/TR/WCAG21/#non-text-contrast
https://www.w3.org/TR/WCAG21/#non-text-contrast
https://www.w3.org/TR/WCAG21/#text-spacing

Oxygen XML Editor 27.1 | 11 - Publishing | 1661

Criteria Conformance Level Remarks and Explanations

1.4.13 Content on Hover or Focus (Level

AA 2.1 and 2.2)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports
Tooltips and submenus are not dis

missible.

Also, the tooltips are not hoverable.

2.4.5 Multiple Ways (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Supports
There is a search form provided that

will go to a page that contains the

search term and links to the corre

sponding page. Also, a table of con

tents is provided.

The authors of the input DITA docu

ment are responsible for providing

links to all pages from the home page

or providing links to navigate to relat

ed pages from the current page.

2.4.6 Headings and Labels (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports
Headings and labels describe the top

ic or purpose.

DITA authors can ensure that this cri

terion is met.

2.4.7 Focus Visible (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Placing focus on a focusable element

using the mouse doesn't render a vis

ible focus indicator. Also, the search

button does not have a visible focus

indicator.

2.4.11 Focus Not Obscured (Minimum)

(Level AA 2.2 only)

Supports Focused items are always visible even

if the page contains sticky elements.

https://www.w3.org/TR/WCAG21/#content-on-hover-or-focus
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-mult-loc
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-descriptive
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-focus-visible
https://www.w3.org/TR/WCAG22/#focus-not-obscured-minimum

Oxygen XML Editor 27.1 | 11 - Publishing | 1662

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

2.5.7 Dragging Movements (Level AA 2.2

only)

Revised Section 508 – Does not apply

Supports No user action relies on dragging.

2.5.8 Target Size (Minimum) (Level AA

2.2 only)

Revised Section 508 – Does not apply

Does Not Support
Links in the breadcrumb, publication

TOC, and topic TOC do not match the

24x24px minimum size.

Navigation buttons, print button, and

link to PDF button do not match the

24x24px minimun size.

3.1.2 Language of Parts (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports DITA authors can ensure that this cri

terion is met.

3.2.3 Consistent Navigation (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Supports Repeated components appear in the

same relative in each page.

3.2.4 Consistent Identification (Level AA)

Also applies to:

Revised Section 508

Partially Supports
The output uses labels, names, and

text alternatives consistently for items

that have the same functionality.

https://www.w3.org/TR/WCAG22/#dragging-movements
https://www.w3.org/TR/WCAG22/#target-size-minimum
http://www.w3.org/TR/WCAG20/#meaning-other-lang-id
http://www.w3.org/TR/WCAG20/#consistent-behavior-consistent-locations
http://www.w3.org/TR/WCAG20/#consistent-behavior-consistent-functionality

Oxygen XML Editor 27.1 | 11 - Publishing | 1663

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Text alternatives are provided for

many instances of non-text content,

with exceptions that include:

• Permalinks for subtopics and

sections.

• Enlarge images action.

The Home link from the breadcrumb

does not have an associated aria-la

bel.

3.3.3 Error Suggestion (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Does Not Support The Search input does not have the

aria-required information set and does

not contain a text description specify

ing that it is a required field.

3.3.4 Error Prevention (Legal, Financial,

Data) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The Web pages do not cause legal

commitments or financial transac

tions for the user to occur, that modify

or delete user-controllable data in data

storage systems, or that submit user

test responses.

3.3.8 Accessible Authentication (Mini

mum) (Level AA 2.2 only)

Revised Section 508 – Does not apply

Not Applicable

4.1.3 Status Messages(Level AA 2.1 and

2.2)

Also applies to:

Supports The pages do not contain status mes

sages as defined by this criterion.

http://www.w3.org/TR/WCAG20/#minimize-error-suggestions
http://www.w3.org/TR/WCAG20/#minimize-error-reversible
http://www.w3.org/TR/WCAG20/#minimize-error-reversible
https://www.w3.org/TR/WCAG22/#accessible-authentication-minimum
https://www.w3.org/TR/WCAG22/#accessible-authentication-minimum
https://www.w3.org/TR/WCAG21/#status-messages

Oxygen XML Editor 27.1 | 11 - Publishing | 1664

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

Table 3: Success Criteria, Level AAA

Criteria Conformance Level Remarks and Explanations

1.2.6 Sign Language (Prerecorded) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.7 Extended Audio Description (Prere

corded) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.8 Media Alternative (Prerecorded)

(Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.9 Audio-only (Live) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.3.6 Identify Purpose (Level AAA 2.1 and

2.2)

Revised Section 508 – Does not apply

Not Evaluated

1.4.6 Contrast Enhanced (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.7 Low or No Background Audio (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.8 Visual Presentation (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

http://www.w3.org/TR/WCAG20/#media-equiv-sign
http://www.w3.org/TR/WCAG20/#media-equiv-extended-ad
http://www.w3.org/TR/WCAG20/#media-equiv-extended-ad
http://www.w3.org/TR/WCAG20/#media-equiv-text-doc
http://www.w3.org/TR/WCAG20/#media-equiv-live-audio-only
https://www.w3.org/TR/WCAG21/#identify-purpose
https://www.w3.org/TR/WCAG21/#identify-purpose
http://www.w3.org/TR/WCAG20/#visual-audio-contrast7
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-noaudio
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-visual-presentation

Oxygen XML Editor 27.1 | 11 - Publishing | 1665

Criteria Conformance Level Remarks and Explanations

1.4.9 Images of Text (No Exception) Con

trol (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.1.3 Keyboard (No Exception) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.3 No Timing (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.4 Interruptions (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.5 Re-authenticating (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.6 Timeouts (Level AAA 2.1 and 2.2)

Revised Section 508 – Does not apply

Not Evaluated

2.3.2 Three Flashes (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.3.3 Animation from Interactions (Level

AAA 2.1 and 2.2)

Revised Section 508 – Does not apply

Not Evaluated

2.4.8 Location (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.4.9 Link Purpose (Link Only) (Level

AAA)

Not Evaluated

http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-images
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-images
http://www.w3.org/TR/WCAG20/#keyboard-operation-all-funcs
http://www.w3.org/TR/WCAG20/#time-limits-no-exceptions
http://www.w3.org/TR/WCAG20/#time-limits-postponed
http://www.w3.org/TR/WCAG20/#time-limits-server-timeout
https://www.w3.org/TR/WCAG21/#timeouts
http://www.w3.org/TR/WCAG20/#seizure-three-times
https://www.w3.org/TR/WCAG21/#animation-from-interactions
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-location
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-link

Oxygen XML Editor 27.1 | 11 - Publishing | 1666

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

2.4.10 Section Headings (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.4.12 Focus Not Obscured (Enhanced)

(Level AAA 2.2 only)

Revised Section 508 – Does not apply

Not Evaluated

2.4.13 Focus Appearance (Level AAA 2.2

only)

Revised Section 508 – Does not apply

Not Evaluated

2.5.5 Target Size (Level AAA 2.1 and 2.2)

Revised Section 508 – Does not apply

Not Evaluated

2.5.6 Concurrent Input Mechanisms (Lev

el AAA 2.1 and 2.2)

Revised Section 508 – Does not apply

Not Evaluated

3.1.3 Unusual Words (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.4 Abbreviations (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.5 Reading Level (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.6 Pronunciation (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.2.5 Change on Request (Level AAA)
Not Evaluated

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-headings
https://www.w3.org/TR/WCAG22/#focus-not-obscured-enhanced
https://www.w3.org/TR/WCAG22/#focus-appearance
https://www.w3.org/TR/WCAG21/#target-size
https://www.w3.org/TR/WCAG21/#concurrent-input-mechanisms
http://www.w3.org/TR/WCAG20/#meaning-idioms
http://www.w3.org/TR/WCAG20/#meaning-located
http://www.w3.org/TR/WCAG20/#meaning-supplements
http://www.w3.org/TR/WCAG20/#meaning-pronunciation
http://www.w3.org/TR/WCAG20/#consistent-behavior-no-extreme-changes-context

Oxygen XML Editor 27.1 | 11 - Publishing | 1667

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

3.3.5 Help (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.3.6 Error Prevention (All) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.3.9 Accessible Authentication (En

hanced) (Level AAA 2.2 only)

Revised Section 508 – Does not apply

Not Evaluated

Revised Section 508 Report

N/A

Chapter 3: Functional Performance Criteria (FPC)

Criteria Conformance Level Remarks and Explanations

302.1 Without Vision
Partially Supports Most of the content is accessible with

out vision with exceptions that in

clude:

• Some components do not have

text alternatives or labels.

• Some landmarks are not

marked with the corresponding

role or do not have an associat

ed label.

• Some link groups are not struc

tured using lists or are not

marked as navigation regions.

302.2 With Limited Vision Partially Supports
Most of the content is accessible with

limited vision with exceptions that in

clude:

http://www.w3.org/TR/WCAG20/#minimize-error-context-help
http://www.w3.org/TR/WCAG20/#minimize-error-reversible-all
https://www.w3.org/TR/WCAG22/#accessible-authentication-enhanced
https://www.w3.org/TR/WCAG22/#accessible-authentication-enhanced

Oxygen XML Editor 27.1 | 11 - Publishing | 1668

Criteria Conformance Level Remarks and Explanations

• Some components do not have

text alternatives or labels.

• Some landmarks are not

marked with the corresponding

role or do not have an associat

ed label.

• Some link groups are not struc

tured using lists or are not

marked as navigation regions.

302.3 Without Perception of Color
Supports (Cobalt template) Color is not used

as the only visual means of convey

ing information, indicating an action,

prompting a response, or distinguish

ing a visual element.

302.4 Without Hearing
Supports The authors can create content that

does not require hearing abilities for

use.

302.5 With Limited Hearing
Supports The authors can create content that

does not require hearing abilities for

use.

302.6 Without Speech
Supports The output does not require speech

for use.

302.7 With Limited Manipulation
Supports The WebHelp Responsive output does

not rely on path-based or multipoint

gestures and does not provide con

trols that require complex gestures.

302.8 With Limited Reach and Strength
Supports The WebHelp Responsive output does

not rely on path-based or multipoint

gestures and does not provide con

trols that require complex gestures.

302.9 With Limited Language, Cognitive,

and Learning Abilities

Supports The authors can create content that

can be used by users with limited lan

guage, cognitive, and learning abilities.

Chapter 4: Hardware

Notes: Not Applicable - Oxygen XML WebHelp Responsive is not a hardware product.

Oxygen XML Editor 27.1 | 11 - Publishing | 1669

Chapter 5: Software

Notes: Oxygen XML WebHelp Responsive is a web application, not a software product. However, the web

application includes authoring functionality, hence Chapter 5: Software 504 Authoring Tools applies to this

product.

501 General

Criteria Conformance Level Remarks and Explanations

501.1 Scope – Incorporation of WCAG 2.0

AA

See WCAG 2.x section

(on page 1651)

See information in WCAG section

502 Interoperability with Assistive Technology

Criteria Conformance Level Remarks and Explanations

502.2.1 User Control of Accessibility Fea

tures

Not Applicable The product is not platform software.

502.2.2 No Disruption of Accessibility Fea

tures

Supports The product does not disrupt platform

features that are defined in the plat

form documentation as accessibility

features.

502.3 Accessibility Services

Criteria Conformance Level Remarks and Explanations

502.3.1 Object Information Partially Supports The majority of object roles, state(s),

properties, boundary, name, and de

scription are programmatically deter

minable.

The Home link from the breadcrumb

does not have an associated aria-la

bel.

502.3.2 Modification of Object Information
Supports States and properties that can be set

by the user can be set programmati

cally.

502.3.3 Row, Column, and Headers
Supports The headers associated with the rows

or columns of a table can be program

matically determined.

Oxygen XML Editor 27.1 | 11 - Publishing | 1670

Criteria Conformance Level Remarks and Explanations

502.3.4 Values
Supports The current values of an object can be

programmatically determined.

502.3.5 Modification of Values
Supports

Values that can be set by the user are

capable of being set programmatical

ly.

502.3.6 Label Relationships
Partially Supports

Information, structure, and relation

ships conveyed through presentation

can be programmatically determined

or are available in text.

See WCAG 1.3.1 (on page 1652).

502.3.7 Hierarchical Relationships
Supports

The content is hierarchically struc

tured using language-specific ele

ments and their relationships can be

programmatically determined.

502.3.8 Text
Supports The content of text objects, text at

tributes, and the boundary of text ren

dered to the screen shall be program

matically determinable.

502.3.9 Modification of Text
Supports The editable text (search input) can be

set programmatically.

502.3.10 List of Actions
Not Applicable There are no custom actions available

that can be executed on the content.

502.3.11 Actions on Objects
Not Applicable

There are no custom actions available

that can be executed on the content.

502.3.12 Focus Cursor
Not Applicable The product is a web application and

is isolated from the underlying plat

form software (web browser).

502.3.13 Modification of Focus Cursor
Not Applicable The product is a web application and

is isolated from the underlying plat

form software (web browser).

502.3.14 Event Notification
Not Applicable

There are no automatic focus

changes, caret movement, selection

Oxygen XML Editor 27.1 | 11 - Publishing | 1671

Criteria Conformance Level Remarks and Explanations

changes, or added components in the

content.

502.4 Platform Accessibility Features
Not Applicable This product is not platform software.

503 Applications

Criteria Conformance Level Remarks and Explanations

503.2 User Preferences
Not Applicable This section does not apply to web ap

plications.

503.3 Alternative User Interfaces
Not Applicable The application does not provide an

alternative user interface that func

tions as assistive technology.

503.4 User Controls for Captions and Audio Description

Criteria Conformance Level Remarks and Explanations

503.4.1 Caption Controls
Not Applicable The product does not provide con

trols for volume adjustment.

503.4.2 Audio Description Controls
Not Applicable The product does not provide con

trols for program selection.

504 Authoring Tools

Criteria Conformance Level Remarks and Explanations

504.2 Content Creation or Editing (if not

authoring tool, enter “not applicable”)

Not Applicable

See the WCAG 2.x sec

tion (on page 1651)

The product is not an authoring tool.

See information in WCAG section

504.2.1 Preservation of Information Pro

vided for Accessibility in Format Conver

sion

Not Applicable The product is not an authoring tool.

504.2.2 PDF Export
Not Applicable The product is not an authoring tool.

504.3 Prompts
Not Applicable The product is not an authoring tool.

Oxygen XML Editor 27.1 | 11 - Publishing | 1672

Criteria Conformance Level Remarks and Explanations

504.4 Templates
Not Applicable The product is not an authoring tool.

Chapter 6: Support Documentation and Services

601.1 Scope

602 Support Documentation

Criteria Conformance Level Remarks and Explanations

602.2 Accessibility and Compatibility Fea

tures

Partially Supports The product documentation is dis

tributed in the WebHelp Responsive

format. See the Chapter 3 (on page

1667) and Chapter 5 (on page 1669)

sections.

602.3 Electronic Support Documentation See the WCAG 2.x sec

tion (on page 1651)

See information in the WCAG section.

602.4 Alternate Formats for Non-Electron

ic Support Documentation

Not Applicable Documentation is not provided in non-

electronic formats.

603 Support Services

Criteria Conformance Level Remarks and Explanations

603.2 Information on Accessibility and

Compatibility Features

Supports The support services cover the acces

sibility features.

603.3 Accommodation of Communication

Needs

Supports Support services are available by

phone or e-mail.

Legal Disclaimer

This report describes Oxygen XML WebHelp's ability to support the stated VPAT Standards/Guidelines,

subject to Syncro Soft's interpretation of the same. This accessibility report is provided for informational

purposes only, and the contents hereof are subject to change without notice. SYNCRO SOFT MAKES NO

WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. For more information regarding the accessibility

status, please contact us at sales@oxygenxml.com.

© 2019 Syncro Soft SRL. All rights reserved.

Oxygen XML Editor 27.1 | 11 - Publishing | 1673

Publishing Templates

An Oxygen Publishing Template defines all aspects of the layout and styles for output obtained from the

following transformation scenarios:

• WebHelp Responsive

• DITA Map PDF - based on HTML5 & CSS

It is a self-contained customization package stored as a ZIP archive or folder that can easily be shared with

others. It provides the primary method for customizing the output.

Tip:

You can start creating publishing templates by using the Oxygen Styles Basket. https://

styles.oxygenxml.com

Some possible customization methods include:

• Add additional template resources to customize the output (such as logos, Favicons, or CSS files).

• Extend the default processing by specifying one or more XSLT extension points.

• Specify one or more transformation parameters to customize the output.

• Customize various aspects of the output through simple CSS styling.

• For WebHelp Responsive output, change the layout of the main page or topic pages by customizing

which components will be displayed and where they will be positioned in the page.

The following graphics are possible sample structures for Oxygen Publishing Template packages:

Figure 501. Oxygen Publishing Template Package (WebHelp Responsive)

https://styles.oxygenxml.com
https://styles.oxygenxml.com

Oxygen XML Editor 27.1 | 11 - Publishing | 1674

Figure 502. Oxygen Publishing Template Package (PDF)

For information about creating and customizing publishing templates, and how to adjust the WebHelp and

PDF output through CSS styling and other customization methods, watch our Webinar: Creating Custom

Publishing Templates for WebHelp and PDF Output. The Webinar slides and sample project are also available

from that webpage.

Related Information:

How to Create a Publishing Template (on page 1713)

How to Edit a Packed Publishing Template (on page 1715)

How to Add a Publishing Template to the Publishing Templates Gallery (on page 1716)

How to Share a Publishing Template (on page 1858)

Publishing Templates Gallery

Oxygen XML Editor comes bundled with a variety of built-in templates. You can use one of them to publish

your documentation or as a starting point for a new publishing template.

Built-in Templates

There are two categories of templates, Tiles and Tree. You can see the built-in templates in the Templates tab

when editing a WebHelp Responsive transformation scenario in Oxygen XML Editor/Author. Each one also

includes an Online preview icon in the bottom-right corner that opens a webpage in your default browser

that provides a sample of how the main page will look when that particular template is used to generate the

output.

Tiles Templates

The main page in the WebHelp output presents a tile for each main topic (chapter) of the

documentation.

https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html
https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1675

Tree Templates

The main page in the WebHelp output presents a tree-like table of contents.

Built-in Templates Location

All built-in templates are stored in the following directory: DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/templates.

Custom Templates

You can use a built-in template as a starting point for creating your own custom template (on page 1853).

You can store all of your custom templates in a particular directory. Then, go to Options > Preferences > DITA

> Publishing and add your directory to the list, and all the templates stored in that directory will be displayed in

the preview pane in the transformation scenario's Template tab along with all the built-in templates.

Sharing Publishing Template

To share a publishing template with others, following these steps:

Oxygen XML Editor 27.1 | 11 - Publishing | 1676

1. Copy your template in a new folder.

2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.

3. Switch the option as the bottom of that preferences page to Project Options.

4. Share your project file (.xpr).

Publishing Template Package Contents for WebHelp Responsive
Customizations

An Oxygen Publishing Template package for WebHelp output must contain a template descriptor file and at

least one CSS file, and may contain other resources (such as graphics, XHTML files, XSLT files, etc.). All the

template resources can be stored in either a ZIP archive or in a folder. It is recommended to use a ZIP archive

because it is easier to share with others.

Template Descriptor File

Each publishing template includes a descriptor file that defines the meta-data associated with the template.

It is an XML file that defines all the resources included in a template (such as CSS files, images, JS files, and

transformation parameters).

The template descriptor file must have the .opt file extension and must be located in the template's root

folder.

A template descriptor might look like this:

<publishing-template>

 <name>Flowers</name>

 <webhelp>

 <tags>

 <tag>tree</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-tree.png"/>

 <!-- Resources (CSS, favicon, logo and others) -->

 <resources>

 <!-- Main CSS file -->

 <css file="flowers.css"/>

 <!-- Resources to copy to the output folder -->

 <fileset>

 <include name="resources/**/*"/>

 <exclude name="resources/**/.svn"/>

 <exclude name="resources/**/.git"/>

 </fileset>

Oxygen XML Editor 27.1 | 11 - Publishing | 1677

 </resources>

 <parameters>

 <parameter name="webhelp.show.main.page.tiles" value="no"/>

 <parameter name="webhelp.show.main.page.toc" value="yes"/>

 <parameter name="webhelp.top.menu.depth" value="3"/>

 </parameters>

 </webhelp>

</publishing-template>

Tip:

It is recommended to edit the template descriptor in Oxygen XML Editor/Author because it provides

content completion and validation support.

Template Name and Description

Each template descriptor file requires a <name> element. This information is displayed as the name of the

template in the transformation scenario dialog box.

Optionally, you can include a <description> and it displayed when the user hovers over the template in the

transformation scenario dialog box.

<publishing-template>

 <name>Lorem Ipsum</name>

 <description>Lorem ipsum dolor sit amet, consectetur adipiscing elit</description>

 ...

Template Author

Optionally, you can include author information in the descriptor file and it displayed when the user hovers over

the template in the transformation scenario dialog box. This information might be useful if users run into an

issue or have questions about a certain template.

If you include the <author> element, a <name> is required and optionally you can include <email>, <organization>,

and <organizationUrl> information.

<publishing-template>

 ...

 <author>

 <name>John Doe</name>

 <email>jdoe@example.com</email>

 <organization>ACME</organization>

 <organizationUrl>http://www.example.com/jdoe</organizationUrl>

Oxygen XML Editor 27.1 | 11 - Publishing | 1678

 </author>

 ...

Webhelp Element

The <webhelp> element contains various details that define the WebHelp Responsive output. It is a required

element if you intend on using a WebHelp Responsive transformation scenario. The elements that are allowed

in this <webhelp> section specify the template tags (on page 1678), template preview image (on page 1679),

resources (on page 1679) (such as CSS, JS, fonts, logos), transformation parameters (on page 1681), HTML

fragment extensions (on page 1683) (used to add fragments to placeholders), XSLT extensions (on page

1682), or HTML page layout files (on page 1692).

 <webhelp>

 <tags>

 ...

 </tags>

 <preview-image file="MyPreview.png"/>

 <resources>

 ...

 </resources>

 <html-page-layouts>

 ...

 </html-page-layouts>

 <parameters>

 ...

 </parameters>

 </webhelp>

Template Tags

The <tags> section provides meta information about the template (such as layout type or color theme). Each

tag is displayed at the top of the Templates tab window in the transformation scenario dialog box and they

help the user filter and find particular templates.

<publishing-template>

 ...

 <webhelp>

 <tags>

 <tag>tree</tag>

 <tag>dark</tag>

 </tags>

Oxygen XML Editor 27.1 | 11 - Publishing | 1679

Template Preview Image

The <preview-image> element is used to specify an image that will be displayed in the transformation scenario

dialog box. It provides a visual representation of the template to help the user select the right template. The

image dimensions should be 200 x 115 pixels and the supported image formats are: JPEG, PNG, or GIF.

You can also include an <online-preview-url> element to specify the URL of a published sample of

your template. This will display an Online preview icon in the bottom-right corner the image in the

transformation scenario dialog box and if the user clicks that icon, it will open the specified URL in their

default browser.

<publishing-template>

 ...

 <webhelp>

 ...

 <preview-image file="ashes/ashes-tree.png"/>

 <online-preview-url>https://www.example.com/samples/tiles/ashes</online-preview-url>

Template Resources

The <resources> section of the descriptor file specifies a set of resources (CSS, JS, fonts, logos, graphics, etc.)

that are used to customize various components in the generated output. These resources will be copied to the

output folder during the transformation process. At least one CSS file must be included, while the other types

of resources are optional.

Warning:

All paths set in the @file attribute must be relative.

This section is defined using the <resources> element and the types of resources that can be specified include:

• CSS files - One or more CSS files that will define the styles of all generated HTML pages. They are

referenced using the <css> element.

• Favicon - You can specify the path to an image for the favicon associated with your website. It is

referenced using the <favicon> element.

• Logo - You can specify the path to a logo image that will be displayed in the left side of the output

header. It is referenced using the <logo> element. Optionally, you can also specify:

◦ @target-url - Redirects the user to the specified URL if they click the logo in the output.

◦ @new-tab - Opens the target URL in a new browser tab.

◦ @alt - Provides an alternate text for the logo image.

• Additional Resources (graphics, JS, fonts, folders) - For other resources (such as images referenced

in CSS, JavaScript, fonts, entire folders, etc.) that need to be included in the output, you need to instruct

the transformation to include them in the output folder. You can specify one or more sets of additional

resources to be copied to the output folder by using the <fileset> element and you can use one or more

<include> and <exclude> elements. This semantic is similar to the ANT FileSet.

https://ant.apache.org/manual/Types/fileset.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1680

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 <css file="css/custom_styles.css"/>

 <css file="css/custom_fonts.css"/>

 <favicon file="images/favicon.png"/>

 <logo

 file="images/logo.png"

 target-url="http://www.example.com"

 alt="Alternate text for the logo image"

 new-tab="true"/>

 <js-amd-module file="js/template-main.js"/>

 <fileset>

 <include name="common/**/*"/>

 <include name="JS/**/*"/>

 <exclude name="**/*.svn"/>

 <exclude name="**/*.git"/>

 </fileset>

 </resources>

Note:

All relative paths specified in the descriptor file are relative to the template root folder.

The resources specified in the template descriptor are copied to the following output folder:

[WebHelp_OUTPUT_DIR]/oxygen-webhelp/template. The following graphic illustrates the mapping

between the template resources and the location where they will be copied to the output folder:

Oxygen XML Editor 27.1 | 11 - Publishing | 1681

Figure 503. Template Resources Mapping

Related Information:

How to Add a Favicon in WebHelp Systems (on page 1742)

Transformation Parameters

You can also set one or more WebHelp transformation parameters in the descriptor file.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter

 name="webhelp.show.main.page.toc"

 value="yes"/>

 <parameter

 name="webhelp.top.menu.depth"

 value="3"/>

 <parameter

 name="webhelp.fragment.welcome"

 value="html-fragment/webhelp.fragment.welcome.html"

 type="filePath"/>

 </parameters>

 </webhelp>

The following information can be specified in the <parameter> element:

Parameter name

The name of the parameter. It may be one of the WebHelp Responsive transformation

parameters (on page 1810) or a DITA-OT HTML-based output parameter.

http://www.dita-ot.org/dev/parameters/parameters-base-html.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1682

Note:

It is not recommended to specify an input/output parameter in the descriptor file (such

as the input Map, DITAVAL file, or temporary directory).

Attention:

JVM arguments like -Xmx cannot be specified as a transformation parameter.

Parameter Value

The value of the parameter. It should be a relative path to the template root folder for file paths

parameters.

Parameter Type

The type of the parameter: string or filepath. The string value is default.

After creating a publishing template (on page 1853) and adding it to the templates gallery (on page 1716),

when you select the template in the transformation scenario dialog box, the Parameters tab will automatically

be updated to include the parameters defined in the descriptor file. These parameters are displayed in italics.

XSLT Extension Points

The publishing templates can include one or more supported XSLT extension points (on page 1824). They

are helpful when you want to change the structure of the HTML pages that are primarily generated from XSLT

processing. They can be specified using the <xslt> element in the descriptor file using the following structure:

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.webhelp.xsl.dita2webhelp"

 file="xsl/customDita2webhelp.xsl"/>

 <extension

 id="com.oxygenxml.webhelp.xsl.createMainPage"

 file="xsl/customMainPage.xsl"/>

 </xslt>

For a full list of the supported extension points, see: XSLT-Import and XSLT-Parameter Extension Points (on

page 1824).

Oxygen XML Editor 27.1 | 11 - Publishing | 1683

Note:

You can read the value of a WebHelp transformation parameter from your XSLT extension stylesheets

by using the getParameter(param.name) function from the http://www.oxygenxml.com/functions

namespace.

HTML Fragment Placeholders

The HTML pages contain component placeholders that can be used to insert custom HTML fragments either

by specifying a well-formed XHTML fragment or referencing a path to a file that contains a well-formed

XHTML fragment (for details on how the file or fragment needs to be constructed, see How to Insert Custom

HTML Content (on page 1725)).

These fragments and their placeholder location are defined in the descriptor file using a <fragment> element

inside the <html-fragments> section. You can specify one or more HTML fragment extension points in the

descriptor file using the following structure:

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="html-fragments/webhelp_fragment_welcome.html"

 placeholder="webhelp.fragment.welcome"/>

 <fragment

 file="html-fragments/webhelp_fragment_footer.html"

 placeholder="webhelp.fragment.footer"/>

 </html-fragments>

Some of these placeholders are left empty in the default output configurations, but you can use them to insert

custom content.

Each placeholder has an associated parameter value in the transformation. Some of the placeholder

parameters are global and can be used in all type of pages (main page, topic page, search results page,

index terms page), while others are applicable for certain type of pages. The following diagram illustrates the

predefined placeholders that are global (can be used in any of the types of pages.

Oxygen XML Editor 27.1 | 11 - Publishing | 1684

Figure 504. Global Predefined Placeholders Diagram

1. Header (on page 1684)

2. After Header (on page 1684)

3. Before Body (on page 1684)

4. Before Logo and Title (on page 1685)

5. After Logo and Title (on page 1685)

6. Beforer Top Menu (on page 1685)

7. After Top Menu (on page 1685)

8. Before Search Input (on page 1685)

9. After Search Input (on page 1685)

10. Before Main Content (on page 1685)

11. After Main Content (on page 1685)

12. Footer (on page 1685)

13. After Body (on page 1685)

Global Placeholder Parameters

The following placeholder parameters can be used in any of the type of pages (main page, topic page, search

results page, index terms page). The parameter values can be either a well-formed XHTML fragment or a path

to a file that contains a well-formed XHTML fragment:

• 1 = webhelp.fragment.header - Displays the specified XHTML fragment in the header section.

• 2 = webhelp.fragment.after.header - Displays the specified XHTML fragment after the header section.

• 3 = webhelp.fragment.before.body - Displays the specified XHTML fragment before the body.

Oxygen XML Editor 27.1 | 11 - Publishing | 1685

• 4 = webhelp.fragment.before.logo_and_title - Displays the specified XHTML fragment before the logo

and title.

• 5 = webhelp.fragment.after.logo_and_title - Displays the specified XHTML fragment after the logo and

title.

• 6 = webhelp.fragment.before.top_menu - Displays the specified XHTML fragment before the top menu.

• 7 = webhelp.fragment.after.top_menu - Displays the specified XHTML fragment after the top menu.

• 8 = webhelp.fragment.before.search.input - Displays the specified XHTML fragment before the search

input component.

• 9 = webhelp.fragment.after.search.input - Displays the specified XHTML fragment after the search

input component.

• 10 = webhelp.fragment.before.main.content.area - Displays the specified XHTML fragment before the

main content area

• 11 = webhelp.fragment.after.main.content.area - Displays the specified XHTML fragment after the

main content area.

• 12 = webhelp.fragment.footer - Displays the specified XHTML fragment in the footer section.

• 13 = webhelp.fragment.after.body - Displays the specified XHTML fragment after the body.

Main Page Placeholder Parameters

The following placeholder parameters can be used in the main page. The parameter values can be either a

well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

• webhelp.fragment.header.main.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.main.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.main.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.main.page - Displays the specified XHTML fragment before the

search input component.

• webhelp.fragment.after.search.input.main.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.main.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.main.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.main.page - Displays the specified XHTML fragment after the body.

• webhelp.fragment.before.toc_or_tiles - Displays the specified XHTML fragment before the main table

of contents or tiles component on the main page.

• webhelp.fragment.after.toc_or_tiles - Displays the specified XHTML fragment after the main table of

contents or tiles component on the main page.

Topic Page Placeholder Parameters

The following placeholder parameters can be used in the topic page. The parameter values can be either a

well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

Oxygen XML Editor 27.1 | 11 - Publishing | 1686

• webhelp.fragment.header.topic.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.topic.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.topic.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.topic.page - Displays the specified XHTML fragment before the

search input component.

• webhelp.fragment.after.search.input.topic.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.topic.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.topic.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.topic.page - Displays the specified XHTML fragment after the body.

• webhelp.fragment.before.topic.toolbar - Displays the specified XHTML fragment before the toolbar

buttons above the topic content in the topic page.

• webhelp.fragment.after.topic.toolbar - Displays the specified XHTML fragment after the toolbar

buttons above the topic content in the topic page.

• webhelp.fragment.before.topic.breadcrumb - Displays the specified XHTML fragment before the

breadcrumb component in the topic page.

• webhelp.fragment.after.topic.breadcrumb - Displays the specified XHTML fragment after the

breadcrumb component in the topic page.

• webhelp.fragment.before.publication.toc - Displays the specified XHTML fragment before the

publication's table of contents component in the topic page.

• webhelp.fragment.after.publication.toc - Displays the specified XHTML fragment after the publication's

table of contents component in the topic page.

• webhelp.fragment.before.topic.content - Displays the specified XHTML fragment before the topic's

main content in the topic page.

• webhelp.fragment.after.topic.content - Displays the specified XHTML fragment after the topic's main

content in the topic page.

• webhelp.fragment.before.feedback - Displays the specified XHTML fragment before the Oxygen

Feedback commenting component in the topic page.

• webhelp.fragment.after.feedback - Displays the specified XHTML fragment after the Oxygen Feedback

commenting component in the topic page.

• webhelp.fragment.before.topic.toc - Displays the specified XHTML fragment before the topic's table of

contents component in the topic page.

• webhelp.fragment.after.topic.toc - Displays the specified XHTML fragment after the topic's table of

contents component in the topic page.

Search Results Page Placeholder Parameters

The following placeholder parameters can be used in the search results page. The parameter values can be

either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

Oxygen XML Editor 27.1 | 11 - Publishing | 1687

• webhelp.fragment.header.search.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.search.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.search.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.search.page - Displays the specified XHTML fragment before

the search input component.

• webhelp.fragment.after.search.input.search.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.search.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.search.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.search.page - Displays the specified XHTML fragment after the body.

• webhelp.google.search.script - Replaces the search input component with a Google search

component.

Index Terms Page Placeholder Parameters

The following placeholder parameters can be used in the search results page. The parameter values can be

either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

• webhelp.fragment.header.terms.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.terms.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.terms.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.terms.page - Displays the specified XHTML fragment before

the search input component.

• webhelp.fragment.after.search.input.terms.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.terms.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.terms.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.terms.page - Displays the specified XHTML fragment after the body.

Using String Values in Placeholder Parameter Values

If you use strings for values of HTML fragment placeholder parameter values, the string values are written to

files in the transformation's temporary directory. The values of the associated parameters reference the paths

of the temporary files. This means that the HTML fragments will have a uniform processing in the WebHelp's

XSLT Module.

Example:

Suppose the placeholder parameter has the following string value:

Oxygen XML Editor 27.1 | 11 - Publishing | 1688

String value

webhelp.fragment.welcome = <p>This is an HTML paragraph.</p>

A new file that contains the parameter's value is created:

[temp-dir]/whr-html-fragments/webhelp_fragment_welcome.xml

<p>This is an HTML paragraph.</p>

The parameter's value then becomes:

Absolute file path as value

webhelp.fragment.welcome= [temp-dir]/whr-html-fragments/webhelp_fragment_welcome.xml

Related Information:

How to Insert Custom HTML Content (on page 1725)

WebHelp Responsive Macros

You can use the whc:macro layout component to specify a macro value (a variable that will be expanded when

the output files are generated).

A macro has the following syntax:

${macro-name}

or

${macro-name(macro-parameter)}

A macro name can accept any alphanumeric characters, as well as the following characters: - (minus), _

(underscore), . (dot), : (colon). The value of a parameter may contain any character except the } (close curly

bracket) character.

Implementations

The following macros are supported:

i18n

For localizing a string.

${i18n(string.id)}

param

Returns the value of a transformation parameter.

${param(webhelp.show.main.page.tiles)}

env

Returns the value of an environment variable.

Oxygen XML Editor 27.1 | 11 - Publishing | 1689

${env(JAVA_HOME)}

system-property

Returns the value of a system property.

${system-property(os.name)}

timestamp

Can be used to format the current date and time. Accepts a string (as a parameter) that

determines how the date and time will be formatted (format string or picture string as it is known

in the XSLT specification). The format string must comply with the rules of the XSLT format-

dateTime function specification.

${timestamp([h1]:[m01] [P] [M01]/[D01]/[Y0001])}

path

Returns the path associated with the specified path ID. The following paths IDs are supported:

• oxygen-webhelp-output-dir - The path to the output directory. The path is relative to the

current HTML file.

• oxygen-webhelp-assets-dir - The path to the oxygen-webhelp subdirectory from the

output directory. The path is relative to the current HTML file.

• oxygen-webhelp-template-dir - The path to the template directory. The path is relative to

the current HTML file.

${path(oxygen-webhelp-template-dir)}

Note:

New paths IDs can be added by overriding the wh-macro-custom-path template from

com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl:

<!-- Extension template for expanding a custom path macro. -->

<xsl:template name="wh-macro-custom-path">

 <xsl:param name="pathId"/>

 <xsl:value-of select="$pathId"/>

</xsl:template>

map-xpath

Can be used to execute an XPath expression over the DITA map file from the temporary

directory.

Tip:

Available in all template layout HTML pages.

${map-xpath(/map/title)}

https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string

Oxygen XML Editor 27.1 | 11 - Publishing | 1690

topic-xpath

Can be used to execute an XPath expression over the current topic.

Tip:

Available only in the topic HTML page template (wt_topic.html).

${topic-xpath(string-join(//shortdesc//text(), ' '))}

oxygen-webhelp-build-number

Returns the current WebHelp distribution ID (build number).

${oxygen-webhelp-build-number}

Extensibility

To add new macros, you can add an XSLT extension to overwrite the wh-macro-extension template from the

com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl file.

<!-- Extension template for expanding custom macro constructs -->

<xsl:template name="wh-macro-extension">

 <xsl:param name="name"/>

 <xsl:param name="params"/>

 <xsl:param name="contextNode"/>

 <xsl:param name="matchedString"/>

 <xsl:choose>

 <xsl:when test="$contextNode instance of attribute()">

 <xsl:value-of select="$matchedString"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:message>Cannot expand macro:

 [<xsl:value-of select="$matchedString"/>]</xsl:message>

 <xsl:copy-of select="$contextNode"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

The wh-macro-extension template has the following parameters:

• name - The name of the current macro.

• params - List of parameters of the current macro as a string sequence. The current macros parsing

mechanism only allows macros with a maximum of one parameter. Consequently, this list will contain

at most one element.

• contextNode - The current element or attribute where the macro was declared.

• matchedString - The entire value of the matched macro as specified in the HTML template page.

Oxygen XML Editor 27.1 | 11 - Publishing | 1691

Combining WebHelp Responsive and PDF Customizations in a Template
Package

An Oxygen Publishing Template package can contain both a WebHelp Responsive and PDF customization

in the same template package and you can use that same template in both types of transformations. The

template descriptor file can define the customization for both types by including both a <webhelp> and <pdf>

element and some of the resources can be reused. Resources referenced in elements in the <webhelp> element

will only be used for WebHelp transformations, and resources referenced in the elements in the <pdf> element

will only be used in PDF transformations.

<publishing-template>

 <name>Flowers</name>

 <description>Flowers themed light-colored template</description>

 <webhelp>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

 <resources>

 <css file="flowers-wh.css"/>

 <css file="flowers-page-styling.css"/>

 </resources>

 <parameters>

 <parameter name="webhelp.show.main.page.tiles" value="no"/>

 <parameter name="webhelp.show.main.page.toc" value="yes"/>

 </parameters>

 </webhelp>

 <pdf>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

 <resources>

 <css file="flowers-pdf.css"/>

 <css file="flowers-page-styling.css"/>

 </resources>

 <parameters>

 <parameter name="show.changes.and.comments" value="yes"/>"/>

 </parameters>

Oxygen XML Editor 27.1 | 11 - Publishing | 1692

 <pdf>

</publishing-template>

Related Information:

Publishing Template Package Contents for PDF Customizations (on page 1847)

HTML Page Layout Files

The HTML page layout files define the default layout of the generated pages in the output for the built-in

template. There are four types of pages (main, search, topic, index) and each type of page is a simple HTML

file. Each page type has various components that appear by default and each component has a corresponding

element and when that element is included in the HTML file, the corresponding components will appear in the

output.

Warning:

It is no longer recommended for you to customize these files because if you upgrade to a newer

version of Oxygen, those files may no longer produce the desired results and if new components

have been added, you won't have access to them. Instead, use any of the other methods described in

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676).

If you do choose to customize these HTML files, each type of page is defined inside an <html-page-layout-

files> element in the descriptor file.

<publishing-template>

 ...

 <webhelp>

 ...

 <!-- HTML page layout files -->

 <html-page-layout-files>

 <page-layout-file page="main" file="page-templates/wt_index.html"/>

 <page-layout-file page="search" file="page-templates/wt_search.html"/>

 <page-layout-file page="topic" file="page-templates/wt_topic.html"/>

 <page-layout-file page="index-terms" file="page-templates/wt_terms.html"/>

 </html-page-layout-files>

If you do use the html-page-layout-files element, you must specify all four types of pages

(main, search, topic, index). When not specified, the files from the DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates folder will be used to

define the layout of each type of page.

HTML Page Components

Each type of page contains various components that control the layout of that page. The rendering of each

component depends on the context where it is placed and its content depends on the transformed DITA map

(on page 3296).

Oxygen XML Editor 27.1 | 11 - Publishing | 1693

Some of the components can be used in all four types of pages, while some are only available for certain

pages. For instance, the Publication Title component can be used in all pages, but the Navigation Breadcrumb

component can only be used in the Topic Page.

To include a component in the output of a particular type of page, you have to reference a specific element

in that particular HTML file. All the elements associated with a component should belong to the http://

www.oxygenxml.com/webhelp/components namespace.

Every component can contain custom content or reference another component. To specify where the

component content will be located in the output, you can use the <whc:component_content> element as a

descendant of the component element. It can specify the location as before, after, or it can wrap the

component content. The following snippet contains an example of each:

<whc:webhelp_search_input class="navbar-form wh_main_page_search"

 role="form" >

 <div class="custom-content-before">Enter search terms here:</div>

 <div class="custom-wrapper">

 <whc:component_content/>

 </div>

 <div class="custom-content-after">Results will be displayed in a new window.</div>

</whc:webhelp_search_input>

Main Page

The Main Page is the home page generated in the WebHelp Responsive output. The name of the HTML

file that defines this page is wt_index.html and it is located in the following directory: DITA-OT-

DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates.

The main function of the home page is to display top-level information and provide links that help you easily

navigate to any of the top-level topics of the publication. These links can be rendered in either a Tiles or Tree

style of layout. The HTML page produced for the home page also consists of various other components, such

as a logo, title, menu, search field, or index link.

Oxygen XML Editor 27.1 | 11 - Publishing | 1694

Figure 505. Examples of Main Page Components for a Tiles Style of Layout

1. Publication Logo (on page 1695)

2. Publication Title (on page 1695)

3. Search Input (on page 1696)

4. Main Menu (on page 1696)

5. Index Terms Link (on page 1697)

6. Topic Tiles (on page 1696)

7. Print Link (on page 1696)

Oxygen XML Editor 27.1 | 11 - Publishing | 1695

Figure 506. Examples of Main Page Components for a Tree Style of Layout

1. Publication Logo (on page 1695)

2. Publication Title (on page 1695)

3. Search Input (on page 1696)

4. Main Menu (on page 1696)

5. Index Terms Link (on page 1697)

6. Table of Contents (on page 1697)

7. Print Link (on page 1696)

The following components can be referenced in the Main Page (wt_index.html) file:

Publication Title (webhelp_publication_title)

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

Oxygen XML Editor 27.1 | 11 - Publishing | 1696

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1734).

Main Page Topic Tiles (webhelp_tiles)

Oxygen XML Editor 27.1 | 11 - Publishing | 1697

This component generates the tiles section in the main page. This section will contain a tile

for each root topic of the published documentation. Each topic tile has three sections that

correspond to the topic title, short description, and image. To generate this component, the

<whc:webhelp_tiles> element must be specified in the HTML file as in the following example:

<whc:webhelp_tiles

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_tiles.

If you want to control the HTML structure that is generated for a WebHelp tile you can also

specify the template for a tile by using the <whc:webhelp_tile> component, as in the following

example:

<whc:webhelp_tile class="col-md-4">

 <!-- Place holder for tile's image -->

 <whc:webhelp_tile_image/>

 <div class="wh_tile_text">

 <!-- Place holder for tile's title -->

 <whc:webhelp_tile_title/>

 <!-- Place holder for tile's shordesc -->

 <whc:webhelp_tile_shortdesc/>

 </div>

</whc:webhelp_tile>

For information about customizing the tiles, see How to Configure the Tiles on the WebHelp

Responsive Main Page (on page 1739).

Main Page Table of Contents (webhelp_main_page_toc)

This component generates a simplified Table of Contents. It is simplified because it

contains only two levels from the documentation hierarchy. To generate this component, the

<whc:webhelp_main_page_toc> element must be specified in the HTML file as in the following

example:

<whc:webhelp_main_page_toc

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_main_page_toc.

Index Terms Link (webhelp_indexterms_link)

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

Oxygen XML Editor 27.1 | 11 - Publishing | 1698

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Topic Page

The Topic Page is the page generated for each DITA topic in the WebHelp Responsive output. The name of

the HTML file that defines this page is wt_topic.html and it is located in the following directory: DITA-OT-

DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates.

The HTML pages produced for each topic consist of the topic content along with various other additional

components, such as a title, menu, navigation breadcrumb, print icon, or side table of contents.

Oxygen XML Editor 27.1 | 11 - Publishing | 1699

Figure 507. Examples of Topic Page Components

1. Publication Logo (on page 1700)

2. Publication Title (on page 1699)

3. Search Input (on page 1700)

4. Main Menu (on page 1702)

5. Index Terms Link (on page 1702)

6. Expand/Collapse All Sections (on page 1702)

7. Navigation Links (on page 1700)

8. Print Link (on page 1701)

9. Breadcrumb (on page 1700)

10. Publication Table of Contents (on page 1701)

11. Topic Content (on page 1701)

12. Topic Table of Contents (on page 1701)

The following components can be referenced in the Topic Page (wt_topic.html) file:

Publication Title (webhelp_publication_title)

Oxygen XML Editor 27.1 | 11 - Publishing | 1700

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Topic Breadcrumb (webhelp_breadcrumb)

This component generates a breadcrumb that displays the path of the current topic. To generate

this component, the <whc:webhelp_breadcrumb> element must be specified in the HTML file as in the

following example:

<whc:webhelp_breadcrumb

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_breadcrumb. This component will contain

a list with items that correspond to the topics in the path. The first item in the list has a link to

the main page with the home class. The last item in the list corresponds to the current topic and

has the active class set.

Navigation Links (webhelp_navigation_links)

Oxygen XML Editor 27.1 | 11 - Publishing | 1701

This component generates navigation links to the next and previous topics. To generate this

component, the <whc:webhelp_navigation_links> element must be specified in the HTML file as in

the following example:

<whc:webhelp_navigation_links

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_navigation_links. This component will

contain the links to the next and previous topics.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Topic Content (webhelp_topic_content)

This component generates the content of a topic and it represent the content of the HTML

files as they are produced by the DITA-OT processor. To generate this component, the

<whc:webhelp_topic_content> element must be specified in the HTML file as in the following

example:

<whc:webhelp_topic_content

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_topic_content.

Publication TOC (webhelp_publication_toc)

This component generates a mini table of contents for the current topic (on the left side). It will

contain links to the children of the current topic, its siblings, and all of its ancestors. To generate

this component, the <whc:webhelp_publication_toc> element must be specified in the HTML file as

in the following example:

<whc:webhelp_publication_toc

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_toc. This component will

contain links to the topics referenced in the DITA map. It also includes an expand/collapse

button (either to collapse or the to expand).

Topic TOC (webhelp_topic_toc)

This component generates a topic table of contents for the current topic (on the right side) with

a heading named On this page. It contains links to each section within the current topic and

Oxygen XML Editor 27.1 | 11 - Publishing | 1702

the section corresponding to the current scroll position is highlighted. The topic must contain

at least two <section> elements and each <section> must have an @id attribute. To generate this

component, the <whc:webhelp_topic_toc> element must be specified in the HTML file as in the

following example:

<whc:webhelp_topic_toc

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_topic_toc. This component will contain

links to the sections within the current topic. It also includes an expand/collapse button (either

 to collapse or the to expand).

Expand/Collapse Sections (webhelp_expand_collapse_sections)

This component is used to generate an icon that expands or collapses sections

listed in the side table of contents within a topic. To generate this component, the

<whc:webhelp_expand_collapse_sections> element must be specified in the HTML file as in the

following example:

<whc:webhelp_expand_collapse_sections

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: webhelp_expand_collapse_sections.

Topic Feedback (webhelp_feedback)

This component generates a placeholder for where the comments section will be presented. To

generate this component, the <whc:webhelp_feedback> element must be specified in the HTML file

as in the following example:

<whc:webhelp_feedback

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1734).

Index Terms Link (webhelp_indexterms_link)

Oxygen XML Editor 27.1 | 11 - Publishing | 1703

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Child Links (webhelp_child_links)

For all topics with subtopics (child topics), this component generates a list of links to each child

topic. To generate this component, the <whc:webhelp_child_links> element must be specified in

the HTML file as in the following example:

<whc:webhelp_child_links

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Related Links (webhelp_related_links)

For all topics that contain related links, this component generates a list of related links that will

appear in the output. To generate this component, the <whc:webhelp_related_links> element must

be specified in the HTML file as in the following example:

<whc:webhelp_related_links

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Search Results Page

The Search Results Page is the page generated that presents search results in the WebHelp Responsive

output. The name of the HTML file that defines this page is wt_search.html and it is located in the

following directory: DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-

webhelp/page-templates.

The HTML page that is produced consists of a search results component along with various other additional

components, such as a title, menu, or index link.

Oxygen XML Editor 27.1 | 11 - Publishing | 1704

Figure 508. Examples of Search Results Page Components

1. Publication Logo (on page 1704)

2. Publication Title (on page 1704)

3. Search Input (on page 1705)

4. Main Menu (on page 1705)

5. Index Terms Link (on page 1706)

6. Search Results (on page 1705)

7. Print Link (on page 1705)

The following components can be referenced in the Search Results Page (wt_search.html) file:

Publication Title (webhelp_publication_title)

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

Oxygen XML Editor 27.1 | 11 - Publishing | 1705

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Search Results (webhelp_search_results)

This component is used to generate a placeholder to signal where the search results will be

presented in the output. To generate this component, the <whc:webhelp_search_results> element

must be specified in the HTML file as in the following example:

<whc:webhelp_search_results

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_results.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

Oxygen XML Editor 27.1 | 11 - Publishing | 1706

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1734).

Index Terms Link (webhelp_indexterms_link)

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Index Terms Page

The Index Terms Page is the page generated that presents index terms in the WebHelp Responsive output.

The name of the HTML file that defines this page is wt_terms.html and it is located in the following

directory: DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-

templates.

The HTML page that is produced consists of an index terms section along with various other additional

components, such as a title, menu, or search field.

An alphabet that contains the first letter of the documentation index terms is generated at the top of the index

page. Each letter represents a link to a specific indices section.

Oxygen XML Editor 27.1 | 11 - Publishing | 1707

Figure 509. Example of Index Terms Page Components

1. Publication Logo (on page 1707)

2. Publication Title (on page 1707)

3. Search Input (on page 1708)

4. Main Menu (on page 1708)

5. Index Terms Link (webhelp_indexterms_link) (on page 1708)

6. Print Link (on page 1708)

The following components can be referenced in the Index Terms Page (wt_terms.html) file:

Publication Title (webhelp_publication_title)

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

Oxygen XML Editor 27.1 | 11 - Publishing | 1708

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1734).

Index Terms Link (webhelp_indexterms_link)

Oxygen XML Editor 27.1 | 11 - Publishing | 1709

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Generating WebHelp Responsive Output

The publishing process can be initiated from a transformation scenario within Oxygen XML Editor/Author,

from a command line outside Oxygen XML Editor/Author, or from an integration server.

Running WebHelp Responsive from Oxygen XML Editor/Author

To publish a DITA map (on page 3296) as WebHelp Responsive output, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.

2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.

3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various

options in the following tabs:

◦ Templates Tab - This tab contains a set of built-in skins that you can use for the layout of your

WebHelp system output.

◦ Parameters Tab - This tab includes numerous transformation parameters that can be set to

customize your WebHelp system output.

◦ Feedback Tab - This tab is for those who want to add the Oxygen Feedback comments

component at the bottom of each WebHelp page so that you can interact with your readers.

◦ Filters Tab - This tab allows you to filter certain content elements from the generated output.

https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/oxygen_feedback.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1710

◦ Advanced Tab - This tab allows you to specify some advanced options for the transformation

scenario.

◦ Output Tab - This tab allows you to configure options that are related to the location where the

output is generated.

4. Click Apply associated to process the transformation.

Result: When the DITA Map WebHelp Responsive transformation is complete, the output is automatically

opened in your default browser.

Automating the WebHelp Responsive Output for DITA

DITA-based WebHelp output can be generated from an automated publishing process using a command line

outside of Oxygen XML Editor/Author or an automatic publishing system, such as Jenkins or Travis. However,

to do this, you must purchase an additional Oxygen XML WebHelp license.

Adding Oxygen Feedback to WebHelp Responsive Documentation

You can add Oxygen Feedback in WebHelp Responsive for DITA output to benefit from a modern commenting

system, advanced ready-to-use search engine, administrative interface, and Oxygen XML Editor/Author

integration.

Comments Component

A comments component is presented in your WebHelp Responsive output to provide a simple

and efficient way for your community to interact and offer feedback. The comments component

is contributed by Oxygen Feedback, a modern comment management system that can be

integrated with your WebHelp Responsive output to provide a comments area at the bottom of

each WebHelp page where readers can add new comments or reply to existing ones.

External Search Engine

Oxygen Feedback can be configured as an external search engine for the Oxygen WebHelp

Responsive output. This function be enabled from the Content Indexing and Search section that

is available in the Version Settings page.

Administration Interface

Oxygen Feedback includes a modern, user-friendly administration interface where you can

moderate comments, manage users, view statistics, and configure settings. It is very easy to

integrate and there are no requirements for installing additional software. You simply need

to create an Oxygen Feedback site configuration in the administration interface, copy the

HTML installation fragment that is generated at the end of the creation process, and paste the

generated fragment in the Feedback tab in the WebHelp Responsive transformation scenario

dialog box (on page 3175).

Oxygen XML Editor/Author Integration

An add-on is available that contributes a Feedback Comments Manager view in Oxygen XML

Editor/Author where the documentation team can see all the comments added in your WebHelp

https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-build-output.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-build-output.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-build-output.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-pt-feature-auto-transform.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-pt-feature-auto-transform.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-pt-feature-auto-transform.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-pt-feature-auto-transform.html
https://www.oxygenxml.com/xml_webhelp/buy_oxygen_xml_webhelp.html
https://www.oxygenxml.com/xml_webhelp/buy_oxygen_xml_webhelp.html
https://oxygenxml.com/doc/ug-feedback-cloud/cshelp.html?contextId=ofb-whr-search-engine
https://www.oxygenxml.com/doc/versions/3.0/ug-feedback-cloud/topics/ofb-version-management.html#content-indexing-search
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-feedback-comments-manager.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1711

output. This means they can react to user feedback by making corrections and updating the

source content without leaving the application.

Deploying the Oxygen Feedback Comments Component

Prerequisite

To install and manage Oxygen Feedback, you will need to obtain a license for the product. This requires

that you choose a subscription plan during the installation procedure. To see the subscription plans prior to

installing the product, go to: https://www.oxygenxml.com/oxygen_feedback/buy_feedback.html.

Installation Procedure

1. Log in to your Feedback account from the administration login page (https://feedback.oxygenxml.com/

login). You can click on Log in with Google or Log in with Facebook to create an account using your

Google or Facebook credentials, or click the Sign Up tab to create an account using your name and

email address.

2. Click the Add site button to create a site configuration. If you have not already selected a subscription

plan, you will be directed to a page where you can choose from several options.

3. In the Settings page, enter a Name and Description for the site configuration. There are some optional

settings that can be adjusted according to your needs. For more details, see the Site Settings topic.

Click Continue.

4. In the Initial version page, enter the Base URL for your website (you can add additional URLs by clicking

the Add button). You can also specify an Initial version if you want it to be something other than

1.0. If you do not plan to have multiple versions, leave the version as 1.0. For more details, see the Initial

Version topic.

5. [Optional] To configure Oxygen Feedback as an external search engine check the Enable content

indexing option.

6. Click Continue.

7. In the Installation page, choose a site generation option:

a. If you will generate the documentation using a transformation scenario in Oxygen XML Editor/

Author, select the Oxygen XML Editor option and continue with these steps:

i. Copy the generated HTML fragment and click Finish.

ii. In Oxygen XML Editor/Author, open the Configure Transformation Scenario(s) dialog box.

iii. Select and duplicate the DITA Map WebHelp Responsive scenario.

iv. Go to the Feedback tab.

v. Click the Edit button and paste the generated installation fragment.

b. If you will generate the documentation using a command-line script, select the Oxygen XML

WebHelp option and continue with these steps:

i. Copy the generated HTML fragment and click Finish.

ii. Create an XML file (for example, feedback-install.xml) with the generated

installation fragment.

https://www.oxygenxml.com/oxygen_feedback/buy_feedback.html
https://feedback.oxygenxml.com/login
https://feedback.oxygenxml.com/login
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-creating-site.html#ariaid-title2
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-creating-site.html#ariaid-title3
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-creating-site.html#ariaid-title3

Oxygen XML Editor 27.1 | 11 - Publishing | 1712

iii. Use the webhelp.fragment.feedback parameter in your command-line script to specify the

path to the file you just created. For example:

dita.bat -Dwebhelp.fragment.feedback=c:\path\to\feedback-install.xml

8. [Optional] If you want the Oxygen Feedback comments component to fill the entire page width,

contribute a custom CSS file (use the args.css parameter to reference it) that contains the following

style rule:

div.footer {

 float: none;

}

For more details about Oxygen Feedback, how to configure settings, moderate comments, view statistics, and

much more, see the Oxygen Feedback user guide.

Also, to see a demonstration of Oxygen Feedback being integrated into WebHelp Responsive output, watch

our Webinar: DITA Publishing and Feedback with Oxygen Tools.

Customizing WebHelp Responsive Output

Oxygen XML Editor provides support for customizing the WebHelp Responsive output to suit your specific

needs. The WebHelp Responsive output is based upon the Bootstrap responsive front-end framework and is

available for DITA document types.

To change the overall appearance of your WebHelp Responsive output, you can use several different

customization methods or a combination of methods. If you are familiar with CSS and coding, you can style

your WebHelp output through your own custom stylesheets. You can also customize your output by modifying

existing templates, create your own layout pages, or by configuring certain options and parameters in the

transformation scenario.

This section includes topics that explain various ways to customize your WebHelp Responsive system output,

such as how to configure the tiles on the main page, add logos in the title area, integrate with social media,

localizing the interface, and much more.

For an in-depth look at WebHelp Responsive features and some customization tips, watch our Webinar: DITA

Publishing and Feedback with Oxygen Tools.

Working with Publishing Templates

An Oxygen Publishing Template (on page 3298) defines all aspects of the layout and styles of the WebHelp

Responsive output. It is a self-contained customization package stored as a ZIP archive or folder that can

easily be shared with others. It provides the primary method for customizing the output. The recommended

method for customizing the WebHelp Responsive output is to use a custom publishing template.

This section contains topics about how to create, edit, publish, and share publishing templates.

https://www.oxygenxml.com/doc/ug-feedback/index.html
https://www.oxygenxml.com/doc/ug-feedback/index.html
https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html
https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html
https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1713

Related Information:

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

How to Create a Publishing Template

To create a customization, you can start from scratch or from an existing template, and then adapt it

according to your needs.

Creating a Publishing Template Starting from Scratch

To create a new Oxygen Publishing Template (on page 3298), follow these steps:

1. Create a folder that will contain all the template files.

2. In Oxygen XML Editor/Author, open the new document wizard (use File > New or the New toolbar

button), then choose the Publishing Template Descriptor template.

Figure 510. Choosing the Publishing Template Descriptor Document Template

3. Save the .opt file into your customization directory.

4. Open the .opt file in the editor and customize it to suit your needs.

Creating a Publishing Template Starting from an Existing Template

If you are using a DITA Map WebHelp Responsive or DITA Map PDF - based on HTML5 & CSS transformation,

the easiest way to create a new Oxygen Publishing Template (on page 3298) is to select an existing template

Oxygen XML Editor 27.1 | 11 - Publishing | 1714

in the transformation scenario dialog box and use the Save template as button to save that template into a

new template package that can be used as a starting point.

To create a new Oxygen Publishing Template, follow these steps:

1. Open the transformation scenario dialog box and select the publishing template you want to export and

use as a starting point.

2. Optional: You can set one or more transformation parameters from the Parameters tab and the edited

parameters will be exported along with the selected template. You will see which parameters will be

exported in the dialog box that is displayed after the next step.

3. Click the Save template as button.

Step Result: This opens a template package configuration dialog box that contains some options and

displays the parameters that will be exported to your template package.

4. Specify a name for the new template.

5. Optional: Specify a template description.

6. Optional: The same publishing template package can contain both a WebHelp Responsive and

PDF customization and you can use the same template in both types of transformations (DITA

Map WebHelp Responsive or DITA Map to PDF - based on HTML5 & CSS). You can use the Include

WebHelp customization and Include PDF customization options to specify whether your custom

template will include both types of customizations.

7. Optional: For WebHelp Responsive customizations, you can select the Include HTML Page Layout

Files option if you want to copy the default HTML Page Layout Files (on page 1692) in your template

package. They are helpful if you want to change the structure of the generated HTML pages.

8. In the Save as field, specify the name and path of the ZIP file where the template will be saved.

Step Result: A new ZIP archive will be created on disk in the specified location with the specified name.

9. Open the .opt file in the editor and customize it to suit your needs.

For more information about creating and customizing publishing templates, watch our video demonstration:

https://www.youtube.com/embed/zNmXfKWXwO8

Creating a Publishing Template Using the Oxygen Styles Basket

Another way to create an Oxygen Publishing Template (on page 3298) is to use the Oxygen Styles Basket.

This tool is a handy free-to-use web-based visual tool that helps you create your own Publishing Template

Package to customize your DITA Map WebHelp Responsive transformation scenarios.

It is based on galleries that you can visit to pick styling aspects to create a custom look and feel. Various

different types of styles can be selected (such as fonts, tables, lists, spacing, code) and all changes can be

seen in the Preview pane. You can also click the See Results button to generate a preview of either WebHelp

or PDF output.

https://www.youtube.com/embed/zNmXfKWXwO8
https://styles.oxygenxml.com/

Oxygen XML Editor 27.1 | 11 - Publishing | 1715

It is possible to Download the current template or Upload a previously generated template for further

customization.

Figure 511. Oxygen Styles Basket Interface

Resources

For more information about the Oxygen Styles Basket, see the following resources:

• Video: Introducing the New Oxygen Styles Basket

• Webinar: Using Oxygen Styles Basket to Create CSS Customization from Scratch

Related information

Publishing Template Package Contents for PDF Customizations (on page 1847)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

How to Edit a Packed Publishing Template

To edit an existing Oxygen Publishing Template (on page 3298) package, follow these steps:

1. Unzip the ZIP archive associated with the Oxygen Publishing Template in a separate folder.

2. Link the folder associated with the template in the Project view.

3. Using the Project view, you can modify the resources (CSS, JS, fonts) within the Oxygen Publishing

Template folder to fit your needs.

4. Open the publishing template descriptor file (.opt extension) in the editor and modify it to suit your

needs.

5. Optional: Once you finish your customization, you can archive the folder as a ZIP file.

https://www.oxygenxml.com/demo/osb_video.html
https://www.oxygenxml.com/events/2022/webinar_using_oxygen_styles_basket_to_create_css_customization_from_scratch.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1716

Related Information:

Publishing Template Package Contents for PDF Customizations (on page 1847)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

How to Add a Publishing Template to the Publishing Templates Gallery
To add the publishing template to your templates gallery, follow these steps:

1. Open the transformation scenario dialog box by editing a WebHelp Responsive transformation.

2. In the Templates tab, click the Configure Publishing Templates Gallery link to.

This will open the preferences page.

3. Click the Add button and specify the location of your template directory.

Your template directory is now added to the Additional Publishing Templates Galleries list.

4. Click OK to return to the transformation scenario dialog box.

All the templates contained in your template directory will be displayed in the preview pane along with

all the built-in templates.

How to Use a Publishing Template from a Command Line

Before you run the transformation, you need to know if the publishing template has a single template

descriptor file or multiple descriptor files (on page 1676). If you don't know, open the ZIP archive or folder and

check for files with the .opt extension.

Using a Publishing Template with a Single Descriptor

A template with a single descriptor is used for a single customization.

To run from a command line, you need to use the webhelp.publishing.template parameter (on page 1810).

This parameter specifies the path to the ZIP archive (or root folder) that contains your custom WebHelp

Responsive template.

Command-Line Example:

• Windows

 dita.bat

 --format=webhelp-responsive

 --input=c:\path\to\mySample.ditamap

 --output=c:\path\to\output

 -Dwebhelp.publishing.template=custom-template

• Linux/macOS

 dita

 --format=webhelp-responsive

 --input=/path/to/mySample.ditamap

Oxygen XML Editor 27.1 | 11 - Publishing | 1717

 --output=/path/to/output

 -Dwebhelp.publishing.template=custom-template

Tip:

You can also start the dita process by passing it a DITA OT Project File. Inside the project file you

can specify as parameters for the webhelp-responsive transformation type the WebHelp-related

parameters.

Using a Publishing Template with Multiple Descriptors

A template with multiple descriptors contains multiple customizations.

Because the publishing template is self-contained, it is used to reuse resources that are common to multiple

publications.

To run from a command line, you need to use the webhelp.publishing.template (on page 1810) and

webhelp.publishing.template.descriptor (on page 1810) parameters.

The webhelp.publishing.template (on page 1810) parameter specifies the path to the ZIP archive (or root

folder) while the webhelp.publishing.template.descriptor (on page 1810) parameter specifies the name of the

descriptor you want to use.

Command-Line Example:

• Windows

 dita.bat

 --format=webhelp-responsive

 --input=c:\path\to\mySample.ditamap

 --output=c:\path\to\output

 -Dwebhelp.publishing.template=custom-template

 -Dwebhelp.publishing.template.descriptor=flowers.opt

• Linux/macOS

 dita

 --format=webhelp-responsive

 --input=/path/to/mySample.ditamap

 --output=/path/to/output

 -Dwebhelp.publishing.template=custom-template

 -Dwebhelp.publishing.template.descriptor=flowers.opt

https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1718

Tip:

You can also start the dita process by passing it a DITA OT Project File. Inside the project file you

can specify as parameters for the webhelp-responsive transformation type the WebHelp-related

parameters.

How to Share a Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder in your project.

2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.

3. Switch the option as the bottom of that preferences page to Project Options.

4. Share your project file (.xpr).

Troubleshooting: Errors Encountered when Loading Templates

When the Templates tab of a WebHelp Responsive transformation scenario dialog box is opened, all

templates (built-in and custom) are loaded and validated. Specifically, certain elements in the template

descriptor file (on page 1676) are checked for validity. If errors are encountered that prevents the template

from loading, the following message will be displayed toward the bottom of the dialog box:

If you click the More details link, a window will open with more information about the encountered error. For

example, it might offer a hint that the element is missing from the expected descriptor file structure (on page

1676).

Also, if a template could be loaded, but certain elements could not be found in the descriptor file (on

page 1676), a warning icon () will be displayed on the template's image (in the Templates tab of the

transformation dialog box). For example, this happens if a valid preview-image element (on page 1679)

cannot be found.

Converting Old Templates to Newer Versions

WebHelp templates that were created in older versions of Oxygen XML Editor can be converted to the

Publishing Template format that was introduced in Oxygen XML Editor version 20.0. This section contains

several procedures for converting old templates depending on the version they were created in.

Convert Version 25 - 27.0 Publishing Templates to Version 27.1

If you have a custom Publishing Template that was created in Oxygen XML Editor version 25, 26, or 27.0, the

following conversion procedure is required for the template to be compatible with Oxygen XML Editor version

27.1:

https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1719

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder (on page 413) and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v27.1, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 27.1.

Related information

Convert Version 24.1 Publishing Templates to Version 25 (on page 1719)

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 1720)

Convert Version 23 Publishing Templates to Version 24 (on page 1721)

Convert Version 22 Publishing Templates to Version 23 (on page 1721)

Convert Version 21 Publishing Templates to Version 22 (on page 1722)

Convert Version 20 Publishing Templates to Version 21 (on page 1722)

Convert Version 24.1 Publishing Templates to Version 25

If you have a custom Publishing Template that was created in Oxygen XML Editor version 24.1, the following

conversion procedure is required for the template to be compatible with Oxygen XML Editor version 25.0:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder (on page 413) and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v25, then click Next.

4. The Scope should be left as Selected project resources.

Oxygen XML Editor 27.1 | 11 - Publishing | 1720

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 25.0.

Related information

Convert Version 23 Publishing Templates to Version 24 (on page 1721)

Convert Version 22 Publishing Templates to Version 23 (on page 1721)

Convert Version 21 Publishing Templates to Version 22 (on page 1722)

Convert Version 20 Publishing Templates to Version 21 (on page 1722)

Convert Version 24.0 Publishing Templates to Version 24.1

If you have a custom Publishing Template that was created in Oxygen XML Editor version 24.0, the following

conversion procedure is required for the template to be compatible with Oxygen XML Editor version 24.1:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder (on page 413) and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v24.1, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 24.1.

Related information

Convert Version 23 Publishing Templates to Version 24 (on page 1721)

Convert Version 22 Publishing Templates to Version 23 (on page 1721)

Convert Version 21 Publishing Templates to Version 22 (on page 1722)

Convert Version 20 Publishing Templates to Version 21 (on page 1722)

Oxygen XML Editor 27.1 | 11 - Publishing | 1721

Convert Version 23 Publishing Templates to Version 24

If you have a custom Publishing Template that was created in Oxygen XML Editor version 23.0 or 23.1, the

following conversion procedure is required for the template to be compatible with Oxygen XML Editor version

24:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder (on page 413) and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v24, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 24.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 1720)

Convert Version 22 Publishing Templates to Version 23 (on page 1721)

Convert Version 21 Publishing Templates to Version 22 (on page 1722)

Convert Version 20 Publishing Templates to Version 21 (on page 1722)

Convert Version 22 Publishing Templates to Version 23

If you have a custom Publishing Template that was created in Oxygen XML Editor version 22.0 or 22.1, it is not

necessary to convert it to version 23 because there were no structural changes made for the HTML layout files

(on page 1692) between the two versions.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 1720)

Convert Version 23 Publishing Templates to Version 24 (on page 1721)

Convert Version 21 Publishing Templates to Version 22 (on page 1722)

Convert Version 20 Publishing Templates to Version 21 (on page 1722)

Oxygen XML Editor 27.1 | 11 - Publishing | 1722

Convert Version 21 Publishing Templates to Version 22

If you have a custom Publishing Template that was created in Oxygen XML Editor version 21.0 or 21.1, the

following conversion procedure is required for the template to be compatible with Oxygen XML Editor version

22:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder (on page 413) and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v22, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 22.

Related Information:

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 1720)

Convert Version 23 Publishing Templates to Version 24 (on page 1721)

Convert Version 22 Publishing Templates to Version 23 (on page 1721)

Convert Version 20 Publishing Templates to Version 21 (on page 1722)

Convert Version 20 Publishing Templates to Version 21

If you have a custom Publishing Template that was created in Oxygen XML Editor version 20.0 or 20.1, the

following conversion procedure is required for the template to be compatible with Oxygen XML Editor version

21.0 or 21.1:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder (on page 413) and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

Oxygen XML Editor 27.1 | 11 - Publishing | 1723

3. Convert Version 20 Publishing Templates to Version 21 (on page 1722)

4. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v21, then click Next.

5. The Scope should be left as Selected project resources.

6. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

7. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 21.0 or 21.1.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 1720)

Convert Version 23 Publishing Templates to Version 24 (on page 1721)

Convert Version 22 Publishing Templates to Version 23 (on page 1721)

Convert Version 21 Publishing Templates to Version 22 (on page 1722)

Changing the Layout and Styles

This section contains topics that explain how to customize the output using CSS, inserting HTML fragments,

changing the layout of the main page, and more.

How to Use CSS Styling to Customize the Output

The most common way to customize WebHelp Responsive output is to use custom CSS styling. This method

can be used to make small, simple styling changes or more advanced, precise changes. To implement

the styling in your WebHelp output, you simply need to create the custom CSS file and reference it in your

transformation scenario (using an Oxygen Publishing Template (on page 3298) or a transformation

parameter). This custom file will be the final CSS to be applied so its content will override the styles in the

other pre-existing CSS files.

Using CSS Inspector to Identify Content for Custom CSS File

You can use your browser's CSS inspector to identify the pertinent code in the current CSS files and you can

even make changes directly in the CSS inspector to test the results so that you know exactly what content to

use in your custom CSS file.

In most popular browsers (such as Chrome, Firefox, and Edge), you can access the CSS inspector by using

F12 or by selecting Inspect Element (or simply Inspect) from the contextual menu.

Tip:

When using Safari on macOS, you must first enable the Develop menu by going to the Advanced

settings and selecting Show Develop menu in menu bar. Then you can select Show Web Inspector

from the Develop menu or click Command + Option + I.

Oxygen XML Editor 27.1 | 11 - Publishing | 1724

Create the Custom CSS

As a practical example, the following procedure changes the background color of the footer bar in the

WebHelp output:

1. Use the browser's CSS inspector to identify the current CSS code that styles the footer bar. In this

particular case, the pertinent code that would be identified is:

.wh_footer {

 font-size: 15px;

 line-height: 1.7em;

 background-color: #000;

}

2. If you want to test the color you want to apply as the background of this particular element, use the

browser's CSS inspector to change the value of the background-color attribute. After you find a suitable

color, copy that new code.

3. Create a custom CSS file and paste or enter the copied code. For example:

.wh_footer {

 background-color: #255890;

}

4. Save the custom CSS file at a location of your convenience.

5. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 1724) or the args.css parameter (on page 1725).

Fastpath:

Regenerating the output to see the changes made in the CSS is not required. Instead, you can directly

edit the files in WebHelp Output Directory/oxygen-webhelp/template and reload the

page in your browser. Once you obtained the desired output, simply copy the stylesheet back to your

publishing template folder.

Referencing the CSS Using a Publishing Template

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Using the Project view, copy your custom CSS in a folder inside the publishing template root folder (for

example, in the custom_footer_template/resources folder).

3. Open the template descriptor file (on page 1676) associated with your publishing template and add

your custom CSS in the resources section.

<publishing-template>

 ...

 <webhelp>

 ...

Oxygen XML Editor 27.1 | 11 - Publishing | 1725

 <resources>

 ...

 <css file="resources/MyCustom.css"/>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

Referencing the CSS Using the args.css Parameter

1. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

2. Set the args.css parameter to the path of your custom CSS file.

3. Set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when

the transformation scenario is processed.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

How to Insert Custom HTML Content

You can add custom HTML content in the WebHelp Responsive output by inserting it in a well-formed XML file

(or specifying it in a well-formed XHTML fragment) that will be referenced in the transformation (either from

an Oxygen Publishing Template (on page 3298) or using one of the HTML fragment placeholder parameters

(on page 1811)). This content may include references to additional JavaScript, CSS, and other types of

resources, or such resources can be inserted inline within the HTML content that is inserted in the XML file.

The XML File

There are several things to consider regarding this XML file:

• Well-Formedness - If the content of the file is not XML Well-formed (on page 788), the transformation

will automatically convert non-well-formed HTML content to a well-formed XML equivalent (assuming

the webhelp.enable.html.fragments.cleanup transformation parameter is set to true).

For example, if the HTML content includes several <script> or <link> elements, the XML fragment would

have multiple root elements and to make it well-formed, it would be wrapped it in an <html> element.

This element tag will be filtered out and only its children will be copied to the output documents.

Similarly, you can wrap your content in <head>, <body>, <html/head>, or <html/body> elements.

Oxygen XML Editor 27.1 | 11 - Publishing | 1726

Note:

The converted fragments are stored in a file located in the whr-html-fragments subfolder

of the transformation's temporary directory.

Tip:

If you do not want the transformation to automatically convert non-well-formed content

into well-formed XML content, you can set the webhelp.enable.html.fragments.cleanup

transformation parameter to false. This will instead cause the transformation to fail if at least

one HTML fragment is not well-formed.

• Referencing Resources in the XML File - You can include references to local resources (such as

JavaScript or CSS files) by using the built-in ${oxygen-webhelp-output-dir} macro to specify their paths

relative to the output directory:

<html>

 <script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"/>

 <link rel="stylesheet" type="text/css"

 href="${oxygen-webhelp-output-dir}/css/test.css" />

</html>

If you want that the path of your resource to be relative to the templates directory (on page 1673), you

can use the ${oxygen-webhelp-template-dir} macro.

To copy the referenced resources to the output directory, follow the procedure in: How to Copy

Additional Resources to Output Directory (on page 1789).

• Inline JavaScript or CSS Content:

JavaScript:

<script type="text/javascript">

 /* Include JavaScript code here. */

 function myFunction() {

 return true;

 }

</script>

CSS:

<style>

 /* Include CSS style rules here. */

 *{

 color:red

Oxygen XML Editor 27.1 | 11 - Publishing | 1727

 }

</style>

Note:

If you have special characters (e.g. &, <) that break the well-formedness of the XML fragment, it

is important to place the content inside an XML comment.

Otherwise, the WebHelp transformation automatically wraps inline JavaScript or CSS content in

an XML comment. Also, if the commented content contains constructs that are not allowed in

an XML comment, those constructs are escaped.

[Important] XML comment tags (both the start and end tags) must be on lines by themselves.

If they are on the same line as any of the script's content, it will likely result in a JavaScript

error.

<script type="text/javascript">

 <!--

 /* Include JavaScript code here. */

 function myFunction() {

 return true;

 }

 --/>

</script>

Using WebHelp Macros

The XML file can use WebHelp macros, which are variables that will be expanded when the content of the

HTML fragment file will be copied in the final output.

There are two possibilities for using macros:

• Directly in attribute values - For example, if you want to reference a JavaScript file from the Publishing

Template directory, you can use the following construct:

<script type="text/javascript" src="${path(oxygen-webhelp-template-dir)}/"></script>

• In text content - Using the <whc:macro> template component:

<script type="text/javascript">

 var outDirPath = '<whc:macro value="${path(oxygen-webhelp-output-dir)}"

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>';

Oxygen XML Editor 27.1 | 11 - Publishing | 1728

 console.log("The output directory path is:", outDirPath);

</script>

Note:

When using the <whc:macro> element, you should also include the xmlns:whc="http://

www.oxygenxml.com/webhelp/components" namespace declaration for the whc prefix. This is

necessary for the XML fragment to be well-formed.

The following macros are supported:

i18n

For localizing a string.

${i18n(string.id)}

param

Returns the value of a transformation parameter.

${param(webhelp.show.main.page.tiles)}

env

Returns the value of an environment variable.

${env(JAVA_HOME)}

system-property

Returns the value of a system property.

${system-property(os.name)}

timestamp

Can be used to format the current date and time. Accepts a string (as a parameter) that

determines how the date and time will be formatted (format string or picture string as it is known

in the XSLT specification). The format string must comply with the rules of the XSLT format-

dateTime function specification.

${timestamp([h1]:[m01] [P] [M01]/[D01]/[Y0001])}

path

Returns the path associated with the specified path ID. The following paths IDs are supported:

• oxygen-webhelp-output-dir - The path to the output directory. The path is relative to the

current HTML file.

• oxygen-webhelp-assets-dir - The path to the oxygen-webhelp subdirectory from the

output directory. The path is relative to the current HTML file.

https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string

Oxygen XML Editor 27.1 | 11 - Publishing | 1729

• oxygen-webhelp-template-dir - The path to the template directory. The path is relative to

the current HTML file.

${path(oxygen-webhelp-template-dir)}

Note:

New paths IDs can be added by overriding the wh-macro-custom-path template from

com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl:

<!-- Extension template for expanding a custom path macro. -->

<xsl:template name="wh-macro-custom-path">

 <xsl:param name="pathId"/>

 <xsl:value-of select="$pathId"/>

</xsl:template>

map-xpath

Can be used to execute an XPath expression over the DITA map file from the temporary

directory.

Tip:

Available in all template layout HTML pages.

${map-xpath(/map/title)}

topic-xpath

Can be used to execute an XPath expression over the current topic.

Tip:

Available only in the topic HTML page template (wt_topic.html).

${topic-xpath(string-join(//shortdesc//text(), ' '))}

oxygen-webhelp-build-number

Returns the current WebHelp distribution ID (build number).

${oxygen-webhelp-build-number}

Referencing the HTML fragment using a Publishing Template

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page

1712).

2. Insert the HTML content in a file that is XML well-formed (for example, custom-html.xml).

3. Using the Project view, copy your custom XML file in a folder inside publishing the template root folder

(for example, in the custom_footer_template/html-fragments folder).

Oxygen XML Editor 27.1 | 11 - Publishing | 1730

4. Open the template descriptor file (on page 1676) associated with your publishing template and add a

reference to the custom HTML fragment in the html-fragments section.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="html-fragments/custom-html.xml"

 placeholder="webhelp.fragment.head"/>

Note:

If you want to insert the content in another location within the output document, you can

reference the XML file from any other HTML Fragment extension points (on page 1683).

5. Open the DITA Map WebHelp Responsive transformation scenario.

6. Click the Choose Custom Publishing Template link and select your template.

7. Click OK to save the changes to the transformation scenario.

8. Run the transformation scenario.

Results: Your additional content will be included at the end of the <head> element of your output document.

Referencing the HTML Fragment using a Transformation Parameter

1. Insert the HTML content in a well-formed XML file.

2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

3. Edit the value of the webhelp.fragment.head parameter and set it to the absolute path of your XML file.

Note:

If you want to insert the content in another location within the output document, you can

reference the XML file from any other HTML Fragment extension points (on page 1683).

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Results: Your additional content will be included at the end of the <head> element of your output document.

Related Information:

HTML Fragment Placeholders (on page 1683)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

Oxygen XML Editor 27.1 | 11 - Publishing | 1731

How to Change Numbering Styles for Ordered Lists

Ordered lists () are usually numbered in XHTML output using numerals. If you want to change the

numbering to alphabetical, follow these steps:

1. Define a custom @outputclass value and set it as an attribute of the ordered list, as in the following

example:

<ol outputclass="number-alpha">

 A

 B

 C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{

 list-style-type:lower-alpha;

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 1731) or the args.css parameter (on page 1732).

Referencing the Custom CSS from a Publishing Template

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Using the Project view, copy your custom CSS in a folder inside the publishing template root folder (for

example, in the custom_footer_template/resources folder).

3. Open the template descriptor file (on page 1676) associated with your publishing template and add

your custom CSS in the resources section.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 ...

 <css file="resources/MyCustom.css"/>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

Oxygen XML Editor 27.1 | 11 - Publishing | 1732

Referencing the CSS Using the args.css Parameter

1. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

2. Set the args.css parameter to the path of your custom CSS file.

3. Set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when

the transformation scenario is processed.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

How to Add Syntax Highlights for Codeblocks in the Output

Syntax Highlighting makes it easier to read the semantics of the structured content by displaying each type of

code (language) in different colors and fonts. The application provides the ability to add syntax highlights in

codeblocks for DITA to PDF or HTML-based output through the use of the @outputclass attribute and a variety

of predefined values are available.

To provide syntax highlighting in the codeblocks that appear in the output, add the @outputclass attribute on

the <codeblock> element and set its value to one of the predefined language values. The Content Completion

Assistant offers a list of the possible values when adding the @outputclass attribute in Text mode but there are

also two simple ways to set the value in Author mode:

• Select the <codeblock> element in the editor and in the Attributes view, click on the Value cell for the

@outputclass attribute and select one of the predefined values (for example, language-xml).

• Select the <codeblock> element in the editor and use the Alt + Enter keyboard shortcut to open the in-

place attributes editor window. Then select one of the predefined values from the Value drop-down

menu.

The predefined values that can be selected are:

• language-json

• language-yaml

• language-xml

• language-bourne

• language-c

• language-cmd

• language-cpp

• language-csharp

• language-css

• language-dtd

• language-ini

• language-java

Oxygen XML Editor 27.1 | 11 - Publishing | 1733

• language-javascript

• language-lua

• language-perl

• language-powershell

• language-php

• language-python

• language-ruby

• language-sql

• language-xquery

Attention:

It is recommended that you do not add inline elements in the codeblocks when using this @outputclass

attribute, as it may lead to improper highlighting.

Tip:

Starting with version 24.0, the language values can also be set without using the language-

prefix.

Example:

The following codeblock with the @outputclass set as language-css:

<codeblock outputclass="language-css" id="codeblock_1">@page preface-page {

 background-color:silver;

 @top-center{

 content: "Custom Preface Header";

 }

}

*[class ~= "topic/topic"][@topicrefclass ~= "bookmap/preface"] {

 page: preface-page;

}</codeblock>

would like this in WebHelp output:

@page preface-page {

 background-color:silver;

 @top-center{

 content: "Custom Preface Header";

 }

}

*[class ~= "topic/topic"][@topicrefclass ~= "bookmap/preface"] {

 page: preface-page;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1734

How to Show or Hide Navigation Links in Topic Pages

The topic pages (on page 1631) in WebHelp Responsive output can contain navigation links (Previous /

Next arrows) that can be used to navigate to the previous or next topic.

How to Control Which Topic Pages Include Navigation Links

The navigation links are controlled by the @collection-type attribute. For example, if you set collection-

type="sequence" on a parent topic reference in your DITA map, navigation links will be generated in the output

for all of its child topics (from children to parent, and from child to previous sibling and next sibling).

<map id="example_map" title="Example Map">

 <topicref href="../topics/ParentTopic.dita" collection-type="sequence">

 <topicref href="../topics/Childtopic.dita"/>

 </topicref>

How to Generate Navigation Links for All Topics (Ignoring the Collection Type Attribute)

You can use the webhelp.default.collection.type.sequence parameter in the transformation and set its value

to yes to generate navigation links for all topics, regardless of whether or not the collection-type attribute is

present.

How to Hide All Navigation Links

To hide all navigation links, use the webhelp.show.navigation.links parameter in the transformation and set

its value to no.

How to Change the Main Page Layout

This section contains topics that explain how to customize the layout of the main page in the WebHelp

Responsive output.

How to Customize the Menu

By default, the menu component is displayed in all WebHelp Responsive pages. However, you might want to

hide it completely, or only display some of its menu entries.

How to Hide Some of the Menu Entries

There are two methods for doing this. One of them involves editing the DITA map (on page 3296) and

marking the topics that do not need to be included in the menu, and another one that uses a small CSS

customization.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics will not be displayed in the menu, follow these

steps:

https://www.oxygenxml.com/dita/styleguide/Maps/c_Collection_Types.html
https://www.oxygenxml.com/dita/styleguide/Maps/c_Collection_Types.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1735

1. Open the DITA map in the Text editing mode of Oxygen XML Editor.

2. Add the following metadata information in the topicref element (or any of its specializations) for each

topic you do not want to be displayed in the menu:

<topicmeta>

 <data name="wh-menu">

 <data name="hide" value="yes"/>

 </data>

</topicmeta>

Customizing the CSS

To customize the CSS to control which topics will not be displayed in the menu, follow these steps:

1. Make sure you set an ID on the topic that you do not want to include in the menu.

2. Create a new CSS file that contains a rule that hides the menu entry generated for the topic (identified

by the topic ID growing-flowers in the following example). The CSS file should have content that is

similar to this:

.wh_top_menu *[data-id='growing-flowers'] {

 display:none;

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 1724) or the args.css parameter (on page 1725).

How to Hide the Entire Menu

If you do not want to include a main menu in the pages of the WebHelp Responsive output, you can instruct

the transformation scenario to skip the menu generation completely.

Using a Publishing Template

To hide the menu using an Oxygen Publishing Template (on page 1673), follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add the

webhelp.show.top.menu parameter in the parameters section with its value set to no.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="webhelp.show.top.menu" value="no"/>

 </parameters>

 </webhelp>

Oxygen XML Editor 27.1 | 11 - Publishing | 1736

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To hide the menu using a transformation scenario from within Oxygen XML Editor/Author, follow this

procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.show.top.menu parameter to no.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

How to Add a Welcome Message in the WebHelp Responsive Main Page

The main page of the WebHelp Responsive output contains a set of empty placeholders (on page 1683)

that can be used to display customized text fragments. These placeholders are available to you through

WebHelp Responsive transformation scenario parameters. For example, the placeholder identified through the

webhelp.fragment.welcome parameter displays text content above the search box in the main page.

Using a Publishing Template

To add a customized welcome message in the main page of the WebHelp Responsive output using an Oxygen

Publishing Template (on page 1673), follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add

the webhelp.fragment.welcome parameter in the parameters section with its value set to one of the

following:

◦ A small well-formed XHTML fragment (such as: <i>Welcome to the User Guide</i>).

◦ A path to a file that contains well-formed XHTML content.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="webhelp.fragment.welcome"

 value="path/to/welcome.xhtml" type="filePath"/>

 </parameters>

 </webhelp>

3. Open the DITA Map WebHelp Responsive transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 1737

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: In the WebHelp output, your custom message will be displayed above the search box in the main page.

Using a Transformation Scenario in Oxygen XML Editor/Author

Important:

Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an

additional license and some additional setup:

• You must have a valid license for the Oxygen XML WebHelp Plugin (https://

www.oxygenxml.com/buy_webhelp.html).

• The Oxygen XML WebHelp Plugin must be installed and integrated.

To add a customized welcome message in the main page of the WebHelp Responsive output using a

transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.fragment.welcome parameter with its value set to one of

the following:

◦ A small well-formed XHTML fragment (such as: <i>Welcome to the User Guide</i>).

◦ A path to a file that contains well-formed XHTML content.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

Result: In the WebHelp output, your custom message will be displayed above the search box in the main page.

Related information

How to Insert Custom HTML Content (on page 1725)

How to Create a Custom Footer

The main page of the WebHelp Responsive output contains a set of empty placeholders (on page 1683)

that can be used to display customized text fragments. These placeholders are available to you through

WebHelp Responsive transformation scenario parameters. For example, the placeholder identified through the

webhelp.fragment.footer parameter displays the custom content at the bottom of the page.

Using a Publishing Template

To create a custom footer in the WebHelp Responsive output using an Oxygen Publishing Template (on page

1673), follow this procedure:

https://www.oxygenxml.com/buy_webhelp.html
https://www.oxygenxml.com/buy_webhelp.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1738

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add the

webhelp.fragment.footer parameter in the html-fragments section with its value set to a path of a file

that contains well-formed XHTML content.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment file="html/footer.xhtml" placeholder="webhelp.fragment.footer"/>

 </html-fragments>

 </webhelp>

Important:

This parameter should only be used if you are using a valid, purchased license of Oxygen XML

Editor (do not use it with a trial license).

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: In the WebHelp output, your custom footer will be displayed at the bottom of the page.

Using a Transformation Scenario in Oxygen XML Editor/Author

Important:

Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an

additional license and some additional setup:

• You must have a valid license for the Oxygen XML WebHelp Plugin (https://

www.oxygenxml.com/buy_webhelp.html).

• The Oxygen XML WebHelp Plugin must be installed and integrated.

To create a custom footer in the WebHelp Responsive output using a transformation scenario from within

Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.fragment.footer parameter with its value set to one of

the following:

https://www.oxygenxml.com/buy_webhelp.html
https://www.oxygenxml.com/buy_webhelp.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1739

◦ A small well-formed XHTML fragment.

◦ A path to a file that contains well-formed XHTML content.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

Result: In the WebHelp output, your custom footer will be displayed at the bottom of the page.

How to Configure the Tiles on the WebHelp Responsive Main Page

The tiles version of the main page of the WebHelp Responsive output displays a tile for each topic found on

the first level of the DITA map (on page 3296). However, you might want to customize the way they look or

even to hide some of them.

Depending on your particular setup, you can choose to customize the tiles either by setting metadata

information in the DITA map or by customizing the CSS that is associated with the DITA map.

How to Hide Some of the Tiles

If your documentation is very large or there is a large number of topics on the first level, you might want to

hide some of the tiles. Also, this might be useful if you only want to display the topics in the first page that are

most relevant to your intended audience.

There are two methods for doing this. One of them involves editing the DITA map and marking the topics that

do not need to be displayed as tiles, and another one that uses a small CSS customization level to hide some

tiles identified by the ID of the topic.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics on the first level of the DITA map will not be

displayed as a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Editor.

2. Add the following metadata information in the <topicref> element (or any of its specializations) for each

first-level topic that you do not want to be displayed as a tile:

<topicmeta>

 <data name="wh-tile">

 <data name="hide" value="yes"/>

 </data>

</topicmeta>

Customizing the CSS

To customize the CSS to control which topics on the first level of the DITA map will not be displayed as a tile,

follow these steps:

Oxygen XML Editor 27.1 | 11 - Publishing | 1740

1. Make sure you set an ID on the topic you want to hide.

2. Create a new CSS file that contains a rule that hides the tile generated for the topic (identified in the

following example by the topic ID growing-flowers). The CSS file should have content that is similar to

this:

.wh_tile [data-id='growing-flowers'] {

 display:none;

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 1724) or the args.css parameter (on page 1725).

How to Add an Image to the Tiles

There are two methods that you can use to add an image to a tile. One of them involves editing the DITA map,

and the other uses a CSS customization.

Editing the DITA Map

To edit the metadata in the DITA map to set an image to be displayed in a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Editor.

2. Add the following metadata information in the <topicref> element (or any of its specializations) for each

first-level topic that will have an image displayed in the corresponding tile:

<topicmeta>

 <data name="wh-tile">

 <data name="image" href="img/tile-image.png" format="png">

 <data name="attr-width" value="64"/>

 <data name="attr-height" value="64"/>

 </data>

 </data>

</topicmeta>

Note:

The @attr-width and @attr-height attributes can be used to control the size of the image, but

they are optional.

Customizing the CSS

To customize the CSS to set an image to be displayed in a tile, follow these steps:

1. Make sure you set an ID on the topic that you want the tile to include an image.

2. Create a new CSS file that contains a rule that associates an image with a specific tile. The CSS file

should have content that is similar to this:

Oxygen XML Editor 27.1 | 11 - Publishing | 1741

.wh_tile[data-id='growing-flowers']> div {

 background-image:url('resources/flower.png');

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 1724) or the args.css parameter (on page 1725).

Adding Graphics and Media Resources

This section contains topics that explain how to add media resources to the published output or the output

directory.

How to Add a Logo Image in the Title Area

You can customize WebHelp Responsive output to include a logo in the title area. It will be displayed before

the publication title. You can also specify a URL that can be used to send users to a specific website when

they click the logo image.

This customization can be done using an Oxygen Publishing Template or using a transformation scenario

from within Oxygen XML Editor/Author.

Using a Publishing Template

To add a logo in the title area of your WebHelp output using an Oxygen Publishing Template (on page 1673),

follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add the

<logo> element in the <resources> section and set the @file attribute value to the path of your logo.

3. If you also want to add a link to your website when you click the logo image, set its URL in the @target-

url attribute.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 <logo

 file="images/logo.png"

 target-url="http://www.example.com"

 alt="Alternate text for the logo image"

 new-tab="true"/>

 </resources>

 </webhelp>

4. Open the DITA Map WebHelp Responsive transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 1742

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a logo in the title area of your WebHelp output using a transformation scenario from within Oxygen

XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.logo.image parameter to the path of your logo.

3. If you also want to add a link to your website when you click the logo image, set its URL in the

webhelp.logo.image.target.url parameter.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

How to Add a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp output by simply using a parameter in the transformation

scenario to point to your favicon image.

This customization can be done using an Oxygen Publishing Template or using a transformation scenario

from within Oxygen XML Editor/Author.

Using a Publishing Template

To add a favicon to your WebHelp output using an Oxygen Publishing Template (on page 1673), follow this

procedure:

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page

1712).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add the

<favicon> element in the resources section. The path to the image is relative to the template root folder.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 ...

 <favicon file="images/favicon.png"/>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 1743

Result: Browsers that provide favicon support display the favicon (typically in the browser's address bar, in the

list of bookmarks, and in the history).

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a favicon to your WebHelp output using a transformation scenario from within Oxygen XML Editor/

Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.favicon parameter to the path of your image.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

How to Add Video and Audio Objects in DITA WebHelp Output

You can insert references to video and audio media resources (such as videos, audio clips, or embedded

HTML frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played

directly in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video through one of the following methods:

◦ Use the Insert Media Object toolbar action (on page 3032).

◦ Drag (or copy) the video file from your system explorer or the Project view (on page 414) and

drop (or paste) it into your document.

◦ Manually add an <object> element, as in one of the following examples:

<object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>

or, instead of the @data attribute, you can specify the video using a parameter like this:

<object outputclass="video">

 <param name="src" value="videos/MyVideo.mp4"/>

</object>

2. Apply a DITA to WebHelp transformation to obtain the output.

Result: The transformation converts the <object> element to an HTML5 <video> element.

<video controls="controls"><source type="video/mp4" src="MyVideo.mp4"></source>

</video>

Oxygen XML Editor 27.1 | 11 - Publishing | 1744

Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip through one of the following methods:

◦ Use the Insert Media Object toolbar action (on page 3032).

◦ Drag (or copy) the audio file from your system explorer or the Project view (on page 414) and

drop (or paste) it into your document.

◦ Manually add an <object> element, as in one of the following examples:

<object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>

or, instead of the @data attribute, you can specify the video using a parameter like this:

<object outputclass="audio">

 <param name="src" value="audio/MyClip.mp3"/>

</object>

2. Apply a DITA to WebHelp transformation to obtain the output.

Result: The transformation converts the <object> element to an HTML5 <audio> element.

<audio controls="controls"><source type="audio/mpeg" src="MyClip.mp3"></source>

</audio>

Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by using the Insert Media Object

toolbar action (on page 3032) or by manually adding an <object> element, as in one of the following

examples:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

or, instead of the @data attribute, you can specify the object using a parameter like this:

<object outputclass="iframe">

 <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>

</object>

2. If you want the video to be allowed to play in full screen mode once the document is converted to

XHTML output, also add an allowfullscreen parameter and set its value to true:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

 <param name="allowfullscreen" value="true"/>

</object>

Tip:

If you copy the embed code from the source and paste it into the Insert Media dialog box

(see the specific instructions: here (on page 3035)), the allowfullscreen parameter will

automatically be added and all you have to do is set the value to true.

3. Apply a DITA to WebHelp transformation to obtain the output.

Oxygen XML Editor 27.1 | 11 - Publishing | 1745

Result: The transformation converts the <object> element to an HTML5 <iframe> element.

<iframe controls="controls" src="https://www.youtube.com/embed/m_vv2s5Trn4">

</iframe>

Resources

For more information, see the following video demonstration:

https://www.youtube.com/embed/llX11gS4WaU

Related Information:

Adding Video, Audio, and Embedded HTML Resources in DITA Topics (on page 3032)

How to Add MathML Equations in WebHelp Output

Currently, the majority of modern browsers have native support to render MathML equations embedded in the

HTML code. If your browser that does not have support for MathML,MathJax is a solution to properly view

MathML equations embedded in HTML content in a variety of browsers.

If you have DITA content that has embedded MathML equations and you want to properly view the equations

in published HTML output types (such as WebHelp), you need to add a reference to the MathJax script in the

head element of all HTML files that have the equation embedded.

For example:

<script type="text/javascript" id="MathJax-script" async

 src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.0.0/es5/latest?tex-mml-chtml.js">

</script>

Result: The equation should now be properly rendered in the WebHelp output for other browsers.

Related information

How to Insert Custom HTML Content (on page 1725)

Getting Started with MathJax Components

Searching the Output

This section contains topics that explain how to use some of the search features in WebHelp Responsive

output.

Built-in JS Based Search Engine Customizations

How to Change Element Scoring in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that

matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated

https://www.youtube.com/embed/llX11gS4WaU
http://www.mathjax.org/
https://docs.mathjax.org/en/latest/web/start.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1746

for the search results. The WebHelp directory includes a properties file that defines the scoring values for tag

elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

1. Edit the scoring properties file for DITA. The properties file includes instructions and

examples to help you with your customization. The file is located in: DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\indexer\scoring.properties.

The following values can be edited in the scoring.properties file:

h1 = 10

h2 = 9

h3 = 8

h4 = 7

h5 = 6

h6 = 5

b = 5

strong = 5

em = 3

i=3

u=3

div.toc=-10

title=20

div.ignore=ignored

meta_keywords = 20

meta_indexterms = 20

meta_description = 25

shortdesc=25

2. Save your changes to the file.

3. Re-run your WebHelp transformation.

How to Index Japanese Content

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can

be used. This analyzer is included in the Oxygen XML Editor/Author installation kit.

Restriction:

The Kuromoji analyzer does not work if your WebHelp output is accessed locally. In this scenario,

a warning message will be displayed informing you that the Kuromoji analyzer is disabled.

It is possible to hide this warning message by using a transformation parameter named

webhelp.enable.search.kuromoji.js. By default, its value is yes, which means the Kuromoji analyzer

is enabled by default. To hide the warning message, set the value of that parameter to no using either

Oxygen XML Editor 27.1 | 11 - Publishing | 1747

of the methods listed below. When it is set to no, the Kuromoji analyzer is disabled even if you deploy

your WebHelp output on a web server.

Using a Publishing Template

To add a logo in the title area of your WebHelp output using an Oxygen Publishing Template (on page 1673),

follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add the

default.language parameter in the parameters section with its value set to ja-jp.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="default.language" value="ja-jp"/>

 </parameters>

 </webhelp>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To activate the Japanese indexing in your WebHelp output using a transformation scenario from within

Oxygen XML Editor/Author, follow this procedure:

1. Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the

default.language parameter to ja-jp.

Note:

Alternatively, you could set the @xml:lang attribute on the root of the DITA map (on page

3296) and the referenced topics to ja-jp. Another alternative for DITA output is to use the

webhelp.search.japanese.dictionary parameter to specify a path to a Japanese dictionary that

will be used by the Kuromoji morphological engine (note that the encoding for the dictionary

must be UTF8).

2. Run the WebHelp transformation scenario to generate the output.

Oxygen XML Editor 27.1 | 11 - Publishing | 1748

How to Implement a Custom Search Filter

It is possible to implement a custom search filter (search input component) in your WebHelp Responsive

output. The search input component is where users enter search queries to locate certain content within the

WebHelp output.

To integrate a custom search filter, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Create the following items in the folder that contains your publishing descriptor file (the .opt file):

◦ A folder named js.

◦ A folder named fragments.

3. In the js folder, create a file named search-filter.js.

4. As a starting point, you can copy the following content to the search-filter.js file:

/**

 * Object that implements the methods required by WebHelp to run a search filter.

 */

function CustomSearchFilter() {

 /**

 * Method required to run the search filter in webhelp. It is called when the users

 * executes the query in the search page.

 *

 * @param {WebHelpAPI.SearchResult} searchResult The search result for the executed query.

 *

 * @return A list of WebHelpAPI.SearchResult objects

 */

 this.filterResults = function (searchResult) {

 // implement filter

 return filteredResults;

 }

}

// Set the Search Filter to WebHelp

WebHelpAPI.setCustomSearchFilter(new CustomSearchFilter());

...

Note:

See the API Search Objects section (on page 1758) for details on how to create a

WebHelpAPI.SearchResult object.

5. Implement your custom search filter.

Oxygen XML Editor 27.1 | 11 - Publishing | 1749

6. In the fragments folder, create a file named search-filter-script-fragment.xml.

7. In the search-filter-script-fragment.xml file, define the scripts that are required for your custom search

filter to run. For example:

<div>

 <script src="${oxygen-webhelp-template-dir}/js/search-filter.js"></script>

</div>

8. Copy the js folder to the output folder during the transformation process. For this, open the .opt file

and add the following content in the <resources> section (see Template Resources (on page 1679) for

more details):

<fileset>

 <include name="js/**"/>

</fileset>

9. Set the transformation parameters needed to enable the custom search filter. For this, open the .opt

file and add the following content inside the <webhelp> element:

<html-fragments>

 <fragment file="fragments/search-filter-script-fragment.xml"

 placeholder="webhelp.fragment.head.search.page"/>

</html-fragments>

10. Run the transformation with this publishing template selected.

How to Exclude Certain DITA Topics from Search Results

There are several ways to exclude certain DITA resources from your WebHelp system's search results. This

is useful if you have topics in your DITA map (on page 3296) structure that you do not want to be included

in search results for your WebHelp system. The first method involves setting a parameter in the WebHelp

transformation scenario and the second involves setting an attribute for each DITA topic reference that you

want to exclude.

Transformation Parameter Method

To exclude DITA topics from WebHelp search results using a transformation parameter, follow these steps:

1. Create a simple text file that will contain your excluded file patterns. Each pattern must be on a new

line. The patterns are considered to be relative to the output directory and they accept wildcards such

as '*' (matches zero or more characters) or '?' (matches one character). For more information about

the patterns, see https://ant.apache.org/manual/dirtasks.html#patterns.

Example: Suppose that in your project, you want to exclude all files located in the resources directory

and all files located in the topics directory that have a .bak file extension. You could create a simple

text file (for example, named exclude.properties), and add the following lines:

resources/*

topics/*.bak

https://ant.apache.org/manual/dirtasks.html#patterns

Oxygen XML Editor 27.1 | 11 - Publishing | 1750

2. Set the webhelp.search.custom.excludes.file parameter to specify the path to the file that contains

the excluded file patterns (for example, exclude.properties in step 1). The parameter can be

specified in the parameters section of the template descriptor file (on page 1681) associated with your

publishing template or in the Parameters tab of the transformation scenario dialog box in Oxygen XML

Editor/Author.

3. Run the transformation.

Search Attribute Method

The WebHelp Search engine does not index DITA topics that have the @search attribute set to no.

To exclude DITA topics from WebHelp search results using this attribute, follow these steps:

1. Edit the DITA map and for any <topicref> that you want to exclude from search results, set the @search

attribute to no. For example:

<topicref href="../topics/internal-topic1.dita" search="no"/>

2. Save your changes to the DITA map.

3. Run your WebHelp system transformation.

Oxygen Feedback Search Engine

How to Configure Faceted Search in WebHelp Output

A faceted search is a powerful tool that allows users to refine search results by selecting filters or facets.

Facets are predefined categories that are associated with search results. By selecting one or more facets,

users can narrow down their search results to a specific category or set of categories.

Configure Oxygen Feedback as an External Search Engine

To enable faceted searches, you need to have a search engine that supports this functionality. The Oxygen

Feedback search engine implements faceted searches and can be easily configured as a search engine for

WebHelp, see Adding Oxygen Feedback to WebHelp Responsive Documentation (on page 1710) for more

details.

Attention:

The default search engine that comes embedded in the WebHelp Responsive output does not support

faceted searches.

Defining Facets Using a DITA Subject Scheme Map

A subject scheme map can be used to define controlled values and subject definitions. Subject definitions are

classifications and sub-classifications that compose a tree. Subject definitions provide semantics that can be

used in conjunction with taxonomies and ontologies.

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/subject-scheme-maps-and-usage.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1751

The <subjectdef> element is used to define both a subject category and a list of controlled values. The parent

<subjectdef> element defines the category, and the children <subjectdef> elements define the controlled values.

The following example defines the "Operating system" category, with "Linux" and "Windows" sub-categories.

The controlled values (facet values) are: "RedHat Linux", "SUSE Linux", "Windows 7", and "Windows 10".

<subjectScheme>

 ...

 <hasInstance>

 <subjectdef keys="os" navtitle="Operating system">

 <subjectdef keys="linux" navtitle="Linux">

 <subjectdef keys="redhat" navtitle="RedHat Linux"/>

 <subjectdef keys="suse" navtitle="SUSE Linux"/>

 </subjectdef>

 <subjectdef keys="windows" navtitle="Windows">

 <subjectdef keys="win7" navtitle="Windows 7"/>

 <subjectdef keys="win10" navtitle="Windows 10"/>

 </subjectdef>

 </subjectdef>

 </hasInstance>

 ...

</subjectScheme>

Associating Faceted Values With a Topic Using a DITA Classification Map

The classification domain provides elements that enable map authors to indicate information about the

subject matter of DITA topics. The subjects are defined in subject scheme maps, and the subjects are

referenced using the @keyref attribute.

The following example shows you how to associate a faceted value with a topic:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Classification Map//EN" "classifyMap.dtd">

<map>

 <title>Classification map</title>

 <topicref keyref="how-to-install-on-suse.dita">

 <topicsubject keyref="linux">

 <subjectref keyref="suse"/>

 </topicsubject>

 </topicref>

 <topicref keyref="how-to-install-win7.dita">

 <topicsubject keyref="windows">

 <subjectref keyref="win7"/>

 </topicsubject>

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/classification-maps.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1752

 </topicref>

</map>

Note:

The facet information cascades into child <topicref> elements.

Refining the Search Results by Using Facets in the Search Page

The configured facets are displayed in the search page, allowing you to narrow down the results.

When a user selects a facet, the search results are updated to only include the topics that match the selected

facets. If multiple facet values are selected from the same category/facet, the search results display all topics

with at least one facet. On the other hand, if multiple facet values from distinct facets are selected, the search

results display all topics with all selected facet values.

Related information

Adding Oxygen Feedback to WebHelp Responsive Documentation (on page 1710)

How to Add Searchable Labels in WebHelp Output

It is possible to add searchable labels in WebHelp Responsive output that can be clicked to search for topics

with that exact same label. Labels are textual words attached to a DITA topic that enables it to be easily

found using the search function. These labels can help you organize your topics, making it more accessible to

retrieve topics for a specific text.

Configure Oxygen Feedback as an External Search Engine

To enable searchable labels, you need to have a search engine that supports this functionality. The Oxygen

Feedback search engine implements searchable labels and can be easily configured as a search engine for

WebHelp. See Adding Oxygen Feedback to WebHelp Responsive Documentation (on page 1710) for more

details.

Attention:

The default search engine that comes embedded in the WebHelp Responsive output does not support

searchable labels. It will simply perform a standard search using the content within the label.

How to Add Searchable Labels in a DITA Topic

The generation of searchable labels in the WebHelp Responsive output is activated by default. You need to

insert the desired text (to be displayed in the label in the output) in a <keyword> element with an @outputclass

attribute set to label within the prolog of each topic that you want to have that label displayed in the output.

Oxygen XML Editor 27.1 | 11 - Publishing | 1753

Note:

You can right-click anywhere within the topic in Author mode and select Insert > Insert Label to

quickly insert the needed structure in the prolog.

For example:

<prolog>

 <metadata>

 <keywords>

 <keyword outputclass="label">Customization</keyword>

 </keywords>

 </metadata>

 </prolog>

This would add a label that contains the text "Customization" in the output for the particular topic. If the user

clicks that label, the search engine will search for all topics that have this same label defined.

Transformation Parameters for Generating Searchable Labels

You can have more control over how the labels are generated in the WebHelp Responsive output by using the

webhelp.labels.generation.mode transformation parameter. The possible values for this parameter are:

• keywords-label - Generates labels for each defined <keyword> element that has the @outputclass

attribute value set to label.

• keywords - Generates labels for each defined <keyword> element. If the topic contains <keyword>

elements with the @outputclass attribute value set to label, then only these elements will have labels

generated for them in the output.

• disable - Disables the generation of labels in the WebHelp Responsive output.

Note:

The default value for the webhelp.labels.generation.mode transformation parameter is keywords-

label.

Searchable Labels in WebHelp Responsive Output

The WebHelp Responsive transformation will generate a component that renders the text value of the

<keyword> element. When the user clicks that component, they will be redirected to the search page with the

search query populated for them and the search engine will display all topics that have the same text value

defined in the prolog.

Oxygen XML Editor 27.1 | 11 - Publishing | 1754

Custom Search Engine

How to Integrate Google Search in WebHelp Responsive Output

It is possible to integrate the Google Search Engine into your WebHelp Responsive output and you can

specify where you want the results to appear in your WebHelp page.

Using a Publishing Template

To integrate the Google Search Engine into your WebHelp Responsive output using an Oxygen Publishing

Template (on page 1673), follow this procedure:

1. Go to the Google Custom Search Engine page using your Google account.

2. Select the Create a custom search engine button.

3. Follow the on-screen instructions to create a search engine component for your site.

Important:

For the Layout, you must select Results only for the Google Search Engine to work with

Oxygen XML WebHelp Responsive.

4. At the end of this process you should obtain a code snippet that looks like this:

<script async src="https://cse.google.com/cse.js?cx=xxxxxxxxxxxxxxx"></script>

<div class="gcse-searchresults-only"></div>

5. Create a folder named html-fragments, and in that folder, create a file named google-

script.html.

6. Inside google-script.html, add only the <script> element. The file should look like this:

<script async src="https://cse.google.com/cse.js?cx=xxxxxxxxxxxxxxx"></script>

7. In the html-fragments folder, create another file named google-results.html.

8. Inside google-results.html, add only the <div> element and include the data-autoSearchOnLoad="true"

data-queryParameterName="searchQuery" attributes. The file should look like this:

<div class="gcse-searchresults-only" data-autoSearchOnLoad="true"

 data-queryParameterName="searchQuery"></div>

Note:

For more information about other supported attributes, see Google Custom Search: Supported

Attributes.

9. Open the template descriptor file (on page 1676) associated with your publishing template and add

the webhelp.google.search.script parameter in the parameters section, setting its value to reference

google-script.html. Then add the webhelp.google.search.results parameter, with its value set to

google-results.html.

https://cse.google.com/cse/
https://developers.google.com/custom-search/docs/element#supported_attributes
https://developers.google.com/custom-search/docs/element#supported_attributes

Oxygen XML Editor 27.1 | 11 - Publishing | 1755

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 ...

 <parameter

 name="webhelp.google.search.script"

 value="html-fragments/google-script.html"

 type="filePath"/>

 <parameter

 name="webhelp.google.search.results"

 value="html-fragments/google-results.html"

 type="filePath"/>

 </parameters>

 </webhelp>

</publishing-template>

10. Open the DITA Map WebHelp Responsive transformation scenario.

11. Click the Choose Custom Publishing Template link and select your template.

12. Click OK to save the changes to the transformation scenario.

13. Run the transformation scenario.

Important:

The Google search feature will not work locally, it must be deployed on an HTTP server.

Using a Transformation Scenario in Oxygen XML Editor/Author

To integrate the Google Search Engine into your WebHelp Responsive output using a transformation scenario

from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Google Custom Search Engine page using your Google account.

2. Select the Create a custom search engine button.

3. Follow the on-screen instructions to create a search engine for your site.

Important:

For the Layout, you must select Results only for the Google Search Engine to work with

Oxygen XML WebHelp Responsive.

4. At the end of this process you should obtain a code snippet that looks like this:

<script async src="https://cse.google.com/cse.js?cx=xxxxxxxxxxxxxxx"></script>

<div class="gcse-searchresults-only"></div>

https://cse.google.com/cse/

Oxygen XML Editor 27.1 | 11 - Publishing | 1756

5. Create a file named google-script.html, and add only the <script> element. The file should look

like this:

<script async src="https://cse.google.com/cse.js?cx=xxxxxxxxxxxxxxx"></script>

6. Create a file named google-results.html, add only the <div> element and include the data-

autoSearchOnLoad="true" data-queryParameterName="searchQuery" attributes. The file should look like

this:

<div class="gcse-searchresults-only" data-autoSearchOnLoad="true"

 data-queryParameterName="searchQuery"></div>

Note:

For more information about other supported attributes, see Google Custom Search: Supported

Attributes.

7. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

8. Switch to the Parameters tab and edit the webhelp.google.search.script parameter to reference the

google-script.html file. Then edit the webhelp.google.search.results parameter to reference the

google-results.html file.

9. Click Ok and run the transformation scenario.

Important:

The Google search feature will not work locally, it must be deployed on an HTTP server.

Replacing the Search Engine Only

It is possible to replace the internal search engine that is used by Oxygen XML WebHelp by using a custom

JavaScript file. This customization method allows you to replace the search engine but keep the search

results presentation.

To replace WebHelp's internal search engine, follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Create the following items in the folder that contains your publishing descriptor file (the .opt file):

◦ A folder named js.

◦ A folder named fragments.

3. In the js folder, create a file named search-engine.js.

4. As a starting point, you can copy the following content to the search-engine.js file:

/**

 * Object that implements the methods required by WebHelp to run a search engine.

 */

function CustomSearchEngine() {

https://developers.google.com/custom-search/docs/element#supported_attributes
https://developers.google.com/custom-search/docs/element#supported_attributes

Oxygen XML Editor 27.1 | 11 - Publishing | 1757

 /**

 * Method required to run the search engine in webhelp. Handler when the users

 * executes the query in the search page.

 *

 * @param {String} query The search input string from the user.

 * @param {Function} successHandler Needs to be called if the search operation is executed

 * successfully. The parameter needs to have the type of

 * WebHelpAPI.SearchResult

 * @param {Function} errorHandler Needs to be called if the search operation fails to

 * execute successfully. It needs to have the type

 * of String.

 */

 this.performSearchOperation = function(query, successHandler, errorHandler) {

 // implement search engine

 // const searchRestult = externalSearchEngine(query);

 // convert the result to WebHelpApi.SearchResult

 // const formattedResult = convert(searchRestult);

 // call successHanlder with the converted result.

 // successHandler(formattedResult)

 }

 /**

 * Method required to run the search engine in webhelp. Handler when the

 * page is changed in the search page.

 *

 * @param {Integer} pageToShow The page to be dispalyed.

 * @param {Integer} maxItemsPerPage The maximum # of items that can be displayed on a page.

 * @param {String} query The search input string from the user.

 * @param {Function} successHandler Needs to be called if the search operation is executed

 * successfully. The parameter needs to have the type of

 * WebHelpAPI.SearchResult

 * @param {Function} errorHandler Needs to be called if the search operation fails to

 * execute successfully. It needs to have the type

 * of String.

 */

 this.onPageChangedHandler = function(pageToShow, maxItemsPerPage, query, successHandler,

errorHandler) {

 // implement search engine

 // const searchRestult = externalSearchEngine(pageToShot, maxItemsPerPage, query);

Oxygen XML Editor 27.1 | 11 - Publishing | 1758

 // convert the result to WebHelpApi.SearchResult

 // const formattedResult = convert(searchRestult);

 // call successHanlder with the converted result.

 // successHandler(formattedResult)

 }

}

// Set the Search Engine to WebHelp

WebHelpAPI.setCustomSearchEngine(new CustomSearchEngine());

Note:

See the API Search Objects section (on page 1758) for details on how to convert your custom

search engine results to WebHelpAPI.SearchResult.

5. Implement your search engine.

6. In the fragments folder, create a file named search-engine-script-fragment.xml.

7. In the search-engine-script-fragment.xml file, define the scripts that are required for your

search engine to run. For example:

<div>

 <script src="${oxygen-webhelp-template-dir}/js/search-engine.js"></script>

</div>

8. Copy the js folder to the output folder during the transformation process. For this, open the .opt file

and add the following content in the <resources> section (see Template Resources (on page 1679) for

more details):

<fileset>

 <include name="js/**"/>

</fileset>

9. Set the transformation parameters needed to enable the search filter. For this, open the .opt file and

add the following content inside the <webhelp> element:

<html-fragments>

 <fragment file="fragments/search-engine-script-fragment.xml"

 placeholder="webhelp.fragment.head.search.page"/>

</html-fragments>

API Search Objects

To replace the WebHelp Search Engine, you will need to convert your custom search result into WebHelp API

Objects that WebHelp will use to render your search result on the search page. To convert your custom search

result, you will have to create the following objects:

Oxygen XML Editor 27.1 | 11 - Publishing | 1759

1. WebHelpAPI.SearchMeta is a JavaScript object used to hold additional information for the search

result. To create such an object, the following fields are required:

◦ String: searchEngineName - The name of the search engine used to retrieve the search result.

◦ Integer: totalSearchItems - The total number of search items the search engine returned.

◦ Integer: currentPage - The current page to display.

◦ Integer: maxItemsPerPage - The maximum number of items that can be displayed on a page.

◦ Integer: totalPages - The number of total pages for the search result.

◦ String: originalSearchExpression - The query string the user typed in the search input field.

conse searchMeta = new WebHelpAPI.SearchMeta(searchEngineName, totalSearchItems, currentPage,

maxItemsPerPage, totalPages, origianlSearchExpresion);

2. WebHelpAPI.SearchDocument is a JavaScript object used to hold the search result for a single topic/

HTML page. To create such an object, the following fields are required:

◦ String: linkLocation - The URL to the topic.

◦ String: title - The topic title.

◦ String: shortDescription - The topic short description.

const searchDocument = new WebHelpAPI.SearchDocument(linkLocation, title, shortDescription);

3. WebHelpAPI.SearchResult is a JavaScript object used to display the search results in the search page.

To create such an object, the following fields are required:

◦ WebHelpAPI.SearchMeta: searchMeta - Contains additional information for the search result.

◦ Array[WebHelpAPI.SearchDocument]: documents - An array with the matching documents

(HTML pages) for the search result.

conse searchMeta = new WebHelpAPI.SearchMeta(searchEngineName, totalSearchItems, currentPage,

maxItemsPerPage, totalPages, origianlSearchExpresion);

const searchDocument = new WebHelpAPI.SearchDocument(linkLocation, title, shortDescription);

const documents = [searchDocument]; // An array with one element.

const searchResult = new WebHelpAPI.SearchResult(searchMeta, documents);

Replacing the Search Engine and Results Presentation

It is possible to integrate a custom search engine and replace the search results area into your WebHelp

Responsive output. This is done by using the following transformation parameters:

webhelp.fragment.custom.search.engine.results

This parameter can be used to replace the search results area with custom XHTML content. The

value of the parameter is the path to an XHTML file that contains your custom content.

webhelp.fragment.custom.search.engine.script

This parameter can be used to replace WebHelp's built-in search engine with your own custom

search engine. The value of the parameter is the path to an XHTML file that contains the scripts

required for your custom search engine to run.

To integrate a custom search engine into your WebHelp Responsive output, follow these steps:

Oxygen XML Editor 27.1 | 11 - Publishing | 1760

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Create the following items in the folder that contains your publishing descriptor file (the .opt file):

◦ A file named custom-search-results-fragment.xml.

◦ A file named custom-search-script-fragment.xml.

◦ A folder named js.

3. In the custom-search-results-fragment.xml file, define the HTML structure that will be used as the

search results area. For example:

<div id="cumstom-search-results">...</div>

Note:

The custom search engine script will need to find an HTML element from the HTML structure

that will be used as the search results area and write the search results inside it. In this

example, it is the <div> element with the id custom-search-results.

4. In the js folder, create a file named custom-search.js.

5. As a starting point, you can copy the following content to the custom-search.js file:

document.addEventListener('DOMContentLoaded', (event) => {

 const params = new URLSearchParams(window.location.search);

 const searchQuery = params.get('searchQuery');

 // Implement your custom search engine

 // Display the search results

});

Important:

The value entered by the user in the search page will be available in the URL's query parameters

in a parameter named searchQuery.

Attention:

URLSearchParams is not supported on all browsers (it is used as an example). A list with

the supported browsers can be found here. A different solution should be used if you need to

support other browsers.

6. Implement your custom search engine.

Note:

The search results should be pushed into the <div> element created earlier with the id custom-

search-results.

7. In the custom-search-script-fragment.xml file, define the scripts that are required for your custom

search engine to run. For example:

https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams#browser_compatibility

Oxygen XML Editor 27.1 | 11 - Publishing | 1761

<div>

 <script src="${oxygen-webhelp-template-dir}/js/custom-search.js"></script>

</div>

8. Copy the js folder to the output folder during the transformation process. For this, open the .opt file

and add the following content in the <resources> section (see Template Resources (on page 1679) for

more details):

<fileset>

 <include name="js/**"/>

</fileset>

9. Set the transformation parameters needed to enable the custom search engine. For this, open the .opt

file and add the following content inside the <webhelp> element:

<html-fragments>

 <fragment file="custom-search-script-fragment.xml"

 placeholder="webhelp.fragment.custom.search.engine.script"/>

 <fragment file="custom-search-results-fragment.xml"

 placeholder="webhelp.fragment.custom.search.engine.results"/>

</html-fragments>

10. Run the transformation with this publishing template selected.

Tip:

A sample publishing template that overrides WebHelp's default search engine is available to

download here. You can use it as a starting point for your customization.

How to Display Custom Title in Search Results

It is possible to display a custom title for topics in the search results page. This can be achieved by adding

the <searchtitle> element inside the particular DITA topic (or within the topic reference in the DITA map). The

<searchtitle> element is used to specify the title that is displayed by search tools that locate the topic. This is

useful when the topic has a title that makes sense in the context of a single information set, but may be too

general in a list of search results. If the <searchtitle> is specified, then the search results page will display the

contents inside the <searchtitle> as the topic title.

For details about the <searchtitle> element (including an example), see https://docs.oasis-open.org/dita/v1.2/

os/spec/langref/searchtitle.html.

How to Trigger a Search Query When WebHelp is Loaded

You can use the searchQuery URL parameter to perform a search operation when WebHelp is loaded. This

opens the search results page with the specified search query processed. The URL should look something like

this:

http://localhost/webhelp/search.html?searchQuery=deploying%20feedback

https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/custom-search-engine
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/searchtitle.html
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/searchtitle.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1762

Configuring the Search Engine Optimization

A DITA Map WebHelp transformation scenario produces a sitemap.xml file that is used by search engines

to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system and allows web

admins to provide additional information about each page, such as the date it was last updated, change

frequency, and importance of each page in relation to other pages in your WebHelp deployment.

Important:

If the webhelp.sitemap.base.url parameter is specified, the loc element will contain the value of

this parameter plus the relative path to the page. If the webhelp.sitemap.base.url parameter is not

specified, the loc element will only contain the relative path of the page.

You can also set these additional parameters:

• webhelp.sitemap.change.frequency - Specifies how frequently the WebHelp pages are likely to

change (accepted values are: always, hourly, daily, weekly, monthly, yearly, and never).

• webhelp.sitemap.priority - Specifies the priority of each page (a value ranging from 0.0 to 1.0).

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

 <url>

 <loc>http://www.example.com/topics/introduction.html</loc>

 <lastmod>2014-10-24</lastmod>

 <changefreq>weekly</changefreq>

 <priority>0.5</priority>

 </url>

 <url>

 <loc>http://www.example.com/topics/care.html#care</loc>

 <lastmod>2014-10-24</lastmod>

 <changefreq>weekly</changefreq>

 <priority>0.5</priority>

 </url>

 . . .

</urlset>

Each page has a <url> element structure containing additional information, such as:

• loc - The URL of the page. This URL must begin with the protocol (such as http), if required by your

web server. It is constructed from the value of the webhelp.sitemap.base.url parameter from the

transformation scenario and the relative path to the page (collected from the href attribute of a

topicref element in the DITA map).

Oxygen XML Editor 27.1 | 11 - Publishing | 1763

Note:

The value must have fewer than 2,048 characters.

• lastmod (optional) - The date when the page was last modified. The date format is YYYY-MM-DD

hh:mm:ss.

• changefreq (optional) - Indicates how frequently the page is likely to change. This value provides

general information to assist search engines, but may not correlate exactly to how often they

crawl the page. Valid values are: always, hourly, daily, weekly, monthly, yearly, and never. The

first time the sitemap.xml file is generated, the value is set based upon the value of the

webhelp.sitemap.change.frequency parameter in the DITA WebHelp transformation scenario. You can

change the value in each url element by editing the sitemap.xml file.

Note:

The value always should be used to describe documents that change each time they are

accessed. The value never should be used to describe archived URLs.

• priority (optional) - The priority of this page relative to other pages on your site. Valid values range from

0.0 to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets

the search engines know which pages you deem most important for the crawlers. The first time the

sitemap.xml file is generated, the value is set based upon the value of the webhelp.sitemap.priority

parameter in the DITA WebHelp transformation scenario. You can change the value in each url element

by editing the sitemap.xml file.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-

tune search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the

Edit DITA Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

◦ webhelp.sitemap.base.url - The URL of the location where your WebHelp system is deployed.

Note:

This parameter is required for Oxygen XML Editor to generate the sitemap.xml file.

◦ webhelp.sitemap.change.frequency - How frequently the WebHelp pages are likely to change

(accepted values are: always, hourly, daily, weekly, monthly, yearly, and never).

◦ webhelp.sitemap.priority - The priority of each page (value ranging from 0.0 to 1.0).

3. Run the transformation scenario.

4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the

parameters of each page, according to your needs.

Oxygen XML Editor 27.1 | 11 - Publishing | 1764

Localization

This section contains topics that explain how to use the localization support in WebHelp Responsive output.

How to Localize the Interface of WebHelp Responsive Output

Oxygen XML Editor comes with support for the following built-in languages: English, French, German,

Japanese, and Chinese. It is possible to edit existing localization strings or add a new language.

Static labels used in the WebHelp output are stored in translation files that have the strings-lang1-lang2.xml

name format, where lang1 and lang2 are ISO language codes. For example, the US English labels are kept in

the strings-en-us.xml file.

These translation files are collected from two locations:

• DITA-OT-DIR/plugins/org.dita.base/xsl/common folder - DITA-OT's default translations

(generated text for <note>, <fig>, and <table> elements).

• DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/

resources/localization folder - These translations are contributed by the WebHelp plugin and

extend the default ones provided by DITA-OT. The labels defined in this folder take precedence over the

DITA-OT defaults.

There are two major reasons you may want to use modify the translation files: to modify the existing strings or

to translate to a new language.

Related Information:

How to Index Japanese Content (on page 1746)

Customizing Generated Text

Modifying the Existing Strings

To modify the generated text for WebHelp transformations, you need to create a DITA-OT extension plugin that

uses the dita.xsl.strings extension point. The following procedure is for changing English labels, but you can

adapt it for any language:

1. Create a com.oxygenxml.webhelp.localization plugin directory inside the DITA-OT-

DIR/plugins/ location.

2. Create a plugin.xml file inside that com.oxygenxml.webhelp.localization directory with the

following content:

<plugin id="com.oxygenxml.webhelp.localization">

 <require plugin="com.oxygenxml.webhelp.responsive"/>

 <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>

</plugin>

3. Create a webhelp-extension-strings.xml file with the following content:

http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1765

<langlist>

 <lang xml:lang="en" filename="strings-en-us.xml"/>

 <lang xml:lang="en-us" filename="strings-en-us.xml"/>

</langlist>

4. Copy the strings you want to change from the translation files (on page 1764) to the strings-en-

us.xml file. Make sure you leave the name attribute unchanged because this is the key used to look up

the string. A sample content might be:

<strings xml:lang="en-US">

 <str name="Figure">Fig</str>

 <str name="Draft comment">ADDRESS THIS DRAFT COMMENT</str>

</strings>

5. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box (on page 1616).

Adding a New Language

To add a new language for WebHelp transformations, you need to create a DITA-OT extension plugin that

uses the dita.xsl.strings extension point. The following sample procedure is for adding translation files for the

Polish language, but you can adapt it for any language:

1. Create a com.oxygenxml.webhelp.localization plugin directory inside the DITA-OT-

DIR/plugins/ location.

2. Create a plugin.xml file inside that com.oxygenxml.webhelp.localization directory with the

following content:

<plugin id="com.oxygenxml.webhelp.localization">

 <require plugin="com.oxygenxml.webhelp.responsive"/>

 <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>

</plugin>

3. Create a webhelp-extension-strings.xml file with the following content:

<langlist>

 <lang xml:lang="pl" filename="strings-pl-pl.xml"/>

 <lang xml:lang="pl-PL" filename="strings-pl-pl.xml"/>

</langlist>

4. Copy the WebHelp strings file (DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/

oxygen-webhelp/resources/localization/strings-en-us.xml) to your plugin directory,

and rename it as strings-pl-pl.xml.

5. In the strings-pl-pl.xml file, change the @xml:lang attribute on the root element that conforms

with the new language.

Oxygen XML Editor 27.1 | 11 - Publishing | 1766

<strings xml:lang="pl-PL">

 ...

</strings>

6. Copy the common DITA-OT strings defined in the DITA-OT-DIR/plugins/org.dita.base/xsl/

common/strings-en-us.xml file into the file created at step 4. It defines a set generated text

available for HTML-based transformations (such as <note>, <fig>, and <table> elements). Translate the

content of each <str> element (make sure to leave the @name attribute unchanged).

<strings xml:lang="pl-PL">

...

 <str name="webhelp.content" js="true" php="false">Polish translation for 'Content'.</str>

 <str name="webhelp.search" js="true" php="false">Polish translation for 'Search'</str>

...

 <str name="Figure">Polish translation for 'Figure'</str>

 <str name="Table">Polish translation for 'Table'</str>

...

</strings>

7. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box (on page 1616).

How to Activate Support for Right-to-Left (RTL) Languages

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map (on page 3296)

and set the @xml:lang attribute on its root element (<map>). The corresponding attribute value can be set for

following RTL languages:

• ar-eg - Arabic

• he-il - Hebrew

• ur-pk - Urdu

Integrating Social Media and Google Tools in the WebHelp Output

This section contains topics that explain how to integrate some of the most popular social media sites in

WebHelp output.

How to Add a Facebook Like Button in WebHelp Responsive Output

It is possible to integrate Facebook™ into your WebHelp Responsive output and you can specify where you

want the widget to appear in your WebHelp page.

Using a Publishing Template

To add a Facebook™ Like widget to your WebHelp output using an Oxygen Publishing Template (on page

1673), follow this procedure:

Oxygen XML Editor 27.1 | 11 - Publishing | 1767

1. Go to the Facebook Developers website.

2. Fill in the displayed form, then click the Get Code button.

3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line. The content of the

XML file should look like this:

<div id="facebook">

 <div id="fb-root"/>

 <script>

 <!--

 (function(d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (d.getElementById(id)) return;

 js = d.createElement(s); js.id = id;

 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";

 fjs.parentNode.insertBefore(js, fjs);

 }(document, 'script', 'facebook-jssdk'));

 -->

 </script>

 <div class="fb-like" data-layout="standard" data-action="like"

 data-show-faces="true" data-share="true"/>

</div>

4. Open the template descriptor file (on page 1676) associated with your publishing template.

5. Use one of the parameters that begin with webhelp.fragment (on page 1683) in the html-fragments

section of the descriptor file. Set the value of that parameter to reference the facebook-widget.xml

file that you created earlier.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="HTML-fragments/facebook-widget.xml"

 placeholder="webhelp.fragment.after.toc_or_tiles"/>

 </html-fragments>

 </webhelp>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

https://developers.facebook.com/docs/plugins/like-button

Oxygen XML Editor 27.1 | 11 - Publishing | 1768

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a Facebook™ Like widget to your WebHelp output using a transformation scenario from within Oxygen

XML Editor/Author, follow this procedure:

1. Go to the Facebook Developers website.

2. Fill in the displayed form, then click the Get Code button.

3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line. The content of the

XML file should look like this:

<div id="facebook">

 <div id="fb-root"/>

 <script>

 <!--

 (function(d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (d.getElementById(id)) return;

 js = d.createElement(s); js.id = id;

 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";

 fjs.parentNode.insertBefore(js, fjs);

 }(document, 'script', 'facebook-jssdk'));

 -->

 </script>

 <div class="fb-like" data-layout="standard" data-action="like"

 data-show-faces="true" data-share="true"/>

</div>

4. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

5. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the

parameters that begin with webhelp.fragment (on page 1683). Set that parameter to reference the

facebook-widget.xml file that you created earlier.

6. Click Ok and run the transformation scenario.

How to Add Tweet Button in WebHelp Responsive Output

It is possible to integrate X™ (formerly known as Twitter) into your WebHelp Responsive output and you can

specify where you want the widget to appear in your WebHelp page.

https://developers.facebook.com/docs/plugins/like-button

Oxygen XML Editor 27.1 | 11 - Publishing | 1769

Using a Publishing Template

To add a X™ Tweet widget to your WebHelp Responsive output using an Oxygen Publishing Template (on

page 1673), follow this procedure:

1. Go to the Tweet button generator page.

2. Fill in the displayed form. The Preview and code area displays the code that you will need.

3. Copy the code snippet displayed in the Preview and code area and paste it into a <div> element inside

an XML file called tweet-button.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">

 Tweet

 <script>

 <!--

 !function (d, s, id) {

 var

 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)

 ? 'http': 'https';

 if (! d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = p + '://platform.twitter.com/widgets.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }

 (document,

 'script', 'twitter-wjs');

 -->

 </script>

</div>

4. Open the template descriptor file (on page 1676) associated with your publishing template.

5. Use one of the parameters that begin with webhelp.fragment (on page 1683) in the html-fragments

section of the descriptor file. Set the value of that parameter to reference the tweet-button.xml file

that you created earlier.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

https://publish.twitter.com

Oxygen XML Editor 27.1 | 11 - Publishing | 1770

 <fragment

 file="HTML-fragments/tweet-button.xml"

 placeholder="webhelp.fragment.after.toc_or_tiles"/>

 </html-fragments>

 </webhelp>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a X™ Tweet widget to your WebHelp Responsive output using a transformation scenario from within

Oxygen XML Editor/Author, follow this procedure:

1. Go to the Tweet button generator page.

2. Fill in the displayed form. The Preview and code area displays the code that you will need.

3. Copy the code snippet displayed in the Preview and code area and paste it into a <div> element inside

an XML file called tweet-button.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">

 Tweet

 <script>

 <!--

 !function (d, s, id) {

 var

 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)

 ? 'http': 'https';

 if (! d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = p + '://platform.twitter.com/widgets.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }

 (document,

 'script', 'twitter-wjs');

 -->

https://publish.twitter.com

Oxygen XML Editor 27.1 | 11 - Publishing | 1771

 </script>

</div>

4. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

5. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the

parameters that begin with webhelp.fragment (on page 1683). Set that parameter to reference the

tweet-button.xml file that you created earlier.

6. Click Ok and run the transformation scenario.

How to Integrate Google Analytics in WebHelp Responsive Output

You can use Google Analytics to track and report site data for your WebHelp Responsive output.

Using a Publishing Template

To integrate Google Analytics into your WebHelp Responsive output using an Oxygen Publishing Template (on

page 1673), follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.

2. Choose the Analytics solution that best fits the needs of your website.

3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking

Code looks like this:

<script>

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');

 ga('send', 'pageview');

</script>

4. Save the Tracking Code (obtained in the previous step) in a new XML file called

googleAnalytics.xml. Note that the file should only contain the tracking code.

5. Open the template descriptor file (on page 1676) associated with your publishing template.

6. Use the webhelp.fragment.after.body parameter (on page 1812) in the html-fragments section of the

descriptor file. Set the value of that parameter to reference the googleAnalytics.xml file that you

created earlier. The content of this file will be copied at the end of all generated output pages, right

before the ending <body> element. This ensures that the page is loaded before the Google Analytics

servers are contacted, thus reducing page loading time.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

https://analytics.google.com

Oxygen XML Editor 27.1 | 11 - Publishing | 1772

 <fragment

 file="HTML-fragments/googleAnalytics.xml"

 placeholder="webhelp.fragment.after.body"/>

 </html-fragments>

 </webhelp>

7. Open the DITA Map WebHelp Responsive transformation scenario.

8. Click the Choose Custom Publishing Template link and select your template.

9. Click OK to save the changes to the transformation scenario.

10. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To integrate Google Analytics into your WebHelp Responsive output using a transformation scenario from

within Oxygen XML Editor/Author, follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.

2. Choose the Analytics solution that best fits the needs of your website.

3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking

Code looks like this:

<script>

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');

 ga('send', 'pageview');

</script>

4. Save the Tracking Code (obtained in the previous step) in a new XML file called

googleAnalytics.xml. Note that the file should only contain the tracking code.

5. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

6. Switch to the Parameters tab. Edit the webhelp.fragment.after.body parameter (on page 1812) and set

it to reference the googleAnalytics.xml file that you created earlier. The content of this file will be

copied at the end of all generated output pages, right before the ending <body> element. This ensures

that the page is loaded before the Google Analytics servers are contacted, thus reducing page loading

time.

7. Click Ok and run the transformation scenario.

Ant Extensions for WebHelp Responsive

The WebHelp Responsive plugin provides extension points that allow you to implement custom Ant targets to

perform additional operations before and after certain processing stages. The following extension points are

available in WebHelp Responsive:

https://analytics.google.com

Oxygen XML Editor 27.1 | 11 - Publishing | 1773

whr-init-pre

Runs a custom Ant target before the whr-init processing stage.

whr-init-post

Runs a custom Ant target after the whr-init processing stage.

whr-collect-indexterms-pre

Runs a custom Ant target before the whr-collect-indexterms processing stage.

whr-collect-indexterms-post

Runs a custom Ant target after the whr-collect-indexterms processing stage.

whr-toc-xml-pre

Runs a custom Ant target before the whr-toc-xml processing stage.

whr-toc-xml-post

Runs a custom Ant target after the whr-toc-xml processing stage.

whr-context-help-map-pre

Runs a custom Ant target before the whr-context-help-map processing stage.

whr-context-help-map-post

Runs a custom Ant target after the whr-context-help-map processing stage.

whr-sitemap-pre

Runs a custom Ant target before the whr-sitemap processing stage.

whr-sitemap-post

Runs a custom Ant target after the whr-sitemap processing stage.

whr-copy-resources-pre

Runs a custom Ant target before the whr-copy-resources processing stage.

whr-copy-resources-post

Runs a custom Ant target after the whr-copy-resources processing stage.

whr-create-topic-pages-pre

Runs a custom Ant target before the whr-create-topic-pages processing stage.

whr-create-topic-pages-post

Runs a custom Ant target after the whr-create-topic-pages processing stage.

whr-create-main-page-pre

Runs a custom Ant target before the whr-create-main-page processing stage.

whr-create-main-page-post

Runs a custom Ant target after the whr-create-main-page processing stage.

whr-create-search-page-pre

Oxygen XML Editor 27.1 | 11 - Publishing | 1774

Runs a custom Ant target before the whr-create-search-page processing stage.

whr-create-search-page-post

Runs a custom Ant target after the whr-create-search-page processing stage.

whr-create-indexterms-page-pre

Runs a custom Ant target before the whr-create-indexterms-page processing stage.

whr-create-indexterms-page-post

Runs a custom Ant target after the whr-create-indexterms-page processing stage.

whr-search-index-pre

Runs a custom Ant target before the whr-search-index processing stage.

whr-search-index-post

Runs a custom Ant target after the whr-search-index processing stage.

To use Ant extension points for WebHelp Responsive, follow these steps:

1. In the DITA-OT-DIR/plugins/ folder, create a folder for this plugin (for example,

com.oxygenxml.webhelp.responsive.custom.ant.extensions).

2. Create a plugin.xml file (in the folder you created in step 1) that extends the WebHelp Responsive

plugin and specifies an Ant extension point with your custom Ant project file that contains the new

build targets. For example:

<plugin id="com.oxygenxml.webhelp.responsive.custom.ant.extensions">

 <require plugin="com.oxygenxml.webhelp.responsive"/>

 <feature extension="ant.import" file="custom_build_file.xml"/>

</plugin>

3. Create the custom_build_file.xml file (in the folder you created in step 1) that contains your custom Ant

project implementing one or more extension points:

<project name="custom.ant.extensions.integrator" basedir=".">

 <target name="custom-whr-init-pre" extensionOf="whr-init-pre">

 <echo>Extension point that executes before whr-init</echo>

 </target>

 <target name="custom-whr-init-post" extensionOf="whr-init-post">

 <echo>Extension point that executes after whr-init</echo>

 </target>

</project>

4. Integrate the plugin into the DITA-OT. In the DITA-OT-DIR/bin directory of the DITA Open Toolkit, run

one of the following scripts, depending on your operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

5. Execute a DITA Map to WebHelp Responsive transformation script.

http://userguide.sync.ro/webhelp-responsive/glossary/dita-ot-gloss-entry.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1775

XSLT Extensions for WebHelp Responsive

Since WebHelp Responsive output is primarily obtained by running XSLT transformations over the DITA

input files, one customization method would be to override the default XSLT templates that are used by the

WebHelp Responsive transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp Responsive

transformation.

• Use XSLT-import extension points from an Oxygen Publishing Template (on page 3298).

Note:

Use this method if you want to affect only the transformations that use this publishing

template.

• Use XSLT-import extension points from a DITA-OT extension plugin.

Note:

This method will affect all the outputs generated with the WebHelp system.

Related information

WebHelp Responsive XSLT-Import and XSLT-Parameter Extension Points (on page 1824)

How to Use XSLT Extension Points from a Publishing Template

It is possible to declare a WebHelp XSLT-Import Extension Points (on page 1825) in an Oxygen Publishing

Template (on page 1846) to override or add additional XSLT processing.

Example:

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.webhelp.xsl.createMainPage"

 file="xsl/customMainPage.xsl"/>

 </xslt>

Oxygen XML Editor 27.1 | 11 - Publishing | 1776

Use Case 1: Add Copyright Information Extracted from a DITA Bookmap

Suppose you want to customize the WebHelp Responsive main page by adding information about the legal

rights associated with the book in the footer (for example, copyright dates and owner). This information is

specified in the bookmap:

<bookrights>

 <copyrfirst>

 <year>2002</year>

 </copyrfirst>

 <copyrlast>

 <year>2017</year>

 </copyrlast>

 <bookowner>

 <organization>SyncRO Soft SRL</organization>

 </bookowner>

</bookrights>

Figure 512. Example: Copyright Information Added in the WebHelp Footer

The XSLT stylesheet that generates the main page is located in: DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\xsl\mainFiles\createMainPage.xsl. This XSLT

stylesheet declares the copy_template mode that processes the main page template (on page 1693) to

expand its components. The main page template declares a component for the footer section that looks like

this:

<div class=" footer-container text-center ">

 <whc:include_html href="${webhelp.fragment.footer}"/>

</div>

To add this functionality using a Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

Step Result: You should have the custom_footer_template folder linked in your project.

3. Using the Project view, create an xsl folder inside the project root folder.

Oxygen XML Editor 27.1 | 11 - Publishing | 1777

Step Result: You should have the custom_footer_template/xsl folder in your project.

4. Create your customization stylesheet (for example, customMainPage.xsl) in the

custom_footer_template/xsl folder. Edit it to override the template that produces the footer

section:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:oxygen="http://www.oxygenxml.com/functions"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

Oxygen XML Editor 27.1 | 11 - Publishing | 1778

 </xsl:if>

 </div>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1676) associated with your publishing template and set

the XSLT stylesheet created in the previous step with the com.oxygenxml.webhelp.xsl.createMainPage

XSLT extension point.

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 file="xslt/customMainPage.xsl"

 id="com.oxygenxml.webhelp.xsl.createMainPage"/>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Bonus: Add Generation Time in the Output Footer

An additional customization for the main page is to add the generation time in its footer. A transformation

parameter is used to control whether or not this customization is active.

Note:

This can also be done directly by using an HTML fragment (on page 1683). You can see a sample

project on GitHub that uses an HTML fragment to show the generation time.

Figure 513. Generation Time Added in the WebHelp Footer

To add this functionality, follow these steps:

1. In the customization stylesheet that you just created (for example, customMainPage.xsl), modify the

template by adding the following XSLT code at the end (before the closing </div> element).

<xsl:if test="oxygen:getParameter('webhelp.footer.add.generation.time') = 'yes'">

 <div class="generation_time">

https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/generation-time-with-macros
https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/generation-time-with-macros

Oxygen XML Editor 27.1 | 11 - Publishing | 1779

 Generation date: <xsl:value-of

 select="format-dateTime(

 current-dateTime(),

 '[h1]:[m01] [P] on [M01]/[D01]/[Y0001].')"/>

 </div>

</xsl:if>

Note:

The oxygen:getParameter(param.name) function can be called to get the value of any WebHelp

transformation parameter. Just make sure the xmlns:oxygen="http://www.oxygenxml.com/

functions" namespace is declared in the stylesheet.

2. Open the template descriptor file (on page 1676) associated with your publishing template and set the

webhelp.footer.add.generation.time parameter to the default value.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter

 name="webhelp.footer.add.generation.time"

 value="yes"/>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. In the Parameters tab, you can change the value of the webhelp.footer.add.generation.time parameter.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Use Case 2: Display Footnotes Below Tables

Suppose you want to separate the footnotes displayed in the WebHelp Responsive pages so that all footnotes

are displayed at the end of the page except those within tables that are displayed just after them.

To add this functionality using a Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

Step Result: You should have the custom_template folder linked in your project.

3. Using the Project view, create an xsl folder inside the project root folder.

Step Result: You should have the custom_template/xsl folder in your project.

Oxygen XML Editor 27.1 | 11 - Publishing | 1780

4. Create your customization stylesheet (for example, tablesFootnotes.xsl) in the custom_template/

xsl folder with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:oxy="http://www.oxygenxml.com/extensions/author"

 exclude-result-prefixes="#all"

 version="3.0">

 <!--

 Match only top level tables (i.e tables that are not nested in other tables),

 that contains some footnotes.

 -->

 <xsl:template match="

 *[contains(@class, 'topic/table')]

 [not(ancestor::*[contains(@class, 'topic/table')])]

 [//*[contains(@class, 'topic/fn')]]">

 <xsl:variable name="top-level-table" select="."/>

 <xsl:next-match>

 <xsl:with-param name="top-level-table" select="$top-level-table" tunnel="yes"/>

 </xsl:next-match>

 <!-- Create a list with all the footnotes from the current table. -->

 <div outputclass="table-fn-container">

 <xsl:for-each select=".//*[contains(@class, 'topic/fn')]">

 <!--

 Try to preserve the footnote ID, if available, so that the xrefs will have a target.

 -->

 <div id="{if(@id) then @id else generate-id(.)}">

 <xsl:variable name="unique-id" select="generate-id($top-level-table)"/>

 <xsl:variable name="fn-id">

 <xsl:number from="$top-level-table" level="any"/>

 </xsl:variable>

 <xsl:call-template name="commonattributes"/>

 <sup>

 <xsl:value-of select="$fn-id"/>

 </sup>

 <xsl:text> </xsl:text>

 <xsl:apply-templates/>

Oxygen XML Editor 27.1 | 11 - Publishing | 1781

 </div>

 </xsl:for-each>

 </div>

 </xsl:template>

 <!--

 Process footnotes both inside and outside tables (based on the top-level-table parameter).

 -->

 <xsl:template match="*[contains(@class, ' topic/fn ')]" name="topic.fn">

 <xsl:param name="xref"/>

 <xsl:param name="top-level-table" tunnel="yes"/>

 <!-- Footnotes with IDs must be ignored, they are accessible only through xrefs. -->

 <xsl:if test="not(@id) or $xref = 'yes'">

 <xsl:variable name="unique-id" select="

 if ($top-level-table) then

 generate-id($top-level-table)

 else

 ()"/>

 <xsl:variable name="fn-id" select="

 if ($top-level-table) then

 index-of($top-level-table//*[contains(@class, 'topic/fn')], .)

 else

 index-of(//*[contains(@class, 'topic/fn')]

 [not(ancestor::*[contains(@class, 'topic/entry')])], .)"/>

 <xsl:variable name="callout" select="@callout"/>

 <xsl:variable name="converged-callout" select="

 if (string-length($callout) > 0) then

 $callout

 else

 $fn-id"/>

 <a>

 <!-- Generate different attributes based on the presence of a parent table. -->

 <xsl:attribute name="name" select="

 if ($top-level-table) then

 concat('tbl_', $unique-id,'_fnsrc_', $fn-id)

 else

 concat('fnsrc_', $fn-id)"/>

 <xsl:attribute name="href" select="

 if ($top-level-table) then

 concat('#tbl_', $unique-id,'_fntarg_', $fn-id)

 else

 concat('#fntarg_', $fn-id)"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 1782

 <sup>

 <xsl:value-of select="$converged-callout"/>

 </sup>

 </xsl:if>

 </xsl:template>

 <!--

 The xrefs to footnotes with IDs inside table-cells. We need to recalculate

 their indexes if their referenced footnote is also in the table.

 -->

 <xsl:template match="

 *[contains(@class, 'topic/xref')][@type = 'fn']

 [ancestor::*[contains(@class, 'topic/entry')]]">

 <xsl:param name="top-level-table" tunnel="yes"/>

 <xsl:variable name="topic-id" select="substring-after(@href, '#')"/>

 <xsl:variable name="element-id" select="substring-after($topic-id, '/')"/>

 <xsl:variable name="destination">

 <xsl:choose>

 <xsl:when test="$element-id = ''">

 <xsl:value-of select="$topic-id"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$element-id"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:variable name="fn" select="

 $top-level-table//*[contains(@class, 'topic/fn')][@id = $destination]"/>

 <xsl:choose>

 <xsl:when test="$fn">

 <xsl:variable name="unique-id" select="generate-id($top-level-table)"/>

 <!-- There is a reference in the table, recalculate index. -->

 <xsl:variable name="fn-id" select="

 index-of($top-level-table//*[contains(@class, 'topic/fn')], $fn)"/>

 <sup>

 <xsl:value-of select="$fn-id"/>

 </sup>

Oxygen XML Editor 27.1 | 11 - Publishing | 1783

 </xsl:when>

 <xsl:otherwise>

 <!-- There is no reference in the table, keep original index. -->

 <xsl:next-match/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!--

 Output footnotes below tables and at the end of the topic.

 -->

 <xsl:template match="*[contains(@class, ' topic/fn ')]" mode="genEndnote">

 <!-- Do not process footnotes from tables. -->

 <xsl:if test="not(node()/ancestor::*[contains(@class, 'topic/table')])">

 <div>

 <!-- Do not number footnotes from tables. -->

 <xsl:variable name="fn-id" select="index-of(//*[contains(@class, 'topic/fn')]

 [not(ancestor::*[contains(@class, 'topic/entry')])], .)"/>

 <xsl:variable name="callout" select="@callout"/>

 <xsl:variable name="converged-callout" select="

 if (string-length($callout) > 0) then

 $callout

 else

 $fn-id"/>

 <xsl:call-template name="commonattributes"/>

 <xsl:choose>

 <xsl:when test="@id and not(@id = '')">

 <xsl:variable name="topic-id" select="

 ancestor::*[contains(@class, ' topic/topic ')][1]/@id"/>

 <xsl:variable name="ref-id" select="concat($topic-id, '/', @id)"/>

 <xsl:choose>

 <xsl:when test="key('xref', $ref-id)">

 <a>

 <xsl:call-template name="setid"/>

 <sup>

 <xsl:value-of select="$converged-callout"/>

 </sup>

 <xsl:text> </xsl:text>

 </xsl:when>

 <xsl:otherwise>

Oxygen XML Editor 27.1 | 11 - Publishing | 1784

 <sup>

 <xsl:value-of select="$converged-callout"/>

 </sup>

 <xsl:text> </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <sup>

 <xsl:value-of select="$converged-callout"/>

 </sup>

 <xsl:text> </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:apply-templates/>

 </div>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1676) associated with your publishing template and set the

XSLT stylesheet created in the previous step with the com.oxygenxml.webhelp.xsl.dita2webhelp XSLT

extension point.

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 file="xslt/tablesFootnotes.xsl"

 id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 1785

How to Use XSLT Extension Points from a DITA-OT Plugin

In this example, the main page footer is modified by adding copyright information extracted from the DITA

bookmap or by adding the output generation time. The first use-case uses an XSLT-Import extension point

while the second uses an XSLT-Parameter extension point.

Note:

This customization is available as a GitHub project at: https://github.com/oxygenxml/

com.oxygenxml.webhelp.responsive.custom.footer.

Use Case 1: WebHelp XSLT-Import extension point to add copyright information extracted
from a DITA Bookmap

Suppose you want to customize the WebHelp Responsive main page by adding information about the legal

rights associated with the book in the footer (for example, copyright dates and owner). This information is

specified in the bookmap:

<bookrights>

 <copyrfirst>

 <year>2002</year>

 </copyrfirst>

 <copyrlast>

 <year>2017</year>

 </copyrlast>

 <bookowner>

 <organization>SyncRO Soft SRL</organization>

 </bookowner>

</bookrights>

Figure 514. Example: Copyright Information Added in the WebHelp Footer

The XSLT stylesheet that generates the main page is located in: DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\xsl\mainFiles\createMainPage.xsl. This XSLT

stylesheet declares the copy_template mode that processes the main page template to expand its

components. The main page template (on page 1693) declares a component for the footer section that looks

like this:

https://github.com/oxygenxml/com.oxygenxml.webhelp.responsive.custom.footer
https://github.com/oxygenxml/com.oxygenxml.webhelp.responsive.custom.footer

Oxygen XML Editor 27.1 | 11 - Publishing | 1786

<div class=" footer-container text-center ">

 <whc:include_html href="${webhelp.fragment.footer}"/>

</div>

In the following example, the extension stylesheet will add a template that matches this component. It applies

the default processing and adds the copyright information at the end.

<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

 </xsl:if>

 </div>

</xsl:template>

Oxygen XML Editor 27.1 | 11 - Publishing | 1787

You can implement this functionality with a WebHelp extension plugin that uses the

com.oxygenxml.webhelp.xsl.createMainPage extension point (on page 1825). This extension point allows

you to specify a customization stylesheet that will override the template described above.

To add this functionality as a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.webhelp.responsive.custom.footer).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your

customization stylesheet. For example:

<plugin id="com.oxygenxml.webhelp.responsive.custom.footer">

 <feature extension="com.oxygenxml.webhelp.xsl.createMainPage"

 file="custom_mainpage.xsl"/>

</plugin>

3. Create your customization stylesheet (for example, custom_mainpage.xsl), and edit it to override the

template that produces the footer section:

<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

Oxygen XML Editor 27.1 | 11 - Publishing | 1788

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

 </xsl:if>

 </div>

</xsl:template>

4. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box (on page 1616).

5. Run a DITA Map WebHelp Responsive transformation scenario to obtain the customized side TOC.

Use-Case 2: WebHelp XSLT-Parameter Extension Point to Control if Generation Time is
Displayed in the Output

Another possible customization for the main page is to add the generation time in its footer. You can use an

XSLT-Parameter extension point to control whether or note this customization is active. In this case, you can

use the com.oxygenxml.webhelp.xsl.createMainPage.param extension point (on page 1826).

Figure 515. Generation Time Added in the WebHelp Footer

To add this functionality, follow these steps:

1. Create a DITA-OT plugin structure by following the first 3 steps in the procedure above (on page 1785).

2. In the customization stylesheet that you just created (for example, custom_mainpage.xsl), declare

webhelp.footer.add.generation.time as a global parameter and modify the template by adding the

following XSLT code at the end.

<xsl:if test="$webhelp.footer.add.generation.time = 'yes'">

 <div class="generation_time">

 Generation date: <xsl:value-of select="format-dateTime(

 current-dateTime(), '[h1]:[m01] [P] on [M01]/[D01]/[Y0001].')"/>

 </div>

</xsl:if>

3. Edit the plugin.xml file to specify the com.oxygenxml.webhelp.xsl.createMainPage.param extension

point and a custom parameter file by adding the following line:

<feature extension="com.oxygenxml.webhelp.xsl.createMainPage.param" file="params.xml"/>

4. Create a custom parameter file (for example, params.xml). It should look like this:

Oxygen XML Editor 27.1 | 11 - Publishing | 1789

<dummy>

 <param name="webhelp.footer.add.generation.time"

 expression="${webhelp.footer.add.generation.time}"

 if="webhelp.footer.add.generation.time"/>

</dummy>

5. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box (on page 1616).

6. Edit a DITA Map WebHelp Responsive transformation scenario and in the Parameters

tab (on page 3174), specify the desired value (yes or no) for your custom parameter

(webhelp.footer.add.generation.time).

7. Run the transformation scenario.

Related Information:

[DITA-OT] XSLT-Import Extension Points

[DITA-OT] XSLT-Parameter Extension Points

Miscellaneous Customization Topics

This section contains miscellaneous topics about how to customize the WebHelp Responsive output.

How to Copy Additional Resources to Output Directory

You can copy additional resources (such as graphics, JavaScript, CSS, entire folders, or other resources)

to the output directory either by using an Oxygen Publishing Template (on page 3298) or the

webhelp.custom.resources parameter.

Copying Additional Resources to the Output Directory using a Publishing Template

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Add a new <fileset> element in the resources section of the template descriptor file (on page 1679).

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 <fileset>

 <include name="custom-resources/**/*"/>

 <exclude name="**/*.git"/>

 </fileset>

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters

Oxygen XML Editor 27.1 | 11 - Publishing | 1790

Note:

Relative paths in the descriptor file are relative to the template root folder.

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Results: All files from the custom resources directory will be copied to the WebHelp Output

Directory/oxygen-webhelp/template folder.

Copying Additional Resources to the Output Directory using a Transformation Parameter

1. Place all your resources in the same directory.

2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

3. Edit the value of the webhelp.custom.resources parameter and set it to the absolute path of the directory

in step 1.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Results: All files from the new directory will be copied to the root of the WebHelp output directory.

How to Add an Edit Link to Launch Oxygen XML Web Author

You can embed Edit links in the DITA WebHelp Responsive output that will automatically launch a particular

document in Oxygen XML Web Author. A reviewer can then click the link to open the particular file in Oxygen

XML Web Author where they can make or propose changes.

Using a Publishing Template

To embed an Edit link in the DITA Map WebHelp Responsive output using an Oxygen Publishing Template (on

page 1673), follow this procedure:

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page

1712).

2. Open the template descriptor file (on page 1676) associated with your publishing template and add the

following parameters with their values set to the URLs:

◦ editlink.ditamap.edit.url - The URL of the DITA map used to publish your content. The easiest

way to obtain the URL is to open the map in Web Author or Content Fusion and copy the URL

from the browser's address bar.

◦ editlink.additional.query.parameters - Optional query parameters to be appended to each

generated edit link. Each parameter must start with & (e.g. &tags-mode=no-tags).

https://www.oxygenxml.com/doc/ug-webauthor/

Oxygen XML Editor 27.1 | 11 - Publishing | 1791

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="editlink.ditamap.edit.url"

 value="webdav-https://dav.box.com/dav/my.ditamap"/>

 </parameters>

 </webhelp>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: In the WebHelp output, all topics will have an Edit link to the right side of the title and clicking the link

will launch that particular document in Oxygen XML Web Author.

For example:

• Windowsdita.bat -i c:\mySample.ditamap -f webhelp-responsive

-Deditlink.ditamap.edit.url=webdav-https://dav.box.com/dav/my.ditamap

• macOS/ Linuxdita -i /mySample.ditamap -f webhelp-responsive

-Deditlink.ditamap.edit.url=webdav-https://dav.box.com/dav/my.ditamap

Using a Transformation Scenario in Oxygen XML Editor/Author

To embed an Edit link in the DITA Map WebHelp Responsive output using a transformation scenario from

within Oxygen XML Editor/Author, follow this procedure:

1. Edit a DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

2. Set values for the following parameters:

◦ editlink.ditamap.edit.url - The URL of the Oxygen XML Web Author that have opened the DITA

map for editing.

◦ editlink.additional.query.parameters - Optional query parameters to be appended to each

generated edit link. Must start with & (e.g.: &tags-mode=no-tags).

3. Run the transformation scenario.

Result: In the WebHelp output, all topics will have an Edit link to the right side of the title and clicking the link

will launch that particular document in Oxygen XML Web Author.

Related information

Web Author Customization Guide: Embedding an Edit Link that will Launch Web Author

https://www.oxygenxml.com/doc/ug-waCustom/topics/webauthor-integrate-embedded-launch.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1792

How to Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content

across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to

be flagged. Generally, flagging is supported for block elements (on page 3294) (such as paragraphs), but not

for phrase-level elements within a paragraph. This ensures that the images that will flag the content are easily

scanned by the reader, instead of being buried in the text.

Using a Publishing Template

To flag content in DITA Map to WebHelp output using an Oxygen Publishing Template (on page 1673), follow

this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named

myFile.ditaval.

2. Define the property for the elements you want to be flagged. For example, if you want to flag any

element that has the @audience attribute set to programmer, the content of the DITAVAL file should look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<val>

 <prop att="audience" val="programmer" action="flag"

 img="D:\resource\delta.gif" alt="sample alt text"/>

</val>

Note:

For an element to be flagged, at least one attribute-value pair needs to have a property declared

in the DITAVAL file.

3. Open the template descriptor file (on page 1676) associated with your publishing template and add the

args.filter parameter in the parameters section with its value set to the path of the DITAVAL file you

created.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="args.filter" value="resources/myFile.ditaval"/>

 </parameters>

 </webhelp>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

Oxygen XML Editor 27.1 | 11 - Publishing | 1793

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To flag content in the DITA Map to WebHelp output using a transformation scenario from within Oxygen XML

Editor/Author, follow this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named

myFile.ditaval.

2. Define the property for the elements you want to be flagged. For example, if you want to flag any

element that has the @audience attribute set to programmer, the content of the DITAVAL file should look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<val>

 <prop att="audience" val="programmer" action="flag"

 img="D:\resource\delta.gif" alt="sample alt text"/>

</val>

Note:

For an element to be flagged, at least one attribute-value pair needs to have a property declared

in the DITAVAL file.

3. Edit a DITA Map to WebHelp transformation scenario.

4. Specify the DITAVAL file in the Filters tab (with the Use DITAVAL File option).

5. Run the transformation scenario.

Related Information:

Filtering Profiling Values with a DITAVAL File (on page 3219)

How to View MathML Equations in HTML Output

By default, only Firefox can render MathML equations embedded in the HTML code. MathJax is a solution to

properly view MathML equations embedded in HTML content in a variety of browsers.

If you have DocBook or DITA content that has embedded MathML equations and you want to properly view

the equations in published HTML output types (WebHelp, CHM, EPUB, etc.), you need to add a reference to the

MathJax script in the head element of all HTML files that have the equation embedded.

For example:

<script type="text/javascript"

 src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">

</script>

http://www.mathjax.org/

Oxygen XML Editor 27.1 | 11 - Publishing | 1794

Alternate Method for DITA

For DITA documents, you can also use the following procedure:

1. Create an XML file that contains a script similar to the one shown in the example above.

2. Edit the DITA Map transformation scenario and open the Parameters tab.

3. Set the following parameter to point to the XML file created in step 1:

◦ WebHelp Responsive Systems - Set the webhelp.fragment.head parameter to point to your XML

file.

◦ Any other type of HTML-based publishing - Set the args.hdf parameter to point to your XML file.

4. Run the transformation scenario.

Result: The equation should now be properly rendered in other browsers, such as Edge, IE, or Chrome.

How to Disable Caching in WebHelp Responsive Output

In cases where a set of WebHelp Responsive pages need to be updated on a regular basis to deliver the

latest version of the documentation, the WebHelp pages should always be requested from the server upon re-

loading it in a web browser on the client side, (rather than re-using an outdated cached version in the browser).

To disable caching in WebHelp Responsive output, follow this procedure:

1. Create a new well-formed XML file and add the following code snippet:

<meta http-equiv="Pragma" content="no-cache" />

<meta http-equiv="Expires" content="-1" />

Note:

The code should look like this:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Pragma" content="no-cache" />

 <meta http-equiv="Expires" content="-1" />

 </head>

</html>

2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

3. Edit the value of the webhelp.fragment.head parameter and set it to the absolute path of your XML file.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Result: Your additional content is included at the end of the <head> element of your output document.

Oxygen XML Editor 27.1 | 11 - Publishing | 1795

How to Add a Link to PDF Documentation

It is possible to add a component in your WebHelp output that links to an external PDF resource. For example,

it could link to the PDF equivalent of the documentation. This is achieved by configuring some transformation

parameters and the link component is added in the header/breadcrumb stripe, next to the navigation links.

The transformation parameters used for generating a PDF link component in the WebHelp Responsive output

are:

webhelp.pdf.link.url

Specifies the target URL for the PDF link component.

webhelp.pdf.link.text

Specifies the text for the PDF link component.

webhelp.pdf.link.icon.path

Specifies the path or URL of the image icon to be used for the PDF link component. If not

specified, a default icon is used.

webhelp.show.pdf.link

Specifies whether or not the PDF link component is shown in the WebHelp Responsive output.

Allowed values are: yes (default) and no.

webhelp.pdf.link.anchor.enabled

Specifies whether or not the current topic ID should be appended as the name destination at the

end of the PDF link. Allowed values are: yes (default) and no.

How to Add a Custom Component for WebHelp Output

This topic explains how to use several customization methods to define and implement a custom component

for WebHelp output pages.

Predefined components

The WebHelp output is based on a set of HTML Page Layout Files (on page 1692) that define the default

layout of the generated pages. Each layout file is made of a set of various components. Each component

is described using an associated XML element that is processed at the generation time resulting in its

associated component being included in the output pages.

Here are a few examples of predefined components: Logo, Title, Menu, Search Input, Topics Tiles, Topic

Breadcrumb, Topic Content, Publication Table of Contents. A complete list with all the available components

is available here: Layout of the Responsive Page Types (on page 1627).

For example, the page component that is used to define the Search Input field in the WebHelp HTML pages is

defined as follows:

<!-- Search form -->

<whc:webhelp_search_input class="navbar-form wh_topic_page_search search" role="form"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 1796

At publishing time, the above component will be expanded into:

<div class=" wh_search_input navbar-form wh_topic_page_search search">

 <form id="searchForm" method="get" role="search" action="../search.html">

 <div>

 <input type="search" placeholder="Search "

 class="wh_search_textfield ui-autocomplete-input" id="textToSearch"

 name="searchQuery" aria-label="Search query" required="required"

 autocomplete="off"/>

 <button type="submit" class="wh_search_button" aria-label="Search">

 Search

 </button>

 </div>

 </form>

</div>

Customization Methods

The most common customization methods for the WebHelp Responsive output include:

• Apply custom CSS styles (on page 1723) to change the default layout and styles.

• Insert additional HTML content (on page 1725) using one of the available HTML Fragment Placeholder

parameters (on page 1683).

• Extend the default processing using XSLT Extension Points (on page 1682).

• Configure available Transformation Parameters (on page 1810).

Use Case: Custom Link Component

For the subsequent procedure, suppose you have a DITA project for a User Manual and you also have various

video demonstrations available on your website that supplement the documentation. You may want to link a

video demonstration for a particular feature it its associated DITA topic in the WebHelp output.

You could simply add a link somewhere in your DITA topic, but this approach would not be very suitable for

a printable (PDF) version of your User Manual. Thus, you need to include the link to the associated video

demonstration only in the WebHelp output of your User Manual (and not the PDF version).

One way to link a video with its associated topic is to include its URL in the metadata section. For example:

<prolog>

 <metadata>

 <othermeta name="video-link" content="https://www.youtube.com/watch?v=zNmXfKWXwO8"/>

 </metadata>

</prolog>

Next, you need to instruct WebHelp to pick up the URL from the metadata and generate a link in a specific

location of the HTML output page. You can achieve this by creating your own WebHelp custom component.

Oxygen XML Editor 27.1 | 11 - Publishing | 1797

Creating a Custom Component

You can combine several of the available customization methods to define and implement your own WebHelp

custom component.

Figure 516. Custom Component

To create a custom component that displays a link to the current topic's associated video tutorial, follow these

steps:

1. Define your component. For example, it may have the following form:

<comp:video-link xmlns:comp="http://example.com/custom-components"/>

The component is an XML element that belongs to a custom defined namespace.

2. Insert the component in your topic pages. To do this, you will have to save the associated XML element

in an HTML Fragment file (for example, named video-link-fragment.xml).

3. Reference the HTML Fragment file in your current Publishing Template's descriptor file (on page

1676) and associate it with an HTML Fragment placeholder that is available for the topic pages

(webhelp.fragment.before.topic.toolbar in this case):

<html-fragments>

 <fragment file="component/html-fragment/video-link-fragment.xml"

 placeholder="webhelp.fragment.before.topic.toolbar"/>

</html-fragments>

Note:

The HTML Fragment file is referenced using a path relative to the Publishing Template root

directory.

4. Create a custom XSLT file that processes the custom component and picks up the video URL available

in the current topic's metadata and generates a link to the page that contains the video:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:comp="http://example.com/custom-components"

 exclude-result-prefixes="xs comp"

 version="3.0">

 <!-- Custom component implementation -->

 <xsl:template match="comp:video-link" mode="copy_template">

Oxygen XML Editor 27.1 | 11 - Publishing | 1798

 <xsl:param name="ditaot_topicContent" tunnel="yes"/>

 <!-- Look for a 'video-link' <meta> element in the current topic content -->

 <xsl:variable name="videoLinkMeta"

 select="$ditaot_topicContent//*:meta[@name='video-link']"/>

 <xsl:if test="exists($videoLinkMeta)">

 <div class="video-link-container">

 <a href="{$videoLinkMeta[1]/@content}"

 class="video-link" target="_blank" aria-label="Video">

 Video

 </div>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

The HTML content generated for your component will look like this:

<div class="video-link-container">

 <a href="https://www.youtube.com/watch?v=zNmXfKWXwO8"

 class="video-link" target="_blank"

 aria-label="Video">

 Video

</div>

5. Reference the above XSL file in your Publishing Template's descriptor file using the XSLT extension

point associated with the XSL module that generates an HTML file for each DITA topic:

<xslt>

 <extension file="component/xsl/video-link-impl.xsl"

 id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

</xslt>

6. Create a custom CSS file that contains the rules for styling the output for your component:

@import url('https://fonts.googleapis.com/icon?family=Material+Icons');

.video-link-container {

 display: flex;

 align-items: center;

 flex-grow: 10;

 justify-content: flex-end;

}

.video-link {

Oxygen XML Editor 27.1 | 11 - Publishing | 1799

 display: flex;

 align-items: center;

 color: #fff !important;

}

.video-link:before {

 content: "smart_display";

 font-family: 'Material Icons';

 font-size: 20px;

 display: inline-block;

 word-wrap: normal;

 white-space: nowrap;

}

.video-link span {

 display: none;

}

.wh_right_tools {

 padding: 0;

}

7. Reference the above CSS file in your Publishing Template's descriptor file:

<resources>

 <!-- -->

 <css file="component/css/video-link.css"/>

</resources>

Result: An icon that is a link to the video appears in the header stripe in the output page.

Figure 517. Custom Link to Video Component

Sample Publishing Template

A sample Publishing Template that contains all the above customizations is available here: https://

github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-

component.

https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-component
https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-component
https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-component

Oxygen XML Editor 27.1 | 11 - Publishing | 1800

How to Generate Google Structured Data

It is possible to generate Google Structured Data (<script> elements that contain a JSON-LD object) in the

DITA WebHelp Responsive output. Google uses this JSON-LD object to better understand the contents of the

page and display special search results in a Google Search.

Tip:

For more details, see Google Search Central: Understand how structured data works.

To generate Google Structured Data in WebHelp output, use the following transformation parameter:

google.structured.data

Specifies whether or not Google Structured Data will be generated in the output. If set to

yes, the transformation automatically generates Google Structured Data for Questions and

Answers topics, DITA Task topics, and from <data> elements found inside a topic that has the

@name="oxy:question" construct. If set to no (default value), the transformation will not generate

Google Structured Data.

Generating Google Structured Data for DITA Tasks Topics

When Google Structured Data is enabled, the DITA Task <title>, <shordesc>, and <step> elements are mapped

to the HowTo JSON-LD object. For example, the following DITA Task topic:

<task id="task_id">

 <title>My task</title>

 <shortdesc>Task description</shortdesc>

 <steps>

 <step>

 <cmd>Step 1 content.</cmd>

 </step>

 <step>

 <cmd>Step 2 content.</cmd>

 </step>

 </steps>

</task>

will generate the following structure in the output:

<script type="application/ld+json" id="jsonld-howto">

 {

 "@context": "https://schema.org",

 "@type": "HowTo",

 "name": "My task",

 "description": "Task description",

 "supply": [],

https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data
https://developers.google.com/search/docs/appearance/structured-data/how-to

Oxygen XML Editor 27.1 | 11 - Publishing | 1801

 "tool": [],

 "step":[

 {

 "@type": "HowToStep",

 "text": "Step 1 content."

 }

 ,

 {

 "@type": "HowToStep",

 "text": "Step 2 content."

 }

]

 }

</script>

Generating for Questions and Answers Topics

When Google Structured Data is enabled, the QA topic <qagroup> elements are mapped to the FAQPage JSON-

LD object. For example, the following QA topic:

<qatopic id="qa_id">

 <title>Faq Page 1</title>

 <qabody>

 <qagroup>

 <question>What is a car engine?</question>

 <answer>The car engine is a device that uses fuel to create mechanical power that can

 turn the car's wheels.</answer>

 </qagroup>

 </qabody>

</qatopic>

will generate the following structure in the output:

<script type="application/ld+json" id="jsonld-faq">

 {

 "@context": "https://schema.org",

 "@type": "FAQPage",

 "mainEntity": [

 {

 "@type": "Question",

 "name": "What is a car engine?",

 "acceptedAnswer": {

 "@type": "Answer",

 "text": "<div class=\"- topic/div qatopic/answer div answer\">The car engine is a

device that uses fuel to create mechanical power that can turn the car's wheels.</div>"

https://developers.google.com/search/docs/appearance/structured-data/faqpage

Oxygen XML Editor 27.1 | 11 - Publishing | 1802

 }

 }

]

 }

</script>

Generating from data elements found inside a topic

When Google Structured Data is enabled, the WebHelp Responsive transformation will map the <data>

elements found inside a topic to a FAQPage JSON-LD object. There are 2 different use cases depending on

where the <data> element is found in the document:

• In the <prolog> element. For example, this content:

<concept id="lawnmowerconcept">

 <title>Lawnmower</title>

 <shortdesc>The lawnmower is a machine used to cut grass in the yard.</shortdesc>

 <prolog>

 <metadata>

 <data name="oxy:question">What tools are necessary to cut the grass?</data>

 </metadata>

 </prolog>

 <conbody>

 <p>Lawnmowers can be electric, gas-powered, or manual.</p>

 </conbody>

</concept>

will generate the following structure in the output:

<script type="application/ld+json" id="jsonld-faq">

 {

 "@context": "https://schema.org",

 "@type": "FAQPage",

 "mainEntity": [

 {

 "@type": "Question",

 "name": "What tools are necessary to cut the grass?",

 "acceptedAnswer": {

 "@type": "Answer",

 "text": "<div class=\"- topic/body concept/conbody body conbody\">

 <p class=\"- topic/shortdesc shortdesc\">The lawnmower is a machine

used to cut grass in the yard.</p> <p class=\"- topic/p p\">Lawnmowers can be electric,

gas-powered, or manual.</p> </div>"

 }

 }

https://developers.google.com/search/docs/appearance/structured-data/faqpage

Oxygen XML Editor 27.1 | 11 - Publishing | 1803

]

 }

</script>

Important:

The answer represents the HTML result of the entire content inside the topic.

• Inside the topic body elements. For example, content:

<topic id="concept-id">

 <title>Morning</title>

 <shortdesc>In the morning we have breakfast.</shortdesc>

 <body>

 <data name="oxy:question">What do people drink in the morning?</data>

 Tea

 Milk

 </body>

</topic>

will generate the following structure in the output:

<script type="application/ld+json" id="jsonld-faq">

 {

 "@context": "https://schema.org",

 "@type": "FAQPage",

 "mainEntity": [

 {

 "@type": "Question",

 "name": "What do people drink in the morning?",

 "acceptedAnswer": {

 "@type": "Answer",

 "text": "<div class=\"- topic/body body\"><ul class=\"- topic/ul ul\">

<li class=\"- topic/li li\">Tea <li class=\"- topic/li li\">Milk </div>"

 }

 }

]

Oxygen XML Editor 27.1 | 11 - Publishing | 1804

 }

</script>

Important:

The answer represents the HTML result of the entire block where the <data> element is located

inside.

How to Group Related Links by Type

By default, all links from DITA relationship tables or related link elements within topics are grouped under one

"Related information" heading:

Related information

 Target Topic

 Target Concept

 Target Task

It is possible to group the links by target type (topic type) by setting the webhelp.rellinks.group.mode=group-

by-type parameter. The output will look like this:

Related concepts

 Target Concept

Related tasks

 Target Task

Related information

 Target Topic

How to Use a Local Font in WebHelp Responsive Output

It is possible to use a local fonts in WebHelp Responsive output by copying the local font file to the output

directory through a Publishing Template and referencing the font files using @font-face rules within a custom

CSS.

Oxygen XML Editor 27.1 | 11 - Publishing | 1805

Figure 518. Referencing Local Fonts in a Publishing Template

To use a local font in your WebHelp Responsive output, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page 1853).

2. Add the local font files to the fonts folder within your Publishing Template directory structure. For

example:

fonts/roboto-mono/RobotoMono-Italic-VariableFont_wght.ttf

fonts/roboto-mono/RobotoMono-VariableFont_wght.ttf

3. Configure WebHelp Responsive to copy the font file to the output directory. Define a <fileset> that

matches the location of the font files in the <resources> section of your Publishing Template's descriptor

file.

<resources>

 <!-- Copy ttf font files to the output directory. -->

 <fileset>

 <include name="fonts/**/*.ttf"/>

 </fileset>

</resources>

All the files matched by this fileset will be copied to the output directory. The additional resources will

be copied in the following subfolder of the output directory:

Oxygen XML Editor 27.1 | 11 - Publishing | 1806

{OUTPUT-DIR}/oxygen-webhelp/template/

4. Create a custom CSS file in your Publishing Template directory.

css/custom-font.css

5. Reference the CSS file in the <resources> section of the Publishing Template's descriptor file. This

means that the CSS file will be referenced in each HTML page within the WebHelp Responsive output.

<resources>

 <css file="css/custom-font.css"/>

 <!-- ... -->

</resources>

6. Add @font-face definitions that reference the font files in your custom CSS file. The font files can be

referenced using relative URLs since the CSS and the font files included in the Publishing Template

package will be copied together in the output folder.

@font-face {

 font-family: 'Roboto Mono';

 font-style: normal;

 src: url('../fonts/roboto-mono/RobotoMono-VariableFont_wght.ttf') format('truetype');

}

@font-face {

 font-family: 'Roboto Mono';

 font-style: italic;

 src: url('../fonts/roboto-mono/RobotoMono-Italic-VariableFont_wght.ttf') format('truetype');

}

7. Add a CSS rule that applies the custom font on all elements.

body {

 font-family: 'Roboto Mono', sans-serif;

}

8. Run the transformation with the publishing template selected.

Oxygen XML Editor 27.1 | 11 - Publishing | 1807

Figure 519. Output Example

How to Use JQuery in WebHelp Responsive Output

The JQuery library that comes bundled with WebHelp is accessible in the browser's global context so that

developers have access to use it.

To use the JQuery library in your WebHelp Responsive output, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template.

2. Create the following items in the folder that contains your publishing template's descriptor file (the

.opt file):

◦ A folder named js

◦ A folder named fragments

3. In the js folder, create a file named custom.js.

4. As a starting point, you can copy the following content to the custom.js file:

$(document).ready(function () {

 // Your JQuery code.

});

5. In the fragments folder, create a file named jquery-scripts.html with the following content:

https://www.oxygenxml.com/doc/versions/25.1/ug-webhelp-responsive/topics/whr-create-publishing-template.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1808

<html>

 <script src="${oxygen-webhelp-template-dir}/js/custom.js" defer="defer"></script>

</html>

Important:

Make sure that the @defer attribute is present on the <script> element.

6. Copy the js folder to the output folder during the transformation process. For this, open the .opt file

and add the following content in the <resources> section (see Template Resources for more details):

<fileset>

 ...

 <include name="js/**"/>

 ...

</fileset>

7. Include the jquery-scripts.html file in your WebHelp Responsive output by opening the .opt file

and add the following content inside the <webhelp> element:

<html-fragments>

 <fragment file="jquery-scripts.html" placeholder="webhelp.fragment.head"/>

</html-fragments>

8. Run the transformation with your publishing template selected.

How to Display Certain Elements as Tabs

It is possible to display the following elements as tabs in the WebHelp output:

• Lists (both and elements)

• Definition lists (<dl> element)

• Choice tables (<choicetable> element)

For this, you just need to add the @outputclass="wh-tabbed" attribute on the element.

Note:

The tab name is extracted from:

• The first <ph> in lists.

• The first <dt> in definition lists.

• The first <choption> in choice tables.

Here are some examples:

https://www.oxygenxml.com/doc/versions/25.1/ug-webhelp-responsive/topics/whr_publishing_template_contents.html#template_resources

Oxygen XML Editor 27.1 | 11 - Publishing | 1809

• List

<ul outputclass="wh-tabbed">

 <ph>Windows</ph>

 First instruction for Windows

 Second instruction for Windows

 <ph>Linux</ph>

 First instruction for Linux

 Second instruction for Linux

 Third instruction for Linux

 <ph>Mac</ph>

 First instruction for Mac

 Second instruction for Mac

• Definition List

<dl outputclass="wh-tabbed">

 <dlentry>

 <dt>Version 1</dt>

 <dd>Instructions for Version 1</dd>

 </dlentry>

 <dlentry>

 <dt>Version 2</dt>

 <dd>Instructions for Version 2</dd>

 </dlentry>

</dl>

• Choice Table

<choicetable outputclass="wh-tabbed">

 <chrow>

 <choption>First</choption>

 <chdesc>First option description</chdesc>

Oxygen XML Editor 27.1 | 11 - Publishing | 1810

 </chrow>

 <chrow>

 <choption>Second</choption>

 <chdesc>Second option description</chdesc>

 </chrow>

</choicetable>

The outputs will be as follows:

• Windows

1. First instruction for Windows

2. Second instruction for Windows

• Linux

1. First instruction for Linux

2. Second instruction for Linux

3. Third instruction for Linux

• Mac

1. First instruction for Mac

2. Second instruction for Mac

Version 1

Instructions for Version 1

Version 2

Instructions for Version 2

WebHelp Responsive Transformation Parameters

In addition to the common DITA-OT transformation parameters and the HTML-based Output Parameters, there

are numerous other supported parameters that are specific to the WebHelp Responsive output.

Publishing Template Parameters

webhelp.publishing.template

Specifies the path to the ZIP archive (or root folder) that contains your custom WebHelp

Responsive template.

Note:

The built-in templates are stored in the DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/templates folder.

Note:

Relative paths are resolved based on the current working directory.

webhelp.publishing.template.descriptor

Specifies the name of the descriptor to be loaded from the WebHelp Responsive template

package. If it is not specified, the first encountered descriptor will be automatically loaded.

http://www.dita-ot.org/dev/parameters/parameters-base.html
http://www.dita-ot.org/dev/parameters/parameters-base-html.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1811

Custom Resource Parameters

webhelp.custom.resources

The file path to a directory that contains resources files. All files from this directory will be copied

to the root of the WebHelp output.

webhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.logo.image.target.url

Specifies a target URL that is set on the logo image. When you click the logo image, you will be

redirected to this address.

webhelp.logo.image.target.url.new.tab

Specifies if the URL of the link that is set on the logo image will be opened in a new tab.

webhelp.logo.image

Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.logo.image.alt

Specifies a value that will be set in the @alt attribute of the logo image. If the parameter is not

specified, the @alt attribute will contain the publication title. Note that this parameter makes

sense only in conjunction with the webhelp.logo.image parameter.

Oxygen Feedback Parameter

webhelp.fragment.feedback

You can integrate Oxygen Feedback with your WebHelp Responsive output to provide a

comments area at the bottom of each page where readers can offer feedback. When you create

an Oxygen Feedback site configuration, an HTML fragment is generated during the final step of

the creation process and that fragment should be set as the value for this parameter.

Context Sensitive Help Parameter

webhelp.csh.disable.topicID.fallback

Specifies whether or not topic ID fallbacks are enabled when computing the mapping of context

sensitive help and resourceid information is not available. Possible values are false (default) and

true.

HTML Fragment Extension Parameters

webhelp.enable.html.fragments.cleanup

Enables or disables the automatic conversion of HTML fragments to well-formed XML. If set

to true (default), the transformation automatically converts non-well-formed HTML content to

a well-formed XML equivalent. If set to false, the transformation will fail if at least one HTML

fragment is not well-formed.

https://www.oxygenxml.com/oxygen_feedback.html
https://feedback.oxygenxml.com/
https://feedback.oxygenxml.com/

Oxygen XML Editor 27.1 | 11 - Publishing | 1812

webhelp.enable.scroll.to.search.term

Specifies whether or not the page should scroll to the first search term when opening the search

results page. Possible values are no (default) and true.

webhelp.fragment.after.body

This parameter can be used to display a given XHTML fragment after the body in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.main.page

This parameter can be used to display a given XHTML fragment after the body in the main page.

The value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.after.body.search.page

This parameter can be used to display a given XHTML fragment after the body in the search

results page. The value of the parameter can be either a well-formed XHTML fragment or a path

to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.terms.page

This parameter can be used to display a given XHTML fragment after the body in the index terms

page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file

that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.topic.page

This parameter can be used to display a given XHTML fragment after the body in the topic page.

The value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.after.feedback

This parameter can be used to display a given XHTML fragment after the Oxygen Feedback

commenting component in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header

This parameter can be used to display a given XHTML fragment after the header section in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.main.page

This parameter can be used to display a given XHTML fragment after the header section in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.search.page

Oxygen XML Editor 27.1 | 11 - Publishing | 1813

This parameter can be used to display a given XHTML fragment after the header section in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.terms.page

This parameter can be used to display a given XHTML fragment after the header section in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.topic.page

This parameter can be used to display a given XHTML fragment after the header section in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title

This parameter can be used to display a given XHTML fragment after the logo and title in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area

This parameter can be used to display a given XHTML fragment after the main content section in

all types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area.main.page

This parameter can be used to display a given XHTML fragment after the main content section

in the main page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area.topic.page

This parameter can be used to display a given XHTML fragment after the main content section

in the topic page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search (deprecated)

This parameter is deprecated. Use webhelp.fragment.after.search.input.main.page instead.

webhelp.fragment.after.publication.toc

This parameter can be used to display a given XHTML fragment before the publication's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input

This parameter can be used to display a given XHTML fragment after the search field in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

Oxygen XML Editor 27.1 | 11 - Publishing | 1814

webhelp.fragment.after.search.input.main.page

This parameter can be used to display a given XHTML fragment after the search field in all the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.search.page

This parameter can be used to display a given XHTML fragment after the search field in all the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.terms.page

This parameter can be used to display a given XHTML fragment after the search field in all the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.topic.page

This parameter can be used to display a given XHTML fragment after the search field in all the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.toc_or_tiles

This parameter can be used to display a given XHTML fragment after the table of contents or

tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment

or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.top_menu

This parameter can be used to display a given XHTML fragment after the top menu in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.breadcrumb

This parameter can be used to display a given XHTML fragment after the breadcrumb

component in the topic page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.content

This parameter can be used to display a given XHTML fragment after the topic's content in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.toc

This parameter can be used to display a given XHTML fragment after the topic's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.toolbar

Oxygen XML Editor 27.1 | 11 - Publishing | 1815

This parameter can be used to display a given XHTML fragment after the toolbar buttons above

the topic content in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body

This parameter can be used to display a given XHTML fragment before the page body in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.main.page

This parameter can be used to display a given XHTML fragment before the page body in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.search.page

This parameter can be used to display a given XHTML fragment before the page body in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.terms.page

This parameter can be used to display a given XHTML fragment before the page body in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.topic.page

This parameter can be used to display a given XHTML fragment before the page body in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.feedback

This parameter can be used to display a given XHTML fragment before the Oxygen Feedback

commenting component in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title

This parameter can be used to display a given XHTML fragment before the logo and title. The

value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area

This parameter can be used to display a given XHTML fragment before the main content section

in all types of pages. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.main.page

Oxygen XML Editor 27.1 | 11 - Publishing | 1816

This parameter can be used to display a given XHTML fragment before the main content section

in the main page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.search.page

This parameter can be used to display a given XHTML fragment before the main content section

in the search results page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.terms.page

This parameter can be used to display a given XHTML fragment before the main content

section in the index terms page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.topic.page

This parameter can be used to display a given XHTML fragment before the main content section

in the topic page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search (deprecated)

This parameter is deprecated. Use webhelp.fragment.before.search.input.main.page instead.

webhelp.fragment.before.publication.toc

This parameter can be used to display a given XHTML fragment before the publication's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input

This parameter can be used to display a given XHTML fragment before the search field in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.main.page

This parameter can be used to display a given XHTML fragment before the search field in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.search.page

This parameter can be used to display a given XHTML fragment before the search field in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.terms.page

This parameter can be used to display a given XHTML fragment before the search field in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

Oxygen XML Editor 27.1 | 11 - Publishing | 1817

webhelp.fragment.before.search.input.topic.page

This parameter can be used to display a given XHTML fragment before the search field in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles

This parameter can be used to display a given XHTML fragment before the table of contents or

tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment

or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.top_menu

This parameter can be used to display a given XHTML fragment before the top menu in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.breadcrumb

This parameter can be used to display a given XHTML fragment before the breadcrumb

component in the topic page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.content

This parameter can be used to display a given XHTML fragment before the topic's content in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.toc

This parameter can be used to display a given XHTML fragment before the topic's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.toolbar

This parameter can be used to display a given XHTML fragment before the toolbar buttons

above the topic content in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.custom.search.engine.results

This parameter can be used to replace the search results area with custom XHTML content. The

value of the parameter is the path to an XHTML file that contains your custom content.

webhelp.fragment.custom.search.engine.script

This parameter can be used to replace WebHelp's built-in search engine with your own custom

search engine. The value of the parameter is the path to an XHTML file that contains the scripts

required for your custom search engine to run.

webhelp.fragment.footer

Oxygen XML Editor 27.1 | 11 - Publishing | 1818

This parameter can be used to display a given XHTML fragment as the page footer in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

Important:

This parameter should only be used if you are using a valid, purchased license of Oxygen

XML Editor (do not use it with a trial license).

webhelp.fragment.head

This parameter can be used to display a given XHTML fragment in the header section in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.head.main.page

This parameter can be used to display a given XHTML fragment in the header section in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.search.page

This parameter can be used to display a given XHTML fragment in the header section in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.terms.page

This parameter can be used to display a given XHTML fragment in the header section in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.topic.page

This parameter can be used to display a given XHTML fragment in the header section in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome

This parameter can be used to display a given XHTML fragment as a welcome message (or

title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file

that contains a well-formed XHTML fragment.

Note:

All the XHTML fragments can contain WebHelp Responsive Macros (on page 1727).

Output Component Parameters

webhelp.default.collection.type.sequence

Oxygen XML Editor 27.1 | 11 - Publishing | 1819

Specifies if the sequence value will be used by default when the @collection-type attribute is

not specified. This option is helpful if you want to have Next and Previous navigational buttons

generated for all HTML pages. Allowed values are no (default) and yes.

webhelp.enable.sticky.header

Controls whether or not the header section will remain sticky in the output. Possible values are

yes (default) or no.

webhelp.enable.sticky.publication.toc

Controls whether or not the publication table of contents will remain sticky in the output.

Possible values are yes (default) or no.

webhelp.enable.sticky.topic.toc

Controls whether or not the topic table of contents will remain sticky in the output. Possible

values are yes (default) or no.

webhelp.figure.title.placement

Controls the placement of the title for figures (relative to the image). Possible values include top

(default) and bottom.

webhelp.labels.generation.mode

Controls whether or not labels are generated in the output. These labels are useful because

users can easily search for topics with the same label by simply clicking on the label presented

in the output. Possible values are:

• keywords-label - Generates labels for each defined <keyword> element that has the

@outputclass attribute value set to label.

• keywords - Generates labels for each defined <keyword> element. If the topic contains

<keyword> elements with the @outputclass attribute value set to label, then only these

elements will have labels generated for them in the output.

• disable - Disables the generation of labels in the Webhelp Responsive output.

webhelp.merge.nested.topics.related.links

Specifies if the related links from nested topics will be merged with the links in the parent topic.

Thus the links will be moved from the topic content to the related links component and all

of the links from the same group (for example, Related Tasks, Related References, Related

Information) are merged into a single group. The default value is yes.

webhelp.publication.toc.hide.chunked.topics

Specifies if the table of contents will contain links for chunked topics. The default value is yes.

webhelp.publication.toc.links

Specifies which links will be included in the table of contents. The possible values are:

Oxygen XML Editor 27.1 | 11 - Publishing | 1820

• chapter (default) - The TOC will include links for the current topic, its children, its siblings,

and its direct ancestor (including the direct ancestor's siblings), and the parent chapter.

• topic - The TOC will only include links for the current topic and its direct children.

• all - The TOC will include all links.

webhelp.publication.toc.tooltip.position

By default, if a topic contains a <shortdesc> element, its content is displayed in a tooltip when

the user hovers over its link in the table of contents. This parameter controls whether or not this

tooltip is displayed and its position relative to the link. The possible values are:

• left

• right (default)

• top

• bottom

• hidden - The tooltip will not be displayed.

webhelp.rellinks.group.mode

Specifies the related links grouping mode. All links can be grouped into a single "Related

Information" heading or links can be grouped by their target type (topic, task, or concept).

Allowed values: single-group (default) or group-by-type.

webhelp.show.breadcrumb

Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.changes.and.comments

When set to yes, user comments, replies to comments, and tracked changes are published in the

WebHelp output. The default value is no.

webhelp.show.child.links

Specifies if child links will be generated in the output for all topics that have subtopics. The

default value is no.

webhelp.show.full.size.image

Specifies if responsive images that are displayed with a smaller dimension than their original

size can be clicked to see an enlarged version of the image. The default value is yes.

webhelp.show.indexterms.link

Specifies if an icon that links to the index terms page will be displayed in the output. The default

value is yes (meaning the index terms icon is displayed). If set to false, the index terms icon is

not displayed in the output and the index terms page is not generated.

webhelp.show.main.page.tiles

Specifies if the tiles component will be presented in the main page of the output. For a tree style

layout, this parameter should be set to no.

webhelp.show.main.page.toc

Oxygen XML Editor 27.1 | 11 - Publishing | 1821

Specifies if the table of contents will be presented in the main page of the output. The default

value is yes.

webhelp.show.expand.collapse.sections

Specifies if links to collapse sections will be presented within each topic in the output.

Collapsing sections will collapse all collapsible elements (nested topics with titles, sections with

titles, or tables with titles). The default value is yes.

webhelp.show.navigation.links

Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link

Specifies if a print link or icon will be presented within each topic in the output. The default value

is yes.

webhelp.show.publication.toc

Specifies if a table of contents will be presented on the left side of each topic in the output. The

default value is yes.

webhelp.show.topic.toc

Specifies if a topic table of contents will be presented on the right side of each topic in the

output. This table of contents contains links to each <section> within the current topic that

contains an @id attribute and the section corresponding to the current scroll position is

highlighted. The default value is yes.

webhelp.show.top.menu

Specifies if a menu will be presented at the topic of the main page in the output. The default

value is yes.

webhelp.skip.main.page.generation

If set to true, the default main page is not generated in the output. The default value is false.

webhelp.table.title.placement

Controls the placement of the title for tables. Possible values include top (default) and bottom.

webhelp.top.menu.activated.on.click

When this parameter is activated (set to yes), clicking an item in the top menu will expand the

submenu (if available). You can then click on a submenu item to open the item (topic). You can

click outside the menu or press ESC to hide the menu. When set to no (default), hovering over a

menu item displays the menu content.

webhelp.top.menu.depth

Specifies the maximum depth level of the topics that will be included in the top menu. The

default value is 3. A value of 0 means that the menu has unlimited depth.

webhelp.topic.collapsible.elements.initial.state

Oxygen XML Editor 27.1 | 11 - Publishing | 1822

Specifies the initial state of collapsible elements (nested topics with titles, sections with titles,

tables with titles or index term groups). The possible values are collapsed or expanded (default

value).

Search-Related Parameters

webhelp.enable.search.autocomplete

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default

value is yes.

webhelp.google.search.results

A file path that specifies the location of a well-formed XHTML file containing the Google Custom

Search Engine element gcse:searchresults-only. You can use all supported attributes for this

element. It is recommended to set the @linkTarget attribute to frm for frameless (iframe) version

of WebHelp or to contentWin for the frameset version of WebHelp. The default value for this

attribute is _blank and the search results will be loaded in a new window. If this parameter is

not specified, the following code will be used <gcse:searchresults-only linkTarget="frm"></

gcse:searchresults-only>.

webhelp.google.search.script

A file path that specifies the location of a well-formed XHTML file containing the Custom Search

Engine script from Google.

webhelp.search.default.operator

Makes it possible to change the default operator for the search engine. Possible values are

and, or (default). If set to and while the search query is WORD1 WORD2, the search engine only

returns results for topics that contain both WORD1 and WORD2. If set to or and the search query

is WORD1 WORD2, the search engine returns results for topics that contain either WORD1 or

WORD2.

webhelp.search.enable.pagination

Specifies whether or not search results will be displayed on multiple pages. Allowed values are

yes or no.

webhelp.search.index.elements.to.exclude

Specifies a list of HTML elements that will not be indexed by the search engine. The value of the

@class attribute can be used to exclude specific HTML elements from indexing. For example, the

div.not-indexed value will not index all <div> elements that have a @class attribute with the value

of not-indexed. Use a comma separator to specify more than one element.

webhelp.search.japanese.dictionary

The file path of the dictionary that will be used by the Kuromoji morphological engine for

indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be

UTF8.

webhelp.search.page.numberOfItems

Oxygen XML Editor 27.1 | 11 - Publishing | 1823

Specifies the number of search results items displayed on each page. This parameter is only

used when the webhelp.search.enable.pagination parameter is enabled.

webhelp.search.ranking

If this parameter is set to false then the 5-star rating mechanism is no longer included in the

search results that are displayed on the Search tab (default setting is true).

webhelp.search.stop.words.exclude

Specifies a list of words that will be excluded from the default list of stop words that are filtered

out before the search processing. Use comma separators to specify more than one word (for

example: if,for,is).

webhelp.search.stop.words.include

Specifies a list of words that will be ignored by the search engine. Use a comma separator to

specify more than one word.

webhelp.sitemap.base.url

Base URL for all the <loc> elements in the generated sitemap.xml file. If this parameter is

specified, the loc element will contain the value of this parameter plus the relative path to the

page. If this parameter is not specified, the loc element will only contain the relative path of the

page (the relative file path from the @href attribute of a <topicref> element from the DITA map,

appended to this base URL value).

webhelp.sitemap.change.frequency

The value of the <changefreq> element in the generated sitemap.xml file. The <changefreq>

element is optional in sitemap.xml. If you leave this parameter set to its default empty value,

then the <changefreq> element is not added in sitemap.xml. Allowed values: <empty string>

(default), always, hourly, daily, weekly, monthly, yearly, never.

webhelp.sitemap.priority

The value of the <priority> element in the generated sitemap.xml file. It can be set to any

fractional number between 0.0 (least important priority) and 1.0 (most important priority).

For example, 0.3, 0.5, or 0.8. The <priority> element is optional in sitemap.xml. If you leave

this parameter set to its default empty value, then the <priority> element is not added in

sitemap.xml.

Publishing Speedup Parameters

parallel

A common parameter with other transformation types. When set to true (default value is false),

the publishing pre-processing stages are run in parallel slightly improving the publishing time.

store-type

A common parameter with other transformation types. When set to memory, the processing

stages use internal memory to store temporarily processed documents, thus decreasing the

publishing time but slightly increasing the amount of internal memory used for the process.

Oxygen XML Editor 27.1 | 11 - Publishing | 1824

When publishing on Windows, setting this parameter can decrease the publishing times by about

one-third.

Note:

The fix.external.refs.com.oxygenxml parameter is not supported when running the transformation

from a command line. This parameter is normally used to specify whether or not the application tries

to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed

references.

Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

The following transformation parameters can be used to generate a PDF link component in the WebHelp

Responsive output (for example, it could link to the PDF equivalent of the documentation):

webhelp.pdf.link.url

Specifies the target URL for the PDF link component.

webhelp.pdf.link.text

Specifies the text for the PDF link component.

webhelp.pdf.link.icon.path

Specifies the path or URL of the image icon to be used for the PDF link component. If not

specified, a default icon is used.

webhelp.pdf.link.anchor.enabled

Specifies whether or not the current topic ID should be appended as the name destination at the

end of the PDF link. Allowed values are: yes (default) and no.

webhelp.show.pdf.link

Specifies whether or not the PDF link component is shown in the WebHelp Responsive output.

Allowed values are: yes (default) and no.

Related information

Generating WebHelp Responsive Output (on page 1709)

Setting DITA-OT Parameters

WebHelp Responsive XSLT-Import and XSLT-Parameter Extension Points

XSLT extension points can be used from either from an Oxygen Publishing Template or from a DITA-OT

extension plug-in.

Extension Points from an Oxygen Publishing Template

The publishing template allows you to specify an XSLT extension point. The extension point will only affect the

transformations that use the particular template.

http://www.dita-ot.org/dev/parameters/index.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1825

Important:

While the publishing templates only support referencing one extension point at a time, you can use

xslt:include or xslt:import to aggregate multiple modules.

For a specific example of how to use an extension in a publishing template, see: How to Use XSLT Extension

Points from a Publishing Template (on page 1775).

Example:

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.webhelp.xsl.createMainPage"

 file="xsl/customMainPage.xsl"/>

 </xslt>

Extension Points from a DITA-OT Extension Plug-in

The DITA-OT plug-in installer adds an XSLT import statement in the default WebHelp XSLT so that the XSLT

stylesheet referenced by the extension point becomes part of the normal build. You can use these extension

points to override XSLT processing steps.

Example:

<plugin id="com.oxygenxml.webhelp.responsive.extension">

 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp"

 file="xsl/fixup.xsl"/>

</plugin>

XSLT-Import Extension Points

The following extension points are supported:

com.oxygenxml.webhelp.xsl.dita2webhelp

Extension point to override the XSLT stylesheet (dita2webhelp.xsl) that produces

an HTML file for each DITA topic. The location of this file is DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\xsl\dita2webhelp\dita2webhelp.xsl

com.oxygenxml.webhelp.xsl.createMainPage

Extension point to override the XSLT stylesheet (createMainPage.xsl) that produces

the WebHelp Responsive main HTML page (index.html). The location of this file is

DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles

\createMainPage.xsl

Oxygen XML Editor 27.1 | 11 - Publishing | 1826

com.oxygenxml.webhelp.xsl.createNavLinks

Extension point to override the XSLT stylesheets that are used to generate navigation links in the

WebHelp Responsive pages. These stylesheets can be found in the navLinks folder: DITA-OT-

DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\navLinks\

com.oxygenxml.webhelp.xsl.createSearchPage

Extension point to override the XSLT stylesheet (createSearchPage.xsl) that produces

the WebHelp Responsive search HTML page (search.html). The location of this file is

DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles

\createSearchPage.xsl

com.oxygenxml.webhelp.xsl.createIndexTermsPage

Extension point to override the XSLT stylesheet (createIndextermsPage.xsl) that produces

the WebHelp Responsive index terms HTML page (indexterms.html). The location of this

file is DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles

\createIndextermsPage.xsl

com.oxygenxml.webhelp.xsl.createTocXML

Extension point to override the XSLT stylesheet (tocDita.xsl) that produces the toc.xml

file. This file contains information extracted from the DITA map (on page 3296) and it is

mainly used to construct the WebHelp Table of Contents and navigational links. The path to

this stylesheet is: DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl

\navLinks\tocDita.xsl.

com.oxygenxml.webhelp.xsl.contextHelpMap

Extension point to override the XSLT stylesheet (contextHelpMapDita.xsl) that

generates the context sensitive help mapping. The path to this stylesheet is: DITA-

OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\contextHelp

\contextHelpMapDita.xsl.

XSLT-Parameter Extension Points

If your customization stylesheet declares one or more XSLT parameters and you want to control their values

from the transformation scenario, you can use one of the following XSLT parameter extension points:

com.oxygenxml.webhelp.xsl.dita2webhelp.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.dita2webhelp extension point (on page 1825).

com.oxygenxml.webhelp.xsl.createMainPage.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createMainPage extension point (on page 1825).

com.oxygenxml.webhelp.xsl.createNavLinks.param

Oxygen XML Editor 27.1 | 11 - Publishing | 1827

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createNavLinks extension point (on page 1826).

com.oxygenxml.webhelp.xsl.createSearchPage.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createSearchPage extension point (on page 1826).

com.oxygenxml.webhelp.xsl.createIndexTermsPage.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createIndexTermsPage extension point (on page 1826).

com.oxygenxml.webhelp.xsl.createTocXML.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createTocXML extension point (on page 1826).

com.oxygenxml.webhelp.xsl.contextHelpMap.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.contextHelpMap extension point (on page 1826).

Related Information:

[DITA-OT] XSLT-Import Extension Points

[DITA-OT] XSLT-Parameter Extension Points

DITA to PDF Output Customization
Oxygen XML Editor provides support for generating PDF output using transformation scenarios for certain

types of documents (for example, DITA, DocBook, TEI, and JATS) and Oxygen XML Editor supports several

different types of processors. There are numerous ways to customize the published output to fit your specific

needs.

CSS-based DITA to PDF Customization

Oxygen XML Editor comes bundled with a DITA-OT CSS-based PDF Publishing Plugin for transforming

DITA maps or single topics to PDF, while styling the resulting output using CSS. It is the base of two types of

transformation scenarios:

DITA Map Transformation Type (DITA Map PDF - based on HTML5 & CSS)

This transformation type converts DITA maps to PDF using a CSS-based processing engine and HTML5 as an

intermediate format. For this transformation, the pdf-css-html5 transtype is used. Because the structure of the

HTML5 intermediate format resembles the one used in WebHelp output, it is possible to reuse parts of your

CSS file you developed for a WebHelp customization.

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters

Oxygen XML Editor 27.1 | 11 - Publishing | 1828

Single Topic Transformation Type (DITA PDF - based on HTML5 & CSS)

This transformation type converts a single DITA topic to PDF using a CSS-based processing engine and

HTML5 as an intermediate format. For this transformation, the pdf-css-html5-single-topic transtype is used.

This transformation is derived from the DITA Map PDF - based on HTML5 & CSS transformation type but

applies on a single topic.

Related Information:

DITA Map PDF - based on HTML5 & CSS Transformation (on page 1489)

DITA PDF - based on HTML5 & CSS Transformation (on page 3165)

Overview

This section contains topics that provide a basic overview of the DITA-OT CSS-based PDF Publishing Plugin,

technical details, and some additional resources to help you with your customizations.

Tip:

For more information and some tips in regard to publishing DITA documents to PDF using CSS, watch

our Webinars:

• Transforming DITA documents to PDF using CSS, Part 1 – Page Definitions, Cover Page and

PDF Metadata.

• Transforming DITA documents to PDF using CSS, Part 2 – Book Design, Pagination, Page

Layout, and Bookmarks.

• Transforming DITA documents to PDF using CSS, Part 3 – Advanced Fonts Usage.

• Transforming DITA documents to PDF using CSS, Part 4 – Advanced CSS Rules.

• Transforming XML and HTML documents to PDF using CSS, Part 1 – Basic CSS Layout.

• Transforming XML and HTML documents to PDF using CSS, Part 2 – Lists, Tables and

Images.

• Transforming XML and HTML documents to PDF using CSS, Part 3 – Global Page Layout.

• Transforming XML and HTML documents to PDF using CSS, Part 4 – Advanced

Functionalities.

Resources

Customizing the PDF output requires knowledge of CSS, Paged Media, and DITA. The following list provides

some resources to help you:

• CSS - You can find a good tutorial here: https://developer.mozilla.org/en-US/docs/Learn/CSS/

Introduction_to_CSS. Also, the specification is available on the W3C (https://www.w3.org/Style/CSS/

Overview.en.html) or on the MDN (https://developer.mozilla.org/en-US/docs/Web/CSS) websites.

• CSS Paged Media - This is a part of the CSS specification that shows how to organize your publication

in pages, how to use headers/footers, page breaks, and other page-related issues. The specification is

https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_1.html
https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_1.html
https://www.oxygenxml.com/events/2022/webinar_transforming_dita_documents_to_pdf_using_css_part_2.html
https://www.oxygenxml.com/events/2022/webinar_transforming_dita_documents_to_pdf_using_css_part_2.html
https://www.oxygenxml.com/events/2022/webinar_transforming_dita_documents_to_pdf_using_css_part_3.html
https://www.oxygenxml.com/events/2023/webinar_transforming_dita_documents_to_pdf_using_css_part_4.html
https://www.oxygenxml.com/events/2020/webinar_transforming_html_documents_to_pdf_1.html
https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_2.html
https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_2.html
https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_3.html
https://www.oxygenxml.com/events/2021/webinar_transforming_xml_and_html_documents_part_4.html
https://www.oxygenxml.com/events/2021/webinar_transforming_xml_and_html_documents_part_4.html
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3.org/Style/CSS/Overview.en.html
https://developer.mozilla.org/en-US/docs/Web/CSS

Oxygen XML Editor 27.1 | 11 - Publishing | 1829

available here: https://www.w3.org/TR/CSS2/page.html. Also, there is a set of hands-on examples in

the Oxygen PDF Chemistry user guide: https://www.oxygenxml.com/doc/ug-chemistry/.

• DITA - You will need a basic understanding of DITA elements, attributes, and structure. A good resource

is The DITA Style Guide - Best Practices for Authors by Tony Self. It is available at: www.ditastyle.com

and: https://www.oxygenxml.com/dita/styleguide/c_DITA_Authoring_Concepts.html. You can find all

the details for every DITA element on OASIS website: http://docs.oasis-open.org/dita/v1.2/os/spec/

DITA1.2-spec.html.

• HTML5 - You will need a good knowledge of HTML5. You can find resources here: https://

developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

• Webinars - Some helpful webinars are available on our website: https://www.oxygenxml.com/

publishing_engine/videos.html?category=Webinars. They explain how to generate PDF from DITA

documents using CSS, step-by-step.

Related Information:

DITA-OT DAY 2017: Using CSS to Style PDF Output

Supported Processors

The DITA-OT CSS-based PDF Publishing Plugin supports the following CSS processors:

• Oxygen PDF Chemistry - This is recommended processor because the built-in CSS files were fine-

tuned for this processor. For example, metadata extraction (on page 1916) only functions with

this processor. If the plugin is started from an Oxygen XML Editor/Author distribution, a Chemistry

installation is not needed.

• Prince XML - A commercial product, available at: https://www.princexml.com/.

• Antenna House - A commercial product, available at: https://www.antennahouse.com/formatter.

Technical Details

The DITA-OT CSS-based PDF Publishing Plugin comes bundled in the Oxygen XML Editor/Author

distributions. The plugin ID is: com.oxygenxml.pdf.css. It is installed in the [OXYGEN-INSTALL-

DIR]frameworks/dita/DITA-OT/plugins/com.oxygenxml.pdf.css folder.

It has the following transformation types:

• pdf-css-html5 (DITA Map PDF - based on HTML5 & CSS transformation) - CSS styling applied over a

merged HTML5 document (the merged DITA map converted to HTML5).

• pdf-css-html5-single-topic (DITA PDF - based on HTML5 & CSS transformation) - CSS styling applied

over a merged HTML5 document (the merged DITA topic converted to HTML5).

This is how it works:

https://www.w3.org/TR/CSS2/page.html
https://www.oxygenxml.com/doc/ug-chemistry/
http://www.ditastyle.com
https://www.oxygenxml.com/dita/styleguide/c_DITA_Authoring_Concepts.html
http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.html
http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.html
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://www.oxygenxml.com/publishing_engine/videos.html?category=Webinars
https://www.oxygenxml.com/publishing_engine/videos.html?category=Webinars
https://www.oxygenxml.com/events/2017/DITA_OT_Day/Using_CSS_to_style_the_PDF_output.pdf
https://www.princexml.com/
https://www.antennahouse.com/formatter

Oxygen XML Editor 27.1 | 11 - Publishing | 1830

1. It expands all the topic references into a temporary clone of the map, resolving keys and reused

content. For the single topic transformation the result is a file with the keys and content resolved.

2. It generates a structure for the table of contents and index. The result is a merged map with all the

references resolved. When transforming a single topic, the TOC and Index are not added to the merged

file, this includes only the contents of the topic.

3. It post-processes the merged map. It fixes some of the structure in the TOC and index, moves

the frontmatter and backmatter to the correct places, transforms any change tracking and

review processing instructions to elements that can be styled later, etc. During this phase, the

com.oxygenxml.pdf.css.xsl.merged2merged (on page 2049) extension points are also called. The result

is another merged map.

Oxygen XML Editor 27.1 | 11 - Publishing | 1831

Note:

In the single topic transformation type (DITA PDF - based on HTML5 & CSS), these steps are

simplified.

4. It converts the post-processed merged map or topic into a single HTML5 file. The generated HTML

elements have the @class attribute from their original DITA elements. This means that you can either

use selectors that were designed for DITA structure, or ones for the HTML structure. For more

details, see Reusing the Styling for WebHelp and PDF Output (on page 2002). During this phase, the

com.oxygenxml.pdf.css.xsl.merged2html5 (on page 2049) extensions points are also called.

Oxygen XML Editor 27.1 | 11 - Publishing | 1832

5. It uses a collection of CSS stylesheets against the merged HTML5 file and uses a PDF processor to

generate the final PDF. References to the CSS files are collected from the publishing template (on page

1847).

Increasing Memory Allocation for Java

If you are working with a large project with extensive metadata or key references, you may need to increase

the amount of memory that is allocated to the Java process that performs the publishing.

There can be two situations where an out of memory error can be triggered:

• From the DITA-OT basic processing (the preparation of the merged HTML document).

• From the Chemistry PDF CSS processor (the transformation of the merged HTML document to PDF).

When the Transformation is Started from Oxygen

To alter the memory allocation setting from the transformation scenario, follow these steps:

1. Open the Configure Transformation Scenario(s) dialog box.

2. Select your transformation scenario, then click Edit.

3. Go to the Advanced tab.

4. Uncheck the Prefer using the "dita" command option

5. Locate the JVM Arguments and increase the default value. For instance, to set 2 gigabytes as the

maximum amount of memory, you can use: -Xmx2g. If you do not specify the -Xmx value in this field,

by default, the application will use a maximum of 512 megabytes when used with a 32-bit Java Virtual

Machine and one gigabyte with a 64-bit Java Virtual Machine.

Oxygen XML Editor 27.1 | 11 - Publishing | 1833

Note:

This memory setting is used by both the DITA-OT process and the Chemistry CSS processor.

When the Transformation is Started from the Command Line

• If the DITA-OT process fails with Out Of Memory Error: you can change the value of the ANT_OPTS

environment variable from a command line for a specific session.

Example: To increase the JVM memory allocation to 1024 MB for a specific session, issue the

following command from a command prompt (depending on your operating system):

◦ Windows

set ANT_OPTS=%ANT_OPTS% -Xmx1024M

◦ Linux/macOS

export ANT_OPTS="$ANT_OPTS -Xmx1024M"

Tip:

To persistently change the memory allocation, change the value allocated to the ANT_OPTS

environment variable on your system.

• If the Chemistry PDF CSS processor fails with an Out Of Memory Error: try adding the baseJVMArgLine

parameter to the DITA-OT command line. For example:

-DbaseJVMArgLine=-Xmx2048m

Transformation Parameters

This list includes the most common customization parameters that are available in the DITA Map PDF - based

on HTML5 & CSS transformation scenario. Other standard DITA-OT parameters were omitted for clarity, but

they are supported.

Note:

These parameters must be prefixed by "-D" when used from a command line.

antenna-house.option.setting.file Path to the Antenna House Option Setting File (eg: C:\path\to\for

matter\options\settings.xml on Windows).

args.allow.external.coderefs Enables the inclusion of code files that are located outside the DITA map

folder hierarchy, referenced using the DITA <coderef> element. Allowed

values are yes or no (default).

args.chapter.layout
Specifies whether chapter-level TOCs are generated for bookmaps.

When set to MINITOC, a small section with links is added at the begin

Oxygen XML Editor 27.1 | 11 - Publishing | 1834

ning of each chapter. The default is BASIC. For details, see: Table of

Contents on a Page (Mini TOC) (on page 1951).

Allowed values:

• BASIC - No chapter TOC is created.

• MINITOC - A chapter-level TOC is generated.

• MINITOC-BOTTOM-LINKS - A chapter-level TOC is generated,

with the links under the chapter description.

args.css You can use this to specify a list of CSS URLs to be used in addition to

those specified in the publishing template. The files must have URL syn

tax and be separated using semicolons.

args.css.param.* You can use this parameter pattern to set attributes on the root of the

merged map. This means you can activate specific CSS rules from your

custom CSS using custom attributes. For examples, see: Styling Through

Custom Parameters (on page 2045).

args.css.param.clone-refer

enced-footnotes

You can use this parameter to control the footnotes behavior:

• When set to yes, footnotes that are referenced multiple times

throughout a publication are cloned and placed at the bottom of

the page for each occurrence.

• When set to no (default value), only the first footnote reference

is placed at the bottom of the page and subsequent references

point back to the original footnote.

args.css.param.numbering You can use this parameter to change the numbering of the first-level

topics (chapters) and nested topics. Allowed values:

• shallow - Only the topics from the first level are numbered (chap

ters). This is the default.

• deep - All the topics from the map are numbered (nested topics

up to level 3).

• deep-chapter-scope - Similar to deep, but in addition, the page

numbers, figures, and table numbers are reset at the start of each

first-level topic (chapter). The table and figure titles (and the links

to them) are prefixed with the chapter numbers. The generic cross

reference links contain both the first-level topic (chapter) numbers

and the page numbers to avoid ambiguity. This parameter value

is only available for the DITA Map PDF - based on HTML5 & CSS

transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 1835

• deep-chapter-scope-no-page-reset - Similar to deep-chap

ter-scope, but the page numbers do not reset at the start of each

first-level topic (chapter). The generic cross reference links con

tain only the page number. This parameter value is only available

for the DITA Map PDF - based on HTML5 & CSS transformation

scenario.

For more details, see Numbering Types (on page 1937).

args.css.param.numbering-sec

tions

Controls whether or not the sections are included in the table of con

tents. When set to yes (sections are included), they are numbered ac

cording the numbering scheme set by the args.css.param.numbering pa

rameter.

args.css.param.show-onpage-lbl Controls whether or not the links will have an on page NN label after

them. This parameter has different defaults, depending on the transfor

mation type. For map transformations (pdf-css-html5 trans type), the de

fault is yes. For topic transformations (pdf-css-html5-single-topic trans

type), the default is no.

args.css.param.show-profiling-at

tributes
Controls whether or not the profiling attributes are displayed in the out

put.

Allowed values:

• yes

• no (default)

args.css.param.title.layout Changes the structure of the title element. In the output, the title area

consists of two parts: one is the number of the chapter (and optionally,

the sections number), and one is the title text. This parameter allows a

switch between normal text flow (in-line flow) and a table layout where

the number is placed in one cell and the text in the other (to avoid wrap

ping text under the chapter number).

• normal

• table (avoid wrapping text under counter)

args.draft
Specifies whether or not the content of <draft-comment> and <re

quired-cleanup> elements is included in the output.

Allowed values:

• no (default) - No draft information is shown in the output.

• yes - The draft information is shown in the output.

Oxygen XML Editor 27.1 | 11 - Publishing | 1836

args.figurelink.style
Specifies how cross references to figures are styled in output. Allowed

values:

• NUMBER - Only the number of the figures are shown in links.

• TITLE - Only the title of the figures are shown in links.

• NUMTITLE (default) - Both the title and number of the figures are

shown in links.

args.gen.task.lbl
Specifies whether or not to generate headings for sections within task

topics. Allowed values: YES or NO (default). When set to YES, headings

such as "About this task", "Before you begin", "Procedure", or "What to do

next", are shown in the task contents.

args.hyph.dir Specifies the directory that contains custom hyphenation dictionaries.

Fore more details see: Hyphenation (on page 1981).

args.input Specifies the main DITA map file for your documentation project.

args.keep.output.debug.files Specifies whether or not the debug files generated during the transfor

mation should be kept in the output folder. Allowed values: YES (default)

or NO.

args.output.base Specifies the name of the output file without a file extension. By default,

the name of the PDF file is derived from the name of the DITA map file.

This parameter allows you to override it.

A common use-cases is to use the ditamap title instead of the dita

map filename, the parameter value then become ${xpath_eval(normal

ize-space(string-join(/*[contains(@class, 'map/map')]/*[contain

s(@class, 'topic/title')]//text())))}.

Note:

To replace spaces by a custom separator the query should

call the replace() function: ${xpath_eval(replace(normal

ize-space(string-join(/*[contains(@class, 'map/map')]/

*[contains(@class, 'topic/title')]//text())), '\s', '_'))}.

args.rellinks.group.mode Specifies the related links grouping mode. All links can be grouped into

a single "Related Information" group or links grouped by their target type

(topic, task, or concept). Allowed values: single-group (default) or group-

by-type. Fore more details see: How to Group Related Links by Type (on

page 2013).

Oxygen XML Editor 27.1 | 11 - Publishing | 1837

args.tablelink.style
Specifies how cross references to tables are styled in output. Allowed

values:

• NUMBER - Only the number of the tables are shown in links.

• TITLE - Only the title of the tables are shown in links.

• NUMTITLE (default) - Both the title and number of the tables are

shown in links.

clean.temp Specifies whether or not the DITA-OT deletes the files in the temporary

directory after it finishes a build. Allowed values: yes (default) or no.

chemistry.log.file Specifies the path to the logback.xml configuration file used by Chem

istry. For more details, see: Console Logging (on page 1843).

chemistry.security.policy Specifies a Java policy file that applies to the Chemistry process. A tem

plate can be found here: plugins/com.oxygenxml.pdf.css/lib/

oxygen-pdf-chemistry/config/chemistry.policy.

chemistry.security.resources.dir Path to an additional folder that Chemistry will use to read its resources

(CSS, images). The process already has read access to the input map

folder, the publishing templates folder, and the OPE install folder. This

optional parameter should only be used when the chemistry.security

.policy parameter is set.

chemistry.security.resources

.host

The host, specified as name:port, that Chemistry will use to get resources

(e.g. CSS files, images, fonts). This optional parameter should only be

used when the chemistry.security.policy parameter is set.

chemistry.security.workspace Specifies a directory where the temporary files and font cache created by

the Chemistry process need to be stored. This becomes required when

the chemistry.security.policy is specified.

chemistry.sign.keystore Specifies the path to the keystore file used by Chemistry to sign the PDF.

This parameter must be set if you want to sign your PDF.

chemistry.sign.location Specifies the location of the person/company who certified the PDF.

chemistry.sign.name Specifies the name of the person/company who certified the PDF.

chemistry.sign.password Specifies the export password of the keystore used to sign the PDF.

Mandatory if the keystore has been exported with a password.

chemistry.sign.reason Specifies the reason for certifying the PDF.

css.processor.path.anten

na-house

Path to the Antenna House executable file that needs to be run to gener

ate the PDF (for example, C:\path\to\AHFCmd.exe on Windows).

css.processor.path.chemistry Path to the Oxygen PDF Chemistry executable file that needs to be run to

generate the PDF (for example, C:\path\to\chemistry.bat on Win

Oxygen XML Editor 27.1 | 11 - Publishing | 1838

dows). If this parameter is not set, the plugin will use the system's PATH

environment variable to locate and start Oxygen PDF Chemistry.

css.processor.path.prince Path to the Prince executable file that needs to be run to generate the

PDF (for example, C:\path\to\prince.exe on Windows).

css.processor.type Specifies the processor to use for the transformation. Allowed values:

chemistry (default), antenna-house, or prince.

default.language Specifies the default language for source documents. Examples: fr, de,

zh, etc. Depending on the transformation type, the actual number of sup

ported languages can vary, see: Localization (on page 2086).

drop.block.margins.at.page

.boundary

Specifies that the top and bottom margins associated with a block ele

ment should be discarded when the block is at the top or bottom of the

page. Allowed values: YES (default) or NO.

editlink.ditamap.edit.url Use this parameter to add an Edit link next to the topic title in the Web

Help output. When a user clicks the link, the topic is opened in Oxygen

XML Web Author or Content Fusion where they can make changes that

can be saved to a file server. The value should be set as the edit URL of

the main DITA map used for publishing your output. The easiest way to

obtain the URL is to open the map in Web Author or Content Fusion and

copy the URL from the browser's address bar.

editlink.additional.query.parame

ters

You can use this optional parameter to add additional parameters to be

appended to each generated edit link. Each parameter must start with &

(for example: &tags-mode=no-tags).

editlink.remote.ditamap.url (dep

recated)

Use this parameter in conjunction with editlink.web.author.url to add

an Edit link next to the topic title in the PDF output. When a user clicks

the link, the topic is opened in Oxygen XML Web Author where they can

make changes that can be saved to a file server. The value should be

set as the custom URL of the main DITA map. For example, a GitHub

custom URL might look like this: https://getFileContent/oxy

genxml/userguide/master/UserGuide.ditamap.

editlink.web.author.url (deprecat

ed)

This parameter needs to be used in conjunction with editlink.remote

.ditamap.url to add an Edit link next to the topic title in the PDF output.

When a user clicks the link, the topic is opened in Oxygen XML Web Au

thor where they can make changes that can be saved to a file server. The

value should be set as the URL of the Web Author installation. For exam

ple: https://www.oxygenxml.com/oxygen-xml-web-author/.

enable.chunk.processing Enables the processing of the @chunk attribute. By default, this stage is

skipped but it needs to be enabled, for example, if both the @chunk and

Oxygen XML Editor 27.1 | 11 - Publishing | 1839

@copy-to attributes are present on a <topicref>. Accepted values: true or

false.

enable.latin.glyph.substitutions When set to yes (default), glyph substitution is enabled (if the particular

font supports it). This applies to Latin-based scripts only (the substitu

tions are always enabled in other types of scripts). If you encounter prob

lems rendering or copying accented glyphs (e.g. umlauts or other dia

critics), it might be helpful to set this parameter to no to disable the font

glyph substitutions. Another example of a case when you might need to

disable the substitutions is a situation where an accented character can

not be mapped to a compound glyph, resulting in the glyph not being ren

dered in the PDF output.

Warnings:

• Disabling substitutions also disables Latin ligatures.

• Disabling substitutions is not recommended unless ab

solutely necessary. It is better practice to use another

font if you can find one that does not have the rendering

issues.

expand.xpath.in.svg.templates Expands XPath expressions (whose format is ${expression}) contained

in SVG templates. Allowed values: yes (default) or no.

figure.title.placement Controls the title placement of the figures, relative to the image. Possible

values include top (default) and bottom.

filter.unused.glossentries When set to no (default), all glossary entries are displayed in the glos

sary. If set to yes, only referenced entries are displayed.

fix.external.refs.com.oxygenxml
The DITA Open Toolkit usually has problems processing references that

point to locations outside of the processed DITA map directory. This pa

rameter is used to specify whether or not the application should try to fix

such references in a temporary files folder before the DITA Open Toolkit

is invoked on the fixed references. The fix has no impact on your edited

DITA content. Allowed values: true or false (default).

hide.frontpage.toc.index.glossary When set to yes, the generated structures (table of contents, index list,

front page, etc.) are removed from the output. The default is no.

image.resolution You can use this parameter to set the default resolution used by images.

It works mainly on vector images since raster images have their resolu

Oxygen XML Editor 27.1 | 11 - Publishing | 1840

tion defined in their metadata. The default is 96 (dpi). For more informa

tion, see how to change images resolution (on page 2014).

pdf.accessibility When set to yes, the PDF output is generated in compliance with the

PDF/Universal Accessibility standard (also known as ISO 14289). The

default is no.

pdf.archiving.mode
Specifies the archiving mode. The PDF output will be generated in com

pliance with the PDF/A standard.

Allowed values (not set by default):

• PDF/A-1a

• PDF/A-1b

• PDF/A-2a

• PDF/A-2b

• PDF/A-2u

• PDF/A-3a

• PDF/A-3b

• PDF/A-3u

pdf.version Use this parameter to specify the version of the produced PDF. It has no

impact on the set of PDF features used by the engine, but may be used

to signal a compatibility level to the PDF readers. The default is 1.5.

pdf.security.restrict.printhq Restricts high quality printing. Used for protecting the PDF Document.

The restriction is off by default. Accepted values: yes or no.

pdf.security.restrict.assembledoc Restricts assembling document (e.g. adding pages). Used for protecting

the PDF Document. The restriction is off by default. Accepted values: yes

or no.

pdf.security.restrict.accesscon

tent

Restricts extracting text and graphics. Used for protecting the PDF Docu

ment. The restriction is off by default. Accepted values: yes or no.

pdf.security.restrict.fillinforms Restricts filling in existing interactive forms. Used for protecting the PDF

Document. The restriction is off by default. Accepted values: yes or no.

pdf.security.restrict.annotations Restricts filling in existing interactive forms. Used for protecting the PDF

Document. The restriction is off by default. Accepted values: yes or no.

pdf.security.restrict.print Restricts printing. Used for protecting the PDF Document. The restriction

is off by default. Accepted values: yes or no.

pdf.security.restrict.copy Restricts copying content. Used for protecting the PDF Document. The

restriction is off by default. Accepted values: yes or no.

pdf.security.restrict.edit Restricts copying content. Used for protecting the PDF Document. The

restriction is off by default. Accepted values: yes or no.

Oxygen XML Editor 27.1 | 11 - Publishing | 1841

pdf.security.user.password User password. The document can be opened using this password.

When the owner password parameter is not specified, the user pass

word gives full rights to the people using it. When the owner password

parameter is specified, the people can open the document using the user

password but restrictions will apply. Missing by default.

pdf.security.owner.password Owner password. There are no restrictions for people using this pass

word.

pdf.security.encrypt.metadata Encrypts the metadata. By default active when other security parameters

are set. Accepted values: yes or no.

show.changes.and.comments
When set to yes, the user comments, colored highlights and tracked

changes are shown in the output.

show.changes.and.comments

.as.changebars
When set to yes (default) and the show.changes.and.comments parameter

is also set to yes, the user comments and tracked changes are shown

as change bars in the PDF output. This parameter can be used in con

junction with the show.changes.and.comments.as.pdf.sticky.notes pa

rameter to choose whether the change bars are displayed in footnotes

or sticky notes. You can override this from your customization CSS (on

page 1858).

show.changes.and.comments

.as.pdf.sticky.notes

When set to yes (default) and the show.changes.and.comments parameter

is also set to yes, the user comments and tracked changes are shown

in the PDF output as sticky note annotations. When set to no, the com

ments and tracked changes are left in the document model and are

styled by the default CSS rules as footnotes. You can override this from

your customization CSS (on page 1858).

show.changed.text.in.pdf.sticky

.notes.content

When set to yes (default) and both the show.changes.and.comments and

show.changes.and.comments.as.pdf.sticky.notes parameters are also

set to yes, the inserted and deleted text is shown in the sticky note anno

tations. When set to no, only the inserted and deleted labels are shown in

the annotations (this is useful for search scope).

show.image.map.area.numbers When set to yes, a counter for each area from the image map is dis

played over the image, near the defined shape. The default is no.

show.image.map.area.shapes When set to yes, each of the image map area shapes is displayed with

a translucent fill over the image. You can use this to debug your image

maps. The default is no.

show.media.as.link When set to yes, media objects will not appear and an external link is

generated for each one instead.

Oxygen XML Editor 27.1 | 11 - Publishing | 1842

sort.and.group.glossentries When set to no (default), elements in the glossary are sorted based upon

the document order. If set to yes, elements in the glossary are sorted al

phabetically and grouped by their first letter.

store-type Setting this parameter to memory will increase the processing speed

and thus, could help decrease the publishing time.

table.title.placement Controls the placement of the title for tables. Possible values include top

(default) and bottom.

table.title.repeat Specifies whether or not a table caption should repeat on other pages

when the table spans onto multiple pages. The caption is not repeated

for tables nested in lists or other tables. Allowed values are yes (default)

or no.

use.css.for.embedded.svg When set to yes (default), the CSS files specified in the publishing tem

plate or by the args.css parameter are also applied on embedded SVG el

ements. Allowed values are yes and no.

use.navtitles.in.all.links Specifies whether a <navtitle> defined in a topic or a topic reference

should be used as the display name for all links or only in the table of

contents. Allowed values are yes and no (default).

parallel Specifies whether or not certain pre-processing tasks should be run in

parallel. Setting this parameter to true may add a small increase to the

publishing speed. Allowed values are: true and false (default).

The following parameters can be used to specify a publishing template:

pdf.publishing.template Specifies the path to the folder containing the custom PDF template.

pdf.publishing.template.descrip

tor

Specifies the name of the descriptor file to be loaded from the PDF tem

plate folder or package. If not specified, the first encountered descriptor

file is loaded.

The following parameter is available on all DITA transformations when using the Oxygen Publishing Engine:

args.disable.security.checks Specifies whether or not to load external entities that are not solved

through catalogs. For security reasons, the default is no.

Allowed values:

• yes

• no (default)

The following parameters are only available for the DITA PDF - based on HTML5 & CSS single DITA topic

transformation scenario (pdf-css-html5-single-topic trans type):

Oxygen XML Editor 27.1 | 11 - Publishing | 1843

args.root.map Specifies the path of the root map file used to expand the key references

in the published topic.

args.enable.root.map.key.pro

cessing
Indicates whether or not the keys should be processed using the root

map parameter.

Allowed values:

• auto (default)

• yes

• no

Console Logging

To activate the logging of the last processing stage, involving the usage of the Chemistry processor to

generate the PDF from the merged HTML, use the -v (or --verbose) DITA-OT parameter from the command

line.

Note:

When the transformation is started from an Oxygen application, this parameter is automatically set.

Chemistry Console Logging

Besides the global verbosity, it is possible to control Oxygen PDF Chemistry console logging separately by

creating a custom logback.xml configuration file. This is helpful if you want to hide the INFO messages or

write the logs into a separate file.

Related Information:

Oxygen PDF Chemistry: Logging

License Key

When running the Oxygen PDF Chemistry engine or the Oxygen Publishing Engine from inside a started

Oxygen XML Editor/Author installation, an extra license key is not required. The sections below pertain to

running the publishing from the command line.

Chemistry License

If you have an Oxygen PDF Chemistry license key, you will be able to generate PDF output that is not stamped

with the Chemistry logo image from the command line.

To install your Chemistry license key:

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_logging.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1844

• If you are using the version of Chemistry that comes bundled in Oxygen XML Editor/Author, save the

license key text in a file with the name licensekey.txt and place it in the DITA-OT-DIR/plugins/

com.oxygenxml.pdf.css/lib/oxygen-pdf-chemistry folder.

• If you are using another Chemistry installation, make sure you place the licensekey.txt file in that

folder.

Oxygen Publishing Engine License

If you have purchased a license for the Oxygen Publishing Engine, you will be able to produce both PDF and

WebHelp output without any restrictions from the command line.

To install your Oxygen Publishing Engine license key, save the license key text in a file with the name

licensekey.txt and place it in the DITA-OT-DIR folder.

Generating PDF Output

The publishing process can be initiated from a transformation scenario within Oxygen XML Editor/Author,

from a command line outside Oxygen XML Editor/Author, or from an integration server.

Generating PDF from a Command Line

To publish the PDF output from a command line outside of Oxygen XML Editor/Author, you can use the dita

startup script that comes bundled with the DITA Open Toolkit distribution.

The command line supports all the parameters specific to the PDF transformation (on page 1833). Here is an

example of how to write the commands:

• Windows

dita.bat -f pdf-css-html5 -i C:\path\to\map.ditamap -o C:\path\to\output\folder -v

• Linux/macOS

dita -f pdf-css-html5 -i /path/to/map.ditamap -o /path/to/output/folder -v

Note:

You can use the long form of the command-line options (e.g. --format or --input).

Generating PDF from an Integration Server

PDF output can be automatically generated from a Continuous Integration/Continuous Delivery system, such

as Jenkins.

To integrate PDF output with the Jenkins CI tool, follow these steps:

1. Create a Maven project to incorporate Oxygen Publishing Engine.

2. Go to the root of your Maven project and edit the pom.xml file to include the following fragment:

https://www.oxygenxml.com/publishing_engine.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1845

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.oxygenxml</groupId>

 <artifactId>oxygen-oxygen-pdf-css-generator</artifactId>

 <version>1.0</version>

 <properties>

 <!-- The path to Oxygen Publishing Engine -->

 <dita-ot-dir>/path/to/oxygen-publishing-engine</dita-ot-dir>

 <!-- The path to the DITA map that you want to process. -->

 <input-file>/path/to/map.ditamap</input-file>

 <!-- The path of the output directory. -->

 <output-dir>/path/to/output/folder</output-dir>

 <!-- The path to the PDF publishing template folder (containing the .opt file). -->

 <publishing-template>/path/to/template/folder</publishing-template>

 </properties>

 <build>

 <plugins>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>exec-maven-plugin</artifactId>

 <version>1.6.0</version>

 <executions>

 <execution>

 <id>generate-pdf-css</id>

 <phase>generate-sources</phase>

 <goals>

 <goal>exec</goal>

 </goals>

 <configuration>

 <executable>${dita-ot-dir}/bin/dita</executable>

 <arguments>

 <argument>--format=pdf-css-html5</argument>

 <argument>--input=${input-file}</argument>

 <argument>--output=${output-dir}</argument>

 <argument>-Dpdf.publishing.template=${publishing-template}</argument>

 <argument>-v</argument>

Oxygen XML Editor 27.1 | 11 - Publishing | 1846

 </arguments>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

3. Go to the Jenkins top page and create a new Jenkins job. Configure this job to suit your particular

requirements, such as the build frequency and location of the Maven project.

Related information

Webinar: Introducing the Oxygen Publishing Engine for DITA

Publishing Templates

An Oxygen Publishing Template defines all aspects of the layout and styles for output obtained from the

following transformation scenarios:

• WebHelp Responsive

• DITA Map PDF - based on HTML5 & CSS

It is a self-contained customization package stored as a ZIP archive or folder that can easily be shared with

others. It provides the primary method for customizing the output.

Tip:

You can start creating publishing templates by using the Oxygen Styles Basket. https://

styles.oxygenxml.com

Some possible customization methods include:

• Add additional template resources to customize the output (such as logos, Favicons, or CSS files).

• Extend the default processing by specifying one or more XSLT extension points.

• Specify one or more transformation parameters to customize the output.

• Customize various aspects of the output through simple CSS styling.

• For WebHelp Responsive output, change the layout of the main page or topic pages by customizing

which components will be displayed and where they will be positioned in the page.

The following graphics are possible sample structures for Oxygen Publishing Template packages:

https://www.oxygenxml.com/events/2020/webinar_introducing_the_oxygen_publishing_engine_for_dita.html
https://styles.oxygenxml.com
https://styles.oxygenxml.com

Oxygen XML Editor 27.1 | 11 - Publishing | 1847

Figure 520. Oxygen Publishing Template Package (WebHelp Responsive)

Figure 521. Oxygen Publishing Template Package (PDF)

For information about creating and customizing publishing templates, and how to adjust the WebHelp and

PDF output through CSS styling and other customization methods, watch our Webinar: Creating Custom

Publishing Templates for WebHelp and PDF Output. The Webinar slides and sample project are also available

from that webpage.

Related Information:

How to Create a Publishing Template (on page 1713)

How to Edit a Packed Publishing Template (on page 1715)

How to Add a Publishing Template to the Publishing Templates Gallery (on page 1716)

How to Share a Publishing Template (on page 1858)

Publishing Template Package Contents for PDF Customizations

An Oxygen Publishing Template for PDF output must contain a template descriptor file and at least one CSS

file, and may contain other resources (such as graphics, XSLT files, etc.). All the template resources can be

https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html
https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1848

stored in either a ZIP archive or in a folder. It is recommended to use a ZIP archive because it is easier to share

with others.

Template Descriptor File

Each publishing template includes a descriptor file that defines the meta-data associated with template. It

is an XML file with certain elements that defines all the resources included in a template (such as CSS files,

images, and transformation parameters).

The template descriptor file must have the .opt file extension and must be located in the templates' root

folder.

A PDF template descriptor might look like this:

<publishing-template>

 <name>Flowers</name>

 <pdf>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

 <resources>

 <css file="flowers.css"/>

 </resources>

 <parameters>

 <parameter name="figure.title.placement" value="top"/>

 </parameters>

 </pdf>

</publishing-template>

Tip:

It is recommended to edit the template descriptor in Oxygen XML Editor/Author because it provides

content completion and validation support.

Template Name and Description

Each template descriptor file requires a <name> element. This information is displayed as the name of the

template in the transformation scenario dialog box.

Optionally, you can include a <description> and it displayed when the user hovers over the template in the

transformation scenario dialog box.

Oxygen XML Editor 27.1 | 11 - Publishing | 1849

<publishing-template>

 <name>Flowers</name>

 <description>Flowers themed light colored template</description>

 ...

Template Author

Optionally, you can include author information in the descriptor file and it displayed when the user hovers over

the template in the transformation scenario dialog box. This information might be useful if users run into an

issue or have questions about a certain template.

If you include the <author> element, a <name> is required and optionally you can include <email>, <organization>,

and <organizationUrl>.

<publishing-template>

 ...

 <author>

 <name>John Doe</name>

 <email>jdoe@example.com</email>

 <organization>ACME</organization>

 <organizationUrl>http://www.example.com/jdoe</organizationUrl>

 </author>

 ...

PDF Element

The <pdf> element contains various details about the template and its resources that define the PDF output.

It is a required element if you intend on using a DITA Map to PDF transformation scenario. The elements that

are allowed in this <pdf> section specify the template tags (on page 1850), template preview image (on page

1850), resources (on page 1850) (such as CSS files), transformation parameters (on page 1851), or XSLT

extensions (on page 1852).

 <pdf>

 <tags>

 ...

 </tags>

 <preview-image file="MyPreview.png"/>

 <resources>

 ...

 </resources>

 <parameters>

 ...

Oxygen XML Editor 27.1 | 11 - Publishing | 1850

 </parameters>

 </pdf>

Template Tags

The <tags> section provides meta information about the template (such as color theme). Each tag is displayed

at the top of the Templates tab window in the transformation scenario dialog box and they help the user filter

and find particular templates.

<publishing-template>

 ...

 <pdf>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

Template Preview Image

The <preview-image> element is used to specify an image that will be displayed in the transformation scenario

dialog box. It provides a visual representation of the template to help the user select the right template. The

image dimensions should be 200 x 115 pixels and the supported image formats are: JPEG, PNG, or GIF.

You can also include an <online-preview-url> element to specify the URL of a published sample of your

template. This will display an Online preview icon in the bottom-right corner of the image in the

transformation scenario dialog box and if the user clicks that icon, it will open the specified URL in their

default browser.

<publishing-template>

 ...

 <pdf>

 ...

 <preview-image file="ashes/ashes-tree.png"/>

 <online-preview-url=https://www.example.com/samples/tiles/ashes</online-preview-url>

Template Resources

The <resources> section of the descriptor file specifies a set of resources (CSS files) that are used to customize

various components in the generated output. These resources will be copied to the output folder during the

transformation process. At least one CSS file must be included (using the <css> element).

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

Oxygen XML Editor 27.1 | 11 - Publishing | 1851

 <css file="css/custom_styles.css"/>

 <css file="css/custom_fonts.css"/>

 </resources>

Note:

All relative paths specified in the descriptor file are relative to the template root folder.

Transformation Parameters

You can also set one or more transformation parameters in the descriptor file.

<publishing-template>

 ...

 <pdf>

 ...

 <parameters>

 <parameter name="show.changes.and.comments" value="yes"/>

 </parameters>

 </pdf>

The following information can be specified in the <parameters> element:

Parameter name

The name of the parameter. It may be one of the transformation parameters listed in the

Parameters tab of the DITA Map PDF - based on HTML5 & CSS transformation scenario or a

DITA-OT PDF-based output parameter.

Note:

It is not recommended to specify an input/output parameter in the descriptor file (such

as the input Map, DITAVAL file, or temporary directory).

Attention:

JVM arguments like -Xmx cannot be specified as a transformation parameter.

Parameter Value

The value of the parameter. It should be a relative path to the template root folder for file paths

parameters.

Parameter Type

The type of the parameter: string or filepath. The string value is default.

http://www.dita-ot.org/dev/parameters/parameters-pdf.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1852

After creating a publishing template (on page 1853) and adding it to the templates gallery (on page 1857),

when you select the template in the transformation scenario dialog box, the Parameters tab will automatically

be updated to include the parameters defined in the descriptor file. These parameters are displayed in italics.

XSLT Extension Points

The publishing templates support one or more XSLT extension points. They can be specified using the <xslt>

element in the descriptor file using the following structure:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

For more information about the available extension points, see: XSLT Extensions for PDF Transformations (on

page 2049).

Combining PDF and WebHelp Responsive Customizations in a Template
Package

An Oxygen Publishing Template package can contain both a PDF and WebHelp Responsive customization

in the same template package and you can use that same template in both types of transformations. The

template descriptor file can define the customization for both types by including both a <webhelp> and <pdf>

element and some of the resources can be reused. Resources referenced in elements in the <webhelp> element

will only be used for WebHelp transformations, and resources referenced in the elements in the <pdf> element

will only be used in PDF transformations.

<publishing-template>

 <name>Flowers</name>

 <description>Flowers themed light-colored template</description>

 <webhelp>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 1853

 <resources>

 <css file="flowers-wh.css"/>

 <css file="flowers-page-styling.css"/>

 </resources>

 <parameters>

 <parameter name="webhelp.show.main.page.tiles" value="no"/>

 <parameter name="webhelp.show.main.page.toc" value="yes"/>

 </parameters>

 </webhelp>

 <pdf>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

 <resources>

 <css file="flowers-pdf.css"/>

 <css file="flowers-page-styling.css"/>

 </resources>

 <parameters>

 <parameter name="show.changes.and.comments" value="yes"/>"/>

 </parameters>

 <pdf>

</publishing-template>

Related Information:

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

How to Create a Publishing Template

To create a customization, you can start from scratch or from an existing template, and then adapt it

according to your needs.

Creating a Publishing Template Starting from Scratch

To create a new Oxygen Publishing Template (on page 3298), follow these steps:

1. Create a folder that will contain all the template files.

2. In Oxygen XML Editor/Author, open the new document wizard (use File > New or the New toolbar

button), then choose the Publishing Template Descriptor template.

Oxygen XML Editor 27.1 | 11 - Publishing | 1854

Figure 522. Choosing the Publishing Template Descriptor Document Template

3. Save the .opt file into your customization directory.

4. Open the .opt file in the editor and customize it to suit your needs.

Creating a Publishing Template Starting from an Existing Template

If you are using a DITA Map WebHelp Responsive or DITA Map PDF - based on HTML5 & CSS transformation,

the easiest way to create a new Oxygen Publishing Template (on page 3298) is to select an existing template

in the transformation scenario dialog box and use the Save template as button to save that template into a

new template package that can be used as a starting point.

To create a new Oxygen Publishing Template, follow these steps:

1. Open the transformation scenario dialog box and select the publishing template you want to export and

use as a starting point.

2. Optional: You can set one or more transformation parameters from the Parameters tab and the edited

parameters will be exported along with the selected template. You will see which parameters will be

exported in the dialog box that is displayed after the next step.

3. Click the Save template as button.

Step Result: This opens a template package configuration dialog box that contains some options and

displays the parameters that will be exported to your template package.

Oxygen XML Editor 27.1 | 11 - Publishing | 1855

4. Specify a name for the new template.

5. Optional: Specify a template description.

6. Optional: The same publishing template package can contain both a WebHelp Responsive and

PDF customization and you can use the same template in both types of transformations (DITA

Map WebHelp Responsive or DITA Map to PDF - based on HTML5 & CSS). You can use the Include

WebHelp customization and Include PDF customization options to specify whether your custom

template will include both types of customizations.

7. Optional: For WebHelp Responsive customizations, you can select the Include HTML Page Layout

Files option if you want to copy the default HTML Page Layout Files (on page 1692) in your template

package. They are helpful if you want to change the structure of the generated HTML pages.

8. In the Save as field, specify the name and path of the ZIP file where the template will be saved.

Step Result: A new ZIP archive will be created on disk in the specified location with the specified name.

9. Open the .opt file in the editor and customize it to suit your needs.

For more information about creating and customizing publishing templates, watch our video demonstration:

https://www.youtube.com/embed/zNmXfKWXwO8

Creating a Publishing Template Using the Oxygen Styles Basket

Another way to create an Oxygen Publishing Template (on page 3298) is to use the Oxygen Styles Basket.

This tool is a handy free-to-use web-based visual tool that helps you create your own Publishing Template

Package to customize your DITA Map WebHelp Responsive transformation scenarios.

It is based on galleries that you can visit to pick styling aspects to create a custom look and feel. Various

different types of styles can be selected (such as fonts, tables, lists, spacing, code) and all changes can be

seen in the Preview pane. You can also click the See Results button to generate a preview of either WebHelp

or PDF output.

It is possible to Download the current template or Upload a previously generated template for further

customization.

https://www.youtube.com/embed/zNmXfKWXwO8
https://styles.oxygenxml.com/

Oxygen XML Editor 27.1 | 11 - Publishing | 1856

Figure 523. Oxygen Styles Basket Interface

Resources

For more information about the Oxygen Styles Basket, see the following resources:

• Video: Introducing the New Oxygen Styles Basket

• Webinar: Using Oxygen Styles Basket to Create CSS Customization from Scratch

Related information

Publishing Template Package Contents for PDF Customizations (on page 1847)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

How to Edit a Packed Publishing Template

To edit an existing Oxygen Publishing Template (on page 3298) package, follow these steps:

1. Unzip the ZIP archive associated with the Oxygen Publishing Template in a separate folder.

2. Link the folder associated with the template in the Project view.

3. Using the Project view, you can modify the resources (CSS, JS, fonts) within the Oxygen Publishing

Template folder to fit your needs.

4. Open the publishing template descriptor file (.opt extension) in the editor and modify it to suit your

needs.

5. Optional: Once you finish your customization, you can archive the folder as a ZIP file.

https://www.oxygenxml.com/demo/osb_video.html
https://www.oxygenxml.com/events/2022/webinar_using_oxygen_styles_basket_to_create_css_customization_from_scratch.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1857

Related Information:

Publishing Template Package Contents for PDF Customizations (on page 1847)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

How to Use a Publishing Template in a PDF Transformation

From Oxygen XML Editor/Author

A publishing template can be used for PDF output from the DITA Map PDF - based on HTML5 & CSS

transformation scenario (or from the DITA PDF - based on HTML5 & CSS transformation scenario).

The Templates tab in the transformation scenario dialog box displays all the templates that are available in

your template gallery. To use a particular template in the transformation scenario, simply select it from this

tab and then continue configuring the transformation using the other tabs to suit your needs.

To add the publishing template to your templates gallery, follow these steps:

1. Open the transformation scenario dialog box by editing a DITA Map PDF - based on HTML5 & CSS

transformation (or a DITA PDF - based on HTML5 & CSS transformation scenario).

2. In the Templates tab, click the Configure Publishing Templates Gallery link to.

Step Result: This will open the preferences page.

3. Click the Add button and specify the location of your template directory.

Step Result: Your template directory is now added to the Additional Publishing Templates Galleries

list.

4. Click OK to return to the transformation scenario dialog box.

Result: All the templates contained in your template directory will be displayed in the preview pane along with

all the built-in templates.

From a Command Line

You can use the pdf.publishing.template parameter to point to the *.opt (publishing template) file:

dita.bat

 --input=map\test.ditamap"

 "-Dpdf.publishing.template=full_path_to_template_dir/my_template.opt"

 --format=pdf-css-html5

 ...

Or use the two parameters to indicate the folder containing the publishing templates and the name of the

publishing template file relative to that folder:

dita.bat

 --input=map\test.ditamap"

Oxygen XML Editor 27.1 | 11 - Publishing | 1858

 "-Dpdf.publishing.template=full_path_to_template_dir"

 "-Dpdf.publishing.template.descriptor=my_template.opt"

 --format=pdf-css-html5

 ...

Tip:

You can also start the dita process by passing it a DITA OT Project File. Inside the project file you

can specify as parameters for the webhelp-responsive transformation type the WebHelp-related

parameters.

Related Information:

Transformation Parameters (on page 1833)

How to Share a Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder in your project.

2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.

3. Switch the option as the bottom of that preferences page to Project Options.

4. Share your project file (.xpr).

Customizing PDF Output Using CSS

The publishing process is driven by a customization CSS.

Warning:

You should not edit the CSS stylesheet from DITA-OT-DIR/plugins/com.oxygenxml.pdf.css/

css/print. Instead, create your own customization.

To change the styling of the output for the DITA Map PDF - based on HTML5 & CSS or the DITA PDF - based

on HTML5 & CSS transformation scenarios you can either create your own custom CSS rules or create a

publishing template using the Oxygen Styles Basket.

Create Custom CSS Rules from Scratch

1. Create a CSS file that will contain all of your customizations. It is recommended to create this file in

your project directory so you can edit it easily.

Tip:

If you use the default Chemistry processor in Oxygen XML Editor/Author, you can use LESS

instead of CSS. In this case, the customization files should have the .less extension.

https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1859

2. Add your custom CSS rules. As a good starting point, you can check the various topics in this section

for assistance with specific types of customizations.

3. Link the CSS file. For this, you have two options:

◦ Create a publishing template, create the customization CSS file inside the template folder, and

link it to the publishing template descriptor. For assistance, see Publishing Templates (on page

1673).

◦ Choose an existing publishing template, then edit the scenario and set the full path to the

custom CSS file as the value of the args.css parameter. The rules from custom CSS will override

the rules from the template CSS files.

4. Run the transformation scenario.

Creating a Publishing Template Using the Oxygen Styles Basket

Another way to create an Oxygen Publishing Template (on page 3298) is to use the Oxygen Styles Basket.

This tool is a handy free-to-use web-based visual tool that helps you create your own Publishing Template

Package to customize your DITA Map PDF - based on HTML5 & CSS transformation scenarios.

It is based on galleries that you can visit to pick styling aspects to create a custom look and feel. Various

different types of styles can be selected (such as fonts, tables, lists, spacing, code) and all changes can be

seen in the Preview pane. You can also click the See Results button to generate a preview of either PDF or

WebHelp output.

It is possible to Download the current template or Upload a previously generated template for further

customization.

Figure 524. Oxygen Styles Basket Interface

https://styles.oxygenxml.com/

Oxygen XML Editor 27.1 | 11 - Publishing | 1860

Tip:

For more information and some tips in regard to publishing DITA documents to PDF using CSS, watch

our Webinars:

• Transforming DITA documents to PDF using CSS, Part 1 – Page Definitions, Cover Page and

PDF Metadata:

https://www.youtube.com/embed/5NsVEOvxbas

• Transforming DITA documents to PDF using CSS, Part 2 – Book Design, Pagination, Page

Layout, and Bookmarks:

https://www.youtube.com/embed/UiYwPBOJQcg

• Transforming DITA documents to PDF using CSS, Part 3 – Advanced Fonts Usage:

https://www.youtube.com/embed/1fzS8AzOGao

• Transforming DITA documents to PDF using CSS, Part 4 – Advanced CSS Rules:

https://www.youtube.com/embed/rs04iX_RdIk

Debugging the CSS

If you notice that some of the CSS properties were not applied as expected, some of the tips offered in this

topic might help you with the debugging process.

CAUTION:

Do not modify the built-in rules directly in the CSS files from the Oxygen XML Editor/Author

installation. Instead, copy the rules to your own customization CSS.

Inspecting the Merged Map File

During the transformation stages, two merged map files are created. These files could be used to help debug

unexpected results.

1. The first thing you should try is to check the file structure of the HTML merged map file. This file can

be found in the out/pdf-css directory and it has the .merged.html file extension (you will also find

a .merged.xml file that aggregates the entire DITA map structure). You can open the HTML files in

Oxygen XML Editor/Author to examine the structure. Optionally, you can use the pretty print feature

(Format and Indent) to make the structure easier to read.

2. If the structure is as expected, you can start checking that the CSS selectors are written correctly

against the document structure.

3. If the CSS selectors are correctly written, you can start inspecting how the styles are applied (you can

try any of the methods listed below).

Inspecting the Applied Styles Using a Browser
The following procedure explains how to inspect the applied CSS styles using Chrome, but any modern

browser can be used and the procedure for each of them is similar:

https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_1.html
https://www.oxygenxml.com/events/2021/webinar_transforming_dita_documents_to_pdf_part_1.html
https://www.youtube.com/embed/5NsVEOvxbas
https://www.oxygenxml.com/events/2022/webinar_transforming_dita_documents_to_pdf_using_css_part_2.html
https://www.oxygenxml.com/events/2022/webinar_transforming_dita_documents_to_pdf_using_css_part_2.html
https://www.youtube.com/embed/UiYwPBOJQcg
https://www.oxygenxml.com/events/2022/webinar_transforming_dita_documents_to_pdf_using_css_part_3.html
https://www.youtube.com/embed/1fzS8AzOGao
https://www.oxygenxml.com/events/2023/webinar_transforming_dita_documents_to_pdf_using_css_part_4.html
https://www.youtube.com/embed/rs04iX_RdIk

Oxygen XML Editor 27.1 | 11 - Publishing | 1861

1. Open the file ending in .merged.html.

2. Open the Chrome Developer Tools by using > More Tools > Developer Tools (or press CTRL+SHIFT

+I).

3. Activate the Rendering pane by using > More Tools > Rendering then select print from the Emulate

CSS media section. This will activate the CSS selectors enclosed in @media print {..}:

Note:

This allows you to debug the styling of elements, the table of contents, and the index, but not

the styles of the page margin boxes (headers, footers) or page breaks.

4. Right-click on the element you want to inspect and select the Inspect action, you will see the element

(in the Elements pane) and the list of styles that are applied on it (in the Styles pane):

Oxygen XML Editor 27.1 | 11 - Publishing | 1862

Tip:

Clicking any of the stylesheet links from the Styles pane opens the original CSS files in the

Sources pane. Editing the rules in that pane results in a live preview of how the change will

affect the output (these modifications will be lost on reload).

Inspecting the Applied Styles Using Oxygen XML Editor/Author
To inspect the applied CSS styles using Oxygen:

1. In Oxygen XML Editor/Author, open the file ending in .merged.html.

2. From the Styles toolbar, choose the + Print Ready entry. This will activate certain CSS selectors

enclosed in @media print {..}.

Note:

This allows you to debug the styling of elements, the table of contents, and the index, but not

the styles of the page margin boxes (headers, footers) or page breaks.

Oxygen XML Editor 27.1 | 11 - Publishing | 1863

3. Right-click on the element you want to inspect and select the Inspect Styles action. The dedicated CSS

Inspector view will be opened and it will show the applied CSS rules.

Tip:

With this file open in Author mode, it might be helpful to switch the Tags Display Mode to

Full Tags with Attributes. You might be able to identify the selector you need to style

without using the CSS Inspector view.

Other Debugging Techniques

Here are some other debugging techniques you may find useful:

• Add background and border properties to the specific CSS rule. If they do not appear in the output, then

there is a problem with the rule selector.

• Add the !important keyword to a property that is not applied, or make the selector more specific (by

adding more parent selectors).

• Add the following fragment in your customization CSS to show how the elements are mapped to PDF:

* {

 border: 1pt solid blue !important;

}

*:before(1000) {

 content: oxy_name() !important;

 color: orange;

}

*:before(900) {

 content: "[class= '" attr(class) "'] " !important;

 color: orange;

}

This will show the element name, its class attribute, and will paint a blue border around each of the

elements in the output. It will not show the page margin boxes or some content elements that are

hidden.

How to Speed up CSS Development and Debugging

You may have already run the DITA Map PDF - based on HTML5 & CSS transformation scenario before using

this procedure.

You can speed up your CSS development considerably by not invoking the entire pipeline of transforming your

DITA maps to PDF. Instead, you can directly transform the merged map (on page 1860) (.merged.html) into

PDF using Oxygen PDF Chemistry.

Oxygen XML Editor 27.1 | 11 - Publishing | 1864

1. Open the .merged.html located in the output directory in the editor.

2. Configure a new XML to PDF transformation with CSS scenario. There is no need to set the CSS URL in

the resulting dialog box. The stylesheets are already declared in the file <head>. This scenario uses the

Chemistry CSS processor.

3. Optional: Enable the console output of the CSS processor from: Options > Preferences > XML > PDF

Output > CSS-based Processors.

Now you can make incremental changes to the CSS stylesheet and quickly see the results by transforming the

merged file directly.

Fastpath:

If your changes only involve element styling (with no specific paged media CSS rules and properties),

you can simply open the merged file in a browser (such as Chrome or Firefox) and refresh at each CSS

change, as shown in: Debugging the CSS (on page 1860).

How to Use XPath Expressions in CSS

How to Write XPath Expressions

To use XPath expressions in CSS, you need to use the oxy_xpath() function. These XPath expressions are

used to extract the content from the HTML merged DITA map document.

The following example shows how to display the product name meta-information before the front page title:

*[class~="front-page/front-page-title"]:before {

 text-align: left;

 content: oxy_xpath("(//*[contains(@class, 'topic/prodname')]/text())[1]");

 display:block;

}

Important:

Do not use the DITA element names directly. You must use the DITA @class attribute instead, as these

attributes are propagated to the HTML elements while the element names can be lost. By using the

class selectors, you also cover DITA specializations.

Tip:

Use the "[1]" XPath predicate to select the first value from the document. Do not forget the parenthesis

between the node to be selected.

For example: oxy_xpath("(//*[contains(@class, 'topic/prodname')]/text())[1]").

Note that the meta-information might be copied multiple times in the output, inherited by the

<topicref> elements, so you might get more values than expected.

Oxygen XML Editor 27.1 | 11 - Publishing | 1865

Other Notes:

• You can call the oxy_xpath() function in string-set property.

• You can use content extracted using the oxy_xpath() function in both pseudo-elements and

@page at-rules.

• Do not use strings as values for pseudo-elements content because they are not supported in

them.

How to Debug XPath Expressions

Suppose that you need to display the publication author in the bottom-left part of the cover page.

The ditamap content is the following:

<map>

 <title>The Art of Bike Repair</title>

 <topicmeta>

 <author>John Doe</author>

 </topicmeta>

 ...

</map>

To debug an XPath expression:

1. Read the XPath Expressions Guidelines (on page 1864).

2. Launch the transformation of the DITA map using your customization CSS.

3. Open the [MAP_NAME].merged.html file (from the output folder) in Oxygen XML Editor/Author. You

will find this inside the HTML:

<div class="- front-page/front-page front-page">

 <div class="- map/topicmeta topicmeta">

 <div class="- topic/author author">John Doe</div>

 </div>

 <div class="- front-page/front-page-title front-page-title">

 <div class="- topic/title title">The Art of Bike Repair</div>

 </div>

</div>

4. Activate the XPath Builder view (Window > Show View > XPath/XQuery Builder).

5. Paste your XPath expression (for example: //*[contains(@class, "front-page/front-page")]/

[contains(@class, "map/topicmeta")]/[contains(@class, "topic/author")]/text()) and click the

Execute XPath button. Check if it returns the expected results.

6. Copy the expression in your customization CSS and define the rules that will use it. For example:

https://www.oxygenxml.com/doc/ug-editor/topics/xpath-builder-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/xpath-builder-view.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1866

:root {

 string-set: author oxy_xpath('//*[contains(@class, "front-page/front-page")]\

 /*[contains(@class, "map/topicmeta")]/*[contains(@class, "topic/author")]/text()');

}

@page front-page {

 @bottom-left {

 content: "Created by " string(author);

 }

}

Note:

The "\" character used in the expression allows the multi-line display without breaking the

query.

7. Run the transformation again to obtain the desired output.

Note:

The XPath builder has a function that allows it to display the document path of the current element

from the editor (Settings drop-down menu > Update on cursor move). Alternatively, you can

right-click the element in the merged document and select the Copy XPath action, then paste it in the

XPath builder.

Related Information:

XPath Builder Documentation

XPath Examples (w3schools.com)

Default Page Definitions

All page definitions are found in: [PLUGIN_DIR]css/print/p-pages-and-headers.css.

Note:

This is listed solely for illustration purposes, as the plugin might use something different.

There are page definitions for the default page, chapter page, table of contents page, front matter page, back

matter page, index page, large tables page, and blank page.

Default Page

The default page imposes a header that contains the publication title, chapter, and section title. They alternate

on the left or right side of the page:

https://www.oxygenxml.com/doc/ug-editor/topics/xpath-builder-view.html
https://www.w3schools.com/xml/xpath_examples.asp

Oxygen XML Editor 27.1 | 11 - Publishing | 1867

@page :left {

 @top-left {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

}

@page :right{

 @top-right {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

}

Tip:

To override the default rules defined for named pages (such as chapter or table of contents), you need

to use more specific page rules that contain the page name:

@page :left, table-of-contents:left, chapter:left {

 @top-left {

 content: "...";

 }

}

@page :right, table-of-contents:right, chapter:right{

 @top-right {

 content: "...";

 }

}

Front Page

The cover page. It clears the headers.

@page front-page {

 @top-left-corner { content:none }

 @top-left { content:none }

 @top-center { content:none }

 @top-right { content:none }

 @top-right-corner { content:none }

 @bottom-left-corner { content:none }

 @bottom-left { content:none }

 @bottom-center { content:none }

 @bottom-right { content:none }

Oxygen XML Editor 27.1 | 11 - Publishing | 1868

 @bottom-right-corner{ content:none }

}

Table of Contents Page

The table of content page. It clears the headers and uses a lower roman page number in the header.

@page table-of-contents {

 @top-left { content: none; }

 @top-center { content: none; }

 @top-right { content: none; }

 @bottom-left { content: none; }

 @bottom-center { content: none; }

 @bottom-right { content: none; }

}

@page table-of-contents:left {

 @top-left {

 content: string(toc-header) " | " counter(page, lower-roman);

 }

}

@page table-of-contents:right {

 @top-right {

 content: string(toc-header) " | " counter(page, lower-roman);

 }

}

/* Do not put a header on the first page of the TOC */

@page table-of-contents:first:left {

 @top-left {

 content: none;

 }

}

@page table-of-contents:first:right {

 @top-right {

 content: none;

 }

}

Chapter Page

The chapter page is inherited from the default page. The chapter page is associated with the topics marked

as chapters, usually direct children of the map. It clears the header from the first page of each chapter. If you

need to add other information to the chapter headers, make sure you override these rules in your CSS:

Oxygen XML Editor 27.1 | 11 - Publishing | 1869

@page chapter{

 /* Currently inherit from the default page. */

}

/* No headers on the chapter first page. */

@page chapter:first:left{

 @top-left {

 content: none;

 }

}

@page chapter:first:right{

 @top-right {

 content: none;

 }

}

Front Matter and Back Matter Page

The bookmap front matter and back matter page. It clears the headers.

@page matter-page {

 @top-left-corner { content:none }

 @top-center { content:none }

 @top-right-corner { content:none }

 @bottom-left-corner { content:none }

 @bottom-left { content:none }

 @bottom-center { content:none }

 @bottom-right { content:none }

 @bottom-right-corner{ content:none }

}

@page matter-page:left {

 @top-left { content: counter(page, lower-roman); }

}

@page matter-page:right {

 @top-right { content: counter(page, lower-roman); }

}

Index Page

The index page contains the index terms (and appears only if there are such items in your topics). It uses a

lower alpha page number in the footer:

Oxygen XML Editor 27.1 | 11 - Publishing | 1870

@page index {

 @top-left-corner { content:none }

 @top-left { content:none }

 @top-right { content:none }

 @top-right-corner { content:none }

 @top-center { content:none }

 @bottom-left-corner { content:none }

 @bottom-left { content:none }

 @bottom-right { content:none }

 @bottom-right-corner{ content:none }

 @bottom-center {

 content: counter(page, lower-alpha);

 font-size: 11pt;

 }

}

@media oxygen-chemistry {

 @page index {

 column-count: 2;

 column-fill: auto;

 }

}

When transformed, the page layout is spread on two columns.

Landscape Page

The landscape page contains large tables (for example). The page is rotated and the header is moved on the

right side of the page:

@page landscape-page:right {

 size: landscape;

 @top-left {

 content: none

 }

 @top-center {

 content: none

 }

 @top-right {

 content: none

 }

 @right-bottom {

Oxygen XML Editor 27.1 | 11 - Publishing | 1871

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 transform: rotate(90deg);

 vertical-align: middle;

 text-align: right;

 }

}

@page landscape-page:left {

 size: landscape;

 @top-left {

 content: none

 }

 @top-center {

 content: none

 }

 @top-right {

 content: none

 }

 @right-top {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 transform: rotate(90deg);

 vertical-align: middle;

 text-align: left;

 }

}

Blank Page

The following example clears the header for the blank pages that may be created by a page-break-before,

page-break-after, or by using double side pagination (on page 1958):

@page :blank{

 @top-left {

 content: none;

 }

 @top-right {

 content: none;

 }

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1872

Page Size

This is where you can find information on how the page sizes are defined.

Page Size - Built-in CSS rules

The [PLUGIN_DIR]/css/print/p-page-size.css file contains the default page rules. It uses the US-

LETTER size (8.5 X 11 inches). The content of this file is:

@page {

 padding-top:0.2em;

 padding-bottom:0.2em;

 size: letter;

 margin: 1in;

}

Note:

This is listed solely for illustration purposes, as the plugin might use something different.

How to Change the Page Size

Suppose you want to publish using the standard A4 page size, with a margin of 2cm.

In your customization CSS (on page 1858), use:

@page {

 size: A4;

 margin: 2cm;

}

If you need different margins depending on the page side:

@page {

 size: A4;

 margin: 2cm;

}

@page :left{

 margin-right:4cm;

}

@page :right{

 margin-left:4cm;

}

This would only increase the gutter margins or the inside margins needed for binding of the final book. The

other margins would remain 2cm.

Oxygen XML Editor 27.1 | 11 - Publishing | 1873

How to Change the Page Orientation

Suppose you want to publish on a landscape page orientation. The default is portrait, so you need to change

it by using the size property. This will contain both the physical measurements and the orientation. In your

customization CSS (on page 1858), use:

@page {

 size: letter landscape;

}

How to Change the Page Settings for a Specific Element

Suppose your publication mainly uses a portrait page orientation, but there are some topics that have

wide images. To avoid having the images bleed outside of the page, you could use a wider page setting

(landscape).

1. Mark the topic with an @outputclass attribute and give it a distinct value (for example, wide), you can set

the attribute on the root element of the topic or on the <topicref> element from the map.

Note:

The @outputclass values from the <topicref> automatically propagate to the root of the topic

from the merged map (on page 1860).

2. In your customization CSS (on page 1858), match the output class and associate it with a named

page. In the following example, the page has a landscape orientation and small margins. This

technique works for any element (e.g. a table or list) not just for a topic.

@page wide-page {

 size: letter landscape;

 margin: 0.5in;

}

*[outputclass = 'wide'] {

 page: wide-page !important;

}

Note:

The !important rule is necessary to override the default page settings.

Page Headers and Footers

The page headers and footers use string sets defined for publication, part, chapter, and section titles. These

string-sets are defined in the numbering CSS (on page 1932):

maptitle

Oxygen XML Editor 27.1 | 11 - Publishing | 1874

Set to the current map title (on both DITA maps and bookmaps).

parttitle

Set to the current part number and title, prefixed with " | " (only for DITA bookmaps that use

parts).

parttitle-no-prefix

Set to the current part number and title (only for DITA bookmaps that use parts).

chaptertitle

Set to the current chapter number and title, prefixed with " | " (on both Shallow and Deep

numbering).

chaptertitle-no-prefix

Set to the current chapter number and title (on both Shallow and Deep numbering).

chaptertitle-only

Set to the current chapter title (on both Shallow and Deep numbering).

sectiontitle

Set to the current section number and title, prefixed with " | " (Deep numbering only).

To see where the default page rules are defined, see: Default Page Definitions (on page 1866).

Important:

The string-set CSS property is not additive. Matching the same elements will end up breaking the

current definitions. A very common use-case is to change one of the "chaptertitle" string-sets

defined in the default CSS (see How to Change the Header Separators (on page 1878)). In this case,

the best approach is to copy the default rules into your customization CSS (on page 1858), then

alter the property definition by adding your definition to the existing ones or changing the value of the

existing ones (without removing them).

Related Information:

Numbering (on page 1932)

Page Headers and Footers - Built-in CSS

The headers and footers are part of the page definitions. To see how the default page layouts are defined, see:

Default Page Definitions (on page 1866).

How to Change the Size of Headers and Footers

This is directly related to the page margins and size.

The headers and footers are placed in the so-called page margin boxes, a series of rectangular areas residing

in the page margins.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_page_margin_boxes.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1875

To affect the margins of all page definitions, you may use the following rule:

@page {

 margin-top:3cm !important;

 margin-bottom:3cm !important;

 margin-left:2cm !important;

 margin-right:2cm !important;

}

If you want to affect only a specific page, like the first page from chapters for instance, you must use more

specific page selectors. See the Default Page Definitions (on page 1866) for details.

Note that the page margin boxes fill the entire page margin. This means the margin-top, for example, dictates

the height of the @top-left-corner, @top-left, @top-center, @top-right, @top-right-corner margin boxes.

These cannot have margins on themselves, so to change the position of the content inside them, you must

use padding properties:

@page {

 @top-left {

 content:"..."

 padding: 1cm;

 }

 ..

}

How to Change the Font of the Headers and Footers

To change the font for all the headers and footers, in your customization CSS (on page 1858), add a CSS rule

similar to this:

@page {

 font-size: 12pt;

 font-family: "Arial";

}

Important:

These settings apply to all page margin boxes, but not to the text inside the page.

If you want to change the settings only for a specific page type (for example, the table of contents), use the

name of the page:

@page table-of-contents {

 font-size: 12pt;

 font-family: "Arial";

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1876

Related Information:

How to Change TOC Header (on page 1948)

How to Display Chapter's Headers on First Page

By default, the header is not displayed on the first page of each chapter:

/* No headers on the chapter first page. */

@page chapter:first:left{

 @top-left {

 content: none;

 }

}

@page chapter:first:right{

 @top-right {

 content: none;

 }

}

If you want to display them on the first page, you just need to override the above default rules with the

following default content:

@page chapter:first:left{

 @top-left {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

}

@page chapter:first:right{

 @top-right {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

}

Tip:

It is also possible to import the [PLUGIN_DIR]/css/print/p-optional-pages-and-

headers.css stylesheet into your custom CSS.

How to Position Text in the Headers and Footers

By default, the name of the publication and chapter titles are placed in the top-left or top-right page margin

boxes:

@page :left {

 @top-left {

Oxygen XML Editor 27.1 | 11 - Publishing | 1877

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

}

@page :right{

 @top-right {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

}

If you want to change this, you should use the content CSS properties of other page margin boxes, and inhibit

the ones in the above content. For example, to set the chapter title in the page top left corner, you can use:

@page :left {

 @top-left {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

 @top-left-corner {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 white-space: nowrap;

 text-align:left;

 }

}

@page :right{

 @top-right {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 }

 @top-right-corner {

 content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

 white-space: nowrap;

 text-align:right;

 }

}

Note:

The corner page margin boxes are fixed and limited as the available space. Above, the text-align and

white-space properties are used to make the text bleed out of these boxes towards the center of the

page. If you plan to add an image or artwork background, you should consider using the technique

described in: How to Decorate the Header by Using a Background Image on the Entire Page (on page

1882).

Oxygen XML Editor 27.1 | 11 - Publishing | 1878

How to Change the Header Separators

There are some strings defined for parts, chapters, and sections. Each of these strings start with the " | "

character as a separator. For example, in the header of a page, you may find a sequence of strings:

My Publication | Introduction | Getting Started

• "My Publication" is the value of the maptitle string.

• "Introduction" is the value of the chaptertitle string.

• "Getting Started" is the value of the sectiontitle string.

There might be cases where you want to change this separator. You will need to recompose the header

content using the above string sets. Suppose you want to use " - " as the prefix separator. In your

customization CSS (on page 1858), add the following CSS rule:

*[class ~= "topic/topic"][is-part] > *[class ~= "topic/title"] {

 string-set: parttitle " - " counter(part, upper-roman) " - " content(),

 parttitle-no-prefix " " counter(part, upper-roman) " - " content(),

 chaptertitle "",

 chaptertitle-no-prefix "",

 chaptertitle-only ""; /* Avoid propagating a past chapter title on a new part */

}

*[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class ~= "topic/title"] {

 string-set: chaptertitle " - " counter(chapter) " - " content(),

 chaptertitle-no-prefix " " counter(chapter) " - " content(),

 chaptertitle-only " " content();

}

If you enabled the deep numbering for chapters and subsections (on page 1937), then use:

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "topic/topic"][is-part] > *[class ~= "topic/title"] {

 string-set: parttitle " - " counter(part, upper-roman) " - " content(),

 parttitle-no-prefix " " counter(part, upper-roman) " - " content(),

 chaptertitle "",

 chaptertitle-no-prefix "",

 chaptertitle-only ""; /* Avoid propagating a past chapter title on a new part */

}

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class ~= "topic/title"]

 {

 string-set: chaptertitle " - " counters(chapter-and-sections, ".") " - " content(),

 chaptertitle-no-prefix " " counters(chapter-and-sections, ".") " - " content(),

 chaptertitle-only " " content(),

 sectiontitle ""; /* Avoid propagating a past section title on a new chapter */

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1879

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class ~= "topic/topic"]

 > *[class ~= "topic/title"] {

 string-set: sectiontitle " - " counters(chapter-and-sections, ".") " - " content();

}

Note:

Always keep in mind that the string-set property is not additive (like the majority of CSS properties)

so defining new string-sets using the same selector will override the default values.

How to Simplify the Header (Keep Only the Chapter Title)

The headers display information such as map title, part title, chapter title, and section title, ending in the page

number.

content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);

This might be too much if you have long titles. The solution is to override the default header content.

In your customization CSS (on page 1858), add the following CSS rule:

@page :left {

 @top-left {

 content: string(chaptertitle) " | " counter(page);

 }

}

@page :right{

 @top-right {

 content: string(chaptertitle) " | " counter(page);

 }

}

Important:

Some of the CSS default page rules are more important. If you see that the content does not change:

• Try to also specify the name of the page, to increase the specificity of the rules:

@page :left, table-of-contents:left, chapter:left{

 ...

}

@page :right, table-of-contents:right, chapter:right{

 ...

}

• Add an !important classifier just before the semi-colon.

Oxygen XML Editor 27.1 | 11 - Publishing | 1880

@top-right {

 content: string(chaptertitle) " | " counter(page) !important;

}

How to Style a Part of the Text from the Header

If you need to style a fragment of text (for example, a company slogan) with certain colors or font styles, you

have several options:

• Use an SVG image as the background for a page margin box or for the entire page. See: How to Add a

Background Image to the Header (on page 1881).

• Use the oxy_label constructor. This is a function that creates a text label with a set of styles.

@page {

 @top-right {

 content: oxy_label(text, "My Company", styles, "color:red; font-size: larger;")

 ' '

 oxy_label(text, "Product", styles, "color:blue; text-decoration:underline;"));

 }

}

You can combine the oxy_label with oxy_xpath, to extract and style a piece of text from the document:

content: oxy_label(text, oxy_xpath("/some/xpath"), styles, "color:blue; "));

Note:

These functions work only with the Chemistry CSS processor.

Note:

You cannot use string() inside an oxy_label(). As a workaround, to apply styling on the

dynamic text retrieved by a string() function you can define some overall styles for the entire

page margin box and then use the oxy_label to style differently the static text.

@page {

 @top-right {

 color: red;

 content: oxy_label(text, "My Company", styles, "color:black")

 ' '

 string(chaptertitle); /* This inherits the styling from @top-right*/

 }

}

• Use two adjacent page margin boxes, and style them differently:

https://www.oxygenxml.com/doc/ug-editor/topics/dg-oxy-label-function.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1881

@page {

 @top-center {

 content: "First part";

 color: red;

 text-align:right;

 }

 @top-left {

 content: "- Second part";

 color: blue;

 text-align:left;

 }

}

How to Add a Background Image to the Header

A common use-case is to add a background image to one of the page corners.

@page :left {

 @bottom-left-corner{

 content: " ";

 background-image: url('https://www.oxygenxml.com/resellers/resources/OxygenXMLEditor_icon.svg');

 background-repeat:no-repeat;

 background-position:50% 50%;

 }

}

Important:

Always specify a content property. If not, the page margin box will not be generated.

Another use-case is to use the @top-left or @top-right page margin boxes. These boxes have an automatic

layout and they can be very small if they have no content. If there is no text to be placed over the image, use

a series of non-breaking spaces (\A0) to increase the box width as in the following example (alternatively, you

can use the technique described in How to Decorate the Header by Using a Background Image on the Entire

Page (on page 1882)):

@page :left {

 @top-left{

 content: '\A0\A0\A0\A0\A0\A0\A0\A0\A0\A0';

 background-image: url('https://www.oxygenxml.com/resellers/resources/OxygenXMLEditor_icon.svg');

 background-repeat:no-repeat;

 background-position:50% 50%;

 }

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1882

Note:

You can use raster image formats (such as PNG or JPEG), but it is best to use vector images (such as

SVG or PDF). They scale very well and produce better results when printed. In addition, the text from

these images is searchable and can be selected (if the glyphs have not been converted to shapes) in

the PDF viewer.

Related Information:

Images and Figures (on page 2013)

How to Add a Background Image for the Cover (on page 1900)

How to Add a Link in Headers and Footers (on page 1888)

How to Decorate the Header by Using a Background Image on the Entire Page

If you want to precisely position artwork and the page margin boxes are not sufficient, it is possible to use a

background image for the entire page.

This technique consists of creating an image (SVG is the best since it is a vector image) as wide as the page

that would contain the logo and placing other decorations at the desired locations. This offers the best results

and the position of the artwork does not depend on the page margin contents.

Example:

@page :left, chapter:left, chapter:first:left {

 background-image: url('img/page_background_image_with_logos_and_artwork_for_left_page.svg');

 background-repeat: no-repeat;

 background-position: 50% 50%;

 background-size: 8.5in 11.5in; /* Optional: Adapt to your page size. */

}

For a list of all the possible page names, see: Default Page Definitions (on page 1866).

Related Information:

How to Add a Background Image for the Cover (on page 1900)

How to Change Header Text for Each Topic

It is possible to dynamically change the header depending on the content in a topic. The following example

assumes that the data to be presented in the header is located in the metadata section of each topic. One way

is to specify it in the DITA map is by using the <topicmeta> element for the <topicref> topic reference:

...

 <topicref href="topics/installing.dita">

 <topicmeta>

 <data name="header-data" value="ID778-3211"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 1883

 </topicmeta>

 ...

In the above example, there is set of key value pairs with the name header-data. This information is

automatically copied into the content in the merged map file (on page 1860), like this:

<topic ... >

 <title class="- topic/title ">Installing</title>

 <shortdesc class="- topic/shortdesc ">You install components to make them available for your

 solution.</shortdesc>

 <prolog class="- topic/prolog ">

 ...

 <data class="- topic/data " name="header-data" value="ID778-3211"/>

 ...

This information can be extracted from the CSS:

/* Define the string set variable that contains the text extracted from the data element */

*[class ~= "topic/topic"] *[class ~= "topic/data"][name="header-data"] {

 string-set: hdrstr attr(value);

}

/* Using the value='none' stops applying the image. */

*[class ~= "topic/topic"] *[class ~= "topic/data"][name="header-data"][value="none"] {

 string-set: hdrstr "";

}

/* Use the string set variable in one of the page margin boxes. */

@page chapter {

 @top-left-corner {

 content: string(hdrstr);

 }

}

Notes:

The string set is applied to all pages that follow the data element, until another data element changes

it:

...

 <topicref href="topics/installing.dita">

 <topicmeta>

 <data name="header-data" value="ID778-3211"/>

 </topicmeta>

 </topicref>

 <topicref href="..."> <!-- Uses the same value -->

Oxygen XML Editor 27.1 | 11 - Publishing | 1884

 <topicref href="..."> <!-- Uses the same value -->

 <topicref href="..."> <!-- Uses the same value -->

 <topicref href="topics/change.dita">

 <topicmeta>

 <data name="header-data" value="ID990-3200"/>

 </topicmeta>

 </topicref>

 <topicref href="..."> <!-- The string set is changed now -->

 <topicref href="..."> <!-- The string set is changed now -->

 <topicref href="..."> <!-- The string set is changed now -->

To clear the text, use the none value:

...

 <topicref href="..."> <!-- The string set is void now -->

...

How to Change Header Images for Each Chapter

It is possible to dynamically change an image in the header depending on the chapter. For this, you need to

define an image reference in the metadata section of each chapter. One way is to specify it in the DITA map by

using the <topicmeta> element for the <chapter> topic reference:

...

 <chapter href="topics/installing.dita">

 <topicmeta>

 <data name="header-image" value="img/installing.png"/>

 </topicmeta>

 ...

In the above example, there is set of key value pairs with the name header-image. The img/installing.png is an

image reference relative to the DITA map URI. This information is automatically copied into the content in the

merged map file (on page 1860), like this:

<topic is-chapter="true" ... >

 <title class="- topic/title ">Installing</title>

 <shortdesc class="- topic/shortdesc ">You install components to make them available for your

 solution.</shortdesc>

 <prolog class="- topic/prolog ">

 ...

 <data class="- topic/data " name="header-image" value="img/installing.png"/>

 ...

This information can be picked up from CSS:

Oxygen XML Editor 27.1 | 11 - Publishing | 1885

/* Define the string set variable that contains an URL */

*[class ~= "topic/topic"] *[class ~= "topic/data"][name="header-image"] {

 string-set: imgst oxy_url(oxy_xpath('/*/@xtrf'), attr(value));

}

/* Using the value='none' stops applying the image. */

*[class ~= "topic/topic"] *[class ~= "topic/data"][name="header-image"][value="none"] {

 string-set: imgst "";

}

/* Use the string set variable in one of the page margin boxes. */

@page chapter {

 @top-left-corner {

 content: string(imgst);

 font-size:0; /* remove the font ascent and descent */

 }

}

Details: The @value attribute is used to build a URL relative to the URI of the DITA map. To determine the

base URI of the DITA map, the @xtrf attribute was used from the root element of the merged map document,

extracted using the oxy_xpath function.

Notes:

• The image is always aligned vertically to the middle of available space from the page margin

box.

• Make sure you use an image of the correct size. For example, if you want to place the image in

the top-left corner of the page, assuming the top and left page margins are 1 in, then make sure

the image is a square having a size of 1 in.

• The image is applied to all pages that follow the data element, until another data element

changes it:

...

 <chapter href="topics/installing.dita">

 <topicmeta>

 <data name="header-image" value="img/installing.png"/>

 </topicmeta>

 </chapter>

 <chapter href="..."> <!-- Uses the same installing.png image -->

 <chapter href="..."> <!-- Uses the same installing.png image -->

 <chapter href="..."> <!-- Uses the same installing.png image -->

 <chapter href="topics/change.dita">

 <topicmeta>

Oxygen XML Editor 27.1 | 11 - Publishing | 1886

 <data name="header-image" value="img/change.png"/>

 </topicmeta>

 </chapter>

 <chapter href="..."> <!-- Uses the same change.png image -->

 <chapter href="..."> <!-- Uses the same change.png image -->

 <chapter href="..."> <!-- Uses the same change.png image -->

To clear the image, use the none value:

...

 <data name="header-image" value="none"/>

...

How to Add a Multi-line Copyright Notice to the Footer

Suppose you want to add a footer with the following two lines of text at the end of each page that is shown on

the right side:

© 2017 - My Company Ltd

All rights reserved

For this, you need to specify a rule that matches all the right pages and adds that content in the bottom-center.

In your customization CSS (on page 1858), add the following CSS rule:

@page :right{

 @bottom-center {

 content: "© 2017 - My Company Ltd \A All rights reserved";

 font-size: 0.5em;

 color: silver;

 }

}

Note:

Other page rules (such as the table-of-contents) override the contents of the @bottom-center because

they are more specific. If you need to also print the copyright in the TOC pages, then use this as the

selector:

@page :right, table-of-contents:right {

 ...

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1887

Note:

To use new lines (\n characters) in your headers or footers, use the \A notation, as in the example

above.

How to Add a Group of Topics to the Footer

To create a footer that contains the content of several topic files, but only on the last page, there are two

possible approaches:

Method 1: Using the position:fixed CSS Property

1. Group all the footer topics under a single parent topic, under the last topic from your DITA map. For

example, you can have the following map structure:

...

End topic

 Footer container topic

 Footer content topic 1

 Footer content topic 2

2. Add an @outputclass=footer on the <topic> root element of the footer container topic, or on its <topicref>

in the map.

3. Use the CSS position: fixed property to position this topic to the bottom of the page:

*[outputclass ~= "footer"] {

 position: fixed;

 bottom: 0.5in;

 left: 0.5in;

 width:5in;

 height:200pt;

}

Note:

Make sure the width and height are enough for the content of the footer to fit. Be careful because the

content might bleed out of the page. Use bottom and left values to position the block in the page.

Method 2: Using the float:footnote CSS Property

The second approach would be to declare the footer block as a footnote. Assuming the same DITA Map

structure as above, you can use the following CSS fragment:

*[outputclass ~= "footer"] {

 float:footnote;

Oxygen XML Editor 27.1 | 11 - Publishing | 1888

}

*[outputclass ~= "footer"]:footnote-call{

 color:transparent;

 font-size:0;

}

*[outputclass ~= "footer"]:footnote-marker{

 color:transparent;

 font-size:0;

}

Note:

Use transparent colors and/or zero size font to avoid the display of the footnote counters.

How to Add a Link in Headers and Footers

Method 1: Using an SVG Link Attribute

It is possible to add a link inside the document header (or footer) by using the <a> element inside an SVG

document. For example, suppose you have the following SVG document named custom.svg:

<svg width="180" height="20" viewBox="0 0 180 20" xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <a xlink:href="https://www.oxygenxml.com/chemistry-html-to-pdf-converter.html">

 <rect x="0" y="0" width="180" height="20" opacity="0"/>

 <text x="5" y="15" fill="blue">Oxygen PDF Chemistry</text>

</svg>

This creates an SVG link with Oxygen PDF Chemistry displayed as its text (the content of the <text> element).

Note:

If you just want to add a link without text, you can define a rectangle that contains the link instead of

text.

To display the link, you just need to set your SVG file as the content of one of the page margin boxes:

@page {

 @top-left {

 content: url("custom.svg");

 }

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1889

Method 2: Using the CSS -oxy-link Property

It is also possible to add a link inside the document header (or footer) by using the -oxy-link property on the

@page margin box declaration. The entire page margin box will behave as a link and will be clickable.

@page {

 @top-left {

 content: "Link";

 -oxy-link: "https://www.oxygenxml.com/";

 color:blue;

 }

}

How to Change the Header Styling Depending on Page Side

To modify the styling of the default page headers, add the following CSS rule in your customization CSS (on

page 1858):

@page :left {

 @top-left {

 color:navy;

 font-style:italic;

 }

 @top-right {

 color:red;

 }

}

If you intend to modify just the headers of the table of contents, use the table-of-contents page rule selector:

@page table-of-contents:left {

 @top-left {

 color:navy;

 font-style:italic;

 }

 @top-right {

 color:red;

 }

}

How to Use XPath Computed Data or Images in the Header or Footer

A very simple approach is to use the oxy_xpath directly in the content property:

@page front-page {

 @top-center {

 content: "Created: " oxy_xpath('//*[contains(@class, " topic/created "][1]');

Oxygen XML Editor 27.1 | 11 - Publishing | 1890

 }

}

Example 1: Compute the Number of Words

The following example computes the number of words from the publication. It counts all the words, including

the ones from the TOC, but does not take the static labels into account:

@page front-page {

 @bottom-center {

 content: "Number of words: "

 oxy_xpath("string-length(normalize-space(/)) - \

 string-length(translate(normalize-space(/),' ','')) +1");

 }

}

Note:

The XPath expression from the page rules is evaluated in the context of the document root element,

so you will need to use absolute expressions starting with / or //. This is different from the case when

the oxy_xpath is used in CSS rules that match an element. In this case, the XPath expressions are

evaluated in the context of the matched element and you can use relative paths.

Tip:

XPath 2.0 is supported (not schema aware).

Example 2: Retrieve Image from a Document and Insert it in the Header

Another example is to use an image from the document in the publication header:

<bookmeta>

 <metadata>

 ...

 <data name="cover">

 <image href="product-cover.png" outputclass="cover-image"/>

 </data>

 ...

 </metadata>

</bookmeta>

@page {

 @top-center {

 content: url("oxy_xpath('//*[contains(@outputclass, "cover-image")]/@href')");

 }

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1891

If the URL returned by oxy_xpath is not absolute, it is considered to be relative to the CSS file. To obtain an

absolute URL from one relative to the XML document, you can use in the XPath expression functions like

resolve-uri and document-uri:

@page {

 @top-center {

 content: url(oxy_xpath("resolve-uri(//*[contains(@outputclass, 'cover-image')]/@href), document-uri(/))"));

 }

}

Example 3: Insert the Current Date in the Footer

Another example is to use the oxy_xpath function to compute the current date and insert it in the publication

footer:

@page {

 @bottom-left {

 content: oxy_xpath('current-date()');

 }

}

Example 4: Picking up Metadata from the Original Map

Another example is to use the oxy_xpath function to extract the title, or any other element text value from the

original processed DITA map file. For this, you can use the @xtrf attribute that is set on the root element of the

merged map. This attribute contains the URL of the input map.

:root{

 string-set: maptitle oxy_xpath('document(@xtrf)/*[contains(@class, " map/map ")]/*[contains(@class, " topic/title

 ")]/text()');

}

Related Information:

Oxygen PDF Chemistry User Guide: Headers and Footers

http://zvon.org/xxl/XPathTutorial/General/examples.html

Oxygen User Guide: oxy_xpath() Function

How to Add a Line Under the Header

There are two ways to add a horizontal line under the header.

Method 1: Add a Border in the Page Margin Boxes

To add a horizontal line that would stretch across the width of the page, add a bottom border to each of the 5

margin boxes in the top side of the page (top-left-corner, top-left, top-center, top-right, top-right-corner).

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_headers-and-footers.html
http://zvon.org/xxl/XPathTutorial/General/examples.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-xpath-function.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1892

If you consider that the space between the header and the bottom border is too large, you could also change

the alignment by adding a vertical-align: bottom; declaration in the page margin boxes.

For example, if you need to set some text as a header in the top-left margin box and insert a horizontal line

under it, the customization CSS would look something like this:

@page chapter, chapter:first:left:right, front-page{

 padding-top: 1em;

 @top-left {

 content: "Custom header";

 color: gray;

 border-bottom: 1px solid black;

 vertical-align: bottom;

 }

 @top-center{

 content:" ";

 border-bottom: 1px solid black;

 vertical-align: bottom;

 }

 @top-right{

 content:" ";

 border-bottom: 1px solid black;

 vertical-align: bottom;

 }

 @top-right-corner{

 content:" ";

 border-bottom: 1px solid black;

 vertical-align: bottom;

 }

 @top-left-corner{

 content:" ";

 border-bottom: 1px solid black;

 vertical-align: bottom;

 }

Oxygen XML Editor 27.1 | 11 - Publishing | 1893

Note:

The padding-top: 1em; is used to avoid the border at the bottom of the header that joins with the page

content.

Method 2: Use a Background Image

An alternative method is to add a horizontal line/border under an existing header (or in any other part of the

page) using an SVG image, as described in How to Add a Background Image to the Header (on page 1881).

How to Change the Headings Using a Parameter

Suppose you need to change the headings of your publication by specifying a static text in a parameter.

First, establish a name for your parameter (it must start with the args.css.param. prefix). For example, you

could name it args.css.param.heading.text. It will have the text value that you will pass when starting the

transformation. This parameter does not have to be registered anywhere as it will be automatically recognized

and passed as an XML attribute on the root of the merged file, as specified in Styling Through Custom

Parameters (on page 2045).

Next, alter your customization CSS to make use of the parameter value. In the example below, the text is

placed in the central part of the header:

@page front-page, table-of-contents, chapter {

 @top-center{

 content: oxy_xpath("/*/@heading.text");

 }

}

Note:

You can use any XPath 2.0 here. It will be executed in the context of the merged map document, so

you can collect data from it. You can use if/then/else expressions if your parameter is a switch.

The text does not affect the first pages from the page sequences because the built-in CSS page rules

(on page 1866) clear the content from the headers. If you need the text content on all pages, you might

consider adding an !important keyword after the content property value, or increase the specificity of the page

selectors, like this:

@page front-page,

 table-of-contents,

 table-of-contents:first:left,

 table-of-contents:first:right,

 chapter:first:left,

 chapter:first:right{

 @top-center{

 ...

Oxygen XML Editor 27.1 | 11 - Publishing | 1894

 }

}

Another use case is to alter the string-sets that are used in the headers (not the headers directly), as it is

explained here: How to Use XPath Computed Data or Images in the Header or Footer (on page 1889). You can

use this technique to alter the chapter titles as in the following example:

*[class ~= "map/map"][numbering^='deep']

 *[class ~= "topic/topic"][is-chapter]:not([is-part]) >

 *[class ~= "topic/title"] {

 string-set:

 chaptertitle " | " counters(chapter-and-sections, ".") " - " oxy_xpath("/*/@heading.text") content(),

 sectiontitle "";

}

Note:

This is a rule copied from p-numbering-deep.css and it may change if future versions.

How to Change the Headings depending on the Language

It is possible to customize the text displayed in the headings depending on the language of the publication.

In this case, you can simply use of the @lang attribute in your customization CSS. In the following example,

the page counter displayed in the bottom part of the page is preceded by the word "Page", according to the

selected language:

@page chapter {

 @bottom-center {

 content: oxy_xpath("if (@lang='es') then 'Página' \

 else if (@lang='it') then 'Pagina' \

 else 'Page'") " " counter(page);

 }

}

Note:

Backslashes (\) are used to split the XPath into multiple lines to make it easier to read.

How to Display the Chapter and the Page Number in the Footer

It is possible to display the chapter number along with the page number in the footer of each page. For

example, a CC-PP (using a 2-digits numbering) display can be done using the following CSS rules:

*[class ~= "map/map"] *[class ~= "topic/topic"][is-part] {

 string-set: chapternumber "";

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1895

*[class ~= "map/map"] *[class ~= "topic/topic"][is-chapter]:not([is-part]) {

 string-set: chapternumber counter(chapter, decimal-leading-zero);

}

*[class ~= "map/map"] *[class ~= "bookmap/frontmatter"]

*[class ~= "map/map"] *[class ~= "bookmap/backmatter"]

*[class ~= "map/map"] *[class ~= "topic/topic"][is-part] ~ *[class ~= "topic/topic"]:not([is-part]) {

 string-set: chapternumber "";

}

...

@page chapter {

 @bottom-center {

 content: string(chapternumber) "-" counter(page, decimal-leading-zero);

 }

}

Page Breaks

The page breaks can be controlled in multiple ways:

1. By creating an @page and assigning it to an element will create a page break between this element and

the sibling elements that have a different page.

2. Using the CSS properties: page-break-before, page-break-after, or page-break-avoid.

3. In your DITA topic, set the @outputclass attribute on the topic root (or any element) to contain one of

the page-break-before, page-break-after, or page-break-avoid values. If you want to control the page

breaking from the DITA map, use the @outputclass attribute on the <topicref>, with any of the values

mentioned above.

Related Information:

Double Side Pagination (on page 1958)

Oxygen PDF Chemistry: Controlling Page Breaks

Page Breaks - Built-in CSS

Page break properties are used in: [PLUGIN_DIR]css/print/p-page-breaks.css.

How to Avoid Page Breaks in Lists and Tables

To avoid splitting elements over two pages, you can use the page-break-inside CSS property. For example, if

you want to impose this on tables and lists, then add the following rules to your customization CSS (on page

1858):

*[class ~= "topic/table"] {

 page-break-inside:avoid;

}

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_controlling_page_breaks.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1896

*[class ~= "topic/ol"] {

 page-break-inside:avoid;

}

*[class ~= "topic/ul"] {

 page-break-inside:avoid;

}

Note:

Since the task steps are inherited from topic/ol, they will also not be split over two separate pages.

However, if you want to allow this, add the following CSS rule:

*[class ~= "task/steps"] {

 page-break-inside:auto;

}

Note:

Another way to do this is to mark the element with an @outputclass set to page-break-avoid.

How to Force a Page Break Before or After a Topic or Another Element

If you want to force a page break before all the second-level topics (for example, sections in chapters that are

usually kept flowing one after another without page breaks), add the following in your customization CSS (on

page 1858):

*[class ~= "map/map"] > *[class ~= "topic/topic"] > *[class ~= "topic/topic"] {

 page-break-before:always;

}

If you need to break at third or fourth level topics, add more .. > *[class ~= "topic/topic"] selectors to the

expression.

If you want to force a page break for a specific topic, mark the topic (or any other element you need to control

page breaking for) with an @outputclass attribute set to one of these values:

page-break-before

Use this for a page break before the marked element.

page-break-after

Use this for a page break after the marked element.

page-break-avoid

Use this to avoid page breaks inside the marked element.

For example, to force a page break before a certain topic, use:

<topic outputclass="page-break-before" ... >

Oxygen XML Editor 27.1 | 11 - Publishing | 1897

Note:

You can set the output class on the <topicref> element from the DITA map instead of the <topic>

element. In this way you can reuse the topic in another context where the page breaking is not

necessary.

You can also control page breaking for lists, paragraphs, or any other block type elements. The following

example avoids page breaks inside an ordered list:

<ol outputclass="page-break-avoid" ... >

How to Add a Blank Page After a Topic

If you want to add a new blank page after a topic, add the following rules to your customization CSS (on page

1858).

Style the separating blank page:

@page topic-separating-page{

 @top-left {

 content: "";

 }

 @top-right {

 content: "";

 }

 @top-center {

 content: "This page is blank";

 }

}

Associate this page to the :after pseudo-element of the topic:

*[class~="topic/topic"][outputclass~="add-separator-page"]:after {

 content: " ";

 display: block;

 page: topic-separating-page;

}

In the XML content, on the <topic> element, set the @outputclass to the add-separator-page value.

<topic outputclass="add-separator-page"> ... </topic>

The :after pseudo-element will be created next to the topic content and will be placed on the topic-

separating-page.

Use the page margin box selectors to override the default content from the headers/footers.

Oxygen XML Editor 27.1 | 11 - Publishing | 1898

Note:

You can set the output class on the <topicref> element from the DITA map instead of the <topic>

element. This allows you to reuse the topic in another context where the page breaking is not

necessary.

How to Enforce a Number of Lines from Paragraphs that Continue in Next
Page

In typography, an orphan is the first line of a paragraph that appears alone at the bottom of a page (the

paragraph continues on a subsequent page), while a widow is the last line of a paragraph that appears alone

at the top of a page. The default is 2 for each of them. You can control this number by adding the following to

your customization CSS (on page 1858):

:root {

 widows:4;

 orphans:4;

}

Note:

As a difference from the W3C standard, the widows and orphans CSS properties are applied to lists as

well (the default is 2). This means that a list that spans consecutive pages will have either zero or at

least 2 lines on each of the pages.

How to Avoid Page Breaks Between Top-Level Topics (Chapters)

If you plan to publish a simple map with just one level of topics (such as a list of topics), then the automated

page breaks between these topics might not be desired.

In this case, you can use the following CSS snippet to disable the page breaks between chapters:

*[class ~= "topic/topic"][is-chapter] {

 -oxy-page-group:auto;

}

Related Information:

Oxygen PDF Chemistry User Guide: Chapter Page Placement and Styling

Cover (Title) Page

Customizing the cover page is one of the most requested customization requests.

Cover Page - XML Fragment

The merged map file (on page 1860) contains the <oxy:front-page> element, as a child of the root element.

This contains the metadata and an <oxy:front-page-title> element with the title structure.

https://www.oxygenxml.com/doc//ug-chemistry/topics/ch_chapters.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1899

<bookmap xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...>

 <oxy:front-page xmlns:oxy="http://www.oxygenxml.com/extensions/author">

 <bookmeta xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"

 ...

 </bookmeta>

 <oxy:front-page-title>

 <booktitle xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"

 class="- topic/title bookmap/booktitle ">

 <booklibrary class="- topic/ph bookmap/booklibrary ">Retro Tools</booklibrary>

 <mainbooktitle class="- topic/ph bookmap/mainbooktitle ">Tasks</mainbooktitle>

 <booktitlealt class="- topic/ph bookmap/booktitlealt ">Product tasks</booktitlealt>

 </booktitle>

 </oxy:front-page-title>

</oxy:front-page>

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

<div class="- map/map bookmap/bookmap bookmap" ... >

 <div class=" front-page/front-page front-page">

 <div class="- map/topicmeta bookmap/bookmeta boometa">

 ...

 </div>

 <div class=" front-page/front-page-title front-page-title">

 <div class="- topic/title bookmap/booktitle booktitle">

 <div class="- topic/ph bookmap/booklibrary booklibrary">Retro Tools</div>

 <div class="- topic/ph bookmap/mainbooktitle mainbooktitle">Tasks</div>

 <div class="- topic/ph bookmap/booktitlealt booktitlealt">Product tasks</div>

 </div>

...

Cover Page - Built-in CSS rules

The element with the class frontpage/frontpage is associated with a page named front-page with no headers

or footers. The front page title is styled with a bigger font. The built-in CSS rules are in [PLUGIN_DIR]/css/

print/p-front-page.css.

@media print {

 *[class~="front-page/front-page"] {

 page: front-page;

 }

Oxygen XML Editor 27.1 | 11 - Publishing | 1900

 /* Prevents the front-page title margin collapsing */

 *[class~="front-page/front-page"]::before(1000) {

 display:block;

 content:"\A";

 font-size:0;

 }

 *[class~="front-page/front-page-title"] {

 display:block;

 text-align:center;

 margin-top:3in;

 font-size:2em;

 font-family:arial, helvetica, sans-serif;

 font-weight:bold;

 }

 @page front-page {

 @top-left-corner { content:none }

 @top-left { content:none }

 @top-center { content:none }

 @top-right { content:none }

 @top-right-corner { content:none }

 @bottom-left-corner { content:none }

 @bottom-left { content:none }

 @bottom-center { content:none }

 @bottom-right { content:none }

 @bottom-right-corner{ content:none }

 }

}

Note:

This is listed solely for illustration purposes, as the plugin might use something different.

How to Add a Background Image for the Cover

The simplest way is to create an SVG image as large as the entire physical page and set it as the background

for the front-page. This makes it easy to accomplish a good positioning of the graphical elements or artwork.

In the foreground, you can place text fragments using a series of :after pseudo-elements bound to the front

page title.

Oxygen XML Editor 27.1 | 11 - Publishing | 1901

To set the size to an SVG image, you should specify the @width and @height attributes on the <svg> root element

using specified unit values (in, cm, etc.) This should be enough only if all the coordinates from your drawing

have unit identifiers.

If you are using unit-less coordinates in your drawing like the following:

<polygon points="17.78 826.21 577.51

Next, make sure you also specify the @viewBox attribute on the <svg> root element that defines the abstract

rectangle that contains the drawing:

<svg xmlns="http://www.w3.org/2000/svg" width="8.5in" height="11in" viewBox="0 0 600 850">

The following SVG document has the @width, @height, and @viewBox attributes. The width and height have

physical units (in inches), while the view box and rectangle coordinates are unit-less.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" width="8.5in" height="11in" viewBox="0 0 110 110">

 <desc>A gradient as big as a page.</desc>

 <defs>

 <linearGradient id="lc"

 x1="0%" y1="0%"

 x2="0%" y2="100%"

 spreadMethod="pad">

 <stop offset="0%" stop-color="#00DD00" stop-opacity="1"/>

 <stop offset="100%" stop-color="#00AA00" stop-opacity="1"/>

 </linearGradient>

 </defs>

 <rect x="5" y="5" width="100" height="100" rx="10" ry="10"

 style="fill:url(#lc);

 stroke: #005000;

 stroke-width: 3;"/>

 <text x="33%" y="50%" color="#FFFFAA"> Sample </text>

</svg>

This example shows a gradient. It is the size of a US-LETTER page and can be used in a publication using this

page size.

Note:

You can use raster image formats (such as PNG or JPEG), but it is best to use vector images (such as

SVG or PDF). They scale very well and produce better results when printed. In addition, the text from

these images is searchable and can be selected (if the glyphs have not been converted to shapes) in

the PDF viewer.

Oxygen XML Editor 27.1 | 11 - Publishing | 1902

In your customization CSS (on page 1858), add the following:

@page front-page {

 background-image: url("us-letter.svg");

 background-position: center;

 background-repeat: no-repeat;

 background-size: 100% 100%;

}

For smaller artworks, you can use background-position with percentage values to position and center the

artwork (for example, a company logo):

@page front-page {

 background-image:url("company-logo.svg");

 background-position:50% 5%; /* The first is the alignement on the X axis, the second on the Y axis.*/

 background-repeat:no-repeat;

}

Note:

The text from the SVG or PDF background images is searchable in the PDF reader.

How to Display the Background Cover Image Before the Title

It is possible to split the font-page display into two pages so that the background image appears on one page

and the title on another. The solution is to define a new page for the main title:

@page front-page {

 @top-left { content: none; }

 @top-right { content: none; }

 @bottom-center { content: none; }

 background-image: url("us-letter.svg");

 background-position: center;

 background-repeat: no-repeat;

 background-size: 100% 100%;

}

@page main-title-page {

 @top-left { content: none; }

 @top-right { content: none; }

 @bottom-center { content: none; }

}

*[class ~= "front-page/front-page-title"]:before {

 display: block;

Oxygen XML Editor 27.1 | 11 - Publishing | 1903

 content: "\2002";

 margin-bottom: 3in;

}

*[class ~= "front-page/front-page-title"] {

 page: main-title-page;

}

How to Use Different Background Cover Images Based on Bookmap or Map Information

It is common to use the same CSS file for customizing multiple publications, and you may need to set a

different cover for each of them. The solution is to use an XPath expression to extract some information from

the document, and based on that, select the SVG images.

@page front-page {

 background-image: url(oxy_xpath("\

 if(//*[contains(@class, ' topic/prodname ')][1] = 'gardening') then 'bg-gardening.svg' else\

 if(//*[contains(@class, ' topic/prodname ')][1] = 'soil') then 'bg-soil.svg'\

 else 'bg-default.svg'\

 "));

 background-position:center;

}

The backslash (\) is used to continue the expression string on the subsequent lines (there should be no

spaces after it). For more use cases solved using XPath, see: Metadata (on page 1916).

Related Information:

Oxygen PDF Chemistry: Graphics

How to Change Styling of the Cover Page Title

Match the front page title element in your customization CSS (on page 1858) based on its class attribute:

*[class ~= "front-page/front-page-title" {

 margin-top: 1in;

 font-size: 3em;

}

Important:

Make sure the sum of the top and bottom margins and paddings for this element do not exceed the

physical dimension of the page. If this happens, an extra blank page may appear before the cover

page. Usually, it is enough to specify only the top margin.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_graphics.html#ch_graphics

Oxygen XML Editor 27.1 | 11 - Publishing | 1904

How to Add Text to the Cover Page

If you need to add arbitrary text to the cover page, you can use the front page title element as an anchor and

add as many blocks of text as you need after it, and style them differently.

In your customization CSS (on page 1858), add the following:

*[class ~= "front-page/front-page-title"]:after(1) {

 display:block;

 content: "DRAFT VERSION";

 font-size: large;

 color: red;

 text-align:center;

}

*[class ~= "front-page/front-page-title"]:after(2) {

 display:block;

 content: "DO NOT DISTRIBUTE WITHOUT PERMISSION";

 font-size: large;

 color: red;

 text-align:center;

 font-style: italic;

}

The result is:

To use content from the document, you can use the oxy_xpath function in the content property. For a more

complex example, including the generation of a new page for the synthetic :after elements, see: How to Show

Metadata in the Cover Page (on page 1921).

Related Information:

How to Show Metadata in the Cover Page (on page 1921)

Oxygen XML Editor 27.1 | 11 - Publishing | 1905

How to Place Cover on the Right or Left Side

In your customization CSS (on page 1858), add the following CSS rules:

*[class ~= "front-page/front-page"]{

 page-break-before:left;

}

Note:

This will create an empty page at the beginning of the publication, moving the cover content on the

needed side.

For more information, see: Oxygen PDF Chemistry: Controlling Page Breaks.

Related Information:

Double Side Pagination (on page 1958)

How to Add a Second Cover Page and Back Cover Page

It is possible to add a second cover page after the front-page by defining another page-selector:

@page second-cover {

 @top-left {content: none;}

 @top-right {content: none;}

 @bottom-center {content: none;}

 background-image: url("second-cover.svg");

 background-position: center;

 background-repeat: no-repeat;

 background-size: 100% 100%;

}

*[class ~= 'front-page/front-page']:after{

 page: second-cover;

 page-break-after: always;

 display: block;

 content: "\2002";

}

If you want to add a back cover page, you should use an :after pseudo element on the map itself:

*[class ~= "map/map"]:after

and bind it to another @page declaration:

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_controlling_page_breaks.html#ch_controlling_page_breaks

Oxygen XML Editor 27.1 | 11 - Publishing | 1906

@page back-cover {

 @top-left {content: none;}

 @top-right {content: none;}

 @bottom-center {content: none;}

 background-image: url("back-cover.svg");

 background-position: center;

 background-repeat: no-repeat;

 background-size: 100% 100%;

}

*[class ~= "map/map"]:after {

 page: back-cover;

 content: "\2002";

}

Note:

For any background-image, it is recommended to use SVG instead of PNG (or JPG) because it scales it

to the page size.

Tip:

To add multiple cover pages, use multiple-leveled pseudo selectors, such as :after(1), :after(2).

Remember that the larger the value, the more distant the pseudo element is to the target element.

How to Dynamically Add a Second Cover Page

It is possible to dynamically set the path to the SVG image that will be displayed on the secondary cover page.

First, you need to declare a <data> element in the bookmap's metadata that contains the URL to your cover

image:

<bookmap>

 <booktitle>

 ...

 </booktitle>

 <bookmeta>

 <metadata>

 <data name="second-cover-url" value="covers/second-cover.svg"/>

 </metadata>

 </bookmeta>

...

</bookmap>

Oxygen XML Editor 27.1 | 11 - Publishing | 1907

Note:

This can also be done on a normal DITA map by using the <topicmeta> after the map's <title>.

Next, you need to modify the page declaration inside your CSS stylesheet and replace the background-image

property value with the result of the oxy_xpath() function:

@page second-cover {

 ...

 background-image: url(oxy_xpath("//*[contains(@class, 'bookmap/bookmeta')]//*[contains(@class,

 'topic/data')][@name='second-cover-url']/@value"));

 ...

}

Tip:

You can reuse the same stylesheet on multiple maps. You just need to change the data value for each

of them.

How to Add a Specific Number of Empty Pages After the Cover Page

In your customization CSS (on page 1858), add the following CSS rules:

@page my-blank-page {

 /* Hide the page numbers */

 @top-left {content: none;}

 @top-right {content: none;}

}

*[class ~= 'front-page/front-page']:after(1){

 page:my-blank-page;

 display:block;

 content: '\2002';

 color:transparent;

 page-break-after:always;

}

*[class ~= 'front-page/front-page']:after(2){

 page:my-blank-page;

 display:block;

 content: '\2002';

 page-break-after:always;

}

*[class ~= 'front-page/front-page']:after(3){

Oxygen XML Editor 27.1 | 11 - Publishing | 1908

 page:my-blank-page;

 display:block;

 content: '\2002';

 page-break-after:always;

}

Note:

The \2002 character is a space that is not shown on the pages, but gives a value for the content

property.

Related Information:

How to Force an Odd or Even Number of Pages in a Chapter (on page 1960)

How to Add a Copyright Page after the Map Cover (Not for Bookmaps)

Regular DITA maps do not have the concept of a copyright notice. This is available only in the DITA bookmap

structure.

If you are constrained to using a regular map and you need to add a copyright page between the front cover

and the TOC, use the following technique:

In your customization CSS (on page 1858), declare a new page layout:

@page copyright-notice-page {

 /* Clear the headers for the copyright page */

 @top-left {

 content: none;

 }

 @top-right {

 content: none;

 }

}

The element with the class front-page/front-page element contains the title of the publication and generates

the cover page. A synthetic :after element is created that follows this element and it is placed on a different

page.

*[class ~= "front-page/front-page"]:after {

 display: block;

 page: copyright-notice-page; /* Moves the synthetic element on a new page. */

 content: "Copyright 2018-2019 MyCorp Inc. \A All rights reserved";

 padding-top: 8in; /* Use padding to position the text in the page. */

 text-align: center;

Oxygen XML Editor 27.1 | 11 - Publishing | 1909

 color: blue;

}

If you need to add more content as blocks, use the :after(2), :after(3) pseudo-elements:

*[class~="front-page/front-page"]:after(2){

 display:block;

 page: copyright-notice-page; /* Continue on the same page as the first ':after'. */

 content: "Some more styled text";

 color:red;

}

If you want to extract information from the document, use the oxy_xpath() function. For example, if the

copyright info is stored in the map like this:

 <map ...>

 <topicmeta>

 <copyright>

 <copyryear year="2018"/>

 <copyrholder>MyCorp Inc.</copyrholder>

 </copyright>

 </topicmeta>

 ...

then use this:

*[class ~= "front-page/front-page"]:after(3) {

 display: block;

 page: copyright-notice-page;

 content:

 "Year: "

 oxy_xpath('//*[contains(@class, " front-page/front-page ")]/*[contains(@class, " map/topicmeta ")]/*[contains(@class,

 " topic/copyright ")]/*[contains(@class, " topic/copyryear ")]/@year')

 "\A Holder: "

 oxy_xpath('//*[contains(@class, " front-page/front-page ")]/*[contains(@class, " map/topicmeta ")]/*[contains(@class,

 " topic/copyright ")]/*[contains(@class, " topic/copyrholder ")]/text()');

 color: green;

}

Related information

How to Debug XPath Expressions (on page 1865)

How to Remove the Cover Page and TOC

If you need to hide or remove the cover page, the table of contents or other structures, match the elements

with a "front-page/front-page" and "toc/toc" classes in your customization CSS (on page 1858):

Oxygen XML Editor 27.1 | 11 - Publishing | 1910

*[class ~= 'map/map'] > *[class ~= 'toc/toc'] {

 display:none !important;

}

*[class ~= 'map/map'] > *[class ~= 'front-page/front-page']{

 display:none !important;

}

*[class~='topic/topic'][is-chapter] {

 -oxy-page-group : auto;

}

How to Add a Cover in Single-Topic Publishing

It is possible to add a cover page before the topic when publishing a single-topic PDF (without a DITA map)

using the DITA PDF - based on HTML5 & CSS transformation scenario.

For example, to add a background image before the published topic, you need to create a new @page rule and

add it in a block before the actual content of the document:

@page topic-cover {

 @top-left {content: none;}

 @top-right {content: none;}

 background-image: url("img/cover.svg");

 background-position: center;

 background-repeat: no-repeat;

 background-size: 100% 100%;

}

:root::before {

 page: topic-cover;

 display: block;

 content: "\2002";

 page-break-after: always;

}

How to Use SVG Templates for Creating Dynamic Cover Pages

It is possible to use XPath expressions inside SVG templates to insert dynamic text when creating PDF output

using the DITA Map PDF - based on HTML5 & CSS scenario.

Using SVG Template as a Cover Page

A common use-case is when you want to create a custom cover page and this cover should display metadata

information (i.e. the author, dates, and copyright information):

Oxygen XML Editor 27.1 | 11 - Publishing | 1911

1. In the source <bookmap>, the various metadata elements are inserted inside the <bookmeta> element:

<bookmap id="taskbook">

 <booktitle>

 <booklibrary>Retro Tools</booklibrary>

 <mainbooktitle>Product tasks</mainbooktitle>

 <booktitlealt>Tasks and what they can do</booktitlealt>

 </booktitle>

 <bookmeta>

 <author>Howe Tuduit</author>

 <critdates>

 <created date="2015-01-01"/>

 <revised modified="2016-04-03"/>

 <revised modified="2016-03-05"/>

 </critdates>

 ...

 <bookrights>

 <copyrfirst>

 <year>2004</year>

 </copyrfirst>

 <copyrlast>

 <year>2007</year>

 </copyrlast>

 <bookowner>

 <organization>Retro Tools, Inc.</organization>

 </bookowner>

 </bookrights>

 </bookmeta>

 ...

2. The corresponding merged.html file will have the following content:

...

<div class="- front-page/front-page front-page">

 <div class="- map/topicmeta bookmap/bookmeta topicmeta bookmeta">

 <div class="- topic/author author">Howe Tuduit</div>

 <div class="- topic/critdates critdates">

 <div date="2015-01-01" class="- topic/created created"></div>

 <div modified="2016-04-03" class="- topic/revised revised"></div>

 <div modified="2016-03-05" class="- topic/revised revised"></div>

 </div>

 ...

 <div class="- topic/data bookmap/bookrights data bookrights">

 <div class="- topic/data bookmap/copyrfirst data copyrfirst">

Oxygen XML Editor 27.1 | 11 - Publishing | 1912

 <div class="- topic/ph bookmap/year ph year">2004</div>

 </div>

 <div class="- topic/data bookmap/copyrlast data copyrlast">

 <div class="- topic/ph bookmap/year ph year">2007</div>

 </div>

 <div class="- topic/data bookmap/bookowner data bookowner">

 <div class="- topic/data bookmap/organization data organization">Retro Tools,

 Inc.</div>

 </div>

 </div>

 </div>

 <div class="- front-page/front-page-title front-page-title">

 <div class="- topic/title bookmap/booktitle title booktitle">

 Retro Tools

 Product

 tasks

 Tasks and what they

 can do

 </div>

 </div>

</div>

...

3. The cover image (for example, named cover.template.svg) should display <bookmeta> node

information (author, creation date, and copyright information) and the <mainbooktitle> will be displayed

rotated.

<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

 viewBox="0 0 610 790" style="enable-background:new 0 0 610 790;" xml:space="preserve">

<style type="text/css">

 .st0{fill:url(#SVGID_1_);}

 .st1{opacity:0.31;fill:#FFFFFF;enable-background:new ;}

 .st2{fill:#FFFFFF;}

 .st3{fill:#F04C3E;}

 .st4{fill:none;stroke:#FFFFFF;stroke-width:0.3685;stroke-miterlimit:2.6131;}

 .st5{font-family:'Arial';}

 .st6{font-size:24.3422px;}

 .st7{font-size:10px;}

 .st8{font-size:63.3422px;font-weight:bold;}

 .st9{fill:#F04C3E;stroke:#000000;stroke-miterlimit:10;}

</style>

<linearGradient id="SVGID_1_" x1="305.6" y1="799.9393" x2="305.6" y2="8.9393"

 gradientUnits="userSpaceOnUse">

Oxygen XML Editor 27.1 | 11 - Publishing | 1913

 <stop offset="1.848748e-02" style="stop-color:#2F639F"/>

 <stop offset="1" style="stop-color:#1C3E72"/>

</linearGradient>

<rect x="0.1" y="0.1" class="st0" width="611" height="791"/>

<path class="st1" d="M143.4,700.5l381.3-381.3c35.2-35.2,35.2-92.3,

 0-127.5L332.1-0.9H0.1v685.6l15.8,15.8C51.1,735.7,108.2,735.7,143.4,700.5z"/>

<path class="st2" d="M1.5,617.6c29.2,22.6,71.4,20.5,98.2-6.3l315.2-315.2c29.1-29.1,

 29.1-76.3,0-105.4L224.8,0.5H1.5V617.6z"/>

<text transform="matrix(1 0 0 1 419.998 615.9277)" class="st2 st5 st6">

 ${//*[contains(@class, 'bookmap/bookmeta')]/*[contains(@class, 'topic/author')]}

</text>

<text transform="matrix(1 0 0 1 419.998 660.9277)" class="st2 st5 st6">

 ${//*[contains(@class, 'bookmap/bookmeta')]//*[contains(@class, 'topic/created')]/@date}

</text>

<text transform="matrix(1 0 0 1 471.998 749.9277)" class="st2 st5 st7">©

 ${

 concat(//*[contains(@class, 'bookmap/bookmeta')]/*[contains(@class, 'bookmap/bookrights')]

 //*[contains(@class, 'bookmap/organization')], ' ',

 //*[contains(@class, 'bookmap/bookmeta')]/*[contains(@class, 'bookmap/bookrights')]

 /*[contains(@class, 'bookmap/copyrlast')]/*[contains(@class, 'bookmap/year')])

 }

</text>

<text transform="matrix(0.7071 -0.7071 0.7071 0.7071 88.1369 568.6693)" class="st9 st5 st8">

 ${

 //*[contains(@class, 'front-page/front-page-title')]

 //*[contains(@class, 'bookmap/mainbooktitle')]

 }

</text>

</svg>

Notes:

◦ XPath expressions are not expanded if the SVG template is open in Author mode.

◦ XPath expressions can be tested (without ${}) using the XPath/XQuery Builder view.

◦ XPath Conditional Expressions, For Expressions, and Let Expressions are supported.

Oxygen XML Editor 27.1 | 11 - Publishing | 1914

Important:

◦ If you received the SVG image from someone else (e.g. a graphics designer), make sure

that the text from the image was not converted to glyph shapes and that it is rendered

using the <text> element.

◦ The SVG <text> element does not wrap the text if it overflows the image. If you have

longer text that needs to be rendered, you might consider using multiple <text> elements

and more evolved XPath expressions (for example, using the substring() function) to

place the text on multiple lines.

Tip:

You can ask a designer to fill the image with some placeholders that you can later find and

replace with your XPath expressions. In the above SVG, the designer could place the text

Here comes the author, that you replace with ${//*[contains(@class, 'bookmap/bookmeta')]/

*[contains(@class, 'topic/author')]}:

<text transform="matrix(1 0 0 1 419.998 615.9277)" class="st2 st5 st6">

 Here comes the author

</text>

4. The CSS stylesheet should declare the template file as a background-image for the cover (on page

1900). Also the following example hides the <mainbooktitle> and its bookmark (it is displayed in the

template):

@page front-page {

 background-image: url("cover.template.svg");

 background-repeat: no-repeat;

 background-size: 100% 100%;

}

*[class ~= "bookmap/booktitle"] {

 display: none;

}

*[class ~= "front-page/front-page-title"]

> *[class ~= "bookmap/booktitle"]

> *[class ~= "bookmap/mainbooktitle"] {

 bookmark-level: 0;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1915

5. After the transformation, the final document cover will look like this:

Related information

How to Use XPath Expressions in CSS (on page 1864)

SVG Templates

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_graphics_svg_templates.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1916

Metadata

DITA has a solid vocabulary for specifying metadata. There are <prolog> elements in the topics, and

<topicmeta>, <bookmeta> elements in the bookmaps. They can be used to define authors, dates, audiences,

organizations, etc. See: https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/metadata-in-maps-and-

topics.html

It is up to you to decide where this information should be presented, in the PDF content or in the PDF

document properties.

Metadata - XML Fragment

In the merged map file (on page 1860), the metadata section is placed inside the <oxy:front-page> element.

This is different from the original placement in the map or bookmap (after the title), but allows for the usage of

information from it in the title page.

Bookmaps

This is an example of a section taken from a merged bookmap. It only contains some of the possible

metadata elements. The bookmeta metadata section is inherited from topicmeta:

<bookmap xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/"

 xmlns:opentopic-index="http://www.idiominc.com/opentopic/index" cascade="merge"

 class="- map/map bookmap/bookmap "

 ditaarch:DITAArchVersion="1.3" >

 <oxy:front-page xmlns:oxy="http://www.oxygenxml.com/extensions/author">

 <bookmeta xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"

 class="- map/topicmeta bookmap/bookmeta ">

 <author class="- topic/author ">Howe Tuduit</author>

 <bookid class="- topic/data bookmap/bookid ">

 <isbn class="- topic/data bookmap/isbn ">071271271X</isbn>

 <booknumber class="- topic/data bookmap/booknumber ">SG99-9999-00</booknumber>

 <maintainer class="- topic/data bookmap/maintainer ">

 <organization class="- topic/data bookmap/organization ">ACME Tools</organization>

 <person class="- topic/data bookmap/person "/>

 </maintainer>

 </bookid>

 <bookrights class="- topic/data bookmap/bookrights ">

 ...

 <bookowner class="- topic/data bookmap/bookowner ">

 <organization class="- topic/data bookmap/organization ">ACME Tools, Inc.</organization>

 </bookowner>

 </bookrights>

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/metadata-in-maps-and-topics.html
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/metadata-in-maps-and-topics.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1917

 </bookmeta>

 <oxy:front-page-title>

 ...

...

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

<div

 class="- map/map bookmap/bookmap bookmap" ... >

 <div class=" front-page/front-page front-page">

 <div

 class="- map/topicmeta bookmap/bookmeta boometa">

 <div class="- topic/author author">Howe Tuduit</div>

 <div class="- topic/data bookmap/bookid bookid">

 <div class="- topic/data bookmap/isbn isbn">071271271X</div>

 <div class="- topic/data bookmap/booknumber booknumber">SG99-9999-00</div>

 <div class="- topic/data bookmap/maintainer maintainer">

 <div class="- topic/data bookmap/organization organization">ACME Tools</div>

 <div class="- topic/data bookmap/person person"/>

 </div>

 </div>

 <div class="- topic/data bookmap/bookrights bookrights">

 ...

 <div class="- topic/data bookmap/bookowner bookowner">

 <div class="- topic/data bookmap/organization organization">

 ACME Tools, Inc.

 </div>

 </div>

 </div>

 </div>

 <div class=" front-page/front-page-title front-page-title">

 ...

...

Maps

The maps have a more simple structure, they use the <topicmeta> element for metadata sections. This is also a

simplified example, as there may be many more elements in the metadata section:

Oxygen XML Editor 27.1 | 11 - Publishing | 1918

<map xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/"

 xmlns:opentopic-index="http://www.idiominc.com/opentopic/index"

 cascade="merge" class="- map/map "

 ditaarch:DITAArchVersion="1.3">

 ...

<oxy:front-page xmlns:oxy="http://www.oxygenxml.com/extensions/author">

 <topicmeta class="- map/topicmeta ">

 <author class="- topic/author ">Dan C</author>

 <metadata class="- topic/metadata ">

 <prodinfo class="- topic/prodinfo ">

 <prodname class="- topic/prodname ">oXygen PDF CSS DITA Plugin</prodname>

 </prodinfo>

 </metadata>

 <audience class="- topic/audience "/>

 </topicmeta>

...

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

<div xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/"

 xmlns:opentopic-index="http://www.idiominc.com/opentopic/index"

 cascade="merge" class="- map/map "

 ditaarch:DITAArchVersion="1.3">

 ...

<div class=" front-page/front-page front-page">

 <div class="- map/topicmeta topicmeta">

 <div class="- topic/author author">Dan C</div>

 <div class="- topic/metadata metadata">

 <div class="- topic/prodinfo prodinfo">

 <div class="- topic/prodname prodname">oXygen PDF CSS DITA Plugin</div>

 </div>

 </div>

 <div class="- topic/audience audience"/>

 </topicmeta>

...

Oxygen XML Editor 27.1 | 11 - Publishing | 1919

Metadata - Built-in CSS rules

The [PLUGIN_DIR]/css/print/p-meta.css file contains the rules that extract metadata.

How to Create a Searchable PDF

To make a PDF searchable, you need to add some <keyword> or <indexterm> elements inside bookmaps, maps,

or topics. Most of the search engines will parse the resulting document and extract those keywords and create

a search base.

Note:

Both <keyword> and <indexterm> elements can be combined inside the <keywords> element. They will be

equally processed by the search engine.

In the generated PDF, keywords are displayed in the Document Properties.

Bookmaps

If you want your keywords to appear inside a bookmap, you need to define them inside the <bookmeta> element:

<bookmap>

 ...

 <bookmeta>

 <keywords>

 <keyword>web server</keyword>

 <keyword>hard disk</keyword>

 </keywords>

 </bookmeta>

Maps

If you want your keywords to appear inside a map, you need to define them inside the <topicmeta> element:

<map>

 ...

 <topicmeta>

 <keywords>

 <keyword>flowers</keyword>

 <indexterm>care and preparation</indexterm>

 <keyword>seasons</keyword>

 </keywords>

 </topicmeta>

Topics

If you want your keywords to appear inside one or more topics, you need to define them inside the <prolog>

element:

Oxygen XML Editor 27.1 | 11 - Publishing | 1920

<topic>

 ...

 <prolog>

 <metadata>

 <keywords>

 <indexterm>iris</indexterm>

 </keywords>

 </metadata>

 </prolog>

Warning:

Keywords must be at map level or at topic level, you cannot combine them.

How to Add the Publication Audience to the Custom PDF Metadata

The audience element indicates the users the publication is addressing. This can be placed inside a

<topicmeta> element in a <map> as in the following example:

<map>

 ...

 <topicmeta>

 ...

 <audience type="programmer" job="programming" experiencelevel="expert"/>

To collect the @type attribute, add the following in your customization CSS (on page 1858):

*[class ~= "map/map"] > *[class ~= "map/topicmeta"] > *[class ~= "topic/audience"] {

 -oxy-pdf-meta-custom: "Audience" attr(type);

}

Notice:

It is best to use the class selector (such as *[class ~= "map/topicmeta"]) instead of topicmeta

to cover cases where the elements are specialized (for instance, in a bookmap the bookmeta is a

topicmeta, so your selector will also function for bookmaps, not only simple maps.

Note:

The selector begins with map > to choose the <topicmeta> that is a direct child of the map, not other

<topicmeta> elements from other <topicref> elements.

Tip:

You can define multiple key value pairs by separating them with commas:

Oxygen XML Editor 27.1 | 11 - Publishing | 1921

-oxy-pdf-meta-custom: "Audience" attr(type), "Job" attr(job)

The metadata is displayed in the Custom tab of the Document Properties dialog box from Acrobat Reader:

How to Show Metadata in the Cover Page

The following CSS extensions are used in the subsequent examples:

• oxy_xpath - Executes an XPath expression and returns string content. Use this whenever you need to

extract data from an element other than the one matched by the CSS rule selector.

• :after(N) - Creates more than one after pseudo-element. The argument value represents how far

the generated content is from the real content. For example, in the second code snippet in the next

section (on page 1922), the content of the :after is closer to the title (upper) than the content of the

:after(2).

https://www.oxygenxml.com/doc/ug-editor/topics/dg-xpath-function.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1922

Note:

The attr() CSS function can also be used but it is limited to extracting attribute values from the

matched element.

Processing Metadata for Bookmaps

Suppose you need to present the Author and the ISBN (when it exists) just under the publication title and

suppose your bookmap contains:

<bookmap id="taskbook">

 <booktitle>

 <booklibrary>Retro Tools</booklibrary>

 <mainbooktitle>Product tasks</mainbooktitle>

 <booktitlealt>Tasks and what they can do</booktitlealt>

 </booktitle>

 <bookmeta>

 <author>Howe Tuduit</author>

 <critdates>

 <created date="1/1/2015"/>

 <revised modified="3/4/2016"/>

 <revised modified="3/5/2016"/>

 </critdates>

 <bookid>

 <isbn>071271271X</isbn>

 <booknumber>SG99-9999-00</booknumber>

...

The entire <booktitle> element content is displayed on the first page of the PDF, so if you need to add the

information after it, in your customization CSS (on page 1858), add the following CSS rules:

*[class ~= "bookmap/booktitle"]:after {

 display: block;

 content: "by " oxy_xpath('//*[contains(@class, " bookmap/bookmeta ")]/*[contains(@class, " topic/author ")]/text()');

 margin-top: 4em;

 text-align: center;

 color: gray;

}

*[class ~= "bookmap/booktitle"]:after(2) {

 display: block;

 content: oxy_xpath('if(//*[contains(@class, " bookmap/isbn ")]) then concat("ISBN ", //*[contains(@class, " bookmap/isbn

 ")]/text()) else ""');

 text-align: center;

 color: gray;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1923

Processing Metadata for DITA Maps

Suppose you need to present the Revision Date just under the publication title and suppose your DITA map

contains:

<map>

 <title>Growing Flowers</title>

 <topicmeta>

 <critdates>

 <revised modified="2021-04-26"/>

 </critdates>

...

The entire <title> element content is displayed on the first page of the PDF. If you need to add the information

after it, add the following CSS rules in your customization CSS (on page 1858):

*[class ~= "front-page/front-page-title"] > *[class ~= "topic/title"]:after {

 display: block;

 content: "last revision " oxy_xpath('(//*[contains(@class, " map/topicmeta ")])[1] \

 //*[contains(@class, " topic/revised ")]/@modified');

 margin-top: 4em;

 text-align: center;

 color: gray;

}

Note:

The [1] predicate is used to avoid duplicated results as the topicmeta is included in all children topics.

Generating Synthetic Pages for Metadata

Suppose you need to show this information on a page that follows the title page, instead of on the title page.

In this case, you need to prepare a named page and place the content in it. Add the following rules in your

customization CSS (on page 1858):

@page page-for-meta {

 background-color: yellow; /* Just to see it better*/

 @top-left-corner {

 content:""; /* Remove the default header */

 }

 @top-right-corner {

 content:""; /* Remove the default header */

 }

}

*[class ~= "bookmap/booktitle"]:after {

Oxygen XML Editor 27.1 | 11 - Publishing | 1924

 page: page-for-meta;

}

*[class ~= "bookmap/booktitle"]:after(2) {

 page: page-for-meta;

}

How to Show Metadata in the Header or Footer

The header and footer are composed of page margin boxes that can be populated with static text by using

string-sets.

If you need to add some of the map metadata to the header of the front page (for example, the creation date),

add the following CSS rules in your customization CSS (on page 1858):

*[class ~= "front-page/front-page"] >

 *[class ~= "map/topicmeta"] >

 *[class ~= "topic/critdates"] >

 *[class ~= "topic/created"]{

 string-set: mapcreated attr(date);

}

@page front-page {

 @top-center {

 content: "Created: " string(mapcreated);

 }

}

Note:

The front-page is the name of a page that used to present the element with the class "front-page/

front-page". The above page rule is combined with the default styles.

How to Show Metadata Information (Revision History) in the Topic Prologue

This topic explains how to present metadata information that is normally hidden in the published output. For

the example that follows, this will be the revision history list:

<task id="task_3ml_qm3_rf">

 <title>Removing the battery</title>

 <shortdesc/>

 <prolog>

 <change-historylist>

 <change-item>

 <change-revisionid>abd3</change-revisionid>

 <change-completed>Build no 1.</change-completed>

Oxygen XML Editor 27.1 | 11 - Publishing | 1925

 </change-item>

 <change-item>

 <change-revisionid>bc72</change-revisionid>

 <change-completed>Build no 2.</change-completed>

 </change-item>

 </change-historylist>

....

By default, the <prolog> element is hidden (display:none) and has several properties that make it collapse,

even if the display property is changed.

• It has a transparent color.

• The font has size zero.

• The width and height values are zero.

Start by resetting the prolog properties, but only for prologs that contains a history list. The others will be kept

hidden.

[class~="topic/prolog"]:has([class~="relmgmt-d/change-historylist"]){

 display:block;

 color:inherit;

 font-size:1rem;

 width:auto;

 height:auto;

}

Next, the following will keep the children of the prolog hidden (other than the change history):

[class~="topic/prolog"]:has([class~="relmgmt-d/change-historylist"]) > *:not([class~="relmgmt-d/change-historylist"]) {

 display:none;

}

The <change-item>, <change-revisionid>, and <change-completed> (like the descendents of the <change-historylist>)

are specializations of the topic/data element and are also hidden in the output, so you need to make them

visible. In the following selector, you can add more classes, depending on what elements you want to be

visible.

*[class~="relmgmt-d/change-item"],

*[class~="relmgmt-d/change-revisionid"],

*[class~="relmgmt-d/change-completed"] {

 display:block;

}

Now some styling for the entire list:

*[class~="relmgmt-d/change-historylist"] {

 font-size:1rem;

 border: 3pt solid silver;

Oxygen XML Editor 27.1 | 11 - Publishing | 1926

 padding: 0.5em;

}

*[class~="relmgmt-d/change-historylist"]:before {

 content: "Revision History:";

 font-weight:bold;

}

And the child elements:

/* Example of styling some of the descendends of the history list. */

*[class~="relmgmt-d/change-item"] {

 margin:1em;

}

*[class~="relmgmt-d/change-revisionid"]:before {

 content: "Revision ID: " !important;

 font-weight:bold;

}

*[class~="relmgmt-d/change-completed"]:before {

 content: "Completed: " !important;

 font-weight:bold;

}

In the output, the history list is now visible:

How to Remove or Change the PDF Keywords

The keywords defined in the prolog sections of topics are automatically collected and set as PDF keywords.

These are shown by the readers in the PDF document properties window.

If you need to remove them, you can use the following CSS snippet in your customization CSS (on page

1858):

:root {

 -oxy-pdf-meta-keywords:"";

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1927

To change them, if you have a hard-coded list, you just enumerate each of them in the property content,

separating them with comma:

:root {

 -oxy-pdf-meta-keywords:"alpha, beta, gamma";

}

If you need to extract them by other criteria from the merged map, you can use the oxy_xpath() function

instead of the hard-coded list.

How to Remove the PDF Publication Title Property

The title defined in the PDF reader is automatically collected from the map's main title.

If you want to display the map name instead of the title, you can use one of the following rules in your

customization CSS (on page 1858):

/*

 * Titles (maps).

 */

*[class ~= "front-page/front-page-title"] *[class ~= "topic/title"]:not([class ~= 'bookmap/booktitle']) {

 -oxy-pdf-meta-title: unset;

}

/*

 * Titles (bookmaps).

 */

*[class ~= "front-page/front-page"] *[class ~= "bookmap/booktitle"] > *[class ~= "bookmap/mainbooktitle"] {

 -oxy-pdf-meta-title: unset;

}

How to Change the PDF Publication Title Property

The <title> element of a bookmap is quite complex and contains elements for the book library and an

alternate title:

 <booktitle>

 <booklibrary>Retro Tools</booklibrary>

 <mainbooktitle>Main Book Title</mainbooktitle>

 <booktitlealt>Book Title Alternative</booktitlealt>

 </booktitle>

For the publication title, the built-in CSS uses only the content of the <mainbooktitle>. If you want to collect all

of the text from the <booktitle>, you can add the following rule to your customization CSS (on page 1858):

:root {

 -oxy-pdf-meta-title: oxy_xpath('(//*[contains(@class, "bookmap/booktitlealt")])[1]/text()');

https://www.oxygenxml.com/doc/ug-editor/topics/dg-xpath-function.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-xpath-function.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1928

 -oxy-pdf-meta-description: "";

}

An XPath expression is used to collect all the <booktitlealt> elements from the merged map, select the first

one, then use its text.

The built-in CSS uses the <booktitlealt> as the PDF description. In the example above, this property is cleared

since it was moved as a title.

How to Use Data Elements from the Map to Create Custom PDF Metadata

To use a key value in the CSS, the key must be referenced from the content (either a topic or map).

If you do not have it referenced, you may force a reference by using the <topicmeta> or <bookmeta> section of

your map and a <data> element. This has no effect on the published content, but allows the CSS rules to use its

content.

 <bookmeta>

 <data keyref="my_key"/>

 </bookmeta>

This is expanded in the merged HTML file to:

<div class="- map/topicmeta bookmap/bookmeta topicmeta bookmeta">

 ...

 <div keyref="my_key" class="- topic/data data">

 <div class="- topic/keyword keyword">KEY VALUE</div>

 </div>

 ...

</div>

Suppose that you need the expanded key value in the footer of the publication. You can define a string-set on

this data element:

*[class ~= "topic/data"][keyref="my_key"] {

 string-set: key-string content(text);

}

@page {

 @bottom-left {

 content: "My key is: " string(key-string) !important;

 }

}

Or you can use the value from a :before pseudo-element, like the one for the title:

Oxygen XML Editor 27.1 | 11 - Publishing | 1929

*[class ~= "topic/title"]:before {

 content: oxy_xpath("//*[contains(@class, 'topic/data')][@keyref = 'my_key']//text()");

}

Another use-case is to use the key as a source for a custom PDF document property:

*[class ~= "topic/data"][keyref="my_key"] {

 -oxy-pdf-meta-custom: attr(keyref) content(text);

}

How to Control the PDF Viewer

The PDF document may contain settings for the PDF Viewer. This helps to make the viewing experience

common for all of the readers. For example, you can specify the zoom level that the document is presented, or

whether the outline view should be displayed.

There are several CSS properties you can use. These properties should be set on the root element. If they are

set on multiple elements, the first one will be taken into account.

Examples

• To hide the PDF Viewer toolbar and menu bar:

:root {

 -oxy-pdf-viewer-hide-menubar: true;

 -oxy-pdf-viewer-hide-toolbar: true;

}

• To make the document be displayed with a different zoom level:

:root {

 -oxy-pdf-viewer-zoom: 50%;

}

• To make the PDF Viewer just as large as the displayed document (e.g. if there is a zoom level that

makes the document smaller, then the window of the viewer will be just as big as the page):

:root {

 -oxy-pdf-viewer-fit-window: true;

}

• If you need the pages to be displayed as a single continuous column (to be able to scroll in a single

view port), use:

:root {

 -oxy-pdf-viewer-page-layout: one-column;

}

The supported include: single-page, two-columns-left, and more.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_supported_properties.html#row_wwm_pf5_kqb

Oxygen XML Editor 27.1 | 11 - Publishing | 1930

• To make the document outline view visible, use:

:root {

 -oxy-pdf-viewer-page-mode: use-outlines;

}

The supported values include: use-thumbs, use-none. For more details, see the list of Chemistry

extension CSS properties.

Front Matter and Back Matter

The front matter is a series of topics that are usually placed after the cover page and before the TOC or the

content.

The back matter is a series of topics that are usually placed after the content of the book.

Front Matter and Back Matter - XML Fragment

In the merged map file (on page 1860), the frontmatter topic references are wrapped in a <frontmatter>

element that has the class bookmap/frontmatter. Then, the referenced content is marked with the attribute @is-

frontmatter="true":

<bookmap xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...>

 <oxy:front-page class="- front-page/front-page ">

 ...

 </oxy:front-page>

 <opentopic:map xmlns:ot-placeholder="http://suite-sol.com/namespaces/ot-placeholder"

 class="- toc/toc ">

 ...

 <frontmatter xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"

 class="- map/topicref bookmap/frontmatter ">

 ...

 <topicref class="- map/topicref " href="#unique_1" type="concept">

 ...

 </frontmatter>

 </opentopic:map>

 <concept

 class="- topic/topic concept/concept "

 is-frontmatter="true"

 topicrefclass="- map/topicref bookmap/bookabstract " ...>

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

<div xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...>

 <div class=" front-page/front-page front-page">

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_supported_properties.html#row_izc_rf5_kqb
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_supported_properties.html#row_izc_rf5_kqb

Oxygen XML Editor 27.1 | 11 - Publishing | 1931

 ...

 </div>

 <div class="- toc/toc toc">

 <div class="- map/topicref bookmap/frontmatter topicref frontmatter">

 <div href="#unique_2" type="topic" class="- map/topicref topicref">

 ...

 </div>

 </div>

 <article

 class="- topic/topic concept/concept topic concept nested0"

 is-frontmatter="true"

 topicrefclass="- map/topicref bookmap/bookabstract " ...>

Note:

The process also applies for the backmatter topic references inside a <backmatter> element with the

bookmap/backmatter class and referenced content with the @is-backmatter="true" attribute both in the

merged map and merged HTML files.

Front Matter and Back Matter - Built-in CSS

The built-in CSS rules are in [PLUGIN_DIR]/css/print/p-bookmap-frontmatter-backmatter.css.

By default, it associates the top-level topics that do not represent chapters to a matter-page style of page

layout. Each child topic starts on a new page.

Related Information:

Page Headers and Footers (on page 1873)

How to Remove Page Breaks Between Front Matter Child Topics

If you do not like the fact that all the topics that enter a bookmap frontmatter start on a new page, you can

disable this by using the following rules in your customization CSS (on page 1858):

*[class ~= "map/map"] > *[class ~= "topic/topic"][is-frontmatter]{

 page-break-before: auto;

}

How to Style the Front Matter and Back Matter Topics

Style all the Topics with the Same Aspect

All the topics referenced from the <frontmatter> and <backmatter> bookmap elements are formatted using the

matter-page as defined in Default Page Definitions (on page 1866). In the merged file, the <backmatter> and

<frontmatter> elements are omitted, and their child topic content is matched using a CSS rule like the one

below:

Oxygen XML Editor 27.1 | 11 - Publishing | 1932

*[class ~= "map/map"] > *[class ~= "topic/topic"][is-backmatter],

*[class ~= "map/map"] > *[class ~= "topic/topic"][is-frontmatter]{

 page: matter-page;

 ...

}

Style the Topics Depending on Their Role

There might be cases when you need to distinguish between certain types of topics that have different roles in

your publication:

• Preface

• Notice

• Abstract

• Copyright

These are referenced from the DITA map by specialized <topicref> elements, with different class attribute

values.

The class attribute values are then passed by the transformation process onto the corresponding topic

elements from the merged map content. For example, a topic that was referenced by a <preface> map element

now has a " bookmap/preface " value in its @topicrefclass attribute:

<topic

 class="- topic/topic "

 id="unique_1"

 topicrefclass="- map/topicref bookmap/preface " .. >

...

</topic>

This can be used to match and apply various styling choices, or even a particular page layout:

@page preface-page {

 background-color:silver;

 @top-center{

 content: "Custom Preface Header";

 }

}

*[class ~= "topic/topic"][@topicrefclass ~= "bookmap/preface"] {

 page: preface-page;

}

Numbering

The topics in this section contain some technical details in case you need to fine-tune the way the numbering

works.

Oxygen XML Editor 27.1 | 11 - Publishing | 1933

Numbering - Built-in CSS

The built-in CSS rules are in:

• [PLUGIN_DIR]/css/print/p-numbering-shallow.css

• [PLUGIN_DIR]/css/print/p-numbering-deep.css

• [PLUGIN_DIR]/css/print/p-numbering-deep-chapter-scope.css

• [PLUGIN_DIR]/css/print/p-numbering-deep-chapter-scope-no-page-reset.css

• [PLUGIN_DIR]/css/print/p-numbering-appendix.css

The first CSS (shallow) contains rules that add a "Chapter NN" before the first-level topics from the publication,

the second one (deep) contains rules that add a deep structure of counters on all topics referenced from the

map (at any level), the third one (chapter-scope) creates a chapter scope-oriented numbering (meaning that

the numbering for pages, tables, figures, and links to them are reset for each chapter), and the last one is

similar to the third except that page numbers do not reset. For more details, see Numbering Types (on page

1937).

Numbering - Input XML Fragments

The numbering affects multiple logical parts of your publication, the table of contents, headers/footers,

chapter titles, figures and tables titles:

The Table of Contents

The table of contents is a tree of <topicref> elements.

<map xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...>

 <oxy:front-page xmlns:oxy="http://www.oxygenxml.com/extensions/author"

 class=" front-page/front-page ">

 ...

 </oxy:front-page>

 <opentopic:map xmlns:opentopic="http://www.idiominc.com/opentopic" class=" toc/toc ">

 <title class="- topic/title ">Publication Title</title>

 <topicref is-chapter="true" class="- map/topicref " ... >

 <topicmeta class="- map/topicmeta " ... >

 <navtitle href="#unique_1" class="- topic/navtitle ">Overview</navtitle>

 ...

 </topicmeta>

 <topicref class="- map/topicref " ...>

 <topicmeta class="- map/topicmeta " data-topic-id="dcpp_resources">

 <navtitle href="#unique_2" class="- topic/navtitle ">Resources</navtitle>

 ...

 </topicmeta>

 </topicref>

Oxygen XML Editor 27.1 | 11 - Publishing | 1934

 ...

 </opentopic:map>

...

</map>

Note:

The <opentopic:map> element contains the effective table of contents structure.

Note:

The TOC items are the elements with the class: - map/topicref.

Note:

The ones identified as chapters have the @is-chapter attribute set.

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

<div class="- map/map map" ...>

 <div

 class=" front-page/front-page front-page">

 ...

 </div>

 <div class=" toc/toc toc">

 <div class="- topic/title title">Publication Title</title>

 <div is-chapter="true" class="- map/topicref topicref" ... >

 <div class="- map/topicmeta topicmeta" ... >

 <div href="#unique_1" class="- topic/navtitle navtitle">Overview</div>

 ...

 </div>

 <div class="- map/topicref " ...>

 <div class="- map/topicmeta " data-topic-id="dcpp_resources">

 <div href="#unique_2" class="- topic/navtitle ">Resources</div>

 ...

 </div>

 </div>

 ...

 </div>

...

</div>

Oxygen XML Editor 27.1 | 11 - Publishing | 1935

The Header and Footers

These are based on string sets generated for the titles. The complete set of strings is defined in:

[INSTALLATION_DIR]/css/print/p-numbering-shallow.css/[INSTALLATION_DIR]/css/

print/p-numbering-deep.css (depending on your numbering scheme - default is shallow) and used in

[INSTALLATION_DIR]/css/print/p-pages-and-headers.css.

The CSS rules that build the string sets are matching the map title from the front page and the titles from the

content.

<oxy:front-page xmlns:oxy="http://www.oxygenxml.com/extensions/author">

 <oxy:front-page-title>

 <title class="- topic/title ">Publication Title</title>

 </oxy:front-page-title>

</oxy:front-page>

For the DITA Map PDF - based on HTML5 & CSS transformations:

<div class=" front-page/front-page front-page">

 <div class=" front-page-title/front-page-title front-page-title">

 <div class="- topic/title title ">Publication Title</div>

 </div>

</div>

The main content is organized as follows:

<map xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...>

 ...

 <opentopic:map xmlns:opentopic="http://www.idiominc.com/opentopic">

 ...

 </opentopic:map>

 <topic is-chapter="true" oid="dcpp_overview">

 <title class="- topic/title ">Overview</title>

 <body class="- topic/body ">

 ...

 </body>

 <topic class="- topic/topic " id="unique_2" oid="dcpp_resources">

 <title class="- topic/title ">Resources</title>

 ...

 </topic>

 <topic class="- topic/topic " id="unique_2" oid="dcpp_parameters">

 <title class="- topic/title ">Parameters</title>

 ...

 </topic>

 </topic>

Oxygen XML Editor 27.1 | 11 - Publishing | 1936

For the DITA Map PDF - based on HTML5 & CSS transformations:

<div class=" map/map map" ...>

 ...

 <div class=" toc/toc toc">

 ...

 </div>

 <div is-chapter="true" oid="dcpp_overview" class="- topic/topic topic">

 <div class="- topic/title title">Overview</title>

 <div class="- topic/body body">

 ...

 </div>

 <div class="- topic/topic topic" id="unique_2" oid="dcpp_resources">

 <div class="- topic/title title">Resources</div>

 ...

 </div>

 <div class="- topic/topic topic" id="unique_2" oid="dcpp_parameters">

 <div class="- topic/title title">Parameters</div>

 ...

 </div>

 </div>

Note:

The topic content comes after the <opentopic:map> element.

Note:

The child topics are the elements that have the class - topic/topic included in the parents.

Note:

The ones identified as chapters have the @is-chapter attribute set.

The Titles of Chapters

The titles from the content are children of the topics:

<topic class="- topic/topic " id="unique_2" oid="dcpp_parameters">

 <title class="- topic/title ">Parameters</title>

 ...

</topic>

For the DITA Map PDF - based on HTML5 & CSS transformations:

Oxygen XML Editor 27.1 | 11 - Publishing | 1937

<div class="- topic/topic topic" id="unique_2" oid="dcpp_parameters">

 <div class="- topic/title title ">Parameters</div>

 ...

</div>

Note:

The title elements have the class: - topic/title. The actual element name can be different.

Numbering Types

The type of numbering that appears in your publication is controlled by the args.css.param.numbering

parameter.

This parameter activates various sets of CSS rules from the built-in CSS. By default, only the first-level topics

(the chapters) are numbered (shallow numbering). The following values are accepted:

Table 42. Types of Numbering

Value Chapters

Sections/

Nested

Topics

Figures & Tables Pages

shallow num

bered

no counted from the start of the publi

cation

from the start of the pub

lication

deep num

bered

numbered counted from the start of the publi

cation

from the start of the pub

lication

deep-chapter-scope num

bered

numbered numbering is restarted at the be

ginning of each chapter, adds the

chapter number in their titles (and

in the links to them), and in the list

of tables and list of figures sec

tions

restarted at the beginning

of each chapter

deep-chap

ter-scope-no-page-

reset

num

bered

numbered numbering is restarted at the be

ginning of each chapter, adds the

chapter number in their titles (and

in the links to them), and in the list

of tables and list of figures sec

tions

from the start of the pub

lication

Oxygen XML Editor 27.1 | 11 - Publishing | 1938

Note:

When using any of the deep numbering types, no distinction is made between sections and nested

topics. For example, if a topic contains two sections, followed by another nested topic, the sections

will be numbered with 1 and 2, and the nested topic with 3.

Notice:

The deep-chapter-scope and deep-chapter-scope-no-page-reset values are only available for the DITA

Map PDF - based on HTML5 & CSS transformation scenario.

Examples

Shallow

Each chapter (or first-level topic) is numbered, but sections/nested topics are not numbered.

Figures, tables, and pages are numbered sequentially from the start of the publication and they

do not reset.

Chapter 1. First Chapter

 Page 1

 Topic

 Section

 Table 1

 Table 2

 Topic

 Section

 Page 2

 Table 3

Chapter 2. Second Chapter

 Page 3

 Topic

 Table 4

 Table 5

 Topic

 Page 4

It will result in the following content inside the PDF:

Chapter 1. Introduction..1

Chapter 2. Care and Preparation..2

 Pruning..2

 Garden Preparation...3

Chapter 3. Flowers by Season...4

 Spring Flowers...4

 Iris...4

Oxygen XML Editor 27.1 | 11 - Publishing | 1939

 Snowdrop...6

 ...

List of Figures

 Figure 1: Iris

List of Tables

 Table 1: Flowers

Deep

All chapters (or first-level topics) and sections/nested topics are numbered (these are also

prefixed with the chapter number). Figures, tables, and pages are numbered sequentially from

the start of the publication and they do not reset.

1. First Chapter

 Page 1

 Topic 1.1

 Table 1

 Topic 1.2

 Table 2

 Page 2

 Table 3

2. Second Chapter

 Page 3

 Topic 2.1

 Table 4

 Table 5

 Topic 2.2

 Page 4

It will result in the following content inside the PDF:

1. Introduction..1

2. Care and Preparation..2

 2.1. Pruning...2

 2.2. Garden Preparation..3

3. Flowers by Season...4

 3.1. Spring Flowers..4

 3.1.1. Iris..4

 3.1.2. Snowdrop..6

 ...

List of Figures

 Figure 1: Iris

Oxygen XML Editor 27.1 | 11 - Publishing | 1940

List of Tables

 Table 1: Flowers

Deep Chapter Scope

Each chapter (or first-level topic) is independent (so it can be read separately, as a separate part

of your publication). The sections/nested topics, pages, figures, and table counters (and links to

them) restart at each chapter. The general cross reference links also display the chapter number

before the page number to clearly specify the target.

1. First Chapter

 Page 1.1

 Topic 1.1

 Table 1-1

 Link to page 2.2

 Topic 1.2

 Page 1.2

 Table 1-2

2. Second Chapter

 Page 2.1

 Topic 2.1

 Table 2-1

 Table 2-2

 Table 2-3

 Topic 2.2

 Table 2-4

 Page 2.2

 Link to page 1.1

It will result in the following content inside the PDF:

1. Introduction..1

2. Care and Preparation..1

 2.1. Pruning...1

 2.2. Garden Preparation..2

3. Flowers by Season...1

 3.1. Spring Flowers..1

 3.1.1. Iris..1

 3.1.2. Snowdrop..3

 ...

List of Figures

 Figure 3-1: Iris

Oxygen XML Editor 27.1 | 11 - Publishing | 1941

List of Tables

 Table 2-1: Flowers

Deep Chapter Scope No Page Reset

Each chapter (or first-level topic) is independent (so it can be read separately, as a separate part

of your publication). The sections/nested topics, figures, and table counters (and links to them)

restart at each chapter, but the page numbers do not reset. The generic cross reference links

contain only the page number.

1. First Chapter

 Page 1

 Topic 1.1

 Table 1-1

 Link to page 4

 Topic 1.2

 Page 2

 Table 1-2

2. Second Chapter

 Page 3

 Topic 2.1

 Table 2-1

 Table 2-2

 Table 2-3

 Topic 2.2

 Table 2-4

 Page 4

 Link to page 1

It will result in the following content inside the PDF:

1. Introduction..1

2. Care and Preparation..2

 2.1. Pruning...2

 2.2. Garden Preparation..3

3. Flowers by Season...4

 3.1. Spring Flowers..4

 3.1.1. Iris..4

 3.1.2. Snowdrop..6

 ...

List of Figures

 Figure 3-1: Iris

Oxygen XML Editor 27.1 | 11 - Publishing | 1942

List of Tables

 Table 2-1: Flowers

Tip:

When using deep numbering, if you want to exclude sections from being numbered, see How to

Include Topic Sections in TOC (on page 1943).

How to Reset Page Numbering at First Chapter/Part

By default, pages are numbered from the start of the publication, but in some cases, you may need to restart

the page numbering at the first chapter of your publication.

Warning:

The following sections do not apply for args.css.param.numbering="deep-chapter-scope" because it

already define a specific numbering scheme that resets the page number at each chapter.

Reset Page Numbering in Shallow Context

To reset the page counter at the first part/chapter when the args.css.param.numbering="shallow" parameter

value is set, use the following rules in your customization CSS (on page 1858):

*[class ~= "map/map"] > *:not([class ~= "topic/topic"][is-chapter]) + *[class ~= "topic/topic"][is-chapter] {

 counter-reset: page 1;

}

*[class ~= "map/map"] > *:not([class ~= "topic/topic"][is-part]) + *[class ~= "topic/topic"][is-part] {

 counter-reset: page 1 chapter;

}

Reset Page Numbering in Deep Context

To reset the page counter at the first part/chapter when the args.css.param.numbering="deep" parameter value

is set, use the following rules in your customization CSS (on page 1858):

*[class ~= "map/map"][numbering ^= 'deep'] > *:not([class ~= "topic/topic"][is-chapter]) + *[class

 ~= "topic/topic"][is-chapter] {

 counter-reset: page 1 section1;

}

*[class ~= "map/map"][numbering ^= 'deep'] > *:not([class ~= "topic/topic"][is-part]) + *[class ~= "topic/topic"][is-part] {

 counter-reset: page 1 chapter chapter-and-sections;

}

Reset Page Numbering in Deep Chapter Scope No Page Reset Context

To reset the page counter at the first part/chapter when the args.css.param.numbering="deep-chapter-scope-

no-page-reset" parameter value is set, use the following rules in your customization CSS (on page 1858):

Oxygen XML Editor 27.1 | 11 - Publishing | 1943

*[class ~= "map/map"][numbering ^= 'deep'] > *:not([class ~= "topic/topic"][is-chapter]) + *[class

 ~= "topic/topic"][is-chapter] {

 counter-reset: page 1 section1 tablecount figcount !important;

}

*[class ~= "map/map"][numbering ^= 'deep'] > *:not([class ~= "topic/topic"][is-part]) + *[class ~= "topic/topic"][is-part] {

 counter-reset: page 1 chapter chapter-and-sections section1 tablecount figcount !important;

}

How to Use Part, Chapter, and Subtopics Numbers in Links

This topic is applicable if you have enabled deep numbering (on page 1937). Suppose you have a link in the

third chapter that points to a paragraph in the second subtopic of the first chapter and you need this structural

information (1.2) presented to the user, just after the link text. To do this, you can use the target-counters

CSS function to extract the entire context of the counters from the target. The chapter-and-sections built-in

counter is already updated with both the chapter number and the nested topics:

*[class ~= "topic/xref"]:after {

 content: target-counters(attr(href), chapter-and-sections, ".") !important;

}

This counter does not include the part number, so be careful when linking between parts (consider adding the

target part number explicitly):

*[class ~= "topic/xref"]:after {

 content: "[" target-counter(attr(href), part, upper-roman) "/" target-counters(attr(href),

 chapter-and-sections, ".") "]" !important;

 color:blue;

}

Related Information:

Numbering Types (on page 1937)

How to Include Topic Sections in TOC

To include topic sections in the table of contents, set the args.css.param.numbering-sections transformation

parameter (on page 1833) to yes. In this case, they are numbered according the numbering scheme set by the

args.css.param.numbering parameter (on page 1937).

If you want to prevent topic sections from being numbered in your output, set the value of the

args.css.param.numbering-sections parameter to no.

Table of Contents

The table of contents is a hierarchy of topic titles with links to the topic content.

Oxygen XML Editor 27.1 | 11 - Publishing | 1944

For plain maps, the TOC is automatically generated. For DITA bookmaps, you will need to add a <toc> element

in the <booklists> element (inside the <frontmatter>):

<bookmap>

 ...

 <frontmatter>

 <booklists>

 <toc/>

 <figurelist/>

 <tablelist/>

 </booklists>

 </frontmatter>

 ...

 ...

Related Information:

Table of Contents on a Page (Mini TOC) (on page 1951)

List of Tables/Figures (on page 1956)

Index (on page 1965)

Table of Contents - XML Fragment

In the merged map file (on page 1860), the <opentopic:map> contains a hierarchy of <topicref> elements, or

other elements (such as <chapter> or <part>) that are specializations of <topicref>.

Each of the <topicref> elements include a metadata section that includes the topic title.

 <bookmap ...>

 <oxy:front-page> ... </oxy:front-page>

 <oxy:front-matter> ... </oxy:front-matter>

 <opentopic:map xmlns:opentopic="http://www.idiominc.com/opentopic" class="- toc/toc ">

 <oxy:toc-title xmlns:oxy="http://www.oxygenxml.com/extensions/author" empty="true"

 class="- toc/title "/>

 <booktitle class="- topic/title bookmap/booktitle ">

 <booklibrary class="- topic/ph bookmap/booklibrary ">Retro Tools</booklibrary>

 <mainbooktitle class="- topic/ph bookmap/mainbooktitle ">Tasks</mainbooktitle>

 <booktitlealt class="- topic/ph bookmap/booktitlealt ">Product Tasks</booktitlealt>

 </booktitle>

 <chapter is-chapter="true"

Oxygen XML Editor 27.1 | 11 - Publishing | 1945

 class="- map/topicref bookmap/chapter " href="#unique_5" type="topic">

 <topicmeta class="- map/topicmeta " data-topic-id="installing">

 <navtitle href="#unique_5" class="- topic/navtitle ">Installing</navtitle>

 ...

 </topicmeta>

 <topicref class="- map/topicref " href="#unique_6" type="task">

 <topicmeta class="- map/topicmeta " data-topic-id="installstorage">

 <navtitle href="#unique_6" class="- topic/navtitle ">Installing</navtitle>

 ...

 </topicmeta>

 ...

 </topicref>

 ...

 </chapter>

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

 <div class="- bookmap/bookmap map/map map bookmap" ...>

 <div class="- front-page/front-page front-page"> ... </div>

 <div class="- bookmap/frontmatter frontmatter"> ... </div>

 <div class=" toc/toc toc">

 <div class="toc/toc-title toc-title" empty="true"/>

 <div class="- topic/title bookmap/booktitle booktitle">

 <div class="- topic/ph bookmap/booklibrary booklibrary">Retro Tools</div>

 <div class="- topic/ph bookmap/mainbooktitle mainbooktitle">Tasks</div>

 <div class="- topic/ph bookmap/booktitlealt booktitlealt">Product Tasks</div>

 </div>

 <div is-chapter="true"

 class="- map/topicref bookmap/chapter topicref chapter " href="#unique_5" type="topic">

 <div class="- map/topicmeta topicmeta" data-topic-id="installing">

 <div href="#unique_5" class="- topic/navtitle navtitle">Installing</div>

 ...

 </div>

Oxygen XML Editor 27.1 | 11 - Publishing | 1946

 <div class="- map/topicref topicref chapter " href="#unique_6" type="task">

 <div class="- map/topicmeta topicmeta" data-topic-id="installstorage">

 <div href="#unique_6" class="- topic/navtitle navtitle">Installing</div>

 ...

 </div>

 ...

 </div>

 ...

</div>

Note:

The <oxy:toc-title> element is used as a placeholder for the name of the TOC. For instance, you can

use the string "Contents", specified on a pseudo-element, in the CSS.

Table of Contents - Built-in CSS

The built-in CSS rules are in: [PLUGIN_DIR]/css/print/p-toc.css.

Related Information:

Page Headers and Footers (on page 1873)

How to Increase TOC Depth

By default, only the first three levels of topics are displayed in the Table of Contents of the PDF output.

The CSS rule (see Table of Contents - Built-in CSS (on page 1946)) that hides topics on higher levels is:

/* Hide sections below level 3. */

*[class ~= "map/topicref"][is-chapter] >

*[class ~= "map/topicref"]:not([is-chapter]) >

*[class ~= "map/topicref"] >

*[class ~= "map/topicref"] {

 display: none;

}

If you want to increase the TOC depth so that topic references on level 3 or higher are visible, you can

overwrite this rule in your customization CSS like this:

*[class ~= "map/topicref"][is-chapter] >

*[class ~= "map/topicref"]:not([is-chapter]) >

*[class ~= "map/topicref"] >

*[class ~= "map/topicref"]{

 display:block;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1947

If the args.css.param.numbering parameter is set to a value other than shallow, you also need to add the

following rules in your customization CSS:

*[class ~= "map/map"][numbering ^= 'deep']

*[class ~= "map/topicref"][is-chapter]:not([is-part]) >

*[class ~= "map/topicref"] >

*[class ~= "map/topicref"]

*[class ~= "map/topicref"] {

 counter-increment: toc-chapter-and-sections;

}

*[class ~= "map/map"][numbering ^= 'deep']

*[class ~= "map/topicref"][is-chapter]:not([is-part]) >

*[class ~= "map/topicref"] >

*[class ~= "map/topicref"]

*[class ~= "map/topicref"] >

*[class ~= "map/topicmeta"] + *[class ~= "map/topicref"] {

 counter-reset: toc-chapter-and-sections;

}

*[class ~= "map/map"][numbering ^= 'deep']

*[class ~= "map/topicref"][is-chapter]:not([is-part]) >

*[class ~= "map/topicref"] >

*[class ~= "map/topicref"] >

*[class ~= "map/topicref"]

*[class ~= "map/topicref"] > *[class ~= "map/topicmeta"]:before {

 content: counters(toc-chapter-and-sections, ".") ". ";

}

How to Style TOC Entries

Note:

Each of the items from the table of contents is an element that has the map/topicref class.

The following example uses the italic font for the label and changes the color and style of the connecting line

between the title and the page number.

In your customization CSS (on page 1858), add the following two selectors:

/* The toc item label - the topic title */

*[class ~= "map/topicref"] *[class ~= "topic/navtitle"] {

 font-style:italic;

 color: navy;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1948

/* The dotted line between the topic name and the page number. */

*[class ~= "map/topicref"] *[class ~= "topic/navtitle"]:after {

 content: leader('-') target-counter(attr(href), page);

 color: navy;

}

And if you need to alter the indent of the nested table of content items, use the following selector:

*[class ~= "map/topicref"] *[class ~= "map/topicref"] {

 margin-left: 1em;

}

The numbers can be styled like this:

*[class ~= "map/topicref"] > *[class ~= "map/topicmeta"]:before,

*[class ~= "map/topicref"]

 > *[class ~= "map/topicmeta"] > *[class ~= "topic/navtitle"]:before{

 color:blue;

}

The following is an example of customizing the font size for the items representing chapters. The chapters are

level one topics and are marked in the merged DITA document TOC with the attribute @is-chapter.

*[class ~= "map/topicref"][is-chapter = "true"] > *[class ~= "map/topicmeta"] > *[class ~= "topic/navtitle"]{

 font-size:2em;

}

How to Change TOC Header

In the built-in CSS, there is a page named table-of-contents. The default is to have the word 'Contents' in its

header (this is localized, using the toc-header string defined in the p-18n.css) alternating in the left or right

side of the header:

@page table-of-contents:left {

 @top-left {

 content: string(toc-header) " | " counter(page, lower-roman);

 font-size: 8pt;

 }

}

@page table-of-contents:right {

 @top-right {

 content: string(toc-header) " | " counter(page, lower-roman);

 font-size: 8pt;

 }

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1949

If you need to change this string, or change the color, you should use the following @page selectors as a

starting point in your customization CSS (on page 1858):

@page table-of-contents:left {

 @top-left {

 content: "My publication table of contents | " counter(page, lower-roman);

 color:red;

 }

}

@page table-of-contents:right {

 @top-right {

 content: "My publication table of contents | " counter(page, lower-roman);

 color:red;

 }

}

Important:

The first page from the table of contents does not have any content displayed in the header. The

default CSS contains rules that disable the content. If you need to also display the numerals on the

first page, use the following:

@page table-of-contents:first:left {

 @top-left {

 content: string(toc-header) " | " counter(page, lower-roman);

 }

}

@page table-of-contents:first:right {

 @top-right {

 content: string(toc-header) " | " counter(page, lower-roman);

 }

}

Related information

Localization (on page 2086)

How to Make the TOC Start on an Odd Page

In your customization CSS (on page 1858), add the following snippet for the table-of-contents page:

@page table-of-contents{

 -oxy-initial-page-number: auto-odd;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1950

Related Information:

Double Side Pagination (on page 1958)

How to Display a Topic Before the TOC

To display a topic before the table-of-contents page, follow these steps:

1. Make sure the topic is referenced on the first level in the DITA map.

2. Set the @outputclass to before-toc on the <topicref>.

<topicref href="pathToMyTopic" outputclass="before-toc">

Result: When the PDF is processed, the topic will automatically appear before the table of contents.

Related Information:

Controlling the Publication Content (on page 2047)

How to Remove Entries from the TOC

To remove entries from the table of contents, set the @toc="no" attribute on the topicrefs from the map that

need to be removed. This is sometimes desirable for the topics listed in the frontmatter or backmatter when

using a bookmap.

How to Display Subtopics in TOC

By default, subtopics (nested <topic> elements) are not displayed in the Table of Contents. To be displayed,

they must be referenced in the DITA map:

<map>

 <title>Map</title>

 <topicref href="topic.dita">

 <topicref href="topic.dita#nested1">

 <topicref href="topic.dita#nested11"/>

 </topicref>

 <topicref href="topic.dita#nested2"/>

 </topicref>

</map>

where nestedX is the subtopic's @id value.

Note:

By adding the subtopics in the DITA map, they will also appear in the PDF bookmarks.

Oxygen XML Editor 27.1 | 11 - Publishing | 1951

How to Hide the TOC

To hide the TOC, you have multiple options:

• [Recommended] Use a DITA <bookmap> instead of a <map>, and omit the <toc> element from the

<booklists>. An example bookmap can be found in the DITA 1.3 Spec.

• Use the transformation parameter: hide.frontpage.toc.index.glossary (on page 1839).

• Use a display:none property to hide the element that contains the TOC structure, and also remove it

from the PDF bookmarks tree:

*[class ~= "map/map"] > *[class ~= "toc/toc"] {

 display:none;

}

*[class ~= "map/map"] > *[class ~= "toc/toc"] > *[class ~= "toc/title"]{

 bookmark-label: none;

 -ah-bookmark-label: none;

}

Related Information:

Transformation Parameters (on page 1833)

How to Display Short Descriptions in the TOC

To display the short descriptions from the topics in the table of contents, you need to make the <shortdesc>

element visible.

The following example only makes the short descriptions associated with the chapters visible. The chapters

are level one topics and are marked in the merged DITA document TOC with the attribute @is-chapter.

In your customization CSS (on page 1858), add the following CSS selector:

*[class ~= "map/topicref"][is-chapter = "true"] > *[class ~= "map/topicmeta"] > *[class ~= "map/shortdesc"] {

 display:block; /* The default is none - the shortdesc is hidden. */

 color:gray;

}

Note:

If you need all the TOC item short descriptions to be visible, remove the [is-chapter] condition.

Table of Contents on a Page (Mini TOC)

To add a mini table of contents for each chapter, you need to:

https://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/langRef/technicalContent/bookmap.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1952

• Use DITA bookmaps instead of regular maps.

• Set the args.chapter.layout transformation parameter to either of the following values: MINITOC or

MINITOC-BOTTOM-LINKS.

Note:

If the chapter does not have child topics, it will not have a mini TOC in the PDF output.

Layout for MINITOC

This table of contents is positioned between the chapter title and the chapter child topics. It consists of a list

of links pointing to the child topics, positioned in the left side of the page, and a description in the right side.

This content is collected from the topic file referenced by the chapter <topicref> in the map.

Layout for MINITOC-BOTTOM-LINKS

This table of contents is positioned between the chapter title and the chapter child topics. It consists of a

chapter description and list of links pointing to the child topics, under the description. This description is

collected from the topic file referenced by the chapter <topicref> in the map.

Oxygen XML Editor 27.1 | 11 - Publishing | 1953

The above chapter example has the following DITA map fragment:

 <chapter href="topics/chapter-introduction.dita">

 <topicref href="topics/introduction-about.dita" />

 <topicref href="topics/introduction-description.dita" />

 </chapter>

The chapter-introduction.dita file provides the description content that is in the right side of the page.

The children <topicref> elements generate the mini TOC links.

Table of Contents for Chapters (Mini TOC) - XML Fragment

In the merged XML file, the mini TOC is built from a related links section and some <div> elements that wrap

the entire mini TOC and the description area.

chapter/minitoc

Wraps the entire structure, including the content of the chapter <topicref>.

chapter/minitoc-links

Wraps the <related-links> element. Note that the label of the related links list is internationalized.

Oxygen XML Editor 27.1 | 11 - Publishing | 1954

chapter/minitoc-desc

Contains the entire content of the topic file referenced by the chapter <topicref> element in the

map.

<div class="- topic/div chapter/minitoc ">

 <div class="- topic/div chapter/minitoc-links ">

 <related-links class="- topic/related-links ">

 <linklist class="- topic/linklist ">

 <desc class="- topic/desc ">

 <ph class="- topic/ph chapter/minitoc-label ">Topics: </ph>

 </desc>

 <link class="- topic/link " href="#unique_2" type="topic" role="child">

 <linktext class="- topic/linktext ">About this framework.</linktext>

 </link>

 <link class="- topic/link " href="#unique_3" type="topic" role="child">

 <linktext class="- topic/linktext ">Description</linktext>

 </link>

 </linklist>

 </related-links>

 </div>

 <div class="- topic/div chapter/minitoc-desc ">

 <shortdesc class="- topic/shortdesc ">DITA Open Toolkit, or DITA-OT for

 short, is a set of Java-based, open-source tools that provide processing

 for content authored in the Darwin Information Typing

 Architecture</shortdesc>

 <body class="- topic/body ">

 <p class="- topic/p ">The DITA Open Toolkit documentation provides information about

 installing, running, configuring and extending the toolkit.</p>

 </body>

 </div>

</div>

When using the pdf-css-html5 transformation, this structure is converted to a set of HTML elements,

preserving the class values:

<div class="- topic/div chapter/minitoc div minitoc">

 <div class="- topic/div chapter/minitoc-links div minitoc-links">

 <div class="wh_related_links">

 <nav role="navigation" class="- topic/related-links related-links">

 <div class="- topic/linklist linklist linklistwithchild">

 <div class="- topic/desc desc">

 Topics:

 </div>

Oxygen XML Editor 27.1 | 11 - Publishing | 1955

 <ul class="linklist">

 <li class="- topic/link link ulchildlink" href="#unique_2"

 type="topic" role="child">

 About this framework.

 <li class="- topic/link link ulchildlink" href="#unique_3"

 type="topic" role="child">

 Description

 </div>

 </nav>

 </div>

 </div>

 <div class="- topic/div chapter/minitoc-desc div minitoc-desc">

 <div class="- topic/body body">

 <p class="- topic/shortdesc shortdesc">DITA Open Toolkit, or DITA-OT for short,

 is a set of Java-based, open-source tools that provide processing for content

 authored in the Darwin Information Typing Architecture</p>

 <p class="- topic/p p">The DITA Open Toolkit documentation provides information

 about installing, running, configuring and extending the toolkit.</p>

 </div>

 </div>

</div>

Table of Contents for Chapters (Mini TOC) - Built-in CSS

The built-in CSS rules are in: [PLUGIN_DIR]/css/print/p-chapters-minitoc.css.

How to Style the Table of Contents for Chapters (Mini TOC)

Suppose that you do not want the links and the chapter description to be side by side, but instead place the

links above the description. Also, you may choose to remove the label above the links and put all the links in a

colored rectangle with decimal numbers before them.

In your customization CSS (on page 1858), add the following selectors:

Oxygen XML Editor 27.1 | 11 - Publishing | 1956

/* Change from inline to blocks to stack them one over the other. */

*[class~="chapter/minitoc-desc"],

*[class~="chapter/minitoc-links"] {

 display: block;

 width: 100%;

}

/* No need for the 'Topics:' label. */

*[class~="chapter/minitoc-links"] *[class~="topic/desc"] {

 display:none;

}

/* Add background for the links list. */

*[class~="chapter/minitoc-links"] {

 background-color:silver;

 padding:0.5em;

}

/* Remove the border and the padding from the description. We do not need that separator. */

*[class~="chapter/minitoc-desc"] {

 border-left:none;

 padding-left:0;

}

/* Add a number before each of the links. */

*[class~="chapter/minitoc-links"] *[class~="topic/link"] {

 display:list-item;

 list-style-type:decimal;

 margin-left:1em;

}

Related Information:

How to Speed up CSS Development and Debugging (on page 1863)

List of Tables/Figures

To activate these:

1. The map must be a DITA bookmap.

2. There must be a <figurelist> or <tablelist> in the frontmatter or backmatter. In the following example,

both of the lists are added just after the table of contents (the <toc> element is the placeholder where

the table of contents will be created):

Oxygen XML Editor 27.1 | 11 - Publishing | 1957

 <frontmatter>

 <booklists>

 <toc/>

 <figurelist/>

 <tablelist/>

 </booklists>

 </frontmatter>

How to Set a Header for a List of Tables/Figures

Suppose you want to set the headline "Figure List" on the second and subsequent pages associated to a list of

figures and something similar for a list of tables.

Start by associating pages to the list of figures and tables from the merged file:

*[class~="placeholder/tablelist"] {

 page:tablelist;

 color:green;

}

*[class~="placeholder/figurelist"]{

 page:figurelist;

 color:green;

}

Note:

The "placeholder/tablelist" is the class name of the output generated from the <tablelist> bookmap

element.

Then define the pages:

@page figurelist {

 @top-left { content: none; }

 @top-center { content: "Figure List"; }

 @top-right { content: none; }

}

@page figurelist:first {

 @top-left { content: none; }

 @top-center { content: none; }

 @top-right { content: none; }

}

@page tablelist {

Oxygen XML Editor 27.1 | 11 - Publishing | 1958

 @top-left { content: none; }

 @top-center { content: "Table List"; }

 @top-right { content: none; }

}

@page tablelist:first {

 @top-left { content: none; }

 @top-center { content: none; }

 @top-right { content: none; }

}

How to Remove the Numbers Before a List of Tables or Figures

Suppose you need to remove the "Figure NN" prefix before each entry of a list of figures.

An entry in the generated list of figures from the merged map looks like this:

 <entry class="- listentry/entry " href="#unique_6_Connect_42_fig_rjy_spn_xgb">

 <prefix class="- listentry/prefix ">Figure</prefix>

 <number class="- listentry/number ">4</number>

 <title class="- topic/title ">This is another figure</title>

 </entry>

For the HTML merged map, the element names are all <div> elements but they have the same class.

So, to hide the label and the number, use:

*[class~="listentry/prefix"],

*[class~="listentry/number"] {

 display:none;

}

This works for both a list of tables and list of figures since the structure of each entry is the same.

To make it more specific (for example, to apply it only for the list of figures), you can add the selector:

*[class~="placeholder/figurelist"] *[class~="listentry/prefix"],

*[class~="placeholder/figurelist"] *[class~="listentry/number"] {

 display:none;

}

Double Side Pagination

By default, the processor generates pages that are mirror images (the right page has the header on the right

side, the left pages have the header on the left side). The chapters follow one another with no constraint on

the page side.

Oxygen XML Editor 27.1 | 11 - Publishing | 1959

Note:

For a plain DITA map, the chapters are the <topicref> elements that are placed on the first level. For

bookmaps, the chapters are the topics referenced by a <chapter> element.

This section contains information about how to position the start of the chapters on an odd folio number.

Some of the CSS rules given here as examples are already listed in: [INSTALLATION_DIRECTORY]/css/

print/p-optional-double-side-pagination.css. You may choose to import this file from your

customization CSS (on page 1858).

How to Start Chapters on Odd Pages

A common use case is to arrange the chapters of the publication to start on an odd page number.

In your customization CSS (on page 1858), add the following:

@page chapter {

 -oxy-initial-page-number: auto-odd;

}

@page table-of-contents {

 -oxy-initial-page-number: auto-odd;

}

Supported values for -oxy-initial-page-number include: auto, auto-even, auto-odd, or a number.

How to Style the Empty (Blank) Pages

By making the chapters start on an odd page, the CSS processor might add blank pages to the previous page

sequence as padding.

To style those blank pages add the following code in your customization CSS (on page 1858):

@page chapter:blank, table-of-contents:blank {

 @top-left { content: none; }

 @top-center { content: none; }

 @top-right { content: none; }

 @bottom-left { content: none; }

 @bottom-center { content: none; }

 @bottom-right { content: none; }

}

Note:

This just removes the headers and footers, but you can use a background image or a header with

"Intentionally left blank" text.

Oxygen XML Editor 27.1 | 11 - Publishing | 1960

Related Information:

How to Add a Background Image for the Cover (on page 1900)

How to Force an Odd or Even Number of Pages in a Chapter

Another use case is to specify a number of pages for a section. Suppose that you have a table of contents that

follows the cover page and you need to have an even number of pages. Hence, the next chapter would start on

an even page.

In your customization CSS (on page 1858), use the -oxy-force-page-count property with an even value:

@page table-of-contents {

 -oxy-force-page-count: even;

}

Supported values for -oxy-force-page-count include: even, odd, end-on-even, end-on-odd, auto, no-force.

How to Style the First page of a Chapter

You can use the :first page rule selector to control how the first page of a chapter looks. Suppose that you

have defined the following layout for your default page and you want to put the publication title (the maptile

string) on the header of the first page (instead of the chapter name that is displayed on this page):

In your customization CSS (on page 1858), add the following:

@page chapter:first {

 @top-right-corner { content: string(maptitle); }

 @top-left { content: none; }

}

Multiple Column Pages

This section contains information about how to handle pages that have multiple columns.

How to Use a Two Column Layout

Change Layout for Predefined Pages

First, you need to identify which of the pages need to be changed. Pages are already defined for the cover

page, table of contents, chapter content, and others. The complete list is here: Default Page Definitions (on

page 1866).

Next, add the column-count and column-gap properties to that page. For example:

@page chapter{

 column-count:2;

 column-gap:1in;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1961

If you need some of the elements to expand on all the columns, use the column-span:all CSS property. The

next snippet makes the chapter titles span both columns:

*[class ~= "topic/topic"][is-chapter] > *[class ~= "topic/title"] {

 column-span:all;

}

Limitation:

You cannot use multiple column configurations on the same page. Oxygen XML Editor only takes the

column-count and column-gap properties into account if they are set on @page rules, not on elements

from the content.

Change Layout for a Specific Topic

If you need to have a different column layout for just one topic, you can use the following technique:

1. Define an outputclass on the topic root element.

<topic outputclass="two_columns" ...

2. Define a CSS rule that changes the page property for the matching element.

*[class ~= "two_columns"],

*[outputclass ~= "two_columns"]{

 page: two_column_page !important;

}

Tip:

In the selector, use the class attribute for the HTML transformation, or outputclass for the

direct transformation, or leave them both if you are not sure.

Note:

The topics from the first level use the chapter page. You must use !important because the

built-in rules are more specific and you need to override the page property.

3. Define a page layout.

@page two_column_page {

 column-count: 2;

}

Note that the topic will be separated from other sibling topics with different page layouts by page breaks.

Change Column Breaks for Headings

If you need to start each topic on a new column, you can use the following technique:

Oxygen XML Editor 27.1 | 11 - Publishing | 1962

Suppose you have the following map:

<map>

 <title>Map</title>

 <topicref href="first.dita">

 <topicref href="second.dita"/>

 </topicref>

 <topichead navtitle="Topichead">

 <topicref href="second.dita"/>

 </topichead>

</map>

You can use the following rules to get the chapter on the new column display:

@page {

 column-count: 2;

}

*[class ~= "topic/topic"] *[class ~= "topic/topic"] > *[class ~= "topic/title"] {

 -oxy-column-break-before: always;

}

*[class ~= "topic/title"] + *[class ~= "topic/topic"] > *[class ~= "topic/title"] {

 -oxy-column-break-before: auto;

}

Each topic will be displayed on a new column except for topics that only have a title and no content.

Related Information:

Page Formatting in Oxygen PDF Chemistry

Multiple Page Formatting in Oxygen PDF Chemistry

Bookmarks

The PDF Bookmarks are used to generate a hierarchical structure similar to a table of contents in a

specialized view of your PDF Reader.

By default, the titles defined in the topics are used as bookmark labels.

PDF Bookmarks - Built-in CSS

The PDF bookmarks are generated by matching the titles from the topics in the content. The built-in CSS rules

are in: [PLUGIN_DIR]/css/print/p-bookmarks.css.

How to Change the Bookmark Labels using the Navigation Title

To change the bookmark labels, you can specify a navigation title in a DITA map or topic.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_the_page_rule.html
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_columns.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1963

This will be used as the bookmark label instead of the topic title in the table of contents and the bookmark

views. There are two possibilities to do specify it:

1. Place a <navtitle> element in the topic reference in the DITA map:

...

<topicref href="topics/my_topic.dita" locktitle="yes">

 <topicmeta>

 <navtitle>Introduction</navtitle>

 </topicmeta>

</topicref>

...

Note:

As a best practice, a @locktitle attribute with the value 'yes' is needed to activate the navigation

title. The plugin applies the navigation title even if the attribute is missing.

2. Place a <navtitle> element in the topic, as a title alternative.

<topic id="other_topic" xml:lang="en-us">

 <title>Normal Title</title>

 <titlealts>

 <navtitle>Navigation Title</navtitle>

 </titlealts>

 <body>

...

How to Control Bookmarks Depth and Sections Display in PDF.

By default, the PDF bookmarks are generated for up to 7 levels. If you need to limit them (for example, to 2

levels), you can use the following CSS rules in your customization CSS (on page 1858):

*[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] > *[class~="topic/title"],

*[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] > *[class~="topic/title"],

*[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] >

 *[class~="topic/title"],

*[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"]

 *[class~="topic/topic"] > *[class~="topic/title"],

*[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"]

 *[class~="topic/topic"] *[class~="topic/topic"] > *[class~="topic/title"] {

 bookmark-label:none;

}

These rules clear the labels generated by the titles starting with the depth of 3 (the topic nesting level is given

by the selectors *[class~="topic/topic"]).

Oxygen XML Editor 27.1 | 11 - Publishing | 1964

By default, the PDF bookmarks also include the sections. If you need to remove them, you can use the

following CSS rule in your customization CSS (on page 1858):

*[class ~= "topic/topic"] *[class ~= "topic/section"] > *[class ~= "topic/title"],

*[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/section"] > *[class ~= "topic/title"],

*[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/section"] > *[class

 ~= "topic/title"],

*[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class

 ~= "topic/section"] > *[class ~= "topic/title"],

*[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class

 ~= "topic/topic"] *[class ~= "topic/section"] > *[class ~= "topic/title"],

*[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/topic"] *[class

 ~= "topic/topic"] *[class ~= "topic/topic"] *[class ~= "topic/section"] > *[class ~= "topic/title"] {

 bookmark-label: none;

}

How to Specify the Open/Closed PDF Bookmark State

If you want to specify the initial state for the bookmarks (opened/expanded or closed/collapsed), you can use

the bookmark-state property in your customization CSS (on page 1858).

For example, to specify that all bookmarks for the first three levels are opened (expanded) in the initial state,

use:

*[class~="topic/topic"] > *[class~="topic/title"],

*[class~="topic/topic"] *[class~="topic/topic"] > *[class~="topic/title"],

*[class~="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] > *[class~="topic/title"] {

 bookmark-state:open;

}

How to Remove the Numbering From the PDF Bookmarks

By default, the PDF bookmark labels are generated while taking the text set before the chapters titles into

account. Since this usually contains the part, chapter, or section numbers, the PDF Bookmarks will make use

of them.

The solution is to remove the content(before) from the bookmark-label, leaving just the content(text).

In your customization CSS (on page 1858), add the following CSS rules:

*[class~="topic/topic"] > *[class~="topic/title"] {

 bookmark-label: content(text);

 -ah-bookmark-label: content();

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1965

Important:

This is a simple example that does not use the possible navigation titles, just the content of the

<title> element. Copy and modify the built-in CSS for the full CSS rule that matches the <title> and

<titlealts> elements:

[class~="topic/topic"]:has([class~="topic/titlealts"]) > *[class~="topic/title"] {...}

Related Information:

Numbering (on page 1932)

Index

The content of an <indexterm> element is used to produce an index entry in the generated index. You can nest

<indexterm> elements to create multi-level indexes. The content is not output as part of the topic content, only

as part of the index tree.

To add an index to your publication, you just need to add <indexterm> elements inside the <prolog> section

(inside a <metadata> element):

 <title>The topic title.</title>

 <prolog>

 <metadata>

 <keywords>

 <indexterm>Installing <indexterm>Water Pump</indexterm></indexterm>

 </keywords>

 </metadata>

 </prolog>

 <body>

or in the content itself:

...

<p>Open the lid then turn the body pump to the right.

<indexterm>Installing <indexterm>Water Pump</indexterm></indexterm>

</p>

...

If you are using a bookmap, you need to specify where the index list should be presented (for instance in the

backmatter of the book. Technically, it is possible to also add it to the frontmatter, but this is unusual). This is

done using an <indexlist> element in the <booklists> element (inside the <backmatter>):

<bookmap>

 ...

Oxygen XML Editor 27.1 | 11 - Publishing | 1966

 <chapter href="tasks/troubleshooting.dita">

 ...

 </chapter>

 <backmatter>

 <booklists>

 <indexlist/>

 </booklists>

 </backmatter>

</bookmap>

For plain maps, the index list is automatically added at the end of the publication, with no need to modify the

map.

Index - XML Fragment

In the merged map file (on page 1860), the structure that holds the index tree is the <opentopic-

index:index.groups> element.

<map class="- map/map " >

 <oxy:front-page>

 ...

 </oxy:front-page>

 <opentopic:map xmlns:opentopic="http://www.idiominc.com/opentopic">

 ...

 </opentopic:map>

 <topic class="- topic/topic ">

 <title class="- topic/title ">Request Support</title>

 ...

 </topic>

 <opentopic-index:index.groups id="d16e5548">

 ...

 </opentopic-index:index.groups>

</map>

Each of the groups contain:

• A label, the starting letter ("T" in the following example).

• A tree of <opentopic-index:index.entry> elements.

<opentopic-index:index.group>

 <opentopic-index:label>T</opentopic-index:label>

 <opentopic-index:index.entry value="table of contents">

 <opentopic-index:formatted-value>table of contents</opentopic-index:formatted-value>

Oxygen XML Editor 27.1 | 11 - Publishing | 1967

 <opentopic-index:refID value="table of contents:">

 <oxy:index-link xmlns:oxy="http://www.oxygenxml.com/extensions/author"

 href="#d16e3988"> [d16e3988]

 </oxy:index-link>

 </opentopic-index:refID>

 <opentopic-index:index.entry value="change header">

 <opentopic-index:formatted-value>change header</opentopic-index:formatted-value>

 <opentopic-index:refID value="table of contents:change header:">

 <oxy:index-link xmlns:oxy="http://www.oxygenxml.com/extensions/author"

 href="#d16e4176">

 [d16e4176] </oxy:index-link>

 </opentopic-index:refID>

 </opentopic-index:index.entry>

 <opentopic-index:index.entry value="style">

 <opentopic-index:formatted-value>style</opentopic-index:formatted-value>

 <opentopic-index:refID value="table of contents:style:">

 <oxy:index-link xmlns:oxy="http://www.oxygenxml.com/extensions/author"

 href="#d16e4120">

 [d16e4120] </oxy:index-link>

 </opentopic-index:refID>

 </opentopic-index:index.entry>

 </opentopic-index:index.entry>

</opentopic-index:index.group>

Each of the entries contain:

• The formatted value (<opentopic-index:formatted-value>).

• A link to the publication content (<opentopic-index:refID>/<oxy:index-link>).

• Possibly other child entries.

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed

resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute

values and add a new value derived from the DITA element name.

 <div class="- map/map map" >

 <div class="front-page/front-page">

 ...

 </div>

 <div class="toc/toc toc">

 ...

 </div>

 <div class="- topic/topic topic">

 <div class="- topic/title title">Request Support</title>

 ...

Oxygen XML Editor 27.1 | 11 - Publishing | 1968

 </div>

 <div class=" index/groups groups">

 ...

 </div>

</map>

The index group content becomes:

<div class=" index/group group">

 <div class=" index/label label">T</div>

 <div class=" index/entry entry">

 <div class=" index/formatted-value formatted-value">table of contents</div>

 <div class=" index/refid refid">

 <div class=" index/link link"

 href="#d16e3988"> [d16e3988]

 </div>

 </div>

 <div class=" index/entry entry">

 <div class=" index/formatted-value formatted-value">change header</div>

 <div class=" index/refid refid">

 <div class=" index/link link"

 href="#d16e4176"> [d16e4176] </div>

 </div>

 </div>

 <div class=" index/entry entry">

 <div class=" index/formatted-value formatted-value">style</div>

 <div class=" index/refid refid">

 <div class=" index/link link"

 href="#d16e4120"> [d16e4120] </div>

 </div>

 </div>

 </div>

</div>

Index - Built-in CSS

All index styling is found in: [PLUGIN_DIR]css/print/p-index.css.

How to Style the Index Page Title and the Grouping Letters

In your customization CSS (on page 1858), add the following CSS rules:

*[class ~= "index/groups"] *[class ~= "index/group"] *[class ~= "index/label"] {

 font-size:1.5em;

Oxygen XML Editor 27.1 | 11 - Publishing | 1969

 color:navy;

}

*[class ~= "index/groups"]:before {

 content: "- Index - ";

 color:navy;

 font-size: 4em;

}

The result is:

How to Style the Index Terms Labels

In your customization CSS (on page 1858), add the following CSS rule:

*[class ~= 'index/groups'] *[class ~= 'index/formatted-value'] {

 font-style:oblique;

 color:gray;

}

The result is:

Oxygen XML Editor 27.1 | 11 - Publishing | 1970

How to Add Filling Dots Between the Index Labels and the Page Numbers

Suppose you want the leader CSS content to generate a row of dots. It is necessary that the parent entry has

the text justified.

In your customization CSS (on page 1858), add the following CSS rule:

*[class~="index/formatted-value"],

*[class~="index/refid"] {

 display:inline;

}

/* Hide the sequences of links that actually do not contain links. */

*[class~="index/group"] *[class ~= "index/entry"] > *[class~="index/refid"]{

 display:none;

}

*[class~="index/group"] *[class ~= "index/entry"] > *[class~="index/refid"]:has(*[class~="index/link"]){

 display:inline;

}

*[class~="index/group"] *[class~="index/entry"] {

 text-align:justify;

}

*[class~="index/group"] *[class ~= "index/entry"] > *[class~="index/refid"]:before{

 content:leader('.');

}

The output now contains the dots:

Oxygen XML Editor 27.1 | 11 - Publishing | 1971

How to Change the Index Page Number Format and Reset its Value

The page number is reset at the beginning of the index page by the built-in CSS rule:

*[class ~= "index/groups"] {

 counter-reset: page 1;

}

If you want to start the page counter from a different initial number, just change the value of this counter. For

example, to continue the normal page counting, use:

*[class ~= "index/groups"] {

 counter-reset: none;

}

If you need to style the page number differently (for example, using decimals), add the following CSS rule in

your customization CSS (on page 1858):

@page index {

 @bottom-center { content: counter(page, decimal) }

}

How to Impose a Table-like Index Layout

In case you need to place the index labels and links on the same line but with some extra alignment

constraints, you can use inline blocks to give the index a table-like appearance:

Oxygen XML Editor 27.1 | 11 - Publishing | 1972

You need to place the elements that have the following class on the same line:

index/formatted-value

This is the text of the index term.

index/refid

This element contains a list of links.

A fixed width is used for the formatted value and the links container (almost half of the available width). To

achieve the index hierarchical layout, set progressive padding to the formatted value text.

In your customization CSS (on page 1858), add the following CSS rule:

*[class~="index/formatted-value"],

*[class~="index/refid"]{

 display:inline-block;

}

*[class~="index/formatted-value"]{

 width:45%;

}

*[class~="index/refid"] {

 width:45%;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1973

/* Hide the sequences of links that actually do not contain links. */

*[class ~= "index/groups"] *[class ~= "index/entry"] > *[class~="index/refid"]{

 display:none;

}

*[class ~= "index/groups"] *[class ~= "index/entry"] > *[class~="index/refid"]:has(*[class~="index/link"]){

 display:inline-block;

}

/* Move the nesting of indexterms from margin to padding */

*[class ~= "index/groups"] *[class ~= "index/entry"] {

 margin-left: 0;

}

*[class ~= "index/groups"]

*[class ~= "index/entry"]

*[class~="index/formatted-value"]{

 padding-left: 0.2em;

}

*[class ~= "index/groups"]

*[class ~= "index/entry"]

*[class ~= "index/entry"]

*[class~="index/formatted-value"]{

 padding-left: 0.4em;

}

*[class ~= "index/groups"]

*[class ~= "index/entry"]

*[class ~= "index/entry"]

*[class ~= "index/entry"]

*[class~="index/formatted-value"]{

 padding-left: 0.6em;

}

/* Some styling */

*[class~="index/formatted-value"],

*[class~="index/refid"]{

 padding:0.2em;

 background-color:#EEEEEE;

}

To avoid bleeding of the index term label, you may need to mark it as being hyphenated:

*[class~="index/formatted-value"] {

 hyphens:auto;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1974

To activate hyphenation, see: How to Enable Hyphenation for Entire Map (on page 1983).

Appendices

The <appendices> element that is available in the DITA bookmap has a special behavior (based on its sibling

nodes):

1. If the bookmap contains <part> elements, the <appendices> will behave as a part.

2. If the bookmap contains <chapter> (and no <part>) elements, the <appendices> will behave as a chapter.

Note:

The behavior includes page-break, numbering, and title rendering.

For example, if I define a bookmap with a <part> element, I will obtain:

<part>

 <chapter/>

 <topicref/>

 <chapter/>

</part>

<appendices> <!-- Appendices behaves like a Part -->

 <appendix/> <!-- Appendix behaves like a Chapter -->

 <appendix/>

</appendices>

For another example, if I define a bookmap with a <chapter> element only, I will obtain:

<chapter/>

 <topicref/>

<chapter/>

<appendices> <!-- Appendices behaves like a Chapter -->

 <appendix/> <!-- Appendix behaves like a TopicRef -->

 <appendix/>

</appendices>

Warning:

If the <appendices> element is not defined and the <appendix> is used directly instead, then it will behave

like a Part or Chapter using the same pattern as for <appendices>.

How To Control Page Break Within Appendices

If you define a bookmap with <appendices> and some <appendix> elements, you may want the parent <appendices>

to be on a separate page than its children. This is done automatically if the bookmap contains <part>

elements. Otherwise, you may need to use the following in your CSS:

Oxygen XML Editor 27.1 | 11 - Publishing | 1975

*[topicrefclass ~= "bookmap/appendix"]:first-of-type {

 page-break-before: always;

}

Footnotes

Footnotes are pieces of information that have several purposes, including citations, additional information

(copyright, background), outside sources, and more. They are divided as follows:

• The footnote call - The number that remains in the content, usually superscripted.

• The footnote marker - The number displayed at the bottom of the page (the value matches the footnote

call).

• The footnote text - The value of the <fn> element, also displayed at the bottom of the page.

Footnotes - Built-in CSS

Footnote properties are defined in [PLUGIN_DIR]/css/print/p-foot-notes.css.

How to Change Style of the Footnote Markers and Footnote Calls

To bold the footnotes numbers, use some colors, and change the footnote marker, add the following rules to

your customization CSS (on page 1858):

*[class ~= "topic/fn"]:footnote-call {

 font-weight: bold;

 color:red;

}

*[class ~= "topic/fn"]:footnote-marker {

 content: counter(footnote) " / ";

 font-weight: bold;

 color:red;

}

To indent the footnote content displayed at the end of the page, add the following rules to your customization

CSS (on page 1858):

*[class ~= "topic/entry"] > *[class ~= "topic/fn"] {

 padding-left: 1in;

}

*[class ~= "topic/entry"] > *[class ~= "topic/fn"]:footnote-marker {

 margin-left: 1in;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1976

Related Information:

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_footnotes.html

How to Add a Separator Above the Footnotes

The @footnote part of a @page declaration controls the style of the separator between the page content and

the footnotes. For the content, you should set a leader. The leader uses a letter or a line style to fill the entire

width of the page.

@page {

 margin:0.5in;

 ...

 @footnote {

 content: leader(solid);

 color:silver;

 }

}

To create a dotted line, you can use the dot character: leader('.'). Other commonly used characters are:

"-" (dash) and "_" (underscore).

How to Reset the Footnotes Counter

It is possible to reset the footnote counter. For example, if you want to reset the counter at the beginning of

each chapter, add one of the following rules to your customization CSS (on page 1858):

@page chapter {

 counter-reset: footnote 1;

}

*[class ~= "bookmap/chapter"],

*[class ~= "topic/topic"][is-chapter] {

 counter-reset: footnote 1;

}

In a deep numbering context, you need to use the following rule instead:

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "topic/topic"][is-chapter]:not([is-part]) {

 counter-reset: section1 0 footnote 1;

}

or can mark any element with an @outputclass value, match that value, and reset the counter at any point in

your counter:

<p outputclass="reset-footnotes"/>

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_footnotes.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1977

*[outputclass ~= "reset-footnotes"] {

 counter-reset: footnote 1;

}

How to Display Footnotes Below Tables

In your PDF output, you may want to group all the footnotes contained in a table just below it instead of having

them displayed at the bottom of the page.

To add this functionality, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2mergedExtension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:opentopic-func="http://www.idiominc.com/opentopic/exsl/function"

 exclude-result-prefixes="xs opentopic-func"

 version="3.0">

 <!--

 Match only top level tables (i.e tables that are not nested in other tables),

 that contains some footnotes.

 -->

 <xsl:template match="*[contains(@class, 'topic/table')]

 [not(ancestor::*[contains(@class, 'topic/table')])]

 [//*[contains(@class, 'topic/fn')]]">

 <xsl:next-match>

 <xsl:with-param name="top-level-table" select="." tunnel="yes"/>

 </xsl:next-match>

 <!-- Create a list with all the footnotes from the current table. -->

 <ol class="- topic/ol " outputclass="table-fn-container">

 <xsl:for-each select=".//*[contains(@class, 'topic/fn')]">

 <!--

 Try to preserve the footnote ID, if available, so that the xrefs will have a target.

 -->

 <li class="- topic/li " id="{if(@id) then @id else generate-id(.)}"

 outputclass="table-fn">

 <xsl:copy-of select="@callout"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 1978

 <xsl:apply-templates select="node()"/>

 </xsl:for-each>

 </xsl:template>

 <!--

 The footnotes that have an ID must be ignored, they are accessible only

 through existing xrefs (already present in the merged.xml file).

 The above template already made a copy of these footnotes in the OL element

 so it is not a problem if markup is not generated for them in the cell.

 -->

 <xsl:template

 match="*[contains(@class, 'topic/entry')]//*[contains(@class, 'topic/fn')][@id]"/>

 <!--

 The xrefs to footnotes with IDs inside table-cells. We need to recalculate

 their indexes if their referenced footnote is also in the table.

 -->

 <xsl:template match="*[contains(@class, 'topic/xref')][@type='fn']

 [ancestor::*[contains(@class, 'topic/entry')]]">

 <xsl:param name="top-level-table" tunnel="yes"/>

 <xsl:variable name="destination" select="opentopic-func:getDestinationId(@href)"/>

 <xsl:variable name="fn" select="

 $top-level-table//*[contains(@class, 'topic/fn')][@id = $destination]"/>

 <xsl:choose>

 <xsl:when test="$fn">

 <!-- There is a reference in the table, recalculate index. -->

 <xsl:variable name="fn-number" select="

 index-of($top-level-table//*[contains(@class, 'topic/fn')], $fn)"/>

 <xsl:copy>

 <xsl:apply-templates select="@*"/>

 <xsl:apply-templates select="$fn/@callout"/>

 <xsl:apply-templates select="node()

 except (text(), *[contains(@class, 'hi-d/sup')])"/>

 <sup class="+ topic/ph hi-d/sup ">

 <xsl:apply-templates select="child::*[contains(@class, 'hi-d/sup')]/@*"/>

 <xsl:value-of select="$fn-number"/>

 </sup>

 </xsl:copy>

 </xsl:when>

Oxygen XML Editor 27.1 | 11 - Publishing | 1979

 <xsl:otherwise>

 <!-- There is no reference in the table, keep original index. -->

 <xsl:next-match/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!--

 The footnotes without ID inside table-cells. They are copied in the OL element, but have

 no xrefs pointing to them (because they have no ID), so xrefs are generated.

 -->

 <xsl:template

 match="*[contains(@class, 'topic/entry')]//*[contains(@class, 'topic/fn')][not(@id)]">

 <!-- Determine the footnote index in the document order. -->

 <xsl:param name="top-level-table" tunnel="yes"/>

 <xsl:variable name="fn-number" select="

 index-of($top-level-table//*[contains(@class, 'topic/fn')], .)"/>

 <xref type="fn" class="- topic/xref "

 href="#{generate-id(.)}" outputclass="table-fn-call">

 <xsl:copy-of select="@callout"/>

 <!-- Generate an extra <sup>, identical to what DITA-OT generates for other xrefs. -->

 <sup class="+ topic/ph hi-d/sup ">

 <xsl:value-of select="$fn-number"/>

 </sup>

 </xref>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2merged XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

Oxygen XML Editor 27.1 | 11 - Publishing | 1980

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the glossary structure. For example:

/* Customize footnote calls, inside the table. */

*[outputclass ~= 'table-fn-call'] {

 line-height: none;

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'][callout] *[class ~= "hi-d/sup"] {

 content: oxy_xpath("ancestor::*[contains(@class, 'topic/xref')]/@callout");

}

/* Customize the list containing all the table footnotes. */

*[outputclass ~= 'table-fn-container'] {

 border-top: 1pt solid black;

 counter-reset: table-footnote;

}

/* Customize footnotes display, below the table. */

*[outputclass ~= 'table-fn'] {

 font-size: smaller;

 counter-increment: table-footnote;

}

*[outputclass ~= 'table-fn']::marker {

 font-size: smaller;

 content: "(" counter(table-footnote) ")";

}

*[outputclass ~= 'table-fn'][callout]::marker {

 content: "(" attr(callout) ")";

}

/* Customize xrefs pointing to footnotes, inside the table. */

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'] {

 color: unset;

 text-decoration: none;

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn']:after {

 content: none;

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'] *[class ~= "hi-d/sup"]:before {

 content: "(";

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'] *[class ~= "hi-d/sup"]:after {

Oxygen XML Editor 27.1 | 11 - Publishing | 1981

 content: ")";

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

Hyphenation

Hyphenation specifies how words should be hyphenated when text wraps across multiple lines.

The transformation plugin uses the capabilities of Oxygen PDF Chemistry processor to perform hyphenation.

Hyphenation Dictionaries

The Oxygen XML Editor provides built-in hyphenation patterns for the following languages:

Code Language

da Danish

de German

de_CH German (Switzerland)

en English

en-GB English (Great Britain)

es Spanish

fr French

it Italian

nb Norwegian Bokmål

nl
Dutch

ro Romanian

Oxygen XML Editor 27.1 | 11 - Publishing | 1982

Code Language

ru Russian

sv Swedish

th Thai

pt Portuguese

da Danish

The built-in hyphenation pattern license terms are listed in the XML files in the

[CHEMISTRY_INSTALL_DIR]/config/hyph folder. Most of them comply with the LaTex distribution

policy.

Installing New Hyphenation Dictionaries

Oxygen XML Editor uses the TeX hyphenation dictionaries converted to XML by the OFFO project: https://

sourceforge.net/projects/offo/.

The .xml files allow you to access the licensing terms and you can use them as a starting point to create

customized dictionaries (see How to Alter a Hyphenation Dictionary (on page 1982)).

The .hyp files are the compiled dictionaries that the Oxygen XML Editor actually uses.

One simple way to add more dictionaries:

1. Download and extract the offo-hyphenation-compiled.zip file. This file is a bundle of many

dictionary files.

2. Copy the fop-hyph.jar file to the [OXYGEN_INSTALL_DIR]/lib directory.

3. If you just need a single dictionary, place the .hyp or .xml file in the [OXYGEN_INSTALL_DIR]/

config/hyph directory (create that directory if it is missing).

How to Alter a Hyphenation Dictionary

You can copy the dictionaries you need to change in another directory, then use the -hyph-dir parameter to

refer them inside your transformation.

Each file is named with the language code and has the following structure:

<hyphenation-info>

<hyphen-min before="2" after="3"/>

<exceptions>

o-mni-bus

...

</exceptions>

https://sourceforge.net/projects/offo/
https://sourceforge.net/projects/offo/
https://sourceforge.net/projects/offo/files/
https://sourceforge.net/projects/offo/files/

Oxygen XML Editor 27.1 | 11 - Publishing | 1983

<patterns>

préémi3nent.

proémi3nent.

surémi3nent.

....

</patterns>

</hyphenation-info>

To change the behavior of the hyphenation, you can modify either the patterns or the exceptions sections:

exceptions

Contains the list of words that are not processed using the patterns, each on a single line. Each

of the words should indicate the hyphenation points using the hyphen ("-") character. If a word

does not contain this character, it will not be hyphenated.

For example, o-mni-bus will match the omnibus word and will indicate two possible hyphenation

points.

Note:

Compound words (i.e. e-mail) cannot be controlled by exception words.

patterns

Contains the list of patterns, each on a single line. A pattern is a word fragment, not a word. The

numbers from the patterns indicate how desirable a hyphen is at that position.

For example, tran3s2act indicates that the possible hyphenation points are "tran-s-act" and the

preferable point is the first one, having the higher score of "3".

How to Enable Hyphenation for Entire Map

To enable hyphenation for your entire map:

1. Make sure you set an @xml:lang attribute on the root of your map, or set the default.language parameter

in the transformation.

2. In your customization CSS (on page 1858), add:

:root {

 hyphens: auto;

}

3. To except certain elements from being hyphenated, use hyphens:none. The following example excludes

the <keyword> elements from being hyphenated:

Oxygen XML Editor 27.1 | 11 - Publishing | 1984

*[class ~= "topic/keyword"] {

 hyphens: none;

}

How to Enable/Disable Hyphenation for an Element

1. Make sure you set an @xml:lang attribute on the root of your map, or set the default.language parameter

in the transformation.

2. You have two options to control hyphenation inside an XML element:

CSS Approach

Use the hyphens property.

For example, if you want to enable hyphenation in codeblocks:

*[class~="pr-d/codeblock"] {

 hyphens: auto;

}

If you want to disable hyphenation inside tables:

*[class~="topic/table"] {

 hyphens: none;

}

Attribute Approach

Use the @outputclass="hyphens" or @outputclass="no-hyphens" attributes/values.

For example, if you want to enable hyphenation in codeblocks:

<codeblock outputclass="hyphens">

 ...

</codeblock>

If you want to disable hyphenation inside tables:

<table outputclass="no-hyphens" ...>

 ...

</table>

Note:

The default built-in CSS enables hyphenation for tables:

*[class ~= "topic/table"] {

 hyphens: auto;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1985

Related information

How to Enable Line Wrap in Code Phrases (on page 2038)

How to Disable Hyphenation for a Word

How to Define Hyphenation for a Specific Word

1. Create a new hyphenation dictionary (on page 1982).

2. Add the word under the <exceptions> section using hard hyphen symbols between its segments.

3. To make sure the words from your document match against the ones from the "exceptions", make sure

that you add capitalized/lower case variants as well.

Related information

How to Disable Hyphenation for a Word

How to Alter a Hyphenation Dictionary (on page 1982)

How to Enable/Disable Hyphenation for an Element (on page 1984)

How to Force or Avoid Line Breaks at Hyphens

It is possible to force or avoid line breaks inside words with hyphens (U+2010). This can be useful, for example,

inside tables that have product references if you want the display to remain on a single line (or to split it on

multiple lines). To achieve this, you can use the -oxy-break-line-at-hyphens property:

The accepted values are:

auto

Words are hyphenated automatically according to an algorithm that is driven by a hyphenation

dictionary. This can lead to line breaks at hyphens.

avoid

Words are still hyphenated automatically except no line break will occur on hyphens.

always

Words are still hyphenated automatically except line breaks will be forced on hyphens.

Example:

Suppose you have a products table like this:

<table>

 <row>

 <cell>Product-1233-55-88</cell>

 <cell>120</cell>

 <row>

 <row>

 <cell>Product-1244-66-99</cell>

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_how_to_control_or_disable_hyphenation_for_a_specific_word.html
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_how_to_control_or_disable_hyphenation_for_a_specific_word.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1986

 <cell>112</cell>

 <row>

</table>

and the following rule in a CSS stylesheet:

table {

 -oxy-break-line-at-hyphens: avoid;

}

In the output, the list of product references will be displayed in a single line. On the contrary, setting the

property value to always, will force a break after each hyphen.

Accessibility

By default, the PDF documents produced using this plugin are partially accessible in the sense that most

of the paragraphs, tables, lists, headers, and footers are tagged automatically so a PDF reader can use this

information to present the content.

Related Information:

Oxygen PDF Chemistry: Accessibility

Accessibility - Built-in CSS

Accessibility properties are defined in [PLUGIN_DIR]css/print/p-accessibility.css.

How to Create Fully Accessible Documents

To make your documents fully accessible (PDF/UA1 compliant), do the following:

1. The accessibility standard requires that all the fonts be embedded in the PDF. To force font embedding,

you have to specify fonts for all elements and for all page margin boxes in your customization CSS (on

page 1858). For instance, you can use:

body { font-family: Arial }

*[class ~= "pr-d/codeph"], *[class ~= "pr-d/codeblock"] {

 font-family: "Courier New";

}

@page {

 @top-left {font-family: Arial }

 @top-right {font-family: Arial }

 @top-center {font-family: Arial }

 @top-left-corner {font-family: Arial }

 @top-right-corner {font-family: Arial }

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_pdf_output.html#ch_accessibility

Oxygen XML Editor 27.1 | 11 - Publishing | 1987

 @bottom-left {font-family: Arial }

 @bottom-right {font-family: Arial }

 @bottom-center {font-family: Arial }

 @bottom-left-corner {font-family: Arial }

 @bottom-right-corner {font-family: Arial }

}

2. Create a new transformation scenario (based on the DITA Map PDF - based on HTML5 & CSS or the

DITA PDF - based on HTML5 & CSS built-in scenario).

3. In the Parameters tab, change the value of the pdf.accessibility parameter to yes.

4. Run the transformation scenario.

Archiving

Your PDF files may need to be archived for security or legal reasons. In this case, the generated file must be

compliant to the PDF/A ISO standard.

Related Information:

Oxygen PDF Chemistry: Archiving

How to Allow Document Archiving

To make your documents archive-able (PDF/A compliant), do the following:

1. The archiving standard requires that all the fonts be embedded in the PDF. To force font embedding,

you have to specify fonts for all elements and for all page margin boxes in your customization CSS (on

page 1858). For instance, you can use:

body { font-family: Arial }

@page {

 @top-left {font-family: Arial }

 @top-right {font-family: Arial }

 @top-center {font-family: Arial }

 @top-left-corner {font-family: Arial }

 @top-right-corner {font-family: Arial }

 @bottom-left {font-family: Arial }

 @bottom-right {font-family: Arial }

 @bottom-center {font-family: Arial }

 @bottom-left-corner {font-family: Arial }

 @bottom-right-corner {font-family: Arial }

}

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_pdf_output.html#ch_archiving

Oxygen XML Editor 27.1 | 11 - Publishing | 1988

2. Create a new transformation scenario, based on the DITA Map PDF - based on HTML5 & CSS built-in

scenario.

3. In the Parameters tab, select a value for the pdf.archiving.mode parameter from the list.

4. Run the transformation scenario.

Fonts

Fonts are an important part of the publication. Your font selection should take into consideration both design

and the targeted ranges of characters.

Notes:

• Before using a font, make sure you have the permissions to use it and make sure you comply

with all the license terms.

• When installing a font on Windows, make sure you select the Install for all users option.

To use them in the customization CSS (on page 1858):

• You can place the font files in the same folder as your CSS and use a @font-face definition to reference

them.

• You can use web fonts (for example, Google Fonts), and import the CSS snippet into your CSS.

• You can use system fonts.

All these techniques are explained in: Oxygen PDF Chemistry User Manual: Fonts.

How to Set Fonts in Titles and Content

Suppose that in your customization CSS (on page 1858), you have defined your font (for example, Roboto)

using a Google web font:

https://fonts.googleapis.com/css2?family=Roboto:ital,wght@0,400;0,700;1,400;1,700&display=swap

You can force a font on all elements, then style the ones that need to be different. The advantage of this

method is that you do not need to trace all elements that have a font family defined in the built-in CSS files,

you just reset them all.

In your customization CSS (on page 1858), add an !important rule that associates a font to all the elements

from the document:

* {

 font-family: "Roboto", sans-serif !important;

}

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_fonts.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1989

Note:

If you want to use the :root selector instead of the * sector, without the !important qualifier, the

elements that have a predefined font specified in the built-in CSS will keep that font. If your content

uses non-Latin glyphs, it is possible that the built-in fonts do not render them.

Next, if you want to use another font for the document headings, your customization CSS (on page 1858)

should contain the following rule:

*[class ~= "front-page/front-page-title"],

*[class ~= "topic/title"] {

 font-family: "Roboto", sans-serif !important;

 font-weight: bold;

}

Then, identify the selectors for the elements that need to be styled with a different font than the one

associated above. For information on how to do this, see: Debugging the CSS (on page 1860).

For example, if you want the titles or the pre-formatted text to have a different font from the rest, matched by

the above * selector, you need to use more specific CSS selectors:

*[class~="pr-d/codeph"],

*[class~="topic/pre"] {

 font-family: monospace !important;

}

Important:

These settings do not apply to page margin boxes, only to the text inside the page. If you also want to

change the font used in headers and footers, see: How to Change the Font of the Headers and Footers

(on page 1875).

Related information

How to Change the Font of the Headers and Footers (on page 1875)

How to Use Fonts for Symbols

For some specific symbols (e.g. arrows), you must use a font or a sequence of fonts that cover the needed

character ranges. As an example, suppose the right arrow character is used in a definition list like this:

<dlentry>

 <dt>→</dt>

 <dd><ph>This is the right arrow.</ph></dd>

</dlentry>

Oxygen XML Editor 27.1 | 11 - Publishing | 1990

If you are using the Roboto font, the character is not found, the # symbol is used, and a warning is thrown (see

also Glyph Not Available in Font (on page 2091)):

[CH] Glyph "?" (0x2192, arrowright) not available in font "Roboto-Bold".

The PDF output will then look like this:

 #

 This is the right arrow.

To solve this issue, you can use Symbol as a fallback font. In your customization CSS (on page 1858), add:

*[class ~= "topic/dlentry"] {

 font-family: "Roboto", Symbol;

}

To change the font for the entire publication, not just an element, you can use:

:root {font-family: "Roboto", Symbol !important; }

@page {

 @top-left {font-family: "Roboto", Symbol !important; }

 @top-right {font-family: "Roboto", Symbol !important; }

 @top-center {font-family: "Roboto", Symbol !important; }

 @top-left-corner {font-family: "Roboto", Symbol !important; }

 @top-right-corner {font-family: "Roboto", Symbol !important; }

 @bottom-left {font-family: "Roboto", Symbol !important; }

 @bottom-right {font-family: "Roboto", Symbol !important; }

 @bottom-center {font-family: "Roboto", Symbol !important; }

 @bottom-left-corner {font-family: "Roboto", Symbol !important; }

 @bottom-right-corner {font-family: "Roboto", Symbol !important; }

}

Tip:

It is possible to use a generic family name as fallback (like serif, sans-serif or monospace) to call

upon the processor's default fallback fonts system.

How to Use Fonts for Asian Languages

For Asian languages, you must use a font or a sequence of fonts that cover the needed character ranges. If

the characters are not found, the # symbol is used.

When you specify a sequence of fonts, if the glyphs are not found in the first font, the next font is selected,

and so on until one is found that includes all the glyphs. A common font sequence for Asian languages is as

follows:

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_fallback_fonts.html

Oxygen XML Editor 27.1 | 11 - Publishing | 1991

 font-family: Calibri, SimSun, "Malgun Gothic", "Microsoft JhengHei";

To apply this font sequence, see: How to Set Fonts in Titles and Content (on page 1988).

Some of the Asian fonts do not have italic, bold, or bold-italic variants. In this case, you may use the regular

font file with multiple font face definitions to simulate (synthesize) the missing variants. You need to use the

-oxy-simulate-style:yes CSS property in the font face definition as explained in: Using Simulated/Synthetic

Styles in Oxygen Chemistry.

How to Use Asian Fonts in Linux

For Asian languages on Linux distributions, Oxygen PDF Chemistry automatically uses DejaVu and Noto CJK as

fallback fonts for Serif, Sans-Serif, and Monospace content.

Warning:

On some distributions, the Noto CJK fonts are not available. In this case, you need to install them using

the system package manager:

• fonts-noto-cjk on Debian family distributions (e.g. Ubuntu).

• google-noto-cjk-fonts on Red Hat family distributions (e.g. CentOS).

How to Add a New Asian Font

If you want to add a specific font for Asian languages, you need to declare it inside your customization CSS

(on page 1858). The following example uses the Noto Sans Tamil font-family:

/* Font Declaration */

@font-face {

 font-family: "Noto Sans Tamil";

 font-style: normal;

 font-weight: 400;

 src: url(../fonts/ttf/notosanstamil/NotoSansTamil-Regular.ttf);

}

@font-face {

 font-family: "Noto Sans Tamil";

 font-style: normal;

 font-weight: 700;

 src: url(../fonts/ttf/notosanstamil/NotoSansTamil-Bold.ttf);

}

/* Font Usage */

* {

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_using_simulated__synthetic__styles.html
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_using_simulated__synthetic__styles.html
https://noto-website-2.storage.googleapis.com/pkgs/NotoSansTamil-hinted.zip

Oxygen XML Editor 27.1 | 11 - Publishing | 1992

 font-family: sans-serif, "Noto Sans Tamil";

}

How to Set Fonts for Displaying Music

Music is rendered as normal text in most fonts, but some of them will render them as musical glyphs. For

example, the MusGlyphs font converts the text to music and adjusts it to the surrounding text.

This font is divided in two sub-fonts that act for each of the following categories:

• MusGlyphs - Converts all characters that match a musical pattern into music glyphs. It should be used

inside the elements that contain only music.

• MusGlyphs-Text - Converts only the text prefixed with the @ symbol into music glyphs. The remaining

text is displayed normally.

To use this font, you simply need to declare each sub-font then use them in appropriate elements:

@font-face {

 font-family: MusGlyphs;

 font-style: normal;

 font-weight: 400;

 src: url(../fonts/otf/musglyphs/MusGlyphs.otf);

}

@font-face {

 font-family: MusGlyphs-Text;

 font-style: normal;

 font-weight: 400;

 src: url(../fonts/otf/musglyphs/MusGlyphs-Text.otf);

}

@font-face {

 font-family: MusGlyphs-Text;

 font-style: normal;

 font-weight: bold;

 src: url(../fonts/otf/musglyphs/MusGlyphs-TextBold.otf);

}

/*

 * All the elements are displayed with the MusGlyphs-Text.

 * If a text is prefixed with @, music will be displayed.

 */

body {

 font-family: MusGlyphs-Text, serif;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 1993

/* Elements with @outputclass="music" contain only music. */

*[outputclass ~= "music"] {

 font-family: MusGlyphs, serif;

}

Comments, Highlights, and Tracked Changes

The comments and tracked changes can be made visible in the PDF output by setting the

show.changes.and.comments transformation parameter to yes.

Figure 525. Chemistry Annotations in Acrobat Reader

By default, they are shown as PDF text annotations (sticky notes). These are graphical markers in the

document content and are also listed in the Comments section when opening the output file in Acrobat

Reader.

Note:

Comments with the Mark as Done flag selected appear with a check mark in the Comments section

and with a Completed label ().

To avoid rendering the elements as PDF annotations and show them as footnotes instead, you can use the

show.changes.and.comments.as.pdf.sticky.notes transformation parameter set to no.

The comments and changes are included in the merged map file (on page 1860) either as XML elements

(<oxy-insert>, <oxy-delete>, <oxy-comment>, <oxy-attributes>) in the case of the XML merged map, or as HTML

elements with similar classes (oxy-insert, oxy-delete, oxy-comment, oxy-attributes) in the case of the HTML

merged map. Sub-elements contain meta-information about each change.

Tip:

These elements are automatically recognized and transformed in PDF annotations when using

Chemistry as PDF processor.

Oxygen XML Editor 27.1 | 11 - Publishing | 1994

Note:

The inserted text, deleted text, and deleted markup are included in the sticky notes, you can change

this behavior by using the show.changed.text.in.pdf.sticky.notes.content parameter (on page

1841).

Related Information:

Transformation Parameters (on page 1833)

Debugging the CSS (on page 1860)

Comments and Tracked Changes - Built-in CSS

The built-in CSS that controls the way tracked changes and comments are displayed is found in:

[PLUGIN_DIR]css/print/p-side-notes.css.

Comments and Tracked Changes - HTML Fragment

This section contains information about how each type of tracked change is structured in the merged map

HTML file (on page 1860).

Insertions

For an insertion type of tracked change, the structure that defines the insertion details is inside a range (oxy-

range-start to oxy-range-end), the inserted text is highlighted by a element with the class oxy-insert-

hl, and the details are stored in a element with the oxy-insert class.

 dan

 insert

 2018/03/15

 09:38:29

 +02:00

 This is an insert!!

Comments

Similar to insertions, comments are defined in a range (oxy-range-start to oxy-range-end), the comment

details in an element with the class oxy-comment, and the highlighted content is wrapped in the oxy-comment-hl

element.

Oxygen XML Editor 27.1 | 11 - Publishing | 1995

 dan

 This is a comment.

 2018/03/15

 09:56:59

 +02:00

 The commented text.

Note:

Comments that are marked as done have a flag="done" attribute:

Attribute changes

The attribute changes are more complex. The range is empty, and is directly above the affected element (the

one that has modified attributes). The element with the class oxy-attributes contains details about multiple

attribute changes, each stored in an element with the class oxy-attribute-change.

<element>

 dan

 windows

 2018/03/15

 10:05:04

 +02:00

Oxygen XML Editor 27.1 | 11 - Publishing | 1996

...

</element>

Deletions

For a deletion, there are some elements that define the start and end of the deletion, and the highlighted text is

wrapped in an element with the class oxy-delete-hl.

 This is a deleted text.

There is a structure that offers details about the deletion change, using the element with the class oxy-delete.

This is linked to the above deletion range by the same ID value:

 dan

 <image href="../img/ex.gif">

 2018/03/14

 11:38:06

 +02:00

Colored Highlights

To show some text as highlighted with a background color:

 Some colored text.

How to Style Tracked Changes or Comments

Here are some examples showing how to customize tracked changes and highlighted text:

• If you want to change the highlighted text color from the document content, use the @class="oxy-

comment-hl" attribute (or @class="oxy-delete-hl", @class="oxy-insert-hl"):

.oxy-comment-hl {

 color:magenta;

}

• If you want to change the range labels indicating the start or the end of a change (by default, formatted

like this: "[n]...[/n]" where n is the change number), you can use the following selectors:

.oxy-range-start:before {

 content:'[START]';

 color:red;

}

.oxy-range-end:before {

Oxygen XML Editor 27.1 | 11 - Publishing | 1997

 content:'[END]';

 color:red;

}

• If you want to only show the changes and comments highlights

.oxy-range-start,

.oxy-range-end {

 display: none;

}

.oxy-insert,

.oxy-delete {

 display: none;

}

Note:

No comments will be displayed in the PDF Viewer Comments view after this modification.

How to Style Tracked Changes Shown as Footnotes

Important:

This topic is relevant if you have set the show.changes.and.comments.as.pdf.sticky.notes

transformation parameter to no, and therefore the changes are shown as footnotes instead of PDF

annotations.

Here are some examples showing how to customize footnotes:

• If you want to change the background color and the border of the comment footnote, add the following

snippet in your customization CSS (on page 1858):

.oxy-comment {

 background-color:inherit;

 border: 2pt solid yellow;

}

Similarly, you can style the other footnotes for @class="oxy-attributes", @class="oxy-delete", and

@class="oxy-insert".

• If you want to hide some footnotes (for example, the footnotes associated with the insertions,

deletions, or attribute changes when your document contains a lot of tracked changes), add something

like this in your customization CSS (on page 1858) (the following example results in the deletions and

insertions being hidden, but the comments remain visible):

.oxy-attributes,

.oxy-delete,

.oxy-insert{

Oxygen XML Editor 27.1 | 11 - Publishing | 1998

 float:none;

 display:none;

}

How to Show Only Change Bars on Tracked Changes

It is possible to only display the change bars for tracked changes (inserted or deleted content) in the PDF

document while hiding the other styling for the tracked changes. This is helpful if you want to see the

document in a final version while still seeing change bars where content was inserted or deleted.

To achieve this, follow these steps:

1. Set the show.changes.and.comments parameter to yes and the

show.changes.and.comments.as.pdf.sticky.notes parameter to no.

Step Result: The first parameter causes tracked changes to be visible in your document and styled (e.g.

insertions are blue and underlined, while deletions are red with a strike-through). Changing the second

parameter to no causes the tracked changes to be displayed as a footnote instead of a PDF annotation.

2. Hide the footnotes by adding the following in your customization CSS (on page 1858):

.oxy-attributes,

.oxy-comment,

.oxy-delete,

.oxy-insert {

 float: initial;

 display: none;

}

3. Remove the change range markers (the { and } symbols):

.oxy-range-start:before,

.oxy-range-end:before {

 content:none;

}

4. Remove the styling for the insertions and deletions:

.oxy-insert-hl{

 color:unset;

 text-decoration:none;

}

.oxy-delete-hl {

 content: "\200b";

 text-decoration:none;

}

.oxy-comment-hl{

 background-color:unset;

Oxygen XML Editor 27.1 | 11 - Publishing | 1999

}

.oxy-color-hl[color]{

 background-color:unset;

}

5. [Optional] You can improve the visibility of the change bars with this construct:

.oxy-range-start[is-changebar]:before(100) {

 -oxy-changebar-color: red;

 -oxy-changebar-width: 3pt;

}

Draft Watermarks

A watermark is an image displayed as the background of a printed document and it is faded enough to keep

the publication text readable. Draft watermarks are used to indicate that a document is under construction or

has not yet been approved.

How to Add a Draft Watermark on All Pages

To add a draft watermark to all of your publication pages, you can use the following page selector in your

customization CSS (on page 1858):

@page {

 background-image: url("draft.svg");

 background-position:center;

 background-repeat:no-repeat;

 background-size: 100% 100%;

}

If you have already set a background image for other pages (for example, the front-page or table-of-

contents), the above selector won't change them, as they are more specific.

The best practice is to use a different draft.css CSS file that imports the customization CSS where the

rest of the style changes reside. If you need to publish the content as a draft, use the draft.css in your

transformation scenario, otherwise directly reference the customization CSS (on page 1858).

Related Information:

Images and Figures (on page 2013)

How to Add a Draft Watermark in the Foreground

If you want the watermark to be displayed above the text (in the foreground), instead of using the standard

background-image property, you can use the -oxy-foreground-image property:

Oxygen XML Editor 27.1 | 11 - Publishing | 2000

@page {

 -oxy-foreground-image: url("draft.svg");

}

You can set a more specific selector if you just need to display the foreground in a subset group of pages (for

example, chapter). In this case, the above selector will not change it since it is more specific.

Note:

The usage of SVG images is preferred because other image types suffer from pixelation and because

foreground images are stretched to the full page size.

How to Add a Draft Watermark Depending on Metadata

Suppose you want to apply a Draft watermark until your DITA bookmap is approved and the map is approved

when an <approved> element has been added to the metadata section (for example, in the bookmeta/

bookchangehistory element).

<bookmeta>

 <author>John</author>

 <critdates>

 <created date="1/1/2015"/>

 <revised modified="3/4/2016"/>

 <revised modified="3/5/2016"/>

 </critdates>

 <bookchangehistory>

 <approved/>

 </bookchangehistory>

...

Use oxy_xpath every time you need to probe the value from an element other than the one matched by the CSS

selector, and test the expression on the merged HTML file using the Oxygen XPath Builder view.

You can either use a page selector that imposes the draft watermark on the entire page surface

(recommended):

@page {

 background-image: url(oxy_xpath("if(//*[contains(@class, 'bookmap/approved')]) then '' else 'draft-watermark.png'"));

 background-position: center;

 background-repeat: no-repeat;

}

or use an element selector that restricts the watermark image only to the page area covered by that element:

https://www.oxygenxml.com/doc/ug-editor/topics/xpath-builder-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/xpath-builder-view.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2001

:root, body{

 ... /* same as properties above */

}

Note:

You can use another element selector to target a specific part of your publication (for example,

marking only the tables as drafts).

Related information

Metadata (on page 1916)

How to Debug XPath Expressions (on page 1865)

Flagging Content

In DITA, you can mark certain content to flag it or draw attention to it. This is done by defining a flag in a

DITAVAL file.

You can attach the DITAVAL file to the DITA map using the <ditavalref> element in the map, or by specifying it

in the args.filter transformation parameter.

In the following example, all the elements that have the attribute @product set to YourProd is flagged to have a

purple background:

<val>

...

 <prop action="flag" att="product" val="YourProd" backcolor="purple"/>

...

</val>

Related Information:

Change Bars

DITAVAL Elements

How to Flag Content Using Change Bars

As an example, to add a change bar (revision mark) for particular content, you can use the following in the

DITAVAL file:

<val>

 <revprop action="flag"

 changebar="color:blue;style:solid;width:2pt;offset:1.25mm;placement:start" val="new"/>

</val>

This would result in any content that is marked with @rev="new" having a blue change bar.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_change_bars.html
https://docs.oasis-open.org/dita/v1.2/os/spec/common/about-ditaval.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2002

How to Flag Content Using Images

You can mark the elements that match a specific profiling condition using images (one for the start, one for

the end). The image references are relative to the DITAVAL file.

<val>

 <prop action="flag"

 att="product" val="MyProd"

 backcolor="blue"

 color="yellow" >

 <startflag imageref="startflag.jpg">

 <alt-text>This is the start of my product info</alt-text>

 </startflag>

 <endflag imageref="endflag.jpg">

 <alt-text>This is the end of my product info</alt-text>

 </endflag>

 </prop>

</val>

Styling the Content

If you need to change the styles of the elements from the topic contents, you should create a customization

CSS (on page 1858) and then add CSS rules. To create the CSS rules, you can use the development tools

described in Debugging the CSS (on page 1860).

Reusing the Styling for WebHelp and PDF Output

If you are using the pdf-css-html5 transformation type, then the generated HTML5 document that is later

converted to PDF is very similar to the generated HTML5 pages from the WebHelp Responsive output.

This is an output example from the WebHelp transformation:

 <h1 class="title topictitle1" id="ariaid-title2">Care and Preparation</h1>

 <div class="body">

 <p class="shortdesc">When caring ...</p>

 <p class="p">When caring for your flower garden you want ... </p>

And the same example from the PDF transformation (note the additional emphasized class values):

 <h1 class="- topic/title title topictitle1" id="ariaid-title2">Care andPreparation</h1>

 <div class="- topic/body body">

 <p class="- topic/shortdesc shortdesc">When caring ... </p>

 <p class="- topic/p p">When caring for your flower garden you want ... </p>

Oxygen XML Editor 27.1 | 11 - Publishing | 2003

It makes sense to reuse the same CSS rules you developed for one transformation type to the other. The main

rule is to use the short class names instead of the long ones. For example, to style the short descriptions with

italic font, use:

.shortdesc {

 font-style: italic;

}

The rule of thumb is that if you have a CSS rule that successfully styles an element in WebHelp, it should apply

without any modification in the PDF output.

Titles

Titles in PDF can be classified into two categories:

• Table of contents titles, identified by the map/topicref and topic/navtitle class attributes.

• Content titles, that can be styled by matching the topic/title class attribute.

How to Control Titles Layout

By default, titles are rendered on a single line (with both the chapter/section number and title text). If the title

is too long, the text wraps to the next line without any indentation.

4.5.5 This is a long title

text that wraps.

If you want each line of the title to start at the same location (and indented), you need to set the value of the

args.css.param.title.layout transformation parameter to table. This means that the chapter/section number

is placed in one cell and title text is placed in another cell (resulting and indented text):

4.5.5 This is a long title

 text that wraps.

How to Change Chapters Title Prefix

Changing Prefixes in Shallow Numbering

In shallow numbering (default), to replace the "Chapter N." prefix, use the following rules in your customization

CSS (on page 1858):

*[class ~= "map/topicref"][is-chapter]:not([is-part]) > *[class ~= "map/topicmeta"] > *[class ~= "topic/navtitle"]:before{

 content: "Module " counter(toc-chapter, decimal-leading-zero) " - ";

}

*[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class ~= "topic/title"]:before {

 content: "Module " counter(chapter, decimal-leading-zero) "\A";

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2004

Changing Prefixes in Deep Numbering

In deep numbering, to replace the "N." prefix, use the following rules in your customization CSS (on page

1858):

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class

 ~= "topic/title"]:before,

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "topic/topic"][is-chapter]:not([is-part]) *[class ~= "topic/topic"] >

 *[class ~= "topic/title"]:before {

 content: counters(chapter-and-sections, ".") "\A";

}

How to Remove Parts and Chapter Title Prefixes

Removing Prefixes in Shallow Numbering

In shallow numbering (default), to hide the "Part N" and "Chapter NN" prefixes, use the following rules in your

customization CSS (on page 1858):

*[class ~= "map/topicref"] > *[class ~= "map/topicmeta"] > *[class ~= "topic/navtitle"]:before {

 display: none !important;

}

*[class ~= "topic/topic"] > *[class ~= "topic/title"]:before {

 display: none !important;

}

You can also choose to remove only the "Part N" prefix:

*[class ~= "map/topicref"][is-part] > *[class ~= "map/topicmeta"] > *[class ~= "topic/navtitle"]:before {

 display: none !important;

}

*[class ~= "topic/topic"][is-part] > *[class ~= "topic/title"]:before {

 display: none !important;

}

Or to remove only the "Chapter NN" prefix:

*[class ~= "map/topicref"][is-chapter]:not([is-part]) > *[class ~= "map/topicmeta"] > *[class ~= "topic/navtitle"]:before {

 display: none !important;

}

*[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class ~= "topic/title"]:before {

 display: none !important;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2005

Removing Prefixes in Deep Numbering

In deep numbering, to hide the "Part N" and "Chapter NN" prefixes, use the following rules in your

customization CSS (on page 1858):

*[class ~= "map/map"][numbering ^= 'deep'] *[class ~= "map/topicref"] > *[class ~= "map/topicmeta"]:before {

 display: none !important;

}

*[class ~= "topic/topic"] > *[class ~= "topic/title"]:before {

 display: none !important;

}

How to Display Chapters Title on a Separate Page

You may want to display the chapters title on a separate page (for example, with a background). To do this, a

new page should be defined in your customization CSS (on page 1858):

@page chapter-title-page {

 background-image: url("resources/title-bg.png");

 background-repeat: no-repeat;

 background-size: 100% 100%;

 background-position: center;

}

After that, you need to replace the default "chapter" page definition with the one created before:

*[class ~= "topic/topic"][is-chapter] {

 page: chapter-title-page;

}

Then, you need to set it back on the content following the title:

*[class ~= "topic/topic"][is-chapter] > *[class ~= "topic/title"] ~ *:not([class ~= "topic/title"]) {

 page: chapter;

}

Finally, you can customize the title color, size, and more:

*[class ~= "topic/topic"][is-chapter]:not([is-part]) > *[class ~= "topic/title"] {

 color: white;

 font-size: 32pt;

}

Related information

Default Chapter Page Definition (on page 1868)

Equations

This processor supports MathML equations.

Oxygen XML Editor 27.1 | 11 - Publishing | 2006

How to Change the Font of MathML Equations

Suppose that you need to change the font of MathML equations from the documentation, and also add some

padding. The MathML fragments are wrapped in elements that have the class equation-d/equation-block or

equation-d/equation-inline, so you can match them with:

*[class ~="equation-d/equation-block"],

*[class ~="equation-d/equation-inline"]{

 font-family:"courier new";

 font-size:1.5em;

 padding:1em;

}

Note:

An equation can be rendered using multiple classes of fonts (e.g. the serif, sans serif, monospace,

fraktur, and doublestruck classes. Depending on each of the equation symbols, a class is selected

for it. The font specified in the CSS rule (as in the preceding example), applies only to the serif class.

However, if a symbol codepoint is not covered by the currently selected class fonts, it falls back to the

font specified in the CSS.

Attention:

Some of the fonts may not be supported. In that case, a default serif font is used.

Lists

This is the default layout for lists (both ordered and unordered lists - values are in px):

Markers are displayed in the padding area, so they are not included in the principal block box.

The lists are treated differently than ordinary block elements in the sense that their margins are not collapsed

with the margins of the neighboring blocks or lists. This is also visible for nested lists. To summarize:

• Setting the padding-left or margin-left properties on lists will move the whole list.

• Setting the margin-left property on list items will move the whole list.

• Setting the padding-left property on list items will only move the list item content (not the marker).

Oxygen XML Editor 27.1 | 11 - Publishing | 2007

Note:

If the padding-left property is set on lists and the margin-left property is set on list items, the result

will move the whole list with a combination of both padding and margin values.

How to Style Lists

Some common use-cases for styling lists require you to change each list level separately. For example, for an

ordered list:

*[class ~= "topic/ol"] > *[class ~= "topic/li"] /* First Level */ {

 font-size: 15pt;

}

*[class ~= "topic/ol"] *[class ~= "topic/ol"] > *[class ~= "topic/li"] /* Second Level */ {

 font-size: 13pt;

}

*[class ~= "topic/ol"] *[class ~= "topic/ol"] *[class ~= "topic/ol"] > *[class ~= "topic/li"] /* Third Level */ {

 font-size: 11pt;

}

/* Etc. */

Similarly, for an unordered list:

*[class ~= "topic/ul"] > *[class ~= "topic/li"]::marker /* First Level */ {

 color: red;

 content: "\2022";

}

*[class ~= "topic/ul"] *[class ~= "topic/ul"] > *[class ~= "topic/li"]::marker /* Second Level */ {

 color: orange;

 content: "\2022";

}

*[class ~= "topic/ul"] *[class ~= "topic/ul"] *[class ~= "topic/ul"] > *[class ~= "topic/li"]::marker /* Third Level */ {

 color: green;

 content: "\2022";

}

/* Etc. */

Note:

It is possible to mix lists type simply by mixing *[class ~= "topic/ol"] and *[class ~= "topic/ul"] in

the CSS selector.

How to Align Lists with Page Margins

It is possible to reposition the lists to align them with the rest of the text from the body.

Oxygen XML Editor 27.1 | 11 - Publishing | 2008

The default CSS rules for the lists are as follows:

ol {

 display:block;

 margin-top: 1.33em;

 margin-bottom: 1.33em;

 list-style-type:decimal;

 padding-left: 40px;

}

ul {

 display:block;

 margin-top: 1.33em;

 margin-bottom: 1.33em;

 list-style-type:disc;

 padding-left: 40px;

}

To align the lists, the following rules are sufficient in the customization CSS (on page 1858):

*[class~="topic/ol"],

*[class~="topic/ul"] {

 padding-left: 0;

 list-style-position: inside;

}

Note:

By default, the list-style-position property is set to outside.

How to Continue List Numbering

It is possible to continue the numbering of an ordered list even when the content is split in multiple

elements.

You need to define an @outputclass attribute on the lists where numbering should continue:

 First Item

 Second Item

<p>A paragraph</p>

<ol outputclass="continue">

 Third Item

Then set the following content inside your CSS customization:

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-position

Oxygen XML Editor 27.1 | 11 - Publishing | 2009

*[class ~= "topic/ol"] {

 counter-reset: item-count;

}

*[class ~= "topic/ol"][outputclass ~= "continue"] {

 counter-reset: none;

}

/* Add counter marker for each list level */

*[class ~= "topic/ol"] > *[class ~= "topic/li"]::marker {

 counter-increment: item-count;

 content: counter(item-count, decimal) ". ";

}

*[class ~= "topic/ol"][type=a] > *[class ~= "topic/li"]::marker{

 content: counter(item-count, lower-alpha) ". ";

}

*[class ~= "topic/ol"][type=A] > *[class ~= "topic/li"]::marker{

 content: counter(item-count, upper-alpha) ". ";

}

*[class ~= "topic/ol"][type=i] > *[class ~= "topic/li"]::marker{

 content: counter(item-count, lower-roman) ". ";

}

*[class ~= "topic/ol"][type=I] > *[class ~= "topic/li"]::marker{

 content: counter(item-count, upper-roman) ". ";

}

If the lists do not have the same parent, it is possible to start the numbering directly at a given number by

setting the @outputclass attribute of the following list to start-X (where X is the number you want the list to

start with):

<table frame="all">

 <title>Table with nested order lists</title>

 <tgroup cols="1">

 <tbody>

 <row>

 <entry>

 First Item

 Second Item

 </entry>

 </row>

 <row>

Oxygen XML Editor 27.1 | 11 - Publishing | 2010

 <entry>

 <ol outputclass="start-3">

 Third Item

 Fourth Item

 </entry>

 </row>

 </tbody>

 </tgroup>

</table>

Then the following content should be added into the previous CSS customization:

*[class ~= "topic/ol"][outputclass *= "start-"] {

 counter-reset: item-count oxy_xpath("xs:integer(substring-after(@class, 'start-')) - 1");

}

How to Change the Numbering System of Ordered Lists

It is possible to change all lists to have a different numbering system and there are several methods that can

be used to achieve this.

Use the list-style-type CSS Property.

The Chemistry engine supports the following types: decimal, decimal-leading-zero, lower-roman, upper-roman,

lower-latin, upper-latin, lower-alpha, upper-alpha.

*[class ~= "topic/ol"] {

 list-style-type: lower-roman;

}

Change the Content of the :marker CSS Pseudo-Element.

The following example emulates the Cyrillic numbering for the list items for an ordered list that has the

@outputclass attribute set to cyrillic:

Important:

This example will work only for lists up to 28 items. You will have to extend it for longer lists!

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:marker {

 width:3em;

}

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(1):marker{ content:"a" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(2):marker{ content:"б" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(3):marker{ content:"в" }

Oxygen XML Editor 27.1 | 11 - Publishing | 2011

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(4):marker{ content:"г" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(5):marker{ content:"д" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(6):marker{ content:"е" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(7):marker{ content:"ж" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(8):marker{ content:"з" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(9):marker{ content:"и" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(10):marker{ content:"к" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(11):marker{ content:"л" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(12):marker{ content:"м" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(13):marker{ content:"н" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(14):marker{ content:"о" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(15):marker{ content:"п" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(16):marker{ content:"р" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(17):marker{ content:"с" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(18):marker{ content:"т" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(19):marker{ content:"у" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(20):marker{ content:"ф" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(21):marker{ content:"х" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(22):marker{ content:"ц" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(23):marker{ content:"ч" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(24):marker{ content:"ш" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(25):marker{ content:"щ" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(26):marker{ content:"э" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(27):marker{ content:"ю" }

*[class ~= "topic/ol"][outputclass ~= "cyrillic"] > *[class ~= "topic/li"]:nth-of-type(28):marker{ content:"я" }

Related Information:

Oxygen PDF Chemistry User Guide: Lists

Links

Links allow the users to navigate through the documentation.

How to Change 'on page NNN' Link Label

For printed material, it is usually desirable for the links to display a label after the text content (such as "on

page 54"). This makes it easier the user to identify the target page. However, if the produced PDF is not printed

and is intended only for electronic use, this label may create clutter and make the document harder to read. To

eliminate this label, you can simply disable the args.css.param.show-onpage-lbl parameter.

This can also be done by adding the following in your customization CSS (on page 1858):

*[class ~= "topic/xref"][href]:after,

*[class ~= "topic/link"][href]:after {

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_layout.html#ch_lists

Oxygen XML Editor 27.1 | 11 - Publishing | 2012

 content: none !important;

}

Note:

A variant is to remove the "on page" label only and keep the page number:

*[class ~= "topic/xref"][href]:after,

*[class ~= "topic/link"][href]:after {

 content: " (" target-counter(attr(href), page) ")" !important;

}

Another use-case is to remove the labels only from links shown in tables cells, and leave the others as they

are. For this, you could use a more specific selector:

*[class ~= "topic/entry"] *[class ~= "topic/xref"][href]:after{

 content: none !important;

}

How to Change Link Styles

Suppose you want the links to be bold and with an underline. In your customization CSS (on page 1858), add

this snippet:

*[class ~= "topic/xref"][href]:after,

*[class ~= "topic/link"][href]:after {

 font-weight: bold;

 text-decoration: underline;

}

How to Hide Descriptions in Related Links Sections

The link descriptions that come from DITA relationship tables or related link elements within topics, are

structured in the merged map (on page 1860) like this:

<related-links class="- topic/related-links ">

 <linkpool class="- topic/linkpool ">

 <link class="- topic/link "

 ...

 role="friend" scope="local" type="topic">

 <linktext class="- topic/linktext ">Salvia</linktext>

 <desc class="- topic/desc ">The salvia plant</desc>

 </link>

 </linkpool>

 ...

</related-links>

Oxygen XML Editor 27.1 | 11 - Publishing | 2013

If you need to hide these descriptions, add the following code in your customization CSS (on page 1858):

*[class ~= "topic/link"] > *[class ~= "topic/desc"] {

 display: none;

}

How to Group Related Links by Type

By default, all links from DITA relationship tables or related link elements within topics are grouped under one

"Related information" heading:

Related information

 Target Topic

 Target Concept

 Target Task

It is possible to group the links by target type (topic type) by setting the args.rellinks.group.mode=group-by-

type parameter. The output will look like this:

Related concepts

 Target Concept

Related tasks

 Target Task

Related information

 Target Topic

Images and Figures

Images are an important part of a publication.

Note:

You can use raster image formats (such as PNG or JPEG), but it is best to use vector images (such as

SVG or PDF). They scale very well and produce better results when printed. In addition, the text from

these images is searchable and can be selected (if the glyphs have not been converted to shapes) in

the PDF viewer.

Related information

The DITA Style Guide Best Practices for Authors: Image file formats

Images - Built-in CSS

Image properties are defined in [PLUGIN_DIR]css/print/p-figures-images.css.

 *[class ~= "topic/image"] {

 prince-image-resolution: 96dpi;

 -ah-image-resolution: 96dpi;

https://www.oxygenxml.com/dita/styleguide/Graphics_and_Figures/c_Image_File_Types.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2014

 image-resolution: 96dpi;

 max-width: 100%;

 }

How to Fix Image Bleeding - Control Image Size

Sometimes the images may be too big for the page. The built-in CSS rules specify a maximum size for images,

limiting to the width of the parent block. But if the parent block is itself too wide and bleeds out of page, you

might consider specifying a length.

In your customization CSS (on page 1858), add the following snippet:

 *[class ~= "topic/image"] {

 ...

 /* The US-letter page size minus page margins. See p-page-size.css for the current page size. */

 max-width: 6.5in;

 }

Pay attention to images that have an image map (on page 2019) associated. The built-in rules set the max-

width: auto for them to avoid scaling. Otherwise, it would cause a misalignment between the image and its

clickable areas. These images are best to have a @width and @height attribute.

How to Change Image Resolution

How to Change the Resolution for Raster Images

This technique changes the size of all raster images from your documentation. It will not work for vector

images, such as PDF or SVG.

The default resolution is 96 dpi (same as in web browsers). You can change it by adding the following in your

customization CSS (on page 1858):

*[class ~= "topic/image"] {

 prince-image-resolution: 300dpi;

 -ah-image-resolution: 300dpi;

 image-resolution: 300dpi;

}

Important:

The above selector does not apply to images from the <imagemap> element. You can use the following

selector for that purpose:

*[class ~= "ut-d/imagemap"] > *[class ~= "topic/image"] {

 ...

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2015

Make sure you verify the area shapes to match the new image boundaries. The pixels specified in the

image map area coordinates are always 1/96 in. For more details, see: How to Use Image Maps (on

page 2019).

How to Change the Resolution for Vector Images

This technique will change the size of all vector images (such as PDF or SVG) and will not affect raster

images.

Vector images are rendered with a default resolution of 96 dpi. You can change this default value by setting

the image.resolution transformation parameter (on page 1833) to another value (from 72, 120, 300 and 600).

How to Place Big Images on Rotated Pages

Wide images may bleed out of the page. One solution for this is to use landscape pages for these wide

images.

In your customization CSS (on page 1858), add:

*[class~="topic/image"][outputclass='land'] {

 page: landscape-page;

}

Setting the @outputclass = 'land' attribute on the 

</imagemap>

2. In the map element, add areas (each with a shape and a set of coordinates):

 <imagemap>

 <image ...> ... </image>

 <area>

 <shape>circle</shape>

 <coords>172, 265, 14</coords>

 <xref

 href="parts/bushings.dita#bushings_topic/bushings"

 format="dita">Bushings</xref>

 </area>

 <area>

 <shape>poly</shape>

 <coords>568, 81, 576, 103, 468, 152, 455, 130</coords>

Oxygen XML Editor 27.1 | 11 - Publishing | 2021

 <xref

 href="parts/drive-shaft.dita#drive_shaft_topic/drive_shaft"

 format="dita">Drive Shaft</xref>

 </area>

 </imagemap

The type of areas are the ones defined in the HTML standard: circle, poly, rect, default. For more

details, see: https://html.spec.whatwg.org/multipage/image-maps.html#the-area-element.

Warning:

Areas coordinates are relative the image box and are not affected by the image resizing

(change in image width/height or scaling), accordingly to the HTML specs:

“For historical reasons, the coordinates must be interpreted relative to the

displayed image after any stretching caused by the CSS 'width' and 'height'

properties (or, for non-CSS browsers, the image element's width and height

attributes - CSS browsers map those attributes to the aforementioned CSS

properties).”

Tip:

Adding the @scale attribute on the <imagemap> element will scale both the image and areas.

3. Verify how the shapes look in the output. You can make the shapes visible by using one of the

following methods:

◦ Using the show.image.map.area.numbers and show.image.map.area.shapes transformation

parameters.

◦ Adding a CSS snippet to your customization. The shapes have the image-map-shape class, the

bullet around the image map number (image-map-number), and the text inside the bullet (image-

map-number-text). To make them translucent yellow:

.image-map-shape {

 fill: yellow;

 stroke: orange;

 fill-opacity: 0.3;

 stroke-opacity: 0.7;

}

.image-map-number-text {

 visibility: visible;

 stroke: red;

}

https://html.spec.whatwg.org/multipage/image-maps.html#the-area-element

Oxygen XML Editor 27.1 | 11 - Publishing | 2022

.image-map-number {

 fill: yellow;

 fill-opacity: 1;

}

Remember:

Make sure the use.css.for.embedded.svg parameter is set to 'yes' (it is by default).

Tip:

An <svg> with links (<a>) can be used as an alternative to the DITA <imagemap> element. Make sure that

each link is a relative URI to an ID inside the publication content.

How to Hide the Image Map Links List

Below every image map, a list of links that point to the image map targets is displayed. This list can be hidden

from the final output by using the following CSS selector:

.imagemap--areas {

 display: none;

}

How to Use SVG Syntax Diagrams

The DITA <syntaxdiagram> element is supported by the PDF transformation. To use SVG syntax diagrams, follow

this procedure:

1. Download the latest version of the svg-syntaxdiagrams plugin, unzip it, and copy all the folders into your

DITA-OT-DIR\plugins folder (they all start with "com.").

2. Open a command prompt inside DITA-OT-DIR\bin and run the dita install command.

3. You can now add your custom <syntaxdiagram> element in your topic, as in the following example:

<syntaxdiagram id="syntaxdiagram_ok4_c1k_xnb">

 <title>CopyFile</title>

 <groupseq><kwd>COPYF</kwd></groupseq>

 <groupcomp><var>input-filename</var><kwd>*INFILE</kwd></groupcomp>

 <groupseq><var>output-filename</var><kwd>*OUTFILE</kwd></groupseq>

 <groupchoice> <var>input-filename</var> <kwd>*INFILE</kwd></groupchoice>

 <groupchoice> <var>output-filename</var> <kwd>*OUTFILE</kwd></groupchoice>

</syntaxdiagram>

https://github.com/robander/svg-syntaxdiagrams/releases

Oxygen XML Editor 27.1 | 11 - Publishing | 2023

4. Run the DITA Map PDF - based on HTML5 & CSS (or DITA PDF - based on HTML5 & CSS)

transformation.

Warning:

If you are not publishing the content for the first time, you may need to delete the out/ and

temp/ folders to see the syntax diagram correctly in the .merged.html file.

Result: The PDF is generated and the syntax diagram is displayed as a referenced SVG file like this:

Videos

Videos can be referenced in a DITA topic by using the <object> element:

<object data="path/to/video.mp4" outputclass="video"/>

Related information

Oxygen PDF Chemistry User Guide: Videos

How to Reference a Video Using a Key

Videos can also be referenced in DITA topics by using a key.

The key must be defined in the DITA map like this:

<keydef keys="video" href="path/to/video.mp4" format="mp4"/>

The key is referenced in the topic with the @datakeyref attribute within the <object> element:

<object datakeyref="video" outputclass="video" width="480" height="270"/>

How to Change Video Size

It is possible to set the size for your videos directly from a custom CSS stylesheet (on page 1858):

.video {

 width: 480px;

 height: 270px;

}

Related information

Oxygen PDF Chemistry User Guide: Change the Video Size

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_graphics_videos.html
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_graphics_videos.html#ch_graphics_videos__section_eyh_sxk_qwb

Oxygen XML Editor 27.1 | 11 - Publishing | 2024

How to Change the Videos Cover

By default, a placeholder is displayed in place of the video. When clicked, this placeholder launches the video.

A popup is presented in Acrobat Reader to enable the Multimedia content (the document must be trusted for

the video to launch).

It is possible to change this placeholder with a custom one by using the -oxy-video-cover property:

.video {

 -oxy-video-cover: url("files/cover.png");

}

How to Center Videos

It is possible to center the videos by centering their containers like this:

.video-container {

 text-align: center;

}

Tables

Tables are widely used in technical documentation. This section contains information about the CSS rules that

are used to style them and how to fix some problems.

Tables - Built-in CSS

There is a combination of CSS files that address tables:

• [PLUGIN_DIR]/css/core/-table-html-cals.css

• [PLUGIN_DIR]/css/print/p-tables.css

How to Avoid a Table Exceeding the Page Width

The DITA specification indicates that tables should have a fixed layout. This can be done in two different ways:

1. Using proportional or relative measures - It includes percent values and shares values (i.e. "3*" or

"12*").

2. Using fixed measures - It includes all the values followed by units (i.e. in, pt, px, and others).

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_supported_properties.html#ariaid-title3

Oxygen XML Editor 27.1 | 11 - Publishing | 2025

Important:

• Although the specification allows you to combine these values, it is highly recommend that you

only use one method at a time. Combining both methods could lead to a table exceeding the

page width and will make the content unreadable.

• If all of the column width values are not declared in the table, the shares values (e.g. "2.5*") will

not be used.

How to Handle Wide Tables - Page Rotation

Some of the tables can have a large number of columns. In this case, the table may bleed out of the page. One

solution is to use landscape pages for these tables.

Setting the attribute orient = 'land' attribute on the table element will force the table to be on a new

landscape page.

Another solution is to use automatic detection of wide tables (5 or more columns):

*[class~="topic/table"][data-cols='5'],

*[class~="topic/table"][data-cols='6'],

*[class~="topic/table"][data-cols='7'],

*[class~="topic/table"][data-cols='8'],

*[class~="topic/table"][data-cols='9'],

*[class~="topic/table"][data-cols='10'] {

 page: landscape-page;

 max-width: 100%;

 max-height: 100%;

 width: 100%;

 page-break-before: avoid;

}

Note:

The landscape-page page layout is defined in the [PLUGIN_DIR]/css/print/p-pages-and-

headers.css file.

If you want to rotate the entire topic that contains the big table, use:

*[class~="topic/table"][data-cols='5'],

*[class~="topic/table"][data-cols='6'],

*[class~="topic/table"][data-cols='7'],

*[class~="topic/table"][data-cols='8'],

*[class~="topic/table"][data-cols='9'],

*[class~="topic/table"][data-cols='10'] {

Oxygen XML Editor 27.1 | 11 - Publishing | 2026

 max-width: 100%;

 table-layout:auto;

}

[class~="topic/topic"]:has([class~="topic/body"] > *[class~="topic/table"][data-cols='5']),

[class~="topic/topic"]:has([class~="topic/body"] > *[class~="topic/table"][data-cols='6']),

[class~="topic/topic"]:has([class~="topic/body"] > *[class~="topic/table"][data-cols='7']),

[class~="topic/topic"]:has([class~="topic/body"] > *[class~="topic/table"][data-cols='8']),

[class~="topic/topic"]:has([class~="topic/body"] > *[class~="topic/table"][data-cols='9']),

[class~="topic/topic"]:has([class~="topic/body"] > *[class~="topic/table"][data-cols='10']),

[class~="topic/topic"]:has([class~="topic/body"] > * > *[class~="topic/table"][data-cols='5']),

[class~="topic/topic"]:has([class~="topic/body"] > * > *[class~="topic/table"][data-cols='6']),

[class~="topic/topic"]:has([class~="topic/body"] > * > *[class~="topic/table"][data-cols='7']),

[class~="topic/topic"]:has([class~="topic/body"] > * > *[class~="topic/table"][data-cols='8']),

[class~="topic/topic"]:has([class~="topic/body"] > * > *[class~="topic/table"][data-cols='9']),

[class~="topic/topic"]:has([class~="topic/body"] > * > *[class~="topic/table"][data-cols='10']),

[class~="topic/topic"]:has([class~="topic/body"] > * > * > *[class~="topic/table"][data-cols='5']),

[class~="topic/topic"]:has([class~="topic/body"] > * > * > *[class~="topic/table"][data-cols='6']),

[class~="topic/topic"]:has([class~="topic/body"] > * > * > *[class~="topic/table"][data-cols='7']),

[class~="topic/topic"]:has([class~="topic/body"] > * > * > *[class~="topic/table"][data-cols='8']),

[class~="topic/topic"]:has([class~="topic/body"] > * > * > *[class~="topic/table"][data-cols='9']),

[class~="topic/topic"]:has([class~="topic/body"] > * > * > *[class~="topic/table"][data-cols='10']) {

 page: landscape-page;

}

Tip:

It is also possible to import the [PLUGIN_DIR]/css/print/p-optional-auto-rotate-wide-

tables.css stylesheet into your custom CSS.

How to Fix Text Bleeding From Table Cells

Slim tables or tables that have many columns make the text from the cells be confined to a small horizontal

space. Sometimes this causes long words to bleed outside the cell boundaries.

By default, the built-in CSS automatically activates the hyphenation for the text inside tables as long as your

topics have the language specified.

In case the text is still bleeding outside the boundaries, you can also use the overflow-wrap property to force

the word to break:

*[class ~= "topic/table"] {

 overflow-wrap: break-word;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2027

Related Information:

Hyphenation (on page 1981)

How to Enable/Disable Hyphenation for an Element (on page 1984)

How to Fix Small Images in Table

Tables contained in the output of DITA Map PDF - based on HTML5 & CSS (and DITA PDF - based on HTML5 &

CSS) transformations have an automatic layout by default. This means that DITA-OT defines a preferred size

on them, optimizing their width/height inside the content to make them as small as possible.

If, for example, you have a two-column table without defined column widths and one column contains images

while the other column contains text, the table in the generated PDF will have its first column shrunk with

smaller images and an enlarged second column (to occupy the least amount of space in the output).

To avoid this, you must unset the default image max-width so that the original size of the image will be used

instead:

*[class ~= "topic/image"] {

 max-width: unset;

}

How to Center Tables

You can center the tables by using margins auto, while the table caption (title) can be centered using the text-

align property:

*[class ~= "topic/table"] {

 margin-left:auto;

 margin-right:auto;

 width: 50%;

 border: 1pt solid blue;

}

*[class ~= "topic/table"] *[class ~= "topic/title"]{

 text-align:center;

}

How to Remove the Table NN Label

For the DITA Map PDF - based on HTML5 & CSS transformation scenario, the label for a table's title is

wrapped in a span element with the class: table--title-label.

<table ... >

...

<caption class="- topic/title title tablecap">

 Table

 1.

Oxygen XML Editor 27.1 | 11 - Publishing | 2028

 The title of the table

</caption>

...

To hide it, set its display to none:

.table--title-label {

 display:none;

}

For the direct transformation, use:

*[class ~= "topic/table"] > *[class ~= "topic/title"]:before {

 content: none;

}

How to Customize Rows, Columns and Cells

Common Use-Cases

Here are some common table use-cases and the CSS selectors for customizing table rows, columns, and

cells. These example uses the background-color CSS property but any CSS property can be used (border,

margin, padding, etc.).

• Select all non-header cells:

*[class ~= "topic/tbody"] *[class ~= "topic/entry"] {

 background-color: lightgray;

}

• Select some table rows (using :nth-of-type() pseudo-class):

/* Select all even rows. */

*[class ~= "topic/tbody"] *[class ~= "topic/row"]:nth-of-type(even) {

 background-color: lightgray;

}

/* Select the fourth row. */

*[class ~= "topic/tbody"] *[class ~= "topic/row"]:nth-of-type(4) {

 background-color: yellow;

}

• Select specific table columns (using :nth-of-type() pseudo-class):

/* Select all odd columns. */

*[class ~= "topic/tbody"] *[class ~= "topic/entry"]:nth-of-type(odd) {

 background-color: lightgray;

}

/* Select the second column. */

*[class ~= "topic/tbody"] *[class ~= "topic/entry"]:nth-of-type(2) {

Oxygen XML Editor 27.1 | 11 - Publishing | 2029

 background-color: yellow;

}

Applying Properties to Specific Elements

If you need to apply some properties to specific elements, you can use the DITA @outputclass attribute:

<table frame="none">

 <title>Flowers</title>

 <tgroup cols="3">

 <colspec colname="c1" colnum="1" colwidth="171pt"/>

 <colspec colname="c2" colnum="2" colwidth="99pt"/>

 <colspec colname="c3" colnum="3" colwidth="150pt"/>

 <thead>

 <row>

 <entry>Flower</entry>

 <entry>Type</entry>

 <entry>Soil</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>Chrysanthemum</entry>

 <entry outputclass="colored">perennial</entry>

 <entry>well drained</entry>

 </row>

 <row>

 <entry>Gardenia</entry>

 <entry>perennial</entry>

 <entry>acidic</entry>

 </row>

 <row outputclass="colored">

 <entry>Gerbera</entry>

 <entry>annual</entry>

 <entry>sandy, well-drained</entry>

 </row>

 </tbody>

 </tgroup>

</table>

In this case, the selector will be based on this outputclass:

*[class ~= "topic/table"] *[outputclass ~= "colored"] {

 background-color: yellow;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2030

How to Add Stripes to a Table

To create a striped look for your tables, you can use the following CSS rules:

/* Header background and foreground */

*[class ~= "topic/table"][outputclass ~= "stripes"] > *[class ~= "topic/thead"] > *[class ~= "topic/row"] {

 background-color: blue;

 color:white;

}

/* A default background for the entire table body */

*[class ~= "topic/table"][outputclass ~= "stripes"] > *[class ~= "topic/tbody"] {

 background-color: #eeeeee;

}

/* Color for the stripes */

*[class ~= "topic/table"][outputclass ~= "stripes"] > *[class ~= "topic/tbody"] > *[class ~= "topic/row"]:nth-child(odd) {

 background-color: cyan;

}

/* Border for the cells */

*[class ~= "topic/table"][outputclass ~= "stripes"] *[class ~= "topic/entry"] {

 border: blue;

}

The above rules assume that tables that are to be painted with stripes are marked with an @outputclass

attribute:

<table outputclass="stripes">...</table>

If you want to make all tables look the same, you can ignore this attribute and remove the [outputclass ~=

"stripes"] simple selector from the above rules.

CAUTION:

Applying stripes and thin cell borders can cause rendering issues in the PDF renderer on screen

display devices. For more information, see Disappearing Thin Lines or Cell Borders (on page 2092).

How to Display Borders on a Split Cell

By default, if a cell extends onto a second page, its bottom and top borders are discarded. To display these

borders, you need to add the following property in your CSS customization:

*[class ~= "topic/entry"] {

 -oxy-borders-conditionality: retain;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2031

How to Rotate Content from a Table Cell

In DITA CALS tables, you can rotate the content of a cell by setting the @rotate attribute to 1.

In the following example, the Sport, All terrain, and Family header cells are rotated.

<table frame="all" rowsep="1" colsep="1" id="table_d1p_flb_crb">

 <title>Car Features</title>

 <tgroup cols="4">

 <colspec colname="c1" colnum="1" colwidth="14*"/>

 <colspec colname="c2" colnum="2" colwidth="1*" align="center"/>

 <colspec colname="c3" colnum="3" colwidth="1*" align="center"/>

 <colspec colname="c4" colnum="4" colwidth="1*" align="center"/>

 <thead>

 <row>

 <entry morerows="1">Car Name</entry>

 <entry namest="c2" nameend="c4">Features</entry>

 </row>

 <row>

 <entry rotate="1">Sport</entry>

 <entry rotate="1">All terrain</entry>

 <entry rotate="1">Family</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>Tesla Model S</entry>

 <entry>X</entry>

 <entry/>

 <entry>X</entry>

 </row>

...

Table 43. Car Features

Features

Car Name

Sp
or

t

A
ll

te
rr

ai
n

Fa
m

ily

Tesla Model S X X

The resulting output will be:

Oxygen XML Editor 27.1 | 11 - Publishing | 2032

The built-in CSS matches the cells with this attribute and applies the following properties:

*[class~="topic/entry"][rotate='1'] {

 transform: rotate(270deg);

 /* Avoid wrapping, including hyphenation */

 white-space:pre;

 hyphens:manual;

 /* The rotated content will start from the lower side of the cell */

 vertical-align:bottom;

}

To change the vertical alignment of the content (for example, to move it to the middle of the cell), use the

following in your CSS customization:

*[class~="topic/entry"][rotate='1'] {

 vertical-align:middle;

}

The resulting output will be:

Oxygen XML Editor 27.1 | 11 - Publishing | 2033

To make the text wrap (for instance, the "All terrain" could be split on two lines), you need to inhibit the

whitespace preservation from the built-in CSS. In this case, all spaces will create a line break in the rotated

layout. Thus, you can add this in your customization:

*[class~="topic/entry"][rotate='1'] {

 vertical-align:middle;

 white-space:normal;

}

The resulting output will be:

Note:

The padding and borders set on the table cells are not rotated (only the content of the cell is rotated).

You can use padding-left (for instance) to move the labels to the horizontal axis.

*[class~="topic/entry"][rotate='1'] {

 padding-left:2em;

}

How to Add Horizontal Lines to a Choice Table

To add horizontal lines that separate the options within a <choicetable>, you can use borders set on each of the

rows. The following CSS styles the top header and the first column with some background colors. In a choice

table, the first column represents the choice labels.

*[class~="task/choptionhd"],

*[class~="task/choptionhd"],

*[class~="task/chdeschd"],

*[class~="task/choption"] {

 background-color: #EEEEEE;

 text-align: left;

}

*[class~="task/choicetable"] {

Oxygen XML Editor 27.1 | 11 - Publishing | 2034

 border: 2pt solid #EEEEEE;

}

*[class~="task/choicetable"] *[class~="task/chrow"],

*[class~="task/choicetable"] *[class~="task/chhead"]{

 border-bottom: 2pt solid #EEEEEE;

}

*[class~="task/choicetable"] *[class~="topic/stentry"] {

 border-bottom: none;

 border-right: none;

}

Note:

Using the frame attribute on the choice table will make these selectors apply partially. Please make

sure you are designing your customization CSS taking into account all possible values for the frame

attribute.

Programming Elements

Programming Elements are used to render lines of programming code. These elements have preserved line

endings and use a monospace font in the output.

How to Change Font in Code Blocks

You can change fonts in code blocks to make them easier to read or compliant with your company fonts. To

do so, add the following rule to your customization CSS (on page 1858):

*[class ~= 'pr-d/codeblock'],

*[class ~= "pr-d/codeblock"] > code {

 font-family: 'Consolas', monospace;

}

Related information

Using Web Fonts

Using Local Font Files

How to Enable Syntax Highlight in Code Blocks

Note:

This topic refers only to the DITA Map PDF - based on HTML5 & CSS transformation type.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_fonts_using_web_fonts.html
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_fonts_using_local_font_files.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2035

You can use syntax highlighting to make it easier to read your code snippets by displaying each type of code in

different colors and fonts. In the DITA topics, set the @outputclass attribute on the <codeblock> elements to one

of these values:

• language-json

• language-yaml

• language-xml

• language-bourne

• language-c

• language-cmd

• language-cpp

• language-csharp

• language-css

• language-dtd

• language-ini

• language-java

• language-javascript

• language-lua

• language-perl

• language-powershell

• language-php

• language-python

• language-ruby

• language-sql

• language-xquery

For example, for a java snippet:

<codeblock outputclass="language-java">

 for (int i=0; i <100; i++) {

 // do something

 }

</codeblock>

The resulting HTML fragment in the merged HTML5 document is:

 <pre class="+ topic/pre pr-d/codeblock pre codeblock language-java"

 xml:space="preserve">

 <strong class="hl-keyword" style="color:#7f0055">for

 (<strong class="hl-keyword" style="color:#7f0055">int

 i=0; i

 <100; i++) {

 <em class="hl-comment" style="color:#006400">// do something

Oxygen XML Editor 27.1 | 11 - Publishing | 2036

 }

</pre>

And in the output, it is rendered as:

Changing the Colors for the Syntax Highlighting

As you can see in the above example, the HTML elements and are used to color the content.

Since they have a @style attribute set, the overriding properties need to be marked with !important.

Suppose you want to color the keywords in red and the comments in blue. To do so, add the following to your

customization CSS (on page 1858):

.hl-keyword {

 color: red !important;

}

.hl-comment {

 color: blue !important;

}

How to Add Line Numbering in Code Blocks

Note:

This topic refers only to the DITA Map PDF - based on HTML5 & CSS transformation type.

You can add line numbering to make your code snippets easier to read. In the DITA topics, set the @outputclass

attribute on the <codeblock> elements to the show-line-numbers value.

Note:

It is possible to use the @outputclass="show-line-numbers" together with any of the language @outputclass

value (e.g. @outputclass="language-java show-line-numbers").

For example, for a java snippet:

<codeblock outputclass="show-line-numbers">

public void convert(String systemId, InputStream is) {

 return new FileInputStream();

}

</codeblock>

Oxygen XML Editor 27.1 | 11 - Publishing | 2037

The resulting HTML fragment in the merged HTML5 document is:

<pre class="+ topic/pre pr-d/codeblock pre codeblock show-line-numbers"

outputclass="show-line-numbers" xml:space="preserve">

public void convert(String systemId, InputStream is) {

 return new FileInputStream();

}

</pre>

And in the output, it is rendered as:

How to Display Whitespaces in Code Blocks

Note:

This topic refers only to the DITA Map PDF - based on HTML5 & CSS transformation type.

You can display whitespace characters in code blocks to visualize indentation in the PDF. In the DITA topics,

set the @outputclass attribute on the <codeblock> elements to the show-whitespace value.

Note:

It is possible to use the @outputclass="show-whitespace" together with any of the language or show-line-

numbers @outputclass values (e.g. @outputclass="language-java show-line-numbers show-whitespace").

For example, for a java snippet:

<codeblock outputclass="show-whitespace">

public void convert(String systemId, InputStream is) {

 return new FileInputStream();

}

</codeblock>

The resulting HTML fragment in the merged HTML5 document is:

<pre class="+ topic/pre pr-d/codeblock pre codeblock show-whitespaces"

outputclass="show-whitespaces" xml:space="preserve">

public·void·convert(String·systemId,·InputStream·is)·{

··return·new·FileInputStream();

Oxygen XML Editor 27.1 | 11 - Publishing | 2038

}

</pre>

And in the output, it is rendered as:

How to Disable Line Wrapping in Code Blocks

By default, code blocks have the content wrapped to avoid the bleeding of long lines out of the page. To avoid

wrapping, add the following in your customization CSS (on page 1858):

*[class~="pr-d/codeblock"] {

 white-space: pre;

}

For the DITA Map PDF - based on HTML5 & CSS transformation type, the best solution to distinguish between

lines is to leave them wrapped, but color each line with a different background (zebra coloring). An example is

provided here: XSLT Extensions for PDF Transformations (on page 2049).

How to Enable Line Wrap in Code Phrases

By default, line wrapping does not apply on inline elements, which could cause some lines of code to bleed out

of the page. To allow line wrapping, the property should be set on the parent block with the following rule in

your customization CSS (on page 1858):

:has([class ~= 'pr-d/codeph']) {

 overflow-wrap: break-word;

}

Notes:

• It is possible to use hyphens: auto instead of overflow-wrap: break-word.

• It is possible to use the same rule for software domain elements (e.g. <filepath> or <cmdname>).

How to Deal with Unwanted Returns in Code Blocks

There are cases where the source file contains long lines of code that need to continue onto the next line in

the rendered PDF (to wrap visually).

When the user copies the block from the PDF reader, they get two separated lines. This means that the

command fails when users copy it from the PDF to the command-line terminal (because it comes in as two

commands).

Oxygen XML Editor 27.1 | 11 - Publishing | 2039

For example, the command:

$gist = ls -l * | count -n | some more

May be rendered in the PDF on two lines:

$gist = ls -l * | count -n

| some more

And this is invalid when used in the terminal.

There is no CSS workaround for this, but you can manually format the command using a continuation

character:

• Windows

$gist = ls -l * | count -n ^

| some more

• Linux/macOS

$gist = ls -l * | count -n \

| some more

The command-line processor will automatically know that the command continues on the second line.

Notes

Notes contain an additional piece of information that calls attention to particular content. They may have

various types (note, tip, fastpath, restriction, important, remember, attention, caution, danger, other).

For information on how to add and manage mixed content before the note icons and labels, see How to

Control the Image Size in Complex Static Content (on page 2017).

How to Change Note Icons

Remember:

• The recommended icon format is SVG.

• The default size of the note icons is 24x24px.

To change the default icon for notes that do not have a @type attribute, add the following rule to your

customization CSS (on page 1858):

div.note {

 background-image: url("../img/note.svg");

}

For a note with a @type attribute set to warning, caution, or trouble, add the following corresponding CSS rule:

Oxygen XML Editor 27.1 | 11 - Publishing | 2040

div.warning {

 background-image: url("../img/warning.svg");

}

div.caution {

 background-image: url("../img/caution.svg");

}

div.trouble {

 background-image: url("../img/troubleshooting.svg");

}

For a note with @type attribute set to other and @othertype attribute set to Safety, add the following CSS rule:

div.note[type="other"][othertype=Safety] {

 background-image: url("../img/life-preserver.svg");

}

How to Change Note Colors

To change the background-color for notes that do not have a @type attribute, add the following rule to your

customization CSS (on page 1858):

*[class~="topic/note"]:not([class~="hazard-d/hazardstatement"]) {

 background-color: #50bbff;

}

For a note with a @type attribute set to restriction, add the following CSS rule:

*[class~="topic/note"].note_restriction {

 background-color: #ff5566;

}

For a note with @type attribute set to other and @othertype attribute set to Safety, add the following CSS rule:

*[class~="topic/note"][type = "other"][othertype = Safety] {

 background-color: #ffaa00;

}

Hazard

Hazards (embodied by the <hazardstatement> element) contain warning information. They are based on ANSI

Z535 and ISO 3864 standards and may have various values set for the type (note, tip, fastpath, restriction,

important, remember, attention, caution, notice, danger, warning, other).

How to Customize Hazard Statements

It is possible to customize hazard statements (<hazardstatement> elements) to add an icon, change the borders,

change the colors, and more. For example, to customize the attention type hazards, add the following rules to

your customization CSS (on page 1858):

Oxygen XML Editor 27.1 | 11 - Publishing | 2041

*[class ~= "hazard-d/hazardstatement"][type = "attention"] {

 border-width: 2px;

}

*[class ~= "hazard-d/hazardstatement"][type = "attention"],

*[class ~= "hazard-d/hazardstatement"][type = "attention"] td {

 border-color: #ff9900;

}

.hazardstatement .hazardstatement--attention {

 text-align: left;

 padding-left: 3em;

 background-position: .5em .3em;

 background-image: url("danger.svg");

 background-repeat: no-repeat;

 background-color: #ff9900;

 border-color: #ff9900;

 color: black;

}

Tip:

The default icon size is 24px and its URL is relative to the CSS stylesheet.

How to Customize Other Type Hazards

It is possible to create custom hazard types by using the @type and @othertype attributes. For example, to add a

high voltage hazard in a microwave manual:

<hazardstatement id="hazardstatement_vzy_zdc_syb" type="other" othertype="HIGH_VOLTAGE">

 <messagepanel id="messagepanel_wzy_zdc_syb">

 <typeofhazard>Electrical Shock</typeofhazard>

 <howtoavoid>Do not disassemble or repair the microwave yourself.</howtoavoid>

 </messagepanel>

 <hazardsymbol id="hazardsymbol_z4t_gjc_syb" href="electricity_icon.svg"/>

</hazardstatement>

Tip:

SVG images are preferred for the <hazardsymbol> and you should set both @height="1em" and

@width="1em" to obtain a rendering that is similar to default hazards.

To customize the hazard, add the following rules to your customization CSS (on page 1858):

/* Change the header color. */

*[othertype ~= "HIGH_VOLTAGE"] .hazardstatement--other {

Oxygen XML Editor 27.1 | 11 - Publishing | 2042

 content: "HIGH VOLTAGE"; /* Change the hazard text */

 background-color: #d84b20;

 color: unset;

}

/* Show logo in the header. */

*[othertype ~= "HIGH_VOLTAGE"] .hazardstatement--other::before {

 padding: .5rem;

 content: url("electricity_icon.svg");

}

/* Show logo in the left cell. */

*[othertype ~= "HIGH_VOLTAGE"] th {

 table-column-span: 2 !important;

}

*[othertype ~= "HIGH_VOLTAGE"] .hazardstatement--logo-col {

 display: table-column !important;

}

*[othertype ~= "HIGH_VOLTAGE"] td:first-of-type {

 display: table-cell !important;

}

*[othertype ~= "HIGH_VOLTAGE"] .hazardsymbol {

 height: 4em; /* Change the symbol dimension */

}

The result in the PDF output would look like this:

How to Remove the Hazard Symbol

Remove the Hazard Symbol from the Header

It is possible to remove the symbol that appears in the hazard header (for example, if you consider it

redundant with the symbol in the column).

To remove it, simply hide its container with the following rules in your customization CSS (on page 1858):

Oxygen XML Editor 27.1 | 11 - Publishing | 2043

.hazardsymbol-container {

 display: none;

}

Remove the Hazard Symbol on the left of the Message Panel

It is possible to remove the column that contains the hazard symbol (for example, if you want to maximize the

message panel).

To remove the caution symbols, for example, add the following rules to your customization CSS (on page

1858):

.hazardstatement_caution .hazardstatement--logo-col {

 display: none;

}

.hazardstatement_caution th {

 table-column-span: 1

}

.hazardstatement_caution td:first-of-type {

 display: none;

}

Tasks

Tasks provide step-by-step instructions that enable a user to perform an operation.

How to Add Requirements Labels

It is possible to add tasks headings by setting the args.gen.task.lbl parameter in the transformation.

However, Machinery Tasks have some extra required elements. It is possible to add labels for these

requirements by adding the following rules to your customization CSS (on page 1858):

*[class ~= "taskreq-d/reqconds"]:before,

*[class ~= "taskreq-d/reqpers"]:before,

*[class ~= "taskreq-d/supequip"]:before,

*[class ~= "taskreq-d/supplies"]:before,

*[class ~= "taskreq-d/spares"]:before,

*[class ~= "taskreq-d/safety"]:before {

 font-weight: bold;

 padding-left: 20px;

}

*[class ~= "taskreq-d/reqconds"]:before {

 content: "Conditions: ";

}

*[class ~= "taskreq-d/reqpers"]:before {

Oxygen XML Editor 27.1 | 11 - Publishing | 2044

 content: "Personnel: ";

}

*[class ~= "taskreq-d/personnel"]:before {

 content: "Number of workers: " !important;

}

*[class ~= "taskreq-d/perscat"]:before {

 content: "Category: " !important;

}

*[class ~= "taskreq-d/perskill"]:before {

 content: "Skill level: " !important;

}

*[class ~= "taskreq-d/esttime"]:before {

 content: "Time estimate: " !important;

}

*[class ~= "taskreq-d/supequip"]:before {

 content: "Equipment: " !important;

}

*[class ~= "taskreq-d/supplies"]:before {

 content: "Supplies: " !important;

}

*[class ~= "taskreq-d/spares"]:before {

 content: "Spares:";

}

*[class ~= "taskreq-d/safety"]:before {

 content: " Safety:";

}

Abbreviated Forms

When using the <abbreviated-form> element in your content, it is possible to style the subsequent occurrences

differently than the first occurrence. To achieve this, add something similar to the following rule in your

customization CSS (on page 1858):

a:has(dfn[class ~= "abbreviated-form"]) {

 color: oxy_xpath("let $cdf:= dfn return if (preceding::dfn[@keyref = $cdf/@keyref]) then 'black' else 'red'");

 text-decoration: oxy_xpath("let $cdf:= dfn return if (preceding::dfn[@keyref = $cdf/@keyref]) then 'none' else

 'underline'");

}

This example would render the first occurrence with a red color and an underline, while the subsequent

occurrences would be rendered with a black color and no underline.

Oxygen XML Editor 27.1 | 11 - Publishing | 2045

Trademarks

Trademarks are used to specify legally registered words and they are often used in technical documentation.

To specify a trademark, your DITA content could use a structure similar to this:

 <tm tmtype="tm">My Product Name</tm>

Depending on the value of the @tmtype attribute, a different symbol is appended to the text: (®, ™ , or ℠).

The structure of the merged HTML document the CSS will apply to is:

My Product Name<span

 class="- topic/tmmark tmmark ">™

How to Style the Trademark Element Text

To change the style of the entire trademark text, you can match the topic/tm class like this:

*[class ~= "topic/tm"] {

 font-weight:bold;

}

How to Style the Trademark Symbol

To change the aspect of the trademark symbol, you can use the topic/tmmark class. Usually, common fonts

already render these symbols smaller and with superscript by default. The following example does it from the

CSS:

*[class ~= "topic/tmmark"] {

 vertical-align: super;

 font-size: smaller;

}

Styling Through Custom Parameters

You can activate parts of your CSS by using custom transformation parameters that start with the

args.css.param. prefix.

These parameters are recognized by the publishing pipeline and are forwarded as synthetic attributes on the

root element of the merged map. The last part of the parameter name will become the attribute name, while

the value of the parameter will become the attribute value. The namespace of these synthetic attributes is:

http://www.oxygenxml.com/extensions/publishing/dita/css/params.

When using the DITA Map PDF - based on HTML5 & CSS or the DITA PDF - based on HTML5 & CSS

transformations, the generated attribute will be in no namespace.

Oxygen XML Editor 27.1 | 11 - Publishing | 2046

Notes:

• Make sure the name of your custom parameter does not conflict with an attribute name that

may already exist on the root element.

• Use only Latin alphanumeric characters for parameter names.

• You can set multiple styling parameters at the same time.

How to Limit the Depth of the TOC Using a Parameter

In the following example, a custom parameter is used to switch from a full depth table of contents to a flat one

that shows only the titles of the first-level topics (such as chapters, notices, or the preface).

The custom parameter is:

args.css.param.only-chapters-in-toc="yes"

The CSS that hides the topicrefs at level 2 or more:

:root[only-chapters-in-toc='yes'] *[class ~= "toc/toc"]

 > *[class ~= "map/topicref"]> *[class ~= "map/topicref"] {

 display:none;

}

The :root[a|only-chapters-in-toc='yes'] selector makes the rule activate only when the attribute is set.

How to Change the Page Size Using a Parameter

In the following example, a custom parameter is used to modify the page size. The parameter is defined in the

transformation scenario as:

args.css.param.page-size="A4"

Then in the CSS, the attribute value is extracted and used as follows:

@page {

 size: oxy_xpath('/*/@*[local-name()="page-size"][1]');

}

How to Change the Cover Page Using a Parameter

In the following example, a custom parameter is used to set the path of the cover page. The parameter points

to an image by using its URL and is defined in the transformation scenario as:

args.css.param.cover-page="file:/path/to/cover-page.svg"

Then in the CSS, the attribute value is extracted and used as follows:

Oxygen XML Editor 27.1 | 11 - Publishing | 2047

@page front-page {

 background-image: url(oxy_xpath('/*/@*[local-name()="cover-page"][1]'));

}

Controlling the Publication Content

It is possible to control the publication content by either using a DITA Bookmap or by specifying additional

parameters in the transformation scenario.

Why Use a Bookmap

Using a plain DITA map, the transformation will produce a publication with a front page, a table of contents,

chapters with content, and an index at the end. This is appropriate for most cases, but there are some use

cases where some adjustments are necessary. For example, if you want to do one of the following:

• Remove the TOC or index.

• Add a glossary.

• Change the position of the TOC or the index relative to the sibling topics.

• Add a preface, frontmatter, or backmatter with copyright notices, abstracts, list of tables, list of figures,

etc.

All of these can be achieved using a DITA <bookmap> element.

A bookmap has a more elaborate structure than a regular map. You should start by defining the title structure,

with a main title and alternative title:

<!DOCTYPE bookmap PUBLIC "-//OASIS//DTD DITA BookMap//EN" "bookmap.dtd">

<bookmap id="taskbook">

 <booktitle>

 <mainbooktitle>Publication Title</mainbooktitle>

 <booktitlealt>A very short description of the publication</booktitlealt>

 </booktitle>

Then you may define a frontmatter. For this, you can link the topics that need to appear before the main

content. You can also define the location where the table of contents will be placed. In the example below, it

appears between the abstract.dita and foreword.dita topics:

 <frontmatter>

 <topicref href="topics/abstract.dita"/>

 <booklists>

 <toc/>

 </booklists>

 <topicref href="topics/foreword.dita"/>

 </frontmatter>

Oxygen XML Editor 27.1 | 11 - Publishing | 2048

Note:

To remove the TOC from the publication, just omit the <toc> element from the <booklists> element.

Next, the topics are grouped into chapters:

 ...

 <chapter href="topics/installation.dita" />

 ...

Note:

If you need more levels, you can use the <part> element and then group your chapters under it.

At the end, you could define the structure of the backmatter. Just like for the frontmatter, you can include some

topics and some generated content (such as the index). In the example below, the glossary is defined to come

after the index, followed by a list of figures, and a list of tables. At the very end, there is a topic with some

thank you notes:

 <backmatter>

 <topicref href="topics/conclusion.dita"/>

 <booklists>

 <indexlist/>

 <glossarylist>

 <topicref href="topics/xp.dita" keys="xp" print="yes" />

 <topicref href="topics/anti_lock_braking_system.dita" keys="abs" print="yes" />

 </glossarylist>

 <figurelist/>

 <tablelist/>

 </booklists>

 <topicref href="topics/thanks.dita"/>

 </backmatter>

As you can see, the bookmap offers more control over the final content of the publication than a regular map.

It also offers more options for controlling the metadata that will go in the PDF (see the Metadata (on page

1916) topic).

How to Omit the Front Page, TOC, Glossary, Index for a Plain DITA Map

For a plain DITA map, there are no elements that allow you to control if and where to place the generated

content such as the title page, table of contents, list of tables, glossary, or index. For the most common use-

case, when you want to hide them all and just keep the content, you can use the transformation parameter

hide.frontpage.toc.index.glossary. See: Transformation Parameters (on page 1833).

Oxygen XML Editor 27.1 | 11 - Publishing | 2049

Related Information:

How to Remove Entries from the TOC (on page 1950)

How to Hide the TOC (on page 1951)

How to Make Chapters Look Like Individual Publications

Note:

This topic is only applicable for the DITA Map PDF - based on HTML5 & CSS transformation scenario.

Sometimes you want to make each chapter independent (i.e. it can be read separately, as a separate part of

your publication). For this, you need the page counter, figure, and table counters to restart at each chapter. You

can control this by using the args.css.param.numbering (on page 1932) command-line parameter.

In addition to numbering, you can force the creation of a chapter TOC (on page 1951).

XSLT Extensions for PDF Transformations

Since PDF output is primarily obtained by running XSLT transformations over the DITA input files,

one customization method would be to override the default XSLT templates that are used by the PDF

transformation.

The pdf-css-html5 transformation type uses two stages to transform the merged DITA map (the one that

aggregates all the topics) to HTML5:

1. Stage 1: Makes some changes on the merged map (on page 1860) and the result is a modified merged

map. This stage can be altered by implementing the com.oxygenxml.pdf.css.xsl.merged2merged

XSLT extension point. This extension overrides the stylesheets found in the following folder: DITA-OT-

DIR\plugins\com.oxygenxml.pdf.css\xsl\merged2merged.

Note:

Use this when you need to filter DITA content.

2. Stage 2: Transforms the merged map (on page 1860) to HTML5 and the result is a single HTML

document. This stage can be altered by implementing the com.oxygenxml.pdf.css.xsl.merged2html5

XSLT extension point. This extension overrides the stylesheets found in the following folder: DITA-OT-

DIR\plugins\com.oxygenxml.pdf.css\xsl\merged2html5.

Note:

Use this when you need to change the HTML structures generated for a specific DITA element.

These extension points can be used either from a Publishing Template or a DITA-OT extension plugin.

Oxygen XML Editor 27.1 | 11 - Publishing | 2050

How to Use XSLT Extension Points for PDF Output from a Publishing
Template
This section contains some common examples of customizations using both XSLT and CSS stylesheets.

These stylesheets must be used as CSS resources and XSLT extension points inside an Oxygen Publishing

Template.

Tip:

The XSLT extension points are called on specific files during two different phases of the process:

merged2merged (on page 1830) and merged2html5 (on page 1831).

How to Style Codeblocks with a Zebra Effect

A possible requirement for your <codeblock> elements could be to alternate the background color on each line.

Some advantages of this technique is that you can clearly see when text from the <codeblock> is wrapped.

Note:

Adding this styling will remove syntax highlights on codeblocks.

This effect can be done by altering the HTML5 output, creating a div for each line from the code block, then

styling them.

To add this functionality using an Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In this folder, create an XSL file (for example, named merged2html5Extension.xsl) with the

following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' pr-d/codeblock ')]">

 <xsl:variable name="nm">

 <xsl:next-match/>

 </xsl:variable>

 <xsl:apply-templates select="$nm" mode="zebra"/>

 </xsl:template>

Oxygen XML Editor 27.1 | 11 - Publishing | 2051

 <xsl:template match="node() | @*" mode="zebra">

 <xsl:copy>

 <xsl:apply-templates select="node() | @*" mode="#current"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="*[contains(@class, ' pr-d/codeblock ')]" mode="zebra">

 <xsl:element name="{name()}">

 <xsl:copy-of select="@*"/>

 <xsl:attribute name="class" select="concat(@class, ' zebra')"/>

 <xsl:analyze-string regex="\n" select=".">

 <xsl:matching-substring/>

 <xsl:non-matching-substring>

 <div>

 <xsl:value-of select="."/>

 </div>

 </xsl:non-matching-substring>

 </xsl:analyze-string>

 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the <codeblock> structure. For example:

.zebra {

 padding: 0;

}

.zebra > *:nth-of-type(odd) {

Oxygen XML Editor 27.1 | 11 - Publishing | 2052

 background-color: lightgray;

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Remove the Related Links Section

Suppose that you want the related links sections to be removed from the PDF output.

To add this functionality using an Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In this folder, create an XSL file (for example, named merged2mergedExtension.xsl) with the

following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' topic/related-links ')]">

 <!-- Remove. -->

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2merged XSLT extension point:

<publishing-template>

 ...

Oxygen XML Editor 27.1 | 11 - Publishing | 2053

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

How to Wrap Words in Markup

Suppose you want compound words that contain hyphens (or any other criteria) to be wrapped with inline

elements (such as the HTML <code> element).

To add this functionality using an Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In this folder, create an XSL file (for example, named merged2htmlExtension.xsl) with the

following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="text()">

 <xsl:variable name="txt">

 <xsl:next-match/>

 </xsl:variable>

 <xsl:analyze-string regex="(\w|\-)+" select="$txt">

 <xsl:matching-substring>

 <!-- A word -->

 <xsl:choose>

 <xsl:when test="contains(., '-')">

 <!-- A compound word -->

 <code class="compound-word">

Oxygen XML Editor 27.1 | 11 - Publishing | 2054

 <xsl:value-of select="."/>

 </code>

 </xsl:when>

 <xsl:otherwise>

 <!-- A simple word -->

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:matching-substring>

 <xsl:non-matching-substring>

 <!-- Not a word -->

 <xsl:value-of select="."/>

 </xsl:non-matching-substring>

 </xsl:analyze-string>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2merged XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

How to Convert Definition Lists into Tables

Suppose you want your definitions lists (<dl>) to be displayed as tables in your PDF output.

To add this functionality using an Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

Oxygen XML Editor 27.1 | 11 - Publishing | 2055

4. In this folder, create an XSL file (for example, named merged2html5Extension.xsl) with the

following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' topic/dl ')]">

 <xsl:call-template name="setaname"/>

 <xsl:apply-templates select="

 *[contains(@class,

 ' ditaot-d/ditaval-startprop ')]" mode="out-of-line"/>

 <!-- Wrap in a table -->

 <table>

 <xsl:call-template name="commonattributes"/>

 <xsl:call-template name="setid"/>

 <xsl:apply-templates/>

 </table>

 <xsl:apply-templates select="

 *[contains(@class,

 ' ditaot-d/ditaval-endprop ')]" mode="out-of-line"/>

 </xsl:template>

 <xsl:template match="*[contains(@class, ' topic/dlentry ')]">

 <!-- Wrap in a table row -->

 <tr>

 <xsl:call-template name="commonattributes"/>

 <xsl:call-template name="setidaname"/>

 <xsl:apply-templates/>

 </tr>

 </xsl:template>

 <xsl:template match="

 *[contains(@class, ' topic/dd ')] |

 *[contains(@class, ' topic/dt ')]">

 <!-- Wrap in a cell -->

 <td>

 <xsl:call-template name="commonattributes"/>

 <xsl:call-template name="setidaname"/>

 <xsl:apply-templates select="

 ../*[contains(@class,

Oxygen XML Editor 27.1 | 11 - Publishing | 2056

 ' ditaot-d/ditaval-startprop ')]" mode="out-of-line"/>

 <xsl:apply-templates/>

 <xsl:apply-templates select="

 ../*[contains(@class,

 ' ditaot-d/ditaval-endprop ')]" mode="out-of-line"/>

 </td>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

How to Display Footnotes Below Tables

In your PDF output, you may want to group all the footnotes contained in a table just below it instead of having

them displayed at the bottom of the page.

To add this functionality, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2mergedExtension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:opentopic-func="http://www.idiominc.com/opentopic/exsl/function"

Oxygen XML Editor 27.1 | 11 - Publishing | 2057

 exclude-result-prefixes="xs opentopic-func"

 version="3.0">

 <!--

 Match only top level tables (i.e tables that are not nested in other tables),

 that contains some footnotes.

 -->

 <xsl:template match="*[contains(@class, 'topic/table')]

 [not(ancestor::*[contains(@class, 'topic/table')])]

 [//*[contains(@class, 'topic/fn')]]">

 <xsl:next-match>

 <xsl:with-param name="top-level-table" select="." tunnel="yes"/>

 </xsl:next-match>

 <!-- Create a list with all the footnotes from the current table. -->

 <ol class="- topic/ol " outputclass="table-fn-container">

 <xsl:for-each select=".//*[contains(@class, 'topic/fn')]">

 <!--

 Try to preserve the footnote ID, if available, so that the xrefs will have a target.

 -->

 <li class="- topic/li " id="{if(@id) then @id else generate-id(.)}"

 outputclass="table-fn">

 <xsl:copy-of select="@callout"/>

 <xsl:apply-templates select="node()"/>

 </xsl:for-each>

 </xsl:template>

 <!--

 The footnotes that have an ID must be ignored, they are accessible only

 through existing xrefs (already present in the merged.xml file).

 The above template already made a copy of these footnotes in the OL element

 so it is not a problem if markup is not generated for them in the cell.

 -->

 <xsl:template

 match="*[contains(@class, 'topic/entry')]//*[contains(@class, 'topic/fn')][@id]"/>

 <!--

 The xrefs to footnotes with IDs inside table-cells. We need to recalculate

 their indexes if their referenced footnote is also in the table.

 -->

Oxygen XML Editor 27.1 | 11 - Publishing | 2058

 <xsl:template match="*[contains(@class, 'topic/xref')][@type='fn']

 [ancestor::*[contains(@class, 'topic/entry')]]">

 <xsl:param name="top-level-table" tunnel="yes"/>

 <xsl:variable name="destination" select="opentopic-func:getDestinationId(@href)"/>

 <xsl:variable name="fn" select="

 $top-level-table//*[contains(@class, 'topic/fn')][@id = $destination]"/>

 <xsl:choose>

 <xsl:when test="$fn">

 <!-- There is a reference in the table, recalculate index. -->

 <xsl:variable name="fn-number" select="

 index-of($top-level-table//*[contains(@class, 'topic/fn')], $fn)"/>

 <xsl:copy>

 <xsl:apply-templates select="@*"/>

 <xsl:apply-templates select="$fn/@callout"/>

 <xsl:apply-templates select="node()

 except (text(), *[contains(@class, 'hi-d/sup')])"/>

 <sup class="+ topic/ph hi-d/sup ">

 <xsl:apply-templates select="child::*[contains(@class, 'hi-d/sup')]/@*"/>

 <xsl:value-of select="$fn-number"/>

 </sup>

 </xsl:copy>

 </xsl:when>

 <xsl:otherwise>

 <!-- There is no reference in the table, keep original index. -->

 <xsl:next-match/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!--

 The footnotes without ID inside table-cells. They are copied in the OL element, but have

 no xrefs pointing to them (because they have no ID), so xrefs are generated.

 -->

 <xsl:template

 match="*[contains(@class, 'topic/entry')]//*[contains(@class, 'topic/fn')][not(@id)]">

 <!-- Determine the footnote index in the document order. -->

 <xsl:param name="top-level-table" tunnel="yes"/>

 <xsl:variable name="fn-number" select="

 index-of($top-level-table//*[contains(@class, 'topic/fn')], .)"/>

 <xref type="fn" class="- topic/xref "

 href="#{generate-id(.)}" outputclass="table-fn-call">

 <xsl:copy-of select="@callout"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 2059

 <!-- Generate an extra <sup>, identical to what DITA-OT generates for other xrefs. -->

 <sup class="+ topic/ph hi-d/sup ">

 <xsl:value-of select="$fn-number"/>

 </sup>

 </xref>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2merged XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the glossary structure. For example:

/* Customize footnote calls, inside the table. */

*[outputclass ~= 'table-fn-call'] {

 line-height: none;

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'][callout] *[class ~= "hi-d/sup"] {

 content: oxy_xpath("ancestor::*[contains(@class, 'topic/xref')]/@callout");

}

/* Customize the list containing all the table footnotes. */

*[outputclass ~= 'table-fn-container'] {

 border-top: 1pt solid black;

 counter-reset: table-footnote;

}

/* Customize footnotes display, below the table. */

*[outputclass ~= 'table-fn'] {

 font-size: smaller;

 counter-increment: table-footnote;

}

Oxygen XML Editor 27.1 | 11 - Publishing | 2060

*[outputclass ~= 'table-fn']::marker {

 font-size: smaller;

 content: "(" counter(table-footnote) ")";

}

*[outputclass ~= 'table-fn'][callout]::marker {

 content: "(" attr(callout) ")";

}

/* Customize xrefs pointing to footnotes, inside the table. */

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'] {

 color: unset;

 text-decoration: none;

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn']:after {

 content: none;

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'] *[class ~= "hi-d/sup"]:before {

 content: "(";

}

*[class ~= "topic/table"] *[class ~= "topic/xref"][type = 'fn'] *[class ~= "hi-d/sup"]:after {

 content: ")";

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Wrap Scientific Numbers in Tables Cells

In your PDF output, you may need to wrap scientific numbers on two lines when they are included in table

cells.

To add this functionality, use an Oxygen Publishing Template and follow these steps:

Oxygen XML Editor 27.1 | 11 - Publishing | 2061

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <!-- Matches text from table cells. -->

 <xsl:template match="*[contains(@class, ' topic/entry ')]/text()">

 <xsl:analyze-string select="." regex="[0-9]\.[0-9]{{2}}e-[0-9]{{2}}">

 <!-- The cell contains a scientific number like 1.23e-08. -->

 <xsl:matching-substring>

 <xsl:variable name="text" select="concat(substring-before(., 'e'),

 'e​', substring-after(., 'e'))"/>

 <xsl:value-of select="$text"/>

 </xsl:matching-substring>

 <xsl:non-matching-substring>

 <xsl:value-of select="."/>

 </xsl:non-matching-substring>

 </xsl:analyze-string>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 2062

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

How to Use a Bullet for Tasks that Contain a Single Step

If a DITA Task document only contains one list item (a single <step> element), you probably want it to be

rendered the same as an unordered list (displayed with a bullet instead of a number), as in the following

example:

...

<steps>

 <step>

 <cmd>My single step</cmd>

 </step>

</steps>

...

Normally, the output will be rendered as:

 1. The step

instead of:

 o The step

To change the default rendering so that a single step will be rendered with a bullet instead of a number, use an

Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' task/step ')][count(../*[contains

(@class, ' task/step ')]) = 1]">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:attribute name="outputclass" select="concat(@outputclass, ' single ')"/>

 <xsl:apply-templates/>

Oxygen XML Editor 27.1 | 11 - Publishing | 2063

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the glossary structure. For example:

*[outputclass ~= "single"] {

 list-style-type:circle !important;

 margin-left:2em;

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Change the Critical Dates Format

By default, the dates are entered in a YYYY-MM-DD format (where YYYY is the year, MM is the number of the

month, and DD is the number of the day. You can change the format (for example, to something like January

1, 2020) using an XSLT extension.

Oxygen XML Editor 27.1 | 11 - Publishing | 2064

To add this functionality, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2mergedExtension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="

 *[contains(@class, 'topic/created')]/@date |

 *[contains(@class, 'topic/revised')]/@modified">

 <xsl:attribute name="{name()}">

 <xsl:value-of select="format-date(., '[MNn] [D01], [Y0001]')"/>

 </xsl:attribute>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2merged XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

Related information

Formatting Dates and Times in XSLT

https://www.oreilly.com/library/view/xslt-2nd-edition/9780596527211/ch04s05.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2065

How to Remove Links from Terms

Your topics might contain multiple references to the same <term>. These terms can further be explained in the

glossary. In this case, you may want to only keep the first occurrence of this term to be a link to the glossary

and display the other terms as text.

To add this functionality, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' topic/term ')]" name="topic.term">

 <!-- Save the current @href value -->

 <xsl:variable name="current-href" select="@href"/>

 <!-- Get the closest parent topic -->

 <xsl:variable name="closest-parent"

 select="ancestor::*[contains(@class, ' topic/topic ')][1]"/>

 <!-- Get the first <term> having the same href -->

 <xsl:variable name="first-term-with-same-href" select="($closest-parent//

 *[contains(@class, ' topic/term ')][@href=$current-href])[1]"/>

 <!-- Call the HTML5 default template -->

 <xsl:variable name="result">

 <xsl:next-match/>

 </xsl:variable>

 <!-- Call the copy template that will remove the links -->

 <xsl:apply-templates select="$result" mode="remove-extra-links">

 <xsl:with-param name="is-first-term-with-same-href"

 select="generate-id(.) = generate-id($first-term-with-same-href)" tunnel="yes"/>

 </xsl:apply-templates>

 </xsl:template>

 <xsl:template match="node() | @*" mode="remove-extra-links">

 <xsl:copy>

Oxygen XML Editor 27.1 | 11 - Publishing | 2066

 <xsl:apply-templates select="node() | @*" mode="#current"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="a" mode="remove-extra-links">

 <xsl:param name="is-first-term-with-same-href" tunnel="yes"/>

 <xsl:choose>

 <!-- Process the first term as a link -->

 <xsl:when test="$is-first-term-with-same-href">

 <xsl:next-match/>

 </xsl:when>

 <xsl:otherwise>

 <!-- Process the other terms as text -->

 <xsl:copy-of select="child::*"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

How to Display Glossary as a Table

Suppose you want to display the content of your Glossary as a table, to condense the information for one

entry on a single line.

Oxygen XML Editor 27.1 | 11 - Publishing | 2067

Remember:

Make sure all the glossary is contained within a single <glossgroup> element.

To add this functionality, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:dita2html="http://dita-ot.sourceforge.net/ns/200801/dita2html"

 exclude-result-prefixes="xs dita2html" version="3.0">

 <!-- Create a table that will contain all the glossentries contained in the glossgroup. -->

 <xsl:template name="gen-topic">

 <xsl:param name="nestlevel" as="xs:integer">

 <xsl:choose>

 <!-- Limit depth for historical reasons, could allow any depth. -->

 <!-- Previously limit was 5. -->

 <xsl:when

 test="count(ancestor::*[contains(@class, ' topic/topic ')]) > 9"

 >9</xsl:when>

 <xsl:otherwise>

 <xsl:sequence

 select="count(ancestor::*[contains(@class, ' topic/topic ')])"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:param>

 <xsl:choose>

 <xsl:when test="parent::dita and not(preceding-sibling::*)">

 <!-- Do not reset xml:lang if it is already set on <html> -->

 <!-- Moved outputclass to the body tag -->

 <!-- Keep ditaval based styling at this point -->

 <!-- (replace DITA-OT 1.6 and earlier call to gen-style) -->

 <xsl:apply-templates

 select="*[contains(@class, ' ditaot-d/ditaval-startprop ')]/@style"

 mode="add-ditaval-style"/>

 </xsl:when>

 <xsl:otherwise>

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossgroup.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2068

 <xsl:call-template name="commonattributes">

 <xsl:with-param name="default-output-class"

 select="concat('nested', $nestlevel)"/>

 </xsl:call-template>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:call-template name="gen-toc-id"/>

 <xsl:call-template name="setidaname"/>

 <xsl:choose>

 <xsl:when test="contains(@class, 'glossgroup/glossgroup')">

 <!-- Custom processing for glossgroup. -->

 <xsl:apply-templates select="*[contains(@class, 'topic/title')]"/>

 <table class="- glossgroup/table table">

 <thead class="- glossgroup/thead thead">

 <tr class="- glossgroup/row row">

 <th class="- glossgroup/entry entry">Acronym</th>

 <th class="- glossgroup/entry entry">Term</th>

 <th class="- glossgroup/entry entry">Full Term</th>

 <xsl:if

 test="exists(//*[contains(@class, 'glossentry/glossdef')])">

 <th class="- glossgroup/entry entry">Definition</th>

 </xsl:if>

 </tr>

 </thead>

 <xsl:apply-templates

 select="*[contains(@class, 'glossentry/glossentry')]"/>

 </table>

 <xsl:apply-templates select="

 * except (*[contains(@class, 'topic/title')]

 | *[contains(@class, 'glossentry/glossentry')])"/>

 </xsl:when>

 <xsl:otherwise>

 <!-- Default processing. -->

 <xsl:apply-templates/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!-- Create a row for each glossentry. -->

 <xsl:template

 match="*[contains(@class, 'glossentry/glossentry')]

 [parent::*[contains(@class, 'glossgroup/glossgroup')]]">

Oxygen XML Editor 27.1 | 11 - Publishing | 2069

 <xsl:variable name="glossentry" as="node()">

 <xsl:next-match/>

 </xsl:variable>

 <tr>

 <xsl:copy-of select="$glossentry/@*"/>

 <xsl:copy-of

 select="$glossentry/*[contains(@class, 'glossentry/glossAlt')]"/>

 <xsl:copy-of

 select="$glossentry/*[contains(@class, 'glossentry/glossterm')]"/>

 <xsl:copy-of

 select="$glossentry/*[contains(@class, 'glossentry/glossSurfaceForm')]"/>

 <xsl:copy-of

 select="$glossentry/*[contains(@class, 'glossentry/glossdef')]"/>

 <xsl:copy-of select="

 $glossentry/* except $glossentry/*[contains(@class, 'glossentry/glossAlt')

 or contains(@class, 'glossentry/glossterm')

 or contains(@class, 'glossentry/glossSurfaceForm')

 or contains(@class, 'glossentry/glossdef')]"/>

 </tr>

 </xsl:template>

 <!-- Process only glossBody's children nodes. -->

 <xsl:template

 match="*[contains(@class, 'glossentry/glossBody')]

 [ancestor::*[contains(@class, 'glossgroup/glossgroup')]]">

 <xsl:apply-templates/>

 </xsl:template>

 <!-- Create a cell for each glossterm, glossSurfaceForm and glossAlt. -->

 <xsl:template match="

 *[contains(@class, 'glossentry/glossterm')]

 [ancestor::*[contains(@class, 'glossgroup/glossgroup')]] |

 *[contains(@class, 'glossentry/glossSurfaceForm')]

 [ancestor::*[contains(@class, 'glossgroup/glossgroup')]] |

 *[contains(@class, 'glossentry/glossAlt')]

 [ancestor::*[contains(@class, 'glossgroup/glossgroup')]]">

 <xsl:variable name="glossContent" as="node()">

 <xsl:next-match/>

 </xsl:variable>

 <td>

 <xsl:copy-of select="$glossContent/@*"/>

 <xsl:copy-of select="normalize-space(string-join($glossContent//text()))"

Oxygen XML Editor 27.1 | 11 - Publishing | 2070

 />

 </td>

 </xsl:template>

 <!-- Create a cell for each glossdef. -->

 <xsl:template

 match="*[contains(@class, 'glossentry/glossdef')]

 [ancestor::*[contains(@class, 'glossgroup/glossgroup')]]">

 <td>

 <xsl:call-template name="commonattributes"/>

 <xsl:apply-templates/>

 </td>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the glossary structure. For example:

*[class ~= "glossgroup/table"] {

 width: 100%;

 border: 1px solid black;

 border-collapse: collapse;

}

*[class ~= "glossgroup/table"] th {

 background-color: lightgray;

}

*[class ~= "glossgroup/table"] th,

*[class ~= "glossgroup/table"] td {

Oxygen XML Editor 27.1 | 11 - Publishing | 2071

 border: 1px solid black;

 padding: 0.3em !important;

 vertical-align: inherit !important;

}

/* Remove glossSurfaceForm */

th:nth-of-type(3),

*[class ~= "glossentry/glossSurfaceForm"] {

 display: none;

}

/* Discard the default glossterm layout */

*[class ~= "glossentry/glossterm"] {

 font-size: unset;

 font-weight: unset;

}

Note:

The <glossSurfaceForm> removal part is optional. It is present as an example of how to fully

remove a column.

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Include Sections in the Mini TOC

By default, the Mini TOC only displays the child topics of a given chapter topic. To add the possibility of also

displaying the child sections, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

Oxygen XML Editor 27.1 | 11 - Publishing | 2072

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2mergedExtension.xsl)

with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="3.0"

 xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/"

 xmlns:opentopic-index="http://www.idiominc.com/opentopic/index"

 xmlns:opentopic="http://www.idiominc.com/opentopic"

 xmlns:oxy="http://www.oxygenxml.com/extensions/author" xmlns:saxon="http://saxon.sf.net/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="#all">

 <xsl:template match="*[contains(@class, ' topic/topic ')]">

 <xsl:choose>

 <xsl:when test="

 ($args.chapter.layout = 'MINITOC' or

 $args.chapter.layout = 'MINITOC-BOTTOM-LINKS') and

 oxy:is-chapter(/, oxy:get-topicref-for-topic(/, @id)) and

 *[contains(@class, ' topic/topic ')]">

 <!-- Minitoc. -->

 <xsl:copy>

 <xsl:apply-templates select="@*"/>

 <xsl:apply-templates select="*[contains(@class, ' topic/title ')]"/>

 <xsl:apply-templates select="*[contains(@class, ' topic/prolog ')]"/>

 <xsl:apply-templates select="*[contains(@class, ' topic/titlealts ')]"/>

 <div>

 <xsl:choose>

 <xsl:when test="$args.chapter.layout = 'MINITOC'">

 <xsl:attribute name="class">- topic/div chapter/minitoc </xsl:attribute>

 <xsl:call-template name="generate-minitoc-links"/>

 <xsl:call-template name="generate-minitoc-desc"/>

 </xsl:when>

 <xsl:when test="$args.chapter.layout = 'MINITOC-BOTTOM-LINKS'">

<xsl:attribute name="class">- topic/div chapter/minitoc chapter/minitoc-bottom </xsl:attribute>

 <xsl:call-template name="generate-minitoc-desc"/>

 <xsl:call-template name="generate-minitoc-links"/>

 </xsl:when>

 </xsl:choose>

 </div>

 <xsl:apply-templates select="*[contains(@class, ' topic/topic ')]"/>

 </xsl:copy>

 </xsl:when>

 <xsl:otherwise>

 <!-- No minitoc. -->

 <xsl:next-match/>

Oxygen XML Editor 27.1 | 11 - Publishing | 2073

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!--

 The chapter topic content. This has the role of describing the chapter.

 -->

 <xsl:template name="generate-minitoc-desc">

 <div class="- topic/div chapter/minitoc-desc ">

 <xsl:apply-templates select="

 *[not(contains(@class, ' topic/title ')) and

 not(contains(@class, ' topic/prolog ')) and

 not(contains(@class, ' topic/titlealts ')) and

 not(contains(@class, ' topic/topic ')) and

 not(contains(@class, ' topic/section '))

]"/>

 </div>

 </xsl:template>

 <!--

 Child links.

 -->

 <xsl:template name="generate-minitoc-links">

 <div class="- topic/div chapter/minitoc-links ">

 <related-links class="- topic/related-links ">

 <linklist class="- topic/linklist ">

 <desc class="- topic/desc ">

 <ph class="- topic/ph chapter/minitoc-label ">

 <xsl:call-template name="getVariable">

 <xsl:with-param name="id" select="'Mini Toc'"/>

 </xsl:call-template>

 </ph>

 </desc>

 <xsl:apply-templates select="

 *[contains(@class, ' topic/topic ')] |

 descendant-or-self::*[contains(@class, ' topic/section ')]"

 mode="in-this-chapter-list"/>

 </linklist>

 </related-links>

 </div>

 </xsl:template>

 <xsl:template match="

 *[contains(@class, ' topic/topic ')

 or contains(@class, ' topic/section ')]" mode="in-this-chapter-list">

Oxygen XML Editor 27.1 | 11 - Publishing | 2074

 <xsl:variable name="link-type" select="

 if (contains(@class, ' topic/section ')) then

 'section'

 else

 'topic'"/>

 <link class="- topic/link " href="#{@id}" type="{$link-type}" role="child">

 <linktext class="- topic/linktext ">

 <xsl:value-of select="*[contains(@class, ' topic/title ')]"/>

 </linktext>

 </link>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2merged XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.mergedmerged"

 file="xslt/merged2mergedExtension.xsl"/>

 </xslt>

 <parameters>

 <parameter name="args.chapter.layout" value="MINITOC"/>

 </parameters>

Note:

This solution works also with args.chapter.layout set to MINITOC-BOTTOM-LINKS.

6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes and run the transformation scenario.

How to Add a Link to the TOC

For making the navigation easier in the PDF, you may want to add a link that sends the reader back to the table

of contents. To add this link, use an Oxygen Publishing Template and follow these steps:

Oxygen XML Editor 27.1 | 11 - Publishing | 2075

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <!-- Add an anchor after the TOC title. -->

 <xsl:template match="*[contains(@class, 'toc/title')]" mode="div-it">

 <div>

 <xsl:attribute name="class" select="'- toc/anchor anchor'"/>

 <xsl:attribute name="id" select="'toc-anchor'"/>

 </div>

 <xsl:next-match/>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the glossary structure. For example:

@page chapter:first:left:right {

 @top-right {

 content: "Back to Table of Contents";

 -oxy-link: "#toc-anchor";

 color: #337ab7;

Oxygen XML Editor 27.1 | 11 - Publishing | 2076

 }

}

@page chapter:left:right {

 @top-right {

 content: "Back to Table of Contents";

 -oxy-link: "#toc-anchor";

 color: #337ab7;

 }

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Repeat Note Titles After a Page Break

Suppose that you have large notes that split between pages or columns and you want the note icon and title

to be displayed on the next page/column. To add this functionality, use an Oxygen Publishing Template and

follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <!-- Display notes titles and content in table cells. -->

 <xsl:template match="*" mode="process.note.common-processing">

Oxygen XML Editor 27.1 | 11 - Publishing | 2077

 <xsl:param name="type" select="@type"/>

 <xsl:param name="title">

 <xsl:call-template name="getVariable">

 <xsl:with-param name="id" select="concat(upper-case(substring($type, 1, 1)),

substring($type, 2))"/>

 </xsl:call-template>

 </xsl:param>

 <table>

 <xsl:call-template name="commonattributes">

 <xsl:with-param name="default-output-class"

select="string-join(($type, concat('note_', $type)), ' ')"/>

 </xsl:call-template>

 <xsl:call-template name="setidaname"/>

 <!-- Normal flags go before the generated title; revision flags only go on the content. -->

 <xsl:apply-templates select="*[contains(@class, ' ditaot-d/ditaval-startprop ')]

/prop" mode="ditaval-outputflag"/>

 <thead>

 <tr>

 <th class="note__title">

 <xsl:copy-of select="$title"/>

 <xsl:call-template name="getVariable">

 <xsl:with-param name="id" select="'ColonSymbol'"/>

 </xsl:call-template>

 </th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[contains(@class, ' ditaot-d/ditaval-startprop ')]

/revprop" mode="ditaval-outputflag"/>

 <xsl:apply-templates/>

 <!-- Normal end flags and revision end flags both go out after the content. -->

 <xsl:apply-templates select="*[contains(@class, ' ditaot-d/ditaval-endprop ')]"

mode="out-of-line"/>

 </td>

 </tr>

 </tbody>

 </table>

 </xsl:template>

Oxygen XML Editor 27.1 | 11 - Publishing | 2078

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the glossary structure. For example:

table.note th,

table.note td {

 text-align: left;

 padding: .75em .5em .75em 3em;

}

table.note {

 background-repeat: no-repeat;

 background-image: url("../img/note.svg");

 background-position: .5em .5em;

 border: 1px solid;

}

table.note.note_other { background-image: none; }

table.warning { background-image: url("../img/warning.svg"); }

table.caution { background-image: url("../img/caution.svg"); }

table.trouble { background-image: url("../img/troubleshooting.svg"); }

table.important { background-image: url("../img/important.svg"); }

table.attention { background-image: url("../img/attention.svg"); }

table.notice { background-image: url("../img/notice.svg"); }

table.remember { background-image: url("../img/remember.svg"); }

table.fastpath { background-image: url("../img/fastpath.svg"); }

table.restriction { background-image: url("../img/restriction.svg"); }

table.danger { background-image: url("../img/danger.svg"); }

table.tip { background-image: url("../img/tip.svg"); }

Oxygen XML Editor 27.1 | 11 - Publishing | 2079

table.note {

 background-color: rgba(0, 120, 160, 0.09);

 border-color: #0078A0;

}

table.note_danger,

table.note_caution {

 background-color: rgba(255, 202, 45, 0.1);

 border-color: #606060;

}

table.note_warning,

table.note_attention,

table.note_important {

 background-color: rgba(255, 202, 45, 0.1);

 border-color: #FFCA2D;

}

table.note_restriction {

 background-color: rgba(255, 226, 225, 0.32);

 border-color: #FF342D;

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Create a Custom Code Block Highlighter

You may want to add additional highlighters in your <codeblock> elements (for example, to highlight method

names or arguments). To add this functionality, use an Oxygen Publishing Template and follow these steps:

1. If you have not already created a Publishing Template, you need to create one. For details, see How to

Create a Publishing Template (on page 1853).

2. Link the folder associated with the publishing template to your current project in the Project view.

3. Using the Project view, create an xslt folder inside the project root folder.

Oxygen XML Editor 27.1 | 11 - Publishing | 2080

4. In the newly created folder, create an XSL file (for example, named merged2html5Extension.xsl)

with a custom template matching the codeblock for a given language (based on the @outputclass):

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, 'pr-d/codeblock')]

 [@outputclass='language-python']/text()">

 <xsl:analyze-string select="." regex="\(([\w,\s]+)\):">

 <xsl:matching-substring>

 <xsl:text>(</xsl:text>

 <xsl:attribute name="class" select="'hl-arguments'"/>

 <xsl:value-of select="regex-group(1)"/>

 <xsl:text>):</xsl:text>

 </xsl:matching-substring>

 <xsl:non-matching-substring>

 <xsl:next-match/>

 </xsl:non-matching-substring>

 </xsl:analyze-string>

 </xsl:template>

</xsl:stylesheet>

5. Open the template descriptor file (on page 1848) associated with your publishing

template (the .opt file) and set the XSLT stylesheet created in the previous step with the

com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

<publishing-template>

 ...

 <pdf>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="xslt/merged2html5Extension.xsl"/>

 </xslt>

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with

rules that style the highlight span. For example:

Oxygen XML Editor 27.1 | 11 - Publishing | 2081

.hl-arguments {

 color: orange;

}

7. Open the template descriptor file (on page 1848) associated with your publishing template (the .opt

file) and reference your custom CSS file in the resources element:

<publishing-template>

 ...

 <pdf>

 ...

 <resources>

 <css file="css/custom.css"/>

 </resources>

8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.

9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes and run the transformation scenario.

How to Use XSLT Extension Points for PDF Output from a DITA-OT Plugin
The examples in this section demonstrate how to use XSLT extension points from a DITA-OT plugin.

Instead of directly adding plugins inside the embedded DITA-OT, it is highly recommended to use an external

Oxygen Publishing Engine so that you will not lose any of your customizations anytime you upgrade the

product in the future.

You just need to follow these steps before starting your custom DITA-OT plugins:

1. Download the Oxygen Publishing Engine and unzip it inside a folder where you have full write access.

2. Create your custom plugin(s) inside the DITA-OT-DIR\plugins\ folder.

3. Go to Options > Preferences > DITA, set the DITA Open Toolkit option to Custom, and specify the path

to the unzipped folder.

Warning:

The path must end with: oxygen-publishing-engine.

How to Style Codeblocks with a Zebra Effect

Suppose you want your codeblocks to have a particular background color for one line, and another color

for the next line. One advantage of this coloring technique is that you can clearly see when text from the

codeblock is wrapped.

This effect can be done by altering the HTML5 output, creating a <div> for each line from the code block, then

styling them.

To add this functionality using a DITA-OT plugin, follow these steps:

http://www.dita-ot.org/dev/topics/custom-plugins.html
https://www.oxygenxml.com/publishing_engine/download.html
https://www.oxygenxml.com/publishing_engine/download.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2082

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.pdf.custom.codeblocks).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your

customization stylesheet. For example:

<plugin id="com.oxygenxml.pdf.custom.codeblocks">

 <feature extension="com.oxygenxml.pdf.css.xsl.merged2html5"

 file="custom_codeblocks.xsl"/>

</plugin>

3. Create your customization stylesheet (for example, custom_codeblocks.xsl) with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' pr-d/codeblock ')]">

 <div class='zebra'>

 <xsl:analyze-string regex="\n" select=".">

 <xsl:matching-substring/>

 <xsl:non-matching-substring>

 <div><xsl:value-of select="."/></div>

 </xsl:non-matching-substring>

 </xsl:analyze-string>

 </div>

 </xsl:template>

</xsl:stylesheet>

4. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box.

5. Create a custom CSS file with rules that style the codeblock structure. For example:

div.zebra {

 font-family:courier, fixed, monospace;

 white-space:pre-wrap;

}

div.zebra > *:nth-of-type(odd){

 background-color: silver;

}

6. Edit a DITA Map PDF - based on HTML5 & CSS transformation scenario and reference your custom

CSS file (using the args.css parameter).

7. Run the transformation scenario.

Oxygen XML Editor 27.1 | 11 - Publishing | 2083

How to Remove the Related Links Section

Suppose you want the related links sections to be removed from the PDF output.

To add this functionality using a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.pdf.custom.codeblocks).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your

customization stylesheet. For example:

<plugin id="com.oxygenxml.pdf.custom.related.links">

 <feature extension="com.oxygenxml.pdf.css.xsl.merged2merged"

 file="custom_related_links.xsl"/>

</plugin>

3. Create your customization stylesheet (for example, custom_related_links.xsl) with the following

content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:template match="*[contains(@class, ' topic/related-links ')]">

 <!-- Remove. -->

 </xsl:template>

</xsl:stylesheet>

4. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box.

5. Run the DITA Map PDF - based on HTML5 & CSS transformation scenario.

How to Use Custom Parameters in XSLT Stylesheets

Suppose you want to add an attribute with a custom value inside a <div> element.

To add this functionality using a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.pdf.css.param).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension points, your

parameter file, and your customization stylesheet. For example:

<plugin id="com.oxygenxml.pdf.css.param">

 <feature extension="com.oxygenxml.pdf.css.xsl.merged2html5.parameters" file="params.xml"/>

Oxygen XML Editor 27.1 | 11 - Publishing | 2084

 <feature extension="com.oxygenxml.pdf.css.xsl.merged2html5" file="custom.xsl"/>

</plugin>

Note:

The com.oxygenxml.pdf.css.xsl.merged2html5 extension point can also be called from a

Publishing Template.

3. Create a params.xml file that specifies the name of the custom attribute with the following content:

<dummy xmlns:if="ant:if">

 <param name="custom-param" expression="${custom.param}" if:set="custom.param"/>

</dummy>

4. Create your customization stylesheet (for example, custom.xsl) with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:param name="custom-param"/>

 <xsl:template match="*[contains(@class, ' topic/div ')]">

 <div>

 <xsl:call-template name="commonattributes"/>

 <xsl:call-template name="setid"/>

 <xsl:if test="$custom-param">

 <xsl:attribute name="custom" select="$custom-param"/>

 </xsl:if>

 <xsl:apply-templates/>

 </div>

 </xsl:template>

</xsl:stylesheet>

5. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box.

6. Duplicate the DITA Map PDF - based on HTML5 & CSS transformation scenario, then in the Parameters

tab click New to create a new parameter (e.g. named custom.param with the value of customValue).

7. Run the transformation scenario.

Related information

Adding parameters to existing XSLT steps

https://www.dita-ot.org/dev/topics/plugin-xsltparams

Oxygen XML Editor 27.1 | 11 - Publishing | 2085

DITA-OT Extension Points

The DITA-OT CSS-based PDF Publishing Plugin supports DITA-OT extension points that can be used to

expand the functionality of the transformation. The extension points are defined in the plugin.xml file. For

more information, see DITA Open Toolkit Extension Points.

Related Information:

XSLT Extensions for PDF Transformations (on page 2049)

How to Contribute a Custom CSS to the Transformation from a DITA-OT
Plugin

This topic is intended for publishing architects/developers that need to deploy a customized DITA-OT.

Usually, the CSS styles can be passed to the transformation by referencing the CSS files using the args.css

parameter. However, there are cases where you want to add some sort of "built-in" CSS that is applied in

conjunction with the publishing template or CSS files referenced in the transformation.

For this, you need to use the com.oxygenxml.pdf.css.init extension point and set the value of the

extension.css ANT property to the path of the custom CSS file:

1. In your plugin.xml file, add:

<feature extension="com.oxygenxml.pdf.css.init" file="init.xml"/>

2. Create a file named init.xml with the following ANT content:

<root>

 <property name="extension.css"

 value="${dita.plugin.[com.my.plugin.id].dir}/css/my-custom.css"/>

 <!-- add here more init stuff if needed -->

</root>

Note:

The name of the root element does not matter. The content of this element will be copied in an

initialization template.

Important:

Make sure all file references begin with the ANT variable that is expanded to the base directory

of your plugin.

Related Information:

How to Use XSLT Extension Points for PDF Output from a DITA-OT Plugin (on page 2081)

http://www.dita-ot.org/dev/extension-points/plugin-extension-points.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2086

Localization

DITA-OT supports more than 40 languages. The full list of supported languages (and their codes) is available

here: https://www.dita-ot.org/dev/topics/globalization-languages.

There are two ways to switch the labels to a specific language:

• Set the @xml:lang attribute on the DITA maps and/or topics root element with one of the supported

values (e.g. de, fr-FR, ru, zh-CN).

• Set the default.language parameter in the transformation dialog box to the desired language code.

You can create language-dependent CSS rules in your customization CSS (on page 1858) by adding rules

using the :lang pseudo-class (see https://developer.mozilla.org/en-US/docs/Web/CSS/:lang).

Tip:

It is recommended that you do this customization on a DITA-OT distribution deployed outside of the

Oxygen installation. Otherwise, you will lose the customization when upgrading Oxygen. You can

contact the Oxygen support team to ask for the Oxygen Publishing Engine package.

Related information

Webinar: Transforming DITA documents to PDF using CSS, Part 4 – Advanced CSS Rules

How to Customize CSS Strings

Some of the labels come from CSS files located in the DITA-OT-DIR/plugins/

com.oxygenxml.pdf.css/css/print/i18n directory. These strings can be overridden directly from a

custom CSS stylesheet. Simply identify (by debugging the CSS) and copy the rules that apply on your content

and change their values. For example:

*[class ~= "toc/title"][empty]:before {

 content: "Agenda";

}

/* Title of the TOC page */

*[class ~= "toc/title"][empty]:lang(es):before {

 content: "Contenidos";

}

Note:

If you want to use a language without a corresponding p-i18n-xx.css stylesheet, follow these

instructions:

https://www.dita-ot.org/dev/topics/globalization-languages
https://developer.mozilla.org/en-US/docs/Web/CSS/:lang
https://www.oxygenxml.com/contact.html
https://www.oxygenxml.com/contact.html
https://www.oxygenxml.com/events/2023/webinar_transforming_dita_documents_to_pdf_using_css_part_4.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2087

1. Copy one of the available stylesheets (located in the DITA-OT-DIR/plugins/

com.oxygenxml.pdf.css/css/print/i18n directory) into your CSS customization (other

than the English one because it does not have the :lang pseudo-class since it is the default

language).

2. For each rules, replace the :lang(xx) pseudo-class with your expected language code, then

replace each property value with the expected label.

Related information

Debugging the CSS (on page 1860)

How to Modify Existing Strings

If the label you want to modify is not available from the CSS, you need to modify the XML strings. The default

XML strings are available at the following three locations:

• DITA-OT-DIR/plugins/org.dita.base/xsl/common

• DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common/vars

• DITA-OT-DIR/plugins/com.oxygenxml.pdf.css/resources/localization

To modify the generated text, you need to create a DITA-OT extension plugin that uses the dita.xsl.strings

extension point. The following example uses English, but you can adapt it for any language:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.pdf.css.localization).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension points, your

parameter file, and your customization stylesheet. For example:

<plugin id="com.oxygenxml.pdf.css.localization">

 <require plugin="com.oxygenxml.pdf.css"/>

 <feature extension="dita.xsl.strings" file="pdf-extension-strings.xml"/>

</plugin>

3. Create a pdf-extension-strings.xml file with the following content:

<langlist>

 <lang xml:lang="en" filename="strings-en-us.xml"/>

 <lang xml:lang="en-us" filename="strings-en-us.xml"/>

</langlist>

4. Copy the strings you want to change from the default files to the strings-en-us.xml file, then

replace their values:

<strings xml:lang="en-US">

 <str name="Figure">Fig</str>

Oxygen XML Editor 27.1 | 11 - Publishing | 2088

 <str name="Table">Array</str>

</strings>

Warning:

Make sure the string @name attribute remains the same, it is used by the process as a key to

retrieve the strings text.

5. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box.

6. Run the DITA Map PDF - based on HTML5 & CSS transformation scenario.

How to Add New Strings

Some strings are not translated in all languages. In this case, they will appear in English. To add a new

language for a given string, you need to create a DITA-OT extension plugin that uses the dita.xsl.strings

extension point. The following example uses Polish, but you can adapt it for any language:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.pdf.css.localization).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension points, your

parameter file, and your customization stylesheet. For example:

<plugin id="com.oxygenxml.pdf.css.localization">

 <require plugin="com.oxygenxml.pdf.css"/>

 <feature extension="dita.xsl.strings" file="pdf-extension-strings.xml"/>

</plugin>

3. Create a pdf-extension-strings.xml file with the following content:

<langlist>

 <lang xml:lang="pl" filename="strings-pl-pl.xml"/>

 <lang xml:lang="pl-pl" filename="strings-pl-pl.xml"/>

</langlist>

4. Copy the strings you want to change from the default files to the strings-pl-pl.xml file, then

replace their values:

<strings xml:lang="pl-PL">

 <str name="Continued">(ciąg dalszy)</str>

</strings>

Warning:

Make sure the string @name attribute remains the same, it is used by the process as a key to

retrieve the strings text.

Oxygen XML Editor 27.1 | 11 - Publishing | 2089

5. Use the Integrate/Install DITA-OT Plugins transformation scenario (on page 1498) found in the DITA

Map section in the Configure Transformation Scenario(s) dialog box.

6. Run the DITA Map PDF - based on HTML5 & CSS transformation scenario.

Security

You can restrict the use of the PDF files by specifying a set of permissions. For example, you may want to set

a password on the document, restrict the available actions inside the PDF reader, or encrypt the PDF content.

The pdf.security.* parameters listed in the Transformation Parameters (on page 1833) section can be used

for this purpose.

You can also sign your PDF files to ensure their authenticity and integrity.

How to Protect PDF Files by Setting Security Permissions

For example, to permit only the users that have a password to access the document and also to restrict their

printing and copying capability, you can use the following parameter combination:

Parameter Value Description

pdf.security.owner.password <OWNER PASSWORD> People using this password will be

able to open the document, with

full permissions.

pdf.security.user.password <USER PASSWORD> People using this password will

be able to open the document, but

they will not be able to print.

pdf.security.restrict.print yes Restricts users from printing.

pdf.security.restrict.copy yes Restricts users from copying con

tent.

Important:

If you specify just the user password (without an owner password), then the people using it will be

considered owners, and no restrictions will apply to them.

How to Sign a PDF

The following Bouncy Castle libraries must be downloaded (in their last available version):

• bcpkix-jdk18on

• bcprov-jdk18on

• bcutil-jdk18on

Oxygen XML Editor 27.1 | 11 - Publishing | 2090

1. Install an external Oxygen PDF Chemistry processor.

Restriction:

A separate installation is required to include the additional libraries.

2. Copy the Bouncy Castle libraries to the [CHEMISTRY_INSTALL_DIR]/lib directory.

3. Create a keystore file (if you do not already have one). See Oxygen PDF Chemistry User Guide: Signing

for information about how to create one.

4. Set the keystore file as the value for the chemistry.sign.keystore parameter.

5. Optional: If the keystore uses an export password, set it as the chemistry.sign.password value.

6. Optional: If you need to add more information (such as your company name), you can set the other

chemistry.sign.* (on page 1837) parameters.

7. Set the external Oxygen PDF Chemistry path as the value for css.processor.path.chemistry.

8. Run the transformation scenario.

Related information

Oxygen PDF Chemistry: Signing

Troubleshooting

There are cases when the PDF CSS-based processing fails when trying to publish DITA content to a PDF file.

This topic lists some of the common problems and possible solutions.

Damaged PDF File

Problem

It is possible to get a PDF that cannot be opened in the PDF viewer. In this case, you might get an error similar

to:

Error: PDF file is damaged - attempting to reconstruct xref table...

Error: Couldn't find trailer dictionary

Error: Couldn't read xref table

Cause

This usually means that your PDF viewer does not support a PDF version greater than 1.4. The main difference

with newer PDF versions is that the xref table is compressed in a stream and is not available as a table.

Solution

You need to re-run the PDF transformation with the pdf.version parameter set to 1.4.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_signing.html
https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_signing.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2091

Glyph Not Available in Font

Problem

A warning appears during the PDF transformation that is similar to this:

[CH] Glyph "?" (0x2192, arrowright) not available in font "Roboto-Bold".

Warning:

Even if the message is a warning, sometimes it can lead to a failed transformation. This usually

occurs for unique special characters (different from letters or common characters).

Cause

Some fonts lack specific characters, such as CJK characters or Greek symbols commonly used in scientific

publications. Those characters are replaced with the # symbol in the PDF output.

Solution

Specify one or more fallback font(s) in your customization CSS:

body{

 font-family: Roboto, Symbol, Arial Unicode MS;

}

Tip:

• It is possible to use a generic family name as fallback (like serif, sans-serif or monospace) to

call upon the processor's default fallback fonts system.

• To determine the needed font, you can copy the text fragment from the DITA source document

and paste it into any text editor (e.g. MS Word). Make sure there are no licensing restrictions on

that particular font.

Error Parsing CSS File - Caused by a Networking Problem

Problem

My custom styles are not applied and in the transformation results console, I get an error containing one of

the following: I/O exception, Unknown host, Error parsing.

Cause

One of the CSS files contains references to resources from another website that is currently inaccessible.

These resources may include:

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_fallback_fonts.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2092

• Fonts

• Images

• Other CSS files

Note:

If you exported one of the built-in publishing templates from the transformation scenario dialog, it is

possible that the associated CSS files use an imported Google Font.

Remedy

1. Check your proxy settings (ask the system administrator for help).

2. If the server is still inaccessible from the transformation process, download the remote resources using

a web browser, save them in the customization CSS file folder, and refer them directly from your CSS.

Note:

If the problem is caused by a remote font, see Using Local Fonts.

Failed to Run Pipeline: The Entity Cannot Be Resolved Through Catalogs

Problem

You can get a Failed to run pipeline error message that looks something like this:

Failed to run pipeline: The entity SOME_ENTITY cannot not be resolved through catalogs.

For security reasons files that are not listed in the DITA-OT catalogs and are not

located in the DITA-OT directory are not read

Cause

This happens when the security checks that are implemented in the default transformation have blocked the

reading of files that are not part of the DITA-OT (Oxygen Publishing Engine) installation directory and not part

of the transformed DITA map.

Solution

If the origin of the transformed content is known and trusted, you can disable these checks by setting the

args.disable.security.checks transformation parameter to yes.

Disappearing Thin Lines or Cell Borders

Problem

There are cases where thin lines disappear from the PDF viewer at certain zoom levels.

https://www.oxygenxml.com/doc/ug-chemistry/topics/ch_fonts.html#ariaid-title6

Oxygen XML Editor 27.1 | 11 - Publishing | 2093

Cause

This is caused by the limited resolution of the display, while a printer has a superior resolution and there

should be no problem printing thin lines on paper.

Solution

If the primary PDF target is the display, then you have to use thicker lines in your CSS customization (for

example, avoid using 1px and use 1pt or larger instead).

If you are using Adobe Acrobat Reader, then you can enhance the display of thin lines. This behavior can

be changed by going to Edit > Preferences > Page Display > Enhance Thin Lines. Deselecting this option

makes thin lines displayed as a row of gray pixels (through antialiasing) and they do not disappear. You can

experiment by selecting and deselecting the option.

Glossary Entries Referenced Using 'glossref' are not Displayed

Problem

I have a <glossgroup> that contains multiple <glossentry> elements and all the entries are referenced using

<glossref> elements inside my map. When I add an <abbreviated-form> element linked to one of my <glossentry>

elements (using a @keyref), the entry is not resolved in the PDF output.

Solution

Make sure every <glossentry> has an @id. Then, for each <glossentry>, declare a <glossref> element like this:

<glossref href="concepts/glossary.dita#flowers.genus" print="yes" keys="genus"/>

Important:

For bookmaps, the <glossref> elements should be declared in a separate ditamap.

The format-date() XPath Function Does Not Respect the Specified Locale

Problem

Formatting a date using another language code, as in this example:

title:before {

 content: oxy_xpath('format-date(current-date(), "[Mn] [Y]", "ru", (), ())');

}

results in an output like: [Language: en]september 2019, with the date being formatted in English.

Cause

The XPath expressions are evaluated using the Saxon HE processor. This processor does not support

languages other than English.

Oxygen XML Editor 27.1 | 11 - Publishing | 2094

Solution

As a solution, you can either switch to a more language-neutral format that avoids the months names:

title:before{

 content: oxy_xpath('format-date(current-date(), "[M] [Y]", "en", (), ())');

}

or you can use a more complex XPath expression like this:

title:before{

 content: oxy_xpath("let $cm:= format-date(current-date(), '[MNn]') \

return concat(\

if ($cm= 'January') then 'JAN' else \

if ($cm= 'February') then 'FEB' else \

if ($cm= 'March') then 'MAR' else \

if ($cm= 'April') then 'APR' else \

if ($cm= 'May') then 'MAY' else \

if ($cm= 'June') then 'JUNE' else \

if ($cm= 'July') then 'JUL' else \

if ($cm= 'August') then 'AUG' else \

if ($cm= 'September') then 'SEPT' else \

if ($cm= 'October') then 'OCT' else \

if ($cm= 'November') then 'NOV' else '' \

, \

' ', \

format-date(current-date(), '[Y0001]') \

Oxygen XML Editor 27.1 | 11 - Publishing | 2095

) ");

}

Make sure the entire expression is rendered blue in the CSS editor. Replace the capitalized month names with

the translation in the desired language.

Highlights Span Unexpectedly to the End of the Page

Problem

Tracked changes and highlights span beyond what is expected.

Cause

If the change tracking insertions, comments, or highlights span over an area that is larger than expected, the

markup that signals their end is missing.

Solution

To fix this, open the topic where the highlights start and check if the XML processing instructions that define

the end of the highlighted interval are correct (it is easiest to see them in Text mode). The intervals are defined

as follows:

For highlights:

<?oxy_custom_start type="oxy_content_highlight" color="140,255,140"?>

<?oxy_custom_end?>

For comments:

<?oxy_comment_start author="dan" timestamp="20201102T092905+0200" comment="Test"?>

<?oxy_comment_end?>

For inserted text:

<?oxy_insert_start author="dan" timestamp="20201102T093034+0200"?>

<?oxy_insert_end?>

Make sure all the ending processing instructions are located before the root element end tag.

Unexpected Page Break Before or After an Element

Problem

A page break occurs before or after an element that has page-break-before or page-break-after (break-before

or break-after) property set to avoid. For example, after a topic/section title (set by default):

Oxygen XML Editor 27.1 | 11 - Publishing | 2096

*[class ~= "topic/title"] {

 page-break-after: avoid;

}

Cause

An empty element (for example, <p> or <shortdesc>) is present before or after the element with the break set to

avoid. The page-break actually occurs at this element level.

Solution

Either remove the empty element from the DITA source topic (preferable) or set the display to none using the

following CSS rule:

*[class ~= "topic/shortdesc"]:empty {

 display: none;

}

Error When Processing Topics With Chunk and Copy-To Attribute

Problem

A topic marked with both the @chunk and @copy-to attributes is missing from the PDF output and the following

error appears in the Results view:

[DOTX008E] File 'file:/D:/path/to/file.dita' does not exist or cannot be loaded.

Cause

The chunk processing is skipped by default and must be enabled.

Solution

Set the enable.chunk.processing parameter to the value of true and re-run the transformation scenario.

XSL FO-based DITA to PDF Customization

Oxygen XML Editor comes bundled with the DITA Open Toolkit that provides a mechanism for converting DITA

maps (on page 3296) to PDF output. Oxygen XML Editor includes a built-in DITA Map PDF - based on XSL-FO

transformation scenario (on page 1492) that converts DITA maps to PDF using an xsl:fo processor.

There are several methods that can be used to customize DITA to PDF output:

• Create a customization directory that contains your customized files and reference that directory in the

PDF transformation scenario (using the customization.dir parameter).

• Creating a DITA Open Toolkit plugin that adds extensions to the PDF output. More details can be found

in the DITA Open Toolkit Documentation.

http://www.dita-ot.org/dev/topics/pdf-customization.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2097

Tip:

Some sample plugins are available on GitHub that could help you to get started with creating a

plugin:

◦ Sample Plugin: DITA-OT PDF Customization Plugin for Oxygen User Manual

◦ Sample Plugin: DITA-OT PDF2 - Generate Numbers Before Topic's Title

Using a Customization Directory

One way to customize the PDF output generated by the DITA Map PDF - based on XSL-FO transformation

scenario (on page 1492) is to create a dedicated folder to store customized files. With this approach, you

will copy the contents of the built-in customization directory to a new directory where you can customize the

files according to your needs and reference the new directory using the customization.dir parameter in the

transformation scenario. The biggest advantage of this method is that the contents of your customization

directory will remain unaffected when the DITA-OT is upgraded.

How to Create a Customization Directory

Follow this procedure to create a customization directory:

1. Copy all the entire DITA-OT-DIR\plugins\org.dita.pdf2\Customization directory to another

location where you have write access.

2. Modify any of the files in whatever way necessary to achieve your specific goal. For inspiration, see

Embedding a Company Logo (on page 2097) for a specific example of how you can modify contents of

the directory to embed a logo in the output.

Tip:

For other specific examples, see DITA-OT Documentation - PDF Customization Plugin.

3. Edit the DITA Map PDF - based on XSL-FO transformation scenario (on page 1492), go to the

Parameters tab, and set the customization.dir parameter to point to the location of your customization

directory.

Related information

Automatic PDF plugin customization generator by Jarno Elovirta.

DITA-OT Documentation - PDF Customization Plugin

Embedding a Company Logo

The following procedure explains how to embed a company logo image in the front matter of the book for the

DITA Map PDF - based on XSL-FO transformation scenario (on page 1492).

https://github.com/oxygenxml/com.oxygenxml.pdf2.ug
https://github.com/oxygenxml/dita-ot-numbering
http://www.dita-ot.org/dev/topics/pdf-customization.html
https://dita-generator.elovirta.com/
http://www.dita-ot.org/dev/topics/pdf-customization.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2098

1. Create a customization directory (on page 2097) (if you have not already done so).

2. Create a common\artwork directory structure in your customization directory and copy your logo in it

(for example, [C:\Customization\common\artwork\logo.png).

3. Rename Customization\catalog.xml.orig to: Customization\catalog.xml.

4. Open the catalog.xml in Oxygen XML Editor and uncomment this line:

 <!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

It now looks like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file Customization\fo\xsl\custom.xsl.orig to: C:\Customization\fo\xsl

\custom.xsl

6. Open the custom.xsl file in Oxygen XML Editor and create the template called

createFrontCoverContents for DITA-OT 4.2.3.

Tip:

You can copy the same template from DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo

\front-matter.xsl and modify it in whatever way necessary to achieve your specific goal.

This new template in the custom.xsl file will override the same template from DITA-OT-

DIR\plugins\org.dita.pdf2\xsl\fo\front-matter.xsl.

Example:

For example, the custom.xsl could look like this:

<?xml version='1.0'?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:fo="http://www.w3.org/1999/XSL/Format"

 version="2.0">

<xsl:template name="createFrontCoverContents">

 <!-- set the title -->

 <fo:block xsl:use-attribute-sets="__frontmatter__title">

 <xsl:choose>

 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">

 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>

 </xsl:when>

 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">

 <xsl:apply-templates select="$map//*[contains

 (@class,' bookmap/mainbooktitle ')][1]"/>

 </xsl:when>

 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">

Oxygen XML Editor 27.1 | 11 - Publishing | 2099

 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="/descendant::*[contains

 (@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>

 </xsl:otherwise>

 </xsl:choose>

 </fo:block>

 <!-- set the subtitle -->

 <xsl:apply-templates select="$map//*[contains

 (@class,' bookmap/booktitlealt ')]"/>

 <fo:block xsl:use-attribute-sets="__frontmatter__owner">

 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/bookmeta ')]"/>

 </fo:block>

 <!-- Load the image logo -->

 <fo:block text-align="center" width="100%">

 <fo:external-graphic

 src="url({concat($artworkPrefix,

 'Customization/OpenTopic/common/artwork/logo.png')})"

 />

 </fo:block>

 </xsl:template>

</xsl:stylesheet>

7. Edit the DITA Map PDF - based on XSL-FO transformation scenario (on page 1492), go to the

Parameters tab, and set the customization.dir parameter to point to the location of your customization

directory.

Tip:

For other specific examples, see DITA-OT Documentation - Customizing PDF Output.

Related Information:

Using a Customization Directory (on page 2097)

Customizing the Header and Footer in PDF Output

This procedure should only be used for the DITA Map PDF - based on XSL-FO transformation scenario (on

page 1492).

http://www.dita-ot.org/dev/topics/pdf-customization.html

Oxygen XML Editor 27.1 | 11 - Publishing | 2100

The XSLT stylesheet DITA-OT-DIR/plugins/org.dita.pdf2/xsl/fo/static-content.xsl contains

templates that output the static header and footers for various parts of the PDF such as the prolog, table of

contents, front matter, or body.

The templates for generating a footer for pages in the body are called insertBodyOddFooter or

insertBodyEvenFooter.

These templates get the static content from resource files that depend on the language used for generating

the PDF. The default resource file is DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common/vars/

en.xml. These resource files contain variables (such as Body odd footer) that can be set to specific user

values.

Instead of modifying these resource files directly, they can be overwritten with modified versions of the

resources in a PDF customization directory.

1. Create a customization directory (on page 2097) (if you have not already done so).

2. Locate the stylesheets and templates listed above in your customization directory and modify them in

whatever way necessary to achieve your specific goal.

Tip:

For more information and examples, see the Oxygen PDF Customization Plugin project on

GitHub.

3. Edit the DITA Map PDF - based on XSL-FO transformation scenario (on page 1492), go to the

Parameters tab, and set the customization.dir parameter to point to the location of your customization

directory.

Related Information:

https://github.com/oxygenxml/com.oxygenxml.pdf2.ug/wiki

Using a Customization Directory (on page 2097)

Adding a Watermark to PDF Output

To add a watermark to the PDF output of a DITA Map PDF - based on XSL-FO transformation scenario (on

page 1492), follow this procedure:

1. Create a customization directory (on page 2097) (if you have not already done so).

2. Create a cfg\common\artwork directory structure in your customization directory and copy your

watermark image to that directory (for example, C:\Customization\cfg\common\artwork

\watermark.png).

3. Rename the Customization\catalog.xml.orig file to: Customization\catalog.xml.

4. Open the catalog.xml in Oxygen XML Editor and uncomment this line:

<!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

https://github.com/oxygenxml/com.oxygenxml.pdf2.ug/wiki
https://github.com/oxygenxml/com.oxygenxml.pdf2.ug/wiki
https://github.com/oxygenxml/com.oxygenxml.pdf2.ug/wiki

Oxygen XML Editor 27.1 | 11 - Publishing | 2101

The uncommented line should look like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: Customization\fo\xsl\custom.xsl.orig to: Customization\fo\xsl

\custom.xsl.

6. Open the Customization\fo\xsl\custom.xsl file in Oxygen XML Editor to overwrite two XSLT

templates:

◦ The first template is located in the XSLT stylesheet DITA-OT-DIR\plugins

\org.dita.pdf2\xsl\fo\static-content.xsl. Override by copying the original template

content in the custom.xsl and specifying a watermark image for every page in the PDF

content, using a block-container element that references the watermark image file:

<fo:static-content flow-name="odd-body-header">

 <fo:block-container absolute-position="absolute"

 top="-2cm" left="-3cm" width="21cm" height="29.7cm"

 background-image="{concat($artworkPrefix,

'Configuration/OpenTopic/cfg/common/artwork/watermark.png')}">

 <fo:block/>

 </fo:block-container>

 <fo:block xsl:use-attribute-sets="__body__odd__header">

 <xsl:call-template name="insertVariable">

 <xsl:with-param name="theVariableID" select="'Body odd header'"/>

 <xsl:with-param name="theParameters">

 <prodname>

 <xsl:value-of select="$productName"/>

 </prodname>

 <heading>

 <fo:inline xsl:use-attribute-sets="__body__odd__header__heading">

 <fo:retrieve-marker retrieve-class-name="current-header"/>

 </fo:inline>

 </heading>

 <pagenum>

 <fo:inline xsl:use-attribute-sets="__body__odd__header__pagenum">

 <fo:page-number/>

 </fo:inline>

 </pagenum>

 </xsl:with-param>

 </xsl:call-template>

 </fo:block>

 </fo:static-content>

</xsl:template>

Oxygen XML Editor 27.1 | 11 - Publishing | 2102

◦ The second template to override is located in the XSLT stylesheet DITA-OT-DIR\plugins

\org.dita.pdf2\xsl\fo\commons.xsl and is used for styling the first page of the output.

Override it by copying the original template content in the custom.xsl and adding the block-

container element that references the watermark image file:

<xsl:template name="createFrontMatter_1.0">

 <fo:page-sequence master-reference="front-matter"

xsl:use-attribute-sets="__force__page__count">

 <xsl:call-template name="insertFrontMatterStaticContents"/>

 <fo:flow flow-name="xsl-region-body">

 <fo:block-container absolute-position="absolute"

 top="-2cm" left="-3cm" width="21cm" height="29.7cm"

 background-image="{concat($artworkPrefix,

'Configuration/OpenTopic/cfg/common/artwork/watermark.png')}">

 <fo:block/>

 </fo:block-container>

 <fo:block xsl:use-attribute-sets="__frontmatter">

 <!-- set the title -->

 <fo:block xsl:use-attribute-sets="__frontmatter__title">

 <xsl:choose>

 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">

 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>

 </xsl:when>

 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">

 <xsl:apply-templates select="$map//*[contains

(@class,' bookmap/mainbooktitle ')][1]"/>

 </xsl:when>

 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">

 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="/descendant::*[contains

(@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>

 </xsl:otherwise>

 </xsl:choose>

 </fo:block>

 <!-- set the subtitle -->

 <xsl:apply-templates select="$map//*[contains

(@class,' bookmap/booktitlealt ')]"/>

 <fo:block xsl:use-attribute-sets="__frontmatter__owner">

 <xsl:apply-templates select="$map//*[contains

Oxygen XML Editor 27.1 | 11 - Publishing | 2103

(@class,' bookmap/bookmeta ')]"/>

 </fo:block>

 </fo:block>

 <!--<xsl:call-template name="createPreface"/>-->

 </fo:flow>

 </fo:page-sequence>

 <xsl:if test="not($retain-bookmap-order)">

 <xsl:call-template name="createNotices"/>

 </xsl:if>

 </xsl:template>

7. Edit the DITA Map PDF - based on XSL-FO transformation scenario (on page 1492), go to the

Parameters tab, and set the customization.dir parameter to point to the location of your customization

directory.

Related Information:

Adding a Watermark in DITA Map to XHTML Output (on page 3184)

Adding an Edit Link in PDF Output to Launch Oxygen XML Web Author

You can embed Edit links in the DITA Map PDF - based on XSL-FO transformation scenario (on page 1492)

output that will automatically launch a particular document in Oxygen XML Web Author. A reviewer can

then simply click the link and they will be redirected to the Oxygen XML Web Author editing page with that

particular file open and editable.

To embed an Edit link in the DITA Map PDF output, follow these steps:

1. Edit a DITA Map PDF - based on XSL-FO transformation scenario (on page 1492) and open the

Parameters tab.

2. Set values for the following parameters:

◦ editlink.ditamap.edit.url - The URL of the DITA map used to publish your content. The easiest

way to obtain the URL is to open the map in Web Author or Content Fusion and copy the URL

from the browser's address bar.

◦ editlink.additional.query.parameters - Optional query parameters to be appended to each

generated edit link. Each parameter must start with & (e.g. &tags-mode=no-tags).

3. Run the transformation scenario.

Result: In the PDF output, all topics will have an Edit link to the right side of the title and clicking the link will

launch that particular document in Oxygen XML Web Author.

https://www.oxygenxml.com/doc/ug-webauthor/

Oxygen XML Editor 27.1 | 11 - Publishing | 2104

Force Page Breaks Between Two Block Elements in PDF Output

The following procedure works for the DITA Map PDF - based on XSL-FO transformation scenario (on page

1492).

Suppose that in your DITA content you have two block elements (on page 3294), such as two paragraphs:

<p>First para</p>

<p>Second para</p>

and you want to force a page break between them in the PDF output.

Here is how you can implement a DITA Open Toolkit plugin (on page 3299) that would achieve this:

1. Define your custom processing instruction that marks the place where a page break should be inserted

in the PDF, for example:

<p>First para</p>

 <?pagebreak?>

<p>Second para</p>

2. Locate the DITA Open Toolkit distribution and in the plugins directory create a new plugin folder (for

example, DITA-OT-DIR/plugins/pdf-page-break).

3. In this new folder, create a new plugin.xml file with the following content:

<plugin id="com.yourpackage.pagebreak">

 <feature extension="package.support.name" value="Force Page Break Plugin"/>

 <feature extension="package.support.email" value="support@youremail.com"/>

 <feature extension="package.version" value="1.0.0"/>

 <feature extension="dita.xsl.xslfo" value="pageBreak.xsl" type="file"/>

</plugin>

The most important feature in the plugin is that it will add a new XSLT stylesheet to the XSL processing

that produces the PDF content.

4. In the same folder, create an XSLT stylesheet named pageBreak.xsl with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">

 <xsl:template match="processing-instruction('pagebreak')">

 <fo:block break-after="page"/>

 </xsl:template>

</xsl:stylesheet>

5. Install your plugin in the DITA Open Toolkit. (on page 3228)

The source code for the plugin can be found on GitHub here: https://github.com/dita-community/org.dita-

community.pdf-page-break.

https://github.com/dita-community/org.dita-community.pdf-page-break
https://github.com/dita-community/org.dita-community.pdf-page-break

Oxygen XML Editor 27.1 | 11 - Publishing | 2105

Show Comments and Tracked Changes in PDF Output

To include comments and tracked changes (stored within your DITA topics) in the DITA Map PDF - based on

XSL-FO transformation scenario (on page 1492) output, follow these steps:

1. Edit a DITA Map PDF - based on XSL-FO transformation scenario.

2. In the Parameters tab, set the value of the show.changes.and.comments parameter to

yes. If you also want to display change bars for inserted or deleted content in the PDF, set

the show.changebars parameter to yes. If you want to only show the changebars, without

other styling of the changes, you should set both the show.changes.and.comments and

show.changes.and.comments.as.changebars.only parameters to yes.

3. Optionally, you can configure any of these other parameters to adjust the colors of the comments and

tracked changes:

◦ ct.insert.color - Specifies the color for insertion type tracked changes, as a plain color (e.g. red,

yellow, blue), or with a hexadecimal equivalent (e.g. #FFFFFF). The default value is 'blue'.

◦ ct.delete.color - Specifies the color for deletion type tracked changes, as a plain color (e.g. red,

yellow, blue), or with a hexadecimal equivalent (e.g. #FFFFFF). The default value is 'red'.

◦ ct.comment.bg.color - Specifies the background color for comment type tracked changes, as a

plain color (e.g. red, yellow, blue), or with a hexadecimal equivalent (e.g. #FFFFFF). The default

value is 'yellow'.

4. Click OK and then the Apply Associated button to run the transformation scenario.

Result: Comment threads and tracked changes will now appear in the PDF output. Details about each

comment or change will be available in the footer section for each page.

Set a Font for PDF Output Generated with FO Processor

When a DITA map (on page 3296) is transformed using the DITA Map PDF - based on XSL-FO transformation

scenario (on page 1492) and it contains some Unicode characters that cannot be rendered by the default

PDF fonts, a font that is capable of rendering these characters must be configured and embedded in the PDF

result.

The settings that must be modified for configuring a font for the built-in FO processor are detailed in Add a

Font to the Built-in FO Processor - Advanced Version (on page 1581).

DITA-OT PDF Font Mapping

The DITA-OT contains a file DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml

that maps logical fonts used in the XSLT stylesheets to physical fonts that will be used by the FO processor to

generate the PDF output.

The XSLT stylesheets used to generate the XSL-FO output contain code like this:

<xsl:attribute name="font-family">monospace</xsl:attribute>

Oxygen XML Editor 27.1 | 11 - Publishing | 2106

The font-family is defined to be monospace, but monospace is just an alias. It is not a physical font

name. Therefore, another stage in the PDF generation takes this monospace alias and looks in the font-

mappings.xml.

If it finds a mapping like this:

<aliases>

 <alias name="monospace">Monospaced</alias>

 </aliases>

then it looks to see if the monospace has a logical-font definition and if so, it will use the physical-font

specified there:

<logical-font name="Monospaced">

 <physical-font char-set="default">

 <font-face>Courier New, Courier</font-face>

 </physical-font>

............

</logical-font>

Important:

If no alias mapping is found for a font-family specified in the XSLT stylesheets, the processing

defaults to Helvetica.

Related information

http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html

Adding Libraries to the Built-in FO Processor (DITA-OT)

Adding Support for PDF Images

Starting with Oxygen XML Editor version 20.0, PDF image support is enabled by default in the built-in DITA

Map PDF - based on XSL-FO transformation scenario (on page 1492). For older versions of Oxygen XML

Editor, use the following procedures to enable this support:

1. Download the fop-pdf-images JAR libraries.

2. Edit the DITA-OT transformation scenario and switch to the Advanced tab.

3. Click the Libraries button and add the path to the libraries.

Adding Support for CGM Images

1. Go to the JCGM page and download the jcgm-image-0.1.1.jar and jcgm-core-0.2.0.jar libraries.

2. Edit the DITA-OT transformation scenario and switch to the Advanced tab.

3. Click the Libraries button and add the path to the libraries.

http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html
http://xmlgraphics.apache.org/fop/fop-pdf-images.html
https://sourceforge.net/projects/jcgm/files/

Oxygen XML Editor 27.1 | 11 - Publishing | 2107

Adding Hyphenation Support for DITA-OT Transformation Scenarios

1. Download the pre-compiled JAR (on page 3297) from OFFO.

2. Edit the DITA-OT transformation scenario and switch to the Advanced tab.

3. Click the Libraries button and add the path to the fop-hyph.jar library.

Debugging DITA PDF Transformations

To debug the DITA Map PDF - based on XSL-FO transformation scenario (on page 1492), follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132), go to XML > XML

Catalog, click Add, and select the file located at DITA-OT-DIR\plugins\org.dita.pdf2\cfg

\catalog.xml. If there are other custom DITA-OT PDF customization plugins that contain XML

catalogs, references to those XML catalogs might need to be added as well.

2. Open the map in the DITA Maps Manager (on page 2950) and create a DITA Map PDF - based on XSL-

FO transformation scenario.

3. Edit the scenario, go to the Parameters tab and change the value of the clean.temp parameter to no.

4. Run the transformation scenario.

5. Open the stage1.xml file located in the temporary directory and format and indent (on page 567) it.

6. Create a transformation scenario for this XML file by associating the topic2fo_shell_fop.xsl

stylesheet located at DITA-OT-DIR\plugins\org.dita.pdf2.fop\xsl\fo

\topic2fo_shell_fop.xsl. If you are specifically using the RenderX XEP or Antenna House FO

processors to build the PDF output, you should use the XSL stylesheets topic2fo_shell_xep.xsl

or topic2fo_shell_axf.xsl located in the corresponding plugin folders.

Note:

For validation purposes, you need to add the main debugged stylesheet (usually

topic2fo_shell_fop.xsl) to the Main Files folder (on page 433) in the Project view.

7. In the transformer drop-down menu, select the Saxon EE XSLT processor (the same processor used

when the DITA-OT transformation is executed).

8. Click the Parameters button:

a. Set the locale parameter (e.g. with the value of en_GB).

b. Set the work.dir.url parameter with the value ${cfdu}.

c. Set the customizationDir.url parameter to point to either your customization directory or to the

default DITA-OT customization directory. Its value should have a URL syntax like this:

file://c:/path/to/<term keyref="glossentry_dita_ot_dir"/>/plugins/org.dita.pdf2/cfg

9. You need to reference the extra commonly used JAR libraries by clicking the Extensions

button and using wildcards to add a reference to all libraries in this folder: DITA-OT\plugins

\com.oxygenxml.common\lib*.

http://sourceforge.net/projects/offo/

Oxygen XML Editor 27.1 | 11 - Publishing | 2108

10. Apply the transformation to continue the debugging process.

Note:

For externally configured DITA Open Toolkit installations or when using custom plugins based

on the base PDF2 plugin, the paths to resources described above may need to be adjusted

accordingly.

Related information

Debugging XSLT Stylesheets and XQuery Documents (on page 2209)

How to Enable Debugging for FO Processor Transformations (on page 1583)

DocBook to PDF Output Customization
When the default layout and output of the DocBook to PDF transformation needs to be customized, follow

these steps:

1. Create a custom version of the DocBook title spec file.

You could start from a copy of the file [DocBook XSL directory]/

fo/titlepage.templates.xml (for example, [OXYGEN-INSTALL-DIR]/frameworks/

docbook/xsl/fo/titlepage.templates.xml) and customize it. More information about the

spec file can be found here.

2. Generate a new XSLT stylesheet from the title spec file from the previous step.

Apply [DocBook XSL directory]/template/titlepage.xsl to the title spec file. The result is

an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.

The customization layer is the stylesheet that will be applied to the XML document. The

mytitlepages.xsl should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert a logo image in the XML document.

The path to the logo image must be inserted in the book/info/mediaobject structure of the XML

document.

5. Apply the customization layer to the XML document.

A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML

Editor and set the customization layer in the XSL URL property of the scenario (on page 1505).

Related Information:

The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the

PDF output.

Video demonstration for creating a DocBook customization layer in Oxygen XML Editor.

https://docbook.org/docs/
https://www.oxygenxml.com/demo/DocBook_Customization.html
https://docbook.org/docs/
https://docbook.org/docs/
https://docbook.org/docs/
https://docbook.org/docs/
https://www.oxygenxml.com/demo/DocBook_Customization.html
https://www.oxygenxml.com/demo/DocBook_Customization.html
https://www.oxygenxml.com/demo/DocBook_Customization.html

12.
Working with XPath Expressions
XPath is a language for addressing specific parts of a document. XPath models an XML document as a tree of

nodes. An XPath expression is a mechanism for navigating through and selecting nodes from the document.

An XPath expression is, in a way, analogous to an SQL query used to select records from a database.

Note:

If an XPath expression is run over a JSON document, it is converted to XML and the XPath is executed

over the converted XML document.

There are various types of nodes, including element nodes, attribute nodes, and text nodes. XPath defines a

way to compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and boolean expressions.

Examples:

• child::* - Selects all children of the root node.

• .//name - Selects all <name> elements and descendants of the current node.

• /catalog/cd[price>10.80] - Selects all the <cd> elements that have a <price> element with a value larger

than 10.80.

• //prolog - Finds all <prolog> elements.

• //prolog[@platform='mac'] - Finds all <prolog> elements that have the @platform attribute value set to

mac.

• //child::prolog - Selects all @prolog elements and the child content.

• /*[count(//accountNumber) > 5] - Searches for instances where more than 5 <accountNumber> elements

are found.

• collection('file:/C:/path/to/folder/?select=*.xml')/*[not(//prolog)] - Finds a list of all XML files that do

not contain any <prolog> elements.

To find out more about XPath, see http://www.w3.org/TR/xpath.

Related Information:

Content Completion in XPath Expressions (on page 913)

Find/Replace in Multiple Files (on page 448)

Find/Replace Dialog Box (on page 443)

http://www.w3.org/TR/xpath

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2110

XPath Toolbar
XPath is a query language for selecting nodes from an XML document. To use XPath expressions effectively,

you need a good understanding of the XPath Core Function Library.

XPath Toolbar

Oxygen XML Editor provides an XPath toolbar to let you query XML documents fast and easy using XPath

expressions.

Figure 526. XPath Toolbar

The XPath toolbar includes the following features:

XPath version chooser drop-down menu

You can choose the XPath version from the drop-down menu available in the left side of the

toolbar. Available options include XPath 1.0, XPath 2.0, XPath 2.0 SA, XPath 3.1, XPath 3.1 SA.

Note:

The XPath 2.0 SA and XPath 3.1 SA options have some limitations. These options only

offer information about the beginning part of the matching result. For example, if you

search for an element, it will only highlight the start tag.

Warning:

Oxygen XML Editor uses Saxon to execute XPath 3.1 expressions, but implements a part

of the 3.1 functions. When using a function that is not implemented, Oxygen XML Editor

can return a compilation error.

XPath scope menu

Oxygen XML Editor allows you to define a scope for the XPath operation to be executed. You can

choose where the XPath expression will be executed:

• Current file - Currently selected file only.

• Project - All the files in the project.

• Selected project resources - The files selected in the project.

• All opened files - All files that are opened in the application.

• Current DITA Map hierarchy - All resources referenced in the currently selected DITA

map that is open in the DITA Maps Manager view (on page 2950).

• Opened archive - Files that are opened in the Archive Browser view (on page 2118).

• Working sets - The selected working sets (on page 3302).

http://www.w3.org/TR/xpath#corelib

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2111

At the bottom of the scope menu the following scope configuration actions are available:

• Configure XPath working sets - Allows you to configure and manage collections of

files and folders, encapsulated in logical containers called working sets (on page 3302).

• XPath file filter - You can filter the files from the selected scope that will have the

XPath expression executed. By default, the XPath expression will be executed only on

XML or JSON files, but you can also define a set of patterns that will filter out files from

the current scope. If you select the Include archive option, the XPath expression will be

also executed on the files in any archive (including EPUB and DocX) found at the current

scope.

History drop-down list

The XPath combo box keeps a history of the last 15 expressions that were used so that you can

easily choose them again.

Settings menu

The following actions are available in this drop-down menu:

XPath update on cursor move

When selected and you navigate through a document, the XPath expression

corresponding to the XML node at the current cursor position is displayed. For

JSON documents, it displays the XPath expression for the current property.

Evaluate XPath as you type

When you select this option, the XPath expression you are composing is evaluated

in real time.

Note:

This option and the automatic validation are disabled when you edit huge

documents (on page 482) or when the scope is other than Current file.

XPath Options

Opens the Preferences page of the currently selected processing engine.

Switch to XPath Builder View

Opens the XPath Builder view (on page 2112).

Note:

During the execution of an XPath expression, the XPath toolbar displays a Stop button. Use this

button to stop the XPath execution.

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2112

When you type expressions longer than 60 characters, a dialog box opens that offers you the possibility to

switch to the XPath Builder view (on page 2112).

Related Information:

XPath Expression Results View (on page 2115)

XPath Builder View
The XPath/XQuery Builder view allows you to compose complex XPath expressions and execute them over

the currently edited XML document. For XPath 2.0 / 3.1, you can use the doc() function to specify the source

file that will have the expressions executed. When you connect to a database, the expressions are executed

over that database. If you are using the XPath/XQuery Builder view and the current file is an XSLT document,

Oxygen XML Editor executes the expressions over the XML document in the associated scenario.

Note:

If an XPath expression is run over a JSON document, it is converted to XML and the XPath is executed

over the converted XML document.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu. You can also

open it simply by pressing the Switch to XPath Builder View button that is located on the XPath toolbar (on

page 2110).

The upper part of the view contains the following actions:

XPath version chooser drop-down menu

A drop-down menu that allows you to select the type of the expression you want to execute. You

can choose between:

• XPath 1.0 (Xerces-driven)

• XPath 2.0, XPath 2.0 SA, XPath 3.1, XPath 3.1 SA, Saxon-HE XQuery, Saxon-PE XQuery, or

Saxon-EE XQuery (all of them are Saxon-driven)

• Custom connection to XML databases that can execute XQuery expressions

Note:

The results returned by XPath 2.0 SA and XPath 3.1 SA have a location limited to

the line number of the start element (there are no column information and no end

specified).

Note:

Oxygen XML Editor uses Saxon to execute XPath 3.1 expressions. Since Saxon

implements a part of the 3.1 functions, when using a function that is not

implemented, Oxygen XML Editor returns a compilation error.

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2113

Execute XPath button

Use this button to start the execution of the XPath or XQuery expression you are editing. The

result of the execution is displayed in the Results view (on page 560) view.

Favorites button

Allows you to save certain expressions that you can later reuse. To add an expression as a

favorite, click this button and enter a name for it. The star turns yellow to confirm that the

expression was saved. Expand the drop-down menu next to the star button to see all your

favorites. Oxygen XML Editor automatically groups favorites in folders named after the method

of execution.

History drop-down menu

Keeps a list of the last 15 executed XPath expressions. Use the Clear history action from the

bottom of the list to remove them.

Settings drop-down menu

Contains the following three options:

Update on cursor move

When selected and you navigate through a document, the XPath expression

corresponding to the XML node at the current cursor position is displayed. For

JSON documents, it displays the XPath expression for the current property.

Evaluate as you type

When you select this option, the XPath expression you are composing is evaluated

in real time.

Note:

This option and the automatic validation are disabled when you edit huge

documents (on page 482) or when the scope is other than Current file.

Options

Opens the Preferences page of the currently selected processing engine.

XPath scope menu

Oxygen XML Editor allows you to define a scope for the XPath operation to be executed. You can

choose where the XPath expression will be executed:

• Current file - Currently selected file only.

• Project - All the files in the project.

• Selected project resources - The files selected in the project.

• All opened files - All files that are opened in the application.

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2114

• Current DITA Map hierarchy - All resources referenced in the currently selected DITA

map that is open in the DITA Maps Manager view (on page 2950).

• Opened archive - Files that are opened in the Archive Browser view (on page 2118).

• Working sets - The selected working sets (on page 3302).

At the bottom of the scope menu the following scope configuration actions are available:

• Configure XPath working sets - Allows you to configure and manage collections of

files and folders, encapsulated in logical containers called working sets (on page 3302).

• XPath file filter - You can filter the files from the selected scope that will have the

XPath expression executed. By default, the XPath expression will be executed only on

XML or JSON files, but you can also define a set of patterns that will filter out files from

the current scope. If you select the Include archive option, the XPath expression will be

also executed on the files in any archive (including EPUB and DocX) found at the current

scope.

Figure 527. XPath/XQuery Builder View

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2115

While you edit an XPath or XQuery expression, Oxygen XML Editor assists you with the following features:

• Content Completion Assistant (on page 3295) - It offers context-dependent proposals and takes into

account the cursor position in the document you are editing. The set of functions proposed by the

Content Completion Assistant also depends on the engine version. Select the engine version from the

drop-down menu available in the toolbar.

• Syntax Highlighting - Allows you to identify the components of an expression. To customize the colors

of the components of the expression, open the Preferences dialog box (Options > Preferences) (on

page 132) and go to Editor > Syntax Highlight (on page 234).

• Automatic validation of the expression as you type.

Note:

When you type invalid syntax, a red serrated line underlines the invalid fragments.

• Function signature and documentation balloon, when the cursor is located inside a function.

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the

contextual menu of the top editable part of the view.

Related Information:

XPath Expression Results View (on page 2115)

XPath Expression Results View
When you run an XPath expression, Oxygen XML Editor displays the results of its execution in the Results

view.

This view contains the following columns:

• Description - The result thatOxygen XML Editor displays when you run an XPath expression.

• XPath location - The path to the matched node.

• Resource - The name of the document that you run the XPath expression on.

• System ID - The path to the document itself.

• Location - The location of the result in the document.

To arrange the results depending on a column, click its header. To group the results by their resource, or

by their system ID, right-click the header of any column in the Results view and select Group by "Resource"

or Group by "System ID". If no information regarding location is available, Oxygen XML Editor displays Not

available in the Location column. Oxygen XML Editor displays the results in a valid XPath expression format.

- /node[value]/node[value]/node[value] -

The Results view also includes various toolbar and contextual menu actions. For more information, see

Results View (on page 560).

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2116

Example:

The following snippets are taken from a DocBook book based on the DocBook XML DTD. The book contains a

number of chapters. To return all the chapter nodes of the book, enter //chapter in the XPath expression field

and press Enter. This action returns all the chapter nodes of the DocBook book in the Results View. Click a

record in the Results View to locate and highlight its corresponding chapter element and all its children nodes

in the document you are editing.

To find all example nodes contained in the sect2 nodes of a DocBook XML document, use the following XPath

expression: //chapter/sect1/sect2/example. Oxygen XML Editor adds a result in the Results View for each

example node found in any sect2 node.

For example, if the result of the above XPath expression is:

- /chapter[1]/sect1[3]/sect2[7]/example[1]

it means that in the edited file, the example node is located in the first chapter, third section level one, seventh

section level 2.

Figure 528. XPath Results Highlighted in Editor Panel with Character Precision

Oxygen XML Editor 27.1 | 12 - Working with XPath Expressions | 2117

XPath and XML Catalogs
The evaluation of the XPath expression tries to resolve the locations of documents referenced in the

expression through XML Catalogs (on page 3302). These catalogs are configured in the XML Catalog

preferences (on page 244) pages and the XML Parser preferences (on page 247).

Example:

As an example, consider the evaluation of the collection(URIofCollection) function (XPath 2.0). To

resolve the references from the files returned by the collection() function with an XML catalog, specify

the class name of the catalog-enabled parser for parsing these collection files. The class name is

ro.sync.xml.parser.CatalogEnabledXMLReader. Specify it as it follows:

let $docs := collection(iri-to-uri(

 "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;

 parser=ro.sync.xml.parser.CatalogEnabledXMLReader"))

XPath Prefix Mapping
To define default mappings between prefixes (that you can use in the XPath toolbar (on page 2110))

and namespace URIs go to the XPath preferences page (on page 268) and enter the mappings in the

Default prefix-namespace mappings table. The same preferences panel allows you to configure the default

namespace used in XPath 2.0 expressions.

Important:

If you define a default namespace, Oxygen XML Editor binds this namespace to the first free prefix

from the list: default, default1, default2, and so on. For example, if you define the default namespace

xmlns="something" and the prefix default is not associated with another namespace, you can match

tags without prefix in an XPath expression typed in the XPath toolbar by using the prefix default.

To find all the <level> elements when you define a default namespace in the root element, use this

expression: //default:level in the XPath toolbar.

13.
Working with Archives
Oxygen XML Editor includes a useful Archive Browser view (on page 2118) that offers the means to work

with files directly from various types of archives (for example, opening and saving files directly in archives,

or browsing and modifying archive structures). The archive support is available for all ZIP-type archives,

including:

• ZIP archives

• EPUB books

• JAR archives (on page 3297)

• Office Open XML (OOXML) files

• Open Document Format (ODF) files

• IDML files (on page 3297)

You can transform, validate, and perform many other operations on files directly from an archive. For instance,

you can transform, or validate files directly from OOXML or ODF packages, and the structure and content of

the ZIP archives can be opened, edited, and saved, similar to any other ZIP archive browsing tool. Also, when

browsing for a URL in various dialog boxes, you can use the Browse for archived file action to browse and

select files from a particular archive.

Resources

For more information about working with an EPUB archive in Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/OIGTNQwOCl8

Browsing Archives
Oxygen XML Editor includes a helper view called the Archive Browser that allows you to view the contents

and structure of an archive, and it offers a variety of toolbar and contextual menu actions. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

To open an archive in the Archive Browser view, use one of the following methods:

• Open an archive from the Project view (on page 414).

• Select an archive in one of the file chooser dialog boxes in Oxygen XML Editor (such as the Open dialog

box).

• Drag an archive from a system file explorer and drop it in the Archives Browser view.

https://www.youtube.com/embed/OIGTNQwOCl8

Oxygen XML Editor 27.1 | 13 - Working with Archives | 2119

When displaying an archive, the Archive Browser view locks the archive file. It is then automatically unlocked

when the Archive Browser view is closed.

Tip:

If a file is not recognized by Oxygen XML Editor as a supported archive type, you can add it in the

Archive preferences page (on page 301).

Figure 529. Archive Browser

Archive Browser Toolbar Actions

The following actions are available on the Archive Browser toolbar:

Open Archive menu

Provides access to the Open Archive action that opens a new archive in the browser. If the

extension is not known as an archive extension, you will be directed to the Archive preferences

page (on page 301) to add a new extension. The submenu keeps a list of recently open archive

files and a Clear history action that allows you to delete the list.

Close

Closes the browsed archive and unlocks the archive file.

Validate (available for EPUB archives only)

Checks the EPUB archive to see if its content and structure is valid.

New folder

Creates a folder as child of the selected folder in the browsed archive.

Oxygen XML Editor 27.1 | 13 - Working with Archives | 2120

New file

Creates a file as child of the selected folder in the browsed archive.

Add files

Adds existing files as children of the selected folder in the browsed archive.

Note:

You can also add files in the archive by dragging them from the file browser or the

Project view (on page 414) and dropping them in the Archive Browser view.

Delete

Deletes the selected resource in the browsed archive.

Open in System Application

Opens the selected resource in the default system application that is associated with that type

of file.

Archive Options

Opens the Archive preferences page (on page 301).

Archive Browser Contextual Menu Actions

The following additional actions are available from the contextual menu for resources in the Archive Browser

view:

Open

Opens a resource from the archive in the editor.

Extract

Extracts a resource from the archive in a specified folder.

New folder

Creates a folder as child of the selected folder in the browsed archive.

New file

Creates a file as child of the selected folder in the browsed archive.

Add files

Adds existing files as children of the selected folder in the browsed archive.

Note:

On macOS, the Add file action is also available and it allows you to add one file at a

time.

Oxygen XML Editor 27.1 | 13 - Working with Archives | 2121

Rename

Renames a resource in the archive.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to search for and

replace specific pieces of text inside the archive.

Cut

Cuts the selected archive resource.

Copy

Copies the selected archive resource.

Paste

Pastes a file or folder into the archive.

Delete

Removes a file or folder from archive.

Preview

Previews an image contained in the archive. See the Image Preview (on page 481) topic for more

details.

Copy location

Copies the URL location of the selected resource.

Refresh

Refreshes the selected resource.

Properties

Shows the properties of the selected resource.

Resources

For more information, watch our video demonstration about working with an EPUB in the Archive Browser

view:

https://www.youtube.com/embed/OIGTNQwOCl8

Working with Archive Files
Oxygen XML Editor includes support for working with various types of archives, including the following:

https://www.youtube.com/embed/OIGTNQwOCl8

Oxygen XML Editor 27.1 | 13 - Working with Archives | 2122

• EPUB - An e-book file format that can be used on many types of devices, such as smart phones, tablets,

e-readers, or computers.

• OOXML - An XML-based file format for representing spreadsheets, charts, presentations, and word

processing documents.

• ODF - An free and open-source XML-based file format for electronic office documents, such as

spreadsheets, charts, presentations, and word processing documents.

When these types of files are opened in the Archive Browser view (on page 2118), their internal components

are expanded:

• Document content (XHTML and image files).

• Packaging files.

• Container files.

Figure 530. EPUB File Displayed in the Archive Browser View

When an archive is expanded in the Archive Browser view (on page 2118), you can add or delete files that

compose the archive structure. All changes made to the structure of an archive are saved immediately. You

can open files from within the archive to edit them in the main editing pane and save changes back to the

archive. You can also use the Open in System Application action to open the archive in the default system

application that is associated with that type of file.

Oxygen XML Editor 27.1 | 13 - Working with Archives | 2123

EPUB-Specific Validation

When working with EPUB archives, the Archive Browser (on page 2118) includes a Validate action on the

toolbar that checks the EPUB archive to make sure the structure and content are valid. Oxygen XML Editor

uses the open-source EpubCheck validator to perform the validation. This validator detects many types of

errors, including OCF container structure, OPF and OPS mark-up, as well as internal reference consistency.

Resources

For more information about working with an EPUB archive in Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/OIGTNQwOCl8

Related information

The Archive Browser View (on page 2118)

EPUB Document Type (Framework) (on page 1464)

Creating an Archive

To create an archive from scratch, follow these steps:

1. Go to File > New or click New on the main toolbar.

2. Choose your particular type of archive template. For example, select one of the ODF, OOXML, or EPUB

templates.

3. Click Create and choose the name and location of the file.

4. Click Save.

A skeleton archive is saved on disk and open in the Archive Browser view (on page 2118).

Tip:

Use toolbar and contextual menu actions to edit, add, and remove resources from the archive.

For EPUB archives, you can use the Validate action to verify the integrity of the EPUB

archive.

Editing and Saving Files Inside an Archive

You can open files directly from an archive in the Archive Browser view (on page 2118) and then edit them in

the main editor pane. To open a file, simply double-click it or select Open from the contextual menu.

When saving the file back to the archive, you are prompted to choose if you want the application to make a

backup copy of the archive before saving the new content. If you choose Never ask me again, you will not be

asked again to make backup copies. You can re-enable the pop-up message from the Messages preferences

page (on page 317).

https://www.youtube.com/embed/OIGTNQwOCl8

Oxygen XML Editor 27.1 | 13 - Working with Archives | 2124

Migrating Archives to DITA or TEI

Certain types of archives can be converted to DITA or TEI. For example, OOXML (Office Open XML) archive

files with the DOCX file extension can be migrated to DITA or TEI.

To migrate DOCX files to DITA or TEI, follow these steps:

1. Open and expand the archive in the Archive Browser (on page 2118).

2. Open the document.xml file contained in the archive.

3. Run one of the following built-in transformation scenarios:

a. DOCX DITA to migrate to DITA.

b. DOCX TEI P5 to migrate to TEI.

4. You may need to do some manual reconfiguring to map DOCX styles to DITA or TEI content.

Tip:

Oxygen XML Editor also includes a built-in transformation scenario called ODT TEI P5 for

converting ODF archive files with the ODT file extension to TEI and a similar process can be

used to migrate ODT files to TEI.

14.
Databases and SharePoint
Oxygen XML Editor provides support for connecting and integrating with various databases and Microsoft

SharePoint. This section includes information about the database-related features in Oxygen XML Editor. It

explains how to connect with the supported databases, presents the actions that are available for each type,

and includes information about SharePoint integration.

Working with Databases
XML is a storage and interchange format for structured data and is supported by all major database systems.

Oxygen XML Editor offers the means for managing the interaction with some of the most commonly used

databases (both Relational and Native XML databases). Through this interaction, Oxygen XML Editor helps

users with browsing, content editing, importing from databases, using XQuery with databases, SQL execution,

and generating XML Schema from a database structure.

The types of connections that are supported in Oxygen XML Editor include:

• IBM DB2 (Deprecated) (on page 2167)

• Microsoft SQL Server (Deprecated) (on page 2131)

• Oracle Database (Deprecated) (on page 2135)

• PostgreSQL (Deprecated) (on page 2140)

• eXist (on page 2143)

• MarkLogic (Deprecated) (on page 2148)

• MySQL (Deprecated) (on page 2158)

• Generic JDBC (on page 2160)

• JDBC-ODBC (on page 2161)

• BaseX (on page 2162)

• WebDAV (on page 2171)

• Microsoft SharePoint (on page 2184)

Related information

Integration with Microsoft SharePoint (on page 2184)

Data Source Explorer View

The Data Source Explorer view displays your database connections. If the view is not displayed, it can be

opened by selecting it from the Window > Show View menu.

You can connect to a database simply by expanding the connection node (click the connection). The

database structure can be expanded to resource level, or even all the way to column level for tables inside

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2126

relational databases. Oxygen XML Editor supports multiple simultaneous database connections and the

connection tree in the Data Source Explorer view provides an easy method for browsing them.

Figure 531. Data Source Explorer View

The objects (nodes) that are displayed in the Data Source Explorer view depend on the connection type and

structure of the database. Various contextual menu actions are available for each hierarchical level and for

some connections you can add or move resources in a container by simply dragging them from the Project

view (on page 414), a file browsing application, or another database.

Toolbar Actions

The following actions are available in the toolbar of this view:

Filters

Opens the Data Sources / Table Filters preferences page (on page 290), allowing you to decide

which table types are displayed in the Data Source Explorer view.

Configure Database Sources

Opens the Data Sources preferences page (on page 286) where you can configure both data

sources and connections.

Database-Specific Contextual Menu Actions

Each specific type of database will also include its own specific contextual menu actions in the Data Source

Explorer view. The actions depend on the type of database, the type of node, or the hierarchical level of the

node where the contextual menu is invoked.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2127

For more information on the specific actions that are available, see the topics in this section for each specific

type of database.

Related Information:

Data Sources Preferences (on page 286)

Table Explorer View

Relational databases tables in the Data Source Explorer view (on page 2125) can be displayed and edited

in the Table Explorer view by selecting the Edit action from the contextual menu of a Table node or by

double-clicking one of its fields. To modify the content of a cell, double-click it and start typing. When editing is

complete, Oxygen XML Editor attempts to update the database with the new cell content.

Figure 532. Table Explorer View

You can sort the content of a table by one of its columns by clicking its column header.

Note the following:

• The first column is an index (not part of the table structure).

• Every column header contains the field name and its data type.

• The primary key columns are marked with this symbol: .

• Multiple tables are presented in a tabbed manner.

For performance issues, you can set the maximum number of cells that are displayed in the Table Explorer

view (using the Limit the number of cells option in the Data Sources Preferences page (on page 290)). If a

table that has more cells than the value set in the options is displayed in the Table Explorer view, a warning

dialog box informs you that the table is only partially shown.

You are notified if the value you have entered in a cell is not valid (and thus cannot be updated).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2128

• If the content of the edited cell does not belong to the data type of the column, the cell is marked by a

red square and remains in an editing state until a correct value is inserted. For example, in the following

figure propID contains LONG values. If a character or string is inserted, the cell will look like this:

Figure 533. Cell Containing an Invalid Value

• If the constraints of the database are not met (for instance, primary key constraints), an information

dialog box will appear, notifying you of the reason the database has not been updated. For example,

in the table below, trying to set the second record in the primary key propID column to 8, results in a

duplicate entry error since that value has already been used in the first record:

Figure 534. Duplicate Entry for Primary Key

Table Explorer Contextual Menu Actions

Common editing actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the

contextual menu of an edited cell.

The contextual menu, available on every cell in the Table Explorer view, also includes the following actions:

Set NULL

Sets the content of the cell to null. This action is not available for columns that cannot have a

value of null.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2129

Insert row

Inserts an empty row in the table.

Duplicate row

Makes a copy of the selected row and adds it in the Table Explorer view. Note that the new row

will not be inserted in the database table until all conflicts are resolved.

Commit row

Commits the selected row.

Delete row

Deletes the selected row.

Copy

Copies the content of the cell.

Paste

Pastes copied content into the selected cell.

Table Explorer Toolbar Actions

The toolbar of the Table Explorer view also includes the following actions:

Export to XML

Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in

the Import from database (on page 2202) chapter) .

Refresh

Performs a refresh for the sub-tree of the selected node.

Insert row

Inserts an empty row in the table.

Duplicate row

Makes a copy of the selected row and adds it in the Table Explorer view. Note that the new row

will not be inserted in the database table until all conflicts are resolved.

Commit row

Commits the selected row.

Delete row

Deletes the selected row.

Related Information:

Data Source Explorer View (on page 2125)

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2130

Database Connection Support

Oxygen XML Editor offers support for a variety of Relational and Native XML database connections.

The database drivers and connections for various types of database are configured in the Data Sources

preferences page (on page 286) and once configured, the database connections can be viewed and managed

in the Data Source Explorer view (on page 2125). Oxygen XML Editor also includes a Database perspective

(on page 360) that helps you to manage databases.

The database support in Oxygen XML Editor offers a variety of capabilities, including:

• Browsing the structure of databases in the Data Source Explorer view (on page 2125).

• Viewing relational tables in the Table Explorer view (on page 2127).

• Executing SQL queries against databases.

• Calling stored procedures with input and output parameters.

• XQuery execution with databases.

• Exporting data from databases to XML.

Relational Database Support

Relational databases use a relational model and are based on tables linked by a common key. Oxygen XML

Editor offers support for the most commonly used relational databases, including:

• IBM DB2 (Deprecated)

• Oracle 11g (Deprecated)

• Microsoft SQL Server (Deprecated)

• PostgreSQL (Deprecated)

• MySQL (Deprecated)

Oxygen XML Editor also offers generic support (table browsing and execution of SQL queries) for any JDBC-

compliant database (for example, MariaDB).

Native XML Database Support

Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. They

use XML as an interface to specify documents as tree structured data that may contain unstructured text, but

on disk the data is stored as optimized binary files. This makes query and retrieval processes faster. Oxygen

XML Editor offers support for the most commonly used native XML databases, including:

• eXist

• MarkLogic (Deprecated)

• Oracle XML DB (Deprecated)

• Base X

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2131

Related information

WebDAV Connections (on page 2171)

Integration with Microsoft SharePoint (on page 2184)

Microsoft SQL Server Database Connections (Deprecated)

Oxygen XML Editor includes support for Microsoft SQL Server database connections. Oxygen XML Editor

allows you to browse the structure of a SQL Server database in the Data Source Explorer view (on page

2125), open tables in the Table Explorer view (on page 2127), and perform various operations on the

resources in the repository.

Configuring a Microsoft SQL Server Connection

To configure the support for a Microsoft SQL Server database, follow this procedure:

1. Download the appropriate MS SQL JDBC driver from the Microsoft website: https://

docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-

ver16#102.

2. Configure MS SQL Server Data Source drivers (on page 2131).

3. Configure a MS SQL Server Connection (on page 2132).

4. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

How to Configure Microsoft SQL Server Data Source Drivers

Note:

Available in the Enterprise edition only.

To configure a data source for connecting to a Microsoft SQL server, follow these steps:

1. Download the appropriate MS SQL JDBC driver from the Microsoft website: https://

docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-

ver16#102.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#102

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2132

Figure 535. Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.

5. Select SQLServer in the driver Type drop-down menu.

6. Click the Add Files button and select the Microsoft SQL Server driver file that you downloaded.

The SQL Server driver file is called sqljdbc.jar.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your Microsoft SQL Server connection (on page 2132).

How to Configure a Microsoft SQL Server Connection

Note:

The support to configure a Microsoft SQL Server connection is available in the Enterprise edition only.

To configure a connection to a Microsoft SQL Server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2133

Figure 536. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the SQL Server data source in the Data Source drop-down menu.

5. Enter the connection details.

a. Enter the URL of the SQL Server server.

If you want to connect to the server using Windows integrated authentication, you must add

;integratedSecurity=true to the end of the URL. The URL will look like this:

jdbc:sqlserver://localhost;instanceName=SQLEXPRESS;integratedSecurity=true;

Note:

For integrated authentication, leave the User and Password fields empty.

b. Enter the user name for the connection to the SQL Server.

c. Enter the password for the connection to the SQL Server.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2134

Microsoft SQL Server Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source

Explorer view (on page 2125), depending on the node where it is invoked:

Refresh

Performs a refresh on the selected node.

Disconnect (available on Connection nodes)

Closes the current database connection. If a table is already open, you are warned to close it

before proceeding.

Configure Database Sources (available on Connection nodes)

Opens the Data Sources preferences page (on page 286) where you can configure both data

sources and connections.

Edit (available on Table nodes)

Opens the selected table in the Table Explorer view (on page 2127).

Export to XML (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in

the Import from Database (on page 2202) chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view (on page 2125), the

resource level nodes in Microsoft SQL Server connections include the following additional contextual menu

action:

XML Schema Repository Level Nodes

Register

Opens a dialog box for adding a new schema file in the DB XML repository. In this

dialog box, you enter a collection name and the necessary schema files. Schema

dependencies management can be done by using the Add and Remove buttons.

Schema Level Nodes

Add

Adds a new schema to the XML Schema files.

Unregister

Removes the selected schema from the XML Schema Repository.

View

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2135

Opens the selected schema in Oxygen XML Editor.

Oracle Database Connections (Deprecated)

The Oracle database is a common relational type of database system. Oxygen XML Editor comes with built-

in support for the 11g version of the database system. The Oracle database also includes a Oracle XML DB

component that adds native XML support. Oxygen XML Editor allows you to browse Oracle repositories in

the Data Source Explorer view (on page 2125), open tables in the Table Explorer view (on page 2127), and

perform various operations on the resources in the repository.

Figure 537. Oracle Database Connection

Related Information:

Using XQuery with Oracle XML DB

Configuring an Oracle 11g Database Connection

To configure the support for a Oracle 11g database, follow this procedure:

1. Go to http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and

download the Oracle 11g JDBC driver called ojdbc6.jar.

2. Configure Oracle 11g Data Source drivers (on page 2136).

3. Configure an Oracle 11g Connection (on page 2137).

4. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

http://docs.oracle.com/cd/B28359_01/appdev.111/b28369/xdb_xquery.htm#top
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2136

How to Configure Oracle 11g Data Source Drivers

Note:

Available in the Enterprise edition only.

To configure a data source for connecting to an Oracle 11g server, follow these steps:

1. Go to http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and

download the Oracle 11g JDBC driver called ojdbc6.jar.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Figure 538. Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.

5. Select Oracle in the driver Type drop-down menu.

6. Click the Add Files button and select the Oracle driver file that you downloaded.

The Oracle driver file is called ojdbc5.jar.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your Oracle connection (on page 2137).

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2137

How to Configure an Oracle 11g Connection

Note:

Available in the Enterprise edition only.

To configure a connection to an Oracle 11g server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 539. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the Oracle 11g data source in the Data Source drop-down menu.

5. Enter the connection details.

a. Enter the URL of the Oracle server.

b. Enter the user name for the connection to the Oracle server.

c. Enter the password for the connection to the Oracle server.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2138

Oracle Database Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source

Explorer view (on page 2125), depending on the node where it is invoked:

Refresh

Performs a refresh on the selected node.

Disconnect (available on Connection nodes)

Closes the current database connection. If a table is already open, you are warned to close it

before proceeding.

Configure Database Sources (available on Connection nodes)

Opens the Data Sources preferences page (on page 286) where you can configure both data

sources and connections.

Edit (available on Table nodes)

Opens the selected table in the Table Explorer view (on page 2127).

Export to XML (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in

the Import from Database (on page 2202) chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view (on page 2125), the

various nodes in Oracle database connections include the following additional contextual menu actions:

XML Schema Repository Level Nodes

Register

Opens a dialog box for adding a new schema file in the XML repository. To add an

XML Schema, enter the schema URI and location on your file system. Local scope

means that the schema is visible only to the user who registers it. Global scope

means that the schema is public.

Note:

Registering a schema may involve dropping/creating types. Hence you

need type-related privileges such as DROP TYPE, CREATE TYPE, and

ALTER TYPE. You need privileges to delete and register the XML schemas

involved in the registering process. You need all privileges on XMLType

tables that conform to the registered schemas. For XMLType columns,

the ALTER TABLE privilege is needed on corresponding tables. If there are

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2139

schema-based XMLType tables or columns in other database schemas,

you need privileges such as the following:

• CREATE ANY TABLE

• CREATE ANY INDEX

• SELECT ANY TABLE

• UPDATE ANY TABLE

• INSERT ANY TABLE

• DELETE ANY TABLE

• DROP ANY TABLE

• ALTER ANY TABLE

• DROP ANY INDEX

To avoid having to grant all these privileges to the schema owner, Oracle

recommends that the registration be performed by a DBA if there are

XML schema-based XMLType table or columns in other user database

schemas.

XML Repository Level Nodes

Add container

Adds a new child container to the current one.

Add resource

Adds a new resource to the folder.

Container Level Nodes

Add container

Adds a new child container to the current one.

Add resource

Adds a new resource to the folder.

Delete

Deletes the current container.

Properties

Shows various properties of the current container.

Resource Level Nodes

Open

Opens the selected resource in the editor.

Open in System Application

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2140

When you use this action, Oxygen XML Editor downloads the selected resource

to a local temporary folder and opens the selected resource in the system

application that is currently set as the default application associated with that type

of resource. You can then edit the resource, save it, and when you switch the focus

back to the Data Source Explorer view, Oxygen XML Editor will detect that there

was a change and will ask if you want to upload the edited resource to the server.

Rename

Renames the current resource

Move

Moves the current resource to a new container (also available through drag and

drop).

Delete

Deletes the current container.

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Properties

Shows various properties of the current container.

Compare

Compares two selected resources using the Compare Files tool (on page 486).

PostgreSQL Database Connections (Deprecated)

Oxygen XML Editor includes support for PostgreSQL database connections. Oxygen XML Editor allows you to

browse the structure of a PostgreSQL database in the Data Source Explorer view (on page 2125), open tables

in the Table Explorer view (on page 2127), and perform various operations on the resources in the repository.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2141

Figure 540. PostgreSQL Database Connection

Configuring a PostgreSQL Database Connection

To configure the support for a PostgreSQL database, follow this procedure:

1. Go to https://jdbc.postgresql.org/download/ and download the PostgreSQL JDBC driver specific for

your server version.

2. Configure PostgreSQL Data Source drivers (on page 2141).

3. Configure a PostgreSQL Connection (on page 2142).

4. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

How to Configure PostgreSQL Data Source Drivers

To configure a data source for connecting to a PostgreSQL server, follow these steps:

1. Go to https://jdbc.postgresql.org/download/ and download the PostgreSQL JDBC3 driver specific for

your server version.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

4. Enter a unique name for the data source.

https://jdbc.postgresql.org/download/
https://jdbc.postgresql.org/download/

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2142

5. Select PostgreSQL in the driver Type drop-down list.

6. Click the Add Files button and select the PostgreSQL driver file that you downloaded.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue to configure your PostgreSQL connection (on page 2142).

How to Configure a PostgreSQL Connection

To configure a connection to a PostgreSQL server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 541. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the PostgreSQL data source in the Data Source drop-down menu.

5. Enter the connection details.

a. Enter the URL of the PostgreSQL server.

b. Enter the user name for the connection to the PostgreSQL server.

c. Enter the password for the connection to the PostgreSQL server.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2143

PostgreSQL Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source

Explorer view (on page 2125), depending on the node where it is invoked:

Refresh

Performs a refresh on the selected node.

Disconnect (available on Connection nodes)

Closes the current database connection. If a table is already open, you are warned to close it

before proceeding.

Configure Database Sources (available on Connection nodes)

Opens the Data Sources preferences page (on page 286) where you can configure both data

sources and connections.

Edit (available on Table nodes)

Opens the selected table in the Table Explorer view (on page 2127).

Export to XML (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in

the Import from Database (on page 2202) chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view (on page 2125), the

resource level nodes in PostgreSQL connections include the following additional contextual menu action:

Resource Level Nodes

Compare

Compares two selected resources using the Compare Files tool (on page 486).

eXist Database Connections

Attention:

Oxygen XML Editor has been tested to work with the latest stable eXist version (version 6). It might

work with previous eXist versions, but they have not been tested and cannot be guaranteed to be

compatible.

Oxygen XML Editor includes support for eXist database connections. Oxygen XML Editor allows you to browse

the structure of a eXist database in the Data Source Explorer view (on page 2125) and perform various

operations on the resources in the repository.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2144

Figure 542. eXist Database Connection

Configuring an eXist Database Connection

There are two ways to configure the support for an eXist database:

• Use the dedicated Create eXist-db XML connection wizard.

• Use the Data Sources preferences page to manually configure your connection.

How to Configure an eXist Connection Using the Built-in Wizard

To configure a connection for an eXist database using the dedicated Create eXist-db XML connection wizard,

follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Data Sources and click

the Create eXist-db XML connection link.

2. Enter your connection details in the connection wizard and click OK.

Important:

To create an eXist connection using this wizard, Oxygen XML Editor expects the exist/

webstart/exist.jnlp path to be accessible at the provided Host and Port.

Attention:

The connection details dialog box has a Libraries path where it will download JAR libraries

from the eXist server. If you are using Oxygen XML Editor version 25.0 or older with eXist

version 6.2.0 or newer and the final connection to the server does not work, you need to remove

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2145

all libraries with the pattern log4j-*.jar from the folder of downloaded libraries because

they may interfere with the logging in Oxygen XML Editor.

3. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Attention:

Oxygen XML Editor has been tested to work with the latest stable eXist version (version 6). It might

work with previous eXist versions, but they have not been tested and cannot be guaranteed to be

compatible.

How to Configure an eXist Connection Manually

Attention:

For this manual procedure, you need to already have an eXist database server installed. Also, Oxygen

XML Editor has been tested to work with the latest stable eXist version (version 6). It might work with

previous eXist versions, but they have not been tested and cannot be guaranteed to be compatible.

Tip:

There is an easier way to configure an eXist database connection using a built-in wizard. For more

information, see How to Configure an eXist Connection Using the Built-in Wizard (on page 2144).

Step 1: Configure eXist Data Source Drivers

Oxygen XML Editor supports eXist database server versions up to and including version 5.0. To configure a

data source for an eXist database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select eXist from the driver Type drop-down menu.

5. Click the Add Files button to add the eXist driver files. The following driver files should be added and

they are found in the installation directory of the eXist database server. Make sure you copy the files

from the installation of the eXist server where you want to connect from Oxygen XML Editor.

◦ The exist.jar file located in the base directory (if present, depending on the server version).

◦ All JAR files in the lib/core/ directory (if present) or all JAR files located in the lib directory

except for the JAR libraries with the pattern log4j-*.jar, which may interfere with the logging

in Oxygen XML Editor.

6. Click the OK button to finish the data source configuration.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2146

Step 2: Configure an eXist Connection

To configure a connection to an eXist database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select a previously configured eXist data source from the Data Source drop-down menu.

5. Enter the connection details:

a. Set the URI to the installed eXist engine in the XML DB URI field.

b. Set the user name in the User field.

c. Set the password in the Password field.

d. Enter the start collection in the Collection field.

eXist organizes all documents in hierarchical collections. Collections are like directories. They

are used to group related documents together. This text field allows the user to set the default

collection name.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Resources

For more information about running XQuery against an eXist XML database, watch our video demonstration:

https://www.youtube.com/embed/Yoc5h1zSddA

eXist Contextual Menu Actions

While browsing eXist database connections in the Data Source Explorer view (on page 2125), the various

nodes include the following contextual menu actions:

Connection Level Nodes

Configure Database Sources

Opens the Data Sources preferences page (on page 286) where you can configure

both data sources and connections.

Disconnect (when connected)

Stops the connection.

Refresh

Performs a refresh on the selected node.

https://www.youtube.com/embed/Yoc5h1zSddA

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2147

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Container Level Nodes

New File or New Document

Creates a new file on the connection, in the current folder.

New Collection

Creates a new collection on the connection.

Import Folders

Imports folders on the server.

Import Files

Allows you to add a new file on the connection, in the current folder.

Export

Allows you to export the folder on the remote connection to a local folder.

Cut

Removes the current selection and places it in the clipboard.

Paste

Pastes the copied selection.

Refresh

Performs a refresh on the selected node.

Properties

Shows various properties of the current container.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Resource Level Nodes

Open

Opens the selected resource in the editor.

Open in System Application

When you use this action, Oxygen XML Editor downloads the selected resource

to a local temporary folder and opens the selected resource in the system

application that is currently set as the default application associated with that type

of resource. You can then edit the resource, save it, and when you switch the focus

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2148

back to the Data Source Explorer view, Oxygen XML Editor will detect that there

was a change and will ask if you want to upload the edited resource to the server.

Save As

Allows you to save the selected resource as a file on disk.

Cut

Removes the current selection and places it in the clipboard.

Copy

Copies the current selection into the clipboard.

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Properties

Shows various properties of the current container.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Compare

Compares two selected resources using the Compare Files tool (on page 486).

MarkLogic Database Connections (Deprecated)

Oxygen XML Editor Enterprise edition includes support for MarkLogic database connections. Once you

configure a MarkLogic connection (on page 2150), you can use the Data Source Explorer view (on page

2125) to display all the application servers that are configured on the MarkLogic server. You can expand each

application server and view all of its configured modules, and the Data Source Explorer view (on page 2125)

allows you to open and edit these modules.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2149

Note:

To browse modules located in a database, directory properties must be associated with them. These

directory properties are generated automatically if the directory creation property of the database is

set to automatic. If this property is set to manual or manual-enforced, add the directory properties

of the modules manually, using the XQuery function xdmp:directory-create(). For example, for two

documents with the /code/modules/main.xqy and /code/modules/imports/import.xqy IDs, run the

following query:

(xdmp:directory-create('/code/modules/'), xdmp:directory-create('/code/modules/imports/'))

For more information about directory properties, go to: http://blakeley.com/blogofile/2012/03/19/

directory-assistance/.

MarkLogic and XQuery

MarkLogic connections can be used in conjunction with XQuery scripts to debug and solve problems with

XQuery transformations. XQuery modules can also be validated using a MarkLogic server to allow to you to

spot possible issues without the need of actually executing the XQuery script.

When debugging XQuery files with MarkLogic (on page 2153), you can use the Data Source Explorer view

(on page 2125) to open the files from the application server that is involved in the debugging process. By

using the Data Source Explorer view (on page 2125), any imported modules are better identified by the

MarkLogic server. You can also use step actions and breakpoints (on page 2155) in the modules to help

identify problems.

Modules Container

For each Application server (for example: Bill (HTTP port:8060)), you have access to the XQuery modules that

are visible to that server. When editing, executing, or debugging XQuery it is recommended to open the XQuery

files from this Modules container.

Note:

You can also manage resources for a MarkLogic database through a WebDAV connection, although

it is not recommended if you work with XQuery files since imported modules may not be resolved

correctly.

Requests Container

Each MarkLogic application server includes a Requests container. In this container, Oxygen XML Editor

displays both queries that are stopped for debugging purposes and queries that are still running. To clean up

the entire Requests container at the end of your session, right-click it and use the Cancel all requests action

(on page 2157).

http://blakeley.com/blogofile/2012/03/19/directory-assistance/
http://blakeley.com/blogofile/2012/03/19/directory-assistance/

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2150

Figure 543. MarkLogic Connection in Data Source Explorer

Configuring a MarkLogic Database Connection

Note that this feature is available in Oxygen XML Editor Enterprise edition only.

Follow this procedure to configure the support for a MarkLogic database connection:

1. Download the MarkLogic driver from MarkLogic Community site.

2. Configure MarkLogic Data Source drivers (on page 2150).

3. Configure a MarkLogic Connection (on page 2151).

4. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Related Information:

MarkLogic Development in Oxygen XML Editor (on page 2152)

How to Configure MarkLogic Data Source Drivers

Notes:

• Available in the Enterprise edition only.

• Oxygen XML Editor supports MarkLogic version 4.0 or later.

To configure a data source for MarkLogic, follow this procedure:

1. Download the XCC Java distribution zip file from: http://developer.marklogic.com/products/xcc.

2. Unzip the downloaded archive.

http://community.marklogic.com/download
http://developer.marklogic.com/products/xcc

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2151

3. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

4. Click the New button in the Data Sources panel.

5. Enter a unique name for the data source.

6. Select MarkLogic from the driver Type drop-down list.

7. Click the Add Files button and select the MarkLogic driver file from the lib folder of the archive that

you downloaded and unzipped. The driver file name is marklogic-xcc-{server_version}.jar,

where {server_version} is the MarkLogic server version.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your MarkLogic Connection (on page 2151).

How to Configure a MarkLogic Connection

Notes:

• Available in the Enterprise edition only.

• Oxygen XML Editor supports MarkLogic version 4.0 or later.

To configure a connection to a MarkLogic database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select a previously configured MarkLogic data source from the Data Source drop-down menu.

5. Enter the connection details.

a. The host name or IP address of the installed MarkLogic engine in the XDBC Host field.

Oxygen XML Editor uses XCC connector to interact with MarkLogic XDBC server and requires

the basic authentication schema to be set. Starting with version MarkLogic 4.0 the default

authentication method when you create an HTTP or WebDAV Server is digest, so make sure to

change it to basic.

b. Set the port number of the MarkLogic engine in the Port field. A MarkLogic XDBC application

server must be configured on the server on this port. This XDBC server will be used to process

XQuery expressions against the server. Later, if you want to change the XDBC server, instead of

editing the configuration just use the Use it to execute queries action (on page 2156) from Data

Source Explorer.

c. Set the user name to access the MarkLogic engine in the User field.

d. Set the password to access the MarkLogic engine in the Password field.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2152

e. Optionally, in the WebDAV URL field, set the URL used for browsing the MarkLogic database in

the Data Source Explorer view (on page 2125).

The Database field specifies the database that will have the XQuery expressions executed. If you

set this option to default, the database associated to the application server of the configured

port is used.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

MarkLogic Development in Oxygen XML Editor

The Oxygen XML Editor support for MarkLogic includes features designed for developers, such as debugging

XQuery transformations, remote and collaborative debugging, XQuery editing and validation, and an XQuery

builder (on page 1057) that helps to improve productivity.

Working with XQuery Files

MarkLogic supports working with XQuery files to create queries over stored XML content. You can open an

XQuery file, configure a transformation scenario to match your MarkLogic connection, write the XQuery, and

then execute it.

When editing XQuery modules stored on the MarkLogic server, the Outline view (on page 1056) collects and

displays all the functions from all imported modules. The Content Completion Assistant (on page 3295) also

presents all of these functions along with the latest built-in XQuery functions in accordance with the server

version.

When developing queries for MarkLogic, it is best to open the resources from the Data Source Explorer view

(on page 2125). When you execute or debug XQuery files opened from this view, imported modules can be

resolved better by the MarkLogic server. Another advantage is that validation is automatically performed on

the MarkLogic server, including any imported modules.

XQuery Debugging

Oxygen XML Editor allows you to use MarkLogic connections to debug real applications that use XQuery (for

example, web applications that trigger XQuery executions). By setting the server in debug mode, you can

intercept all the XQuery scripts that run on that server. Oxygen XML Editor connects to the MarkLogic server,

shows you the running XQuery scripts, and allows you to debug them. The remote debugging support also

allows you to debug collaboratively. Multiple users can participate in the same debugging session. You can

start a debugging session and another user can continue it, and vice versa.

Working with Modules

MarkLogic has a concept of two types of XQuery modules, library and main modules. A library module is used

to define functions. Library modules cannot be evaluated directly. They are imported, either from other library

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2153

modules or from main modules. A main module is used as an entry point that can be executed as an XQuery

program. For more information on these types of modules, see XQuery Library Modules and Main Modules.

When working with library modules, you need to create a validation scenario and associate it with the module.

In the validation scenario you need to specify a main module as the entry point for validation. The modules

need to be deployed on a MarkLogic server because Oxygen XML Editor will request the server to validate the

modules.

To validate library modules stored on a MarkLogic server, follow these steps:

1. Configure a MarkLogic database connection (on page 2150).

2. Expand the MarkLogic connection in the Data Source Explorer view (on page 2125) and open the

library modules. The main module must also be opened from the Data Source Explorer view (on page

2125).

3. Configure a validation scenario (on page 803) for each library module. Specify the main module in the

URL of the file to validate field.

Result: Validation is done on the server that contains the main module. The main module and all

other library modules involved in the validation must be saved. Otherwise, the server will validate what

was saved on the server, without the uncommitted changes. Also, the Content Completion Assistant

(on page 3295) and the Outline view (on page 1056) should now present the functions from all the

modules.

Related Information:

Debugging with MarkLogic (on page 2153)

Configuring a MarkLogic Database Connection (on page 2150)

Debugging with MarkLogic

Oxygen XML Editor includes support for debugging XQuery transformations that are executed against a

MarkLogic database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source (on page 2150) and a MarkLogic connection (on page 2151).

2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Editor

accesses. On the server side, debugging must be activated in the XDBC server and in the Task Server

section of the server control console (the switch debug allow). If the debugging is not activated, the

MarkLogic server reports a DBG-TASKDEBUGALLOW error.

Note:

An XDBC application server must be running to connect to the MarkLogic server and this

XDBC server will be used to process XQuery expressions against the server. You can change

the XDBC application server that Oxygen XML Editor uses to process XQuery expressions by

https://docs.marklogic.com/guide/app-dev/import_modules#id_45509

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2154

selecting the Use it to execute queries action (on page 2156) from the contextual menu in the

Data Source Explorer view (on page 2125).

3. Open the XQuery file and start the debugging process.

◦ If you want to debug an XQuery file stored on the MarkLogic server, it is recommended to use the

Data Source Explorer view (on page 2125) and open the file from the application server that is

involved in the debugging process. This improves the resolving of any imported modules.

◦ The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective

(on page 359). If you have a MarkLogic validation scenario configured for the XQuery file, you

can choose to debug the scenario (on page 2228) directly.

◦ Otherwise, switch to the XQuery Debugger perspective (on page 3299), open the XQuery file in

the editor, and select the MarkLogic connection in the XQuery engine selector from the debug

control toolbar (on page 2211).

For general information about how a debugging session is started and controlled, see the

Working with the Debugger (on page 2228) section.

In a MarkLogic debugging session, you can use step actions and breakpoints (on page 2232) to help identify

problems. When you add a breakpoint (on page 2233) on a line where the debugger never stops, Oxygen

XML Editor displays a warning message. These warnings are displayed for breakpoints you add either in the

main XQuery (which you can open locally or from the server) or for breakpoints you add in any XQuery that

is opened from the connection that participates in the debugging session. For more information, see Using

Breakpoints for Debugging Queries that Import Modules with MarkLogic (on page 2155).

Remote Debugging with MarkLogic

Oxygen XML Editor allows you to debug remote applications that use XQuery (for example, web applications

that trigger XQuery executions). Oxygen XML Editor connects to a MarkLogic server, shows you the running

XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the

debugging queries in the exact context of the application. You can also switch a server to debug mode to

intercept all XQuery scripts.

Oxygen XML Editor also supports collaborative debugging. This feature allows multiple users to participate

in the same debugging session. You can start a debugging session and at a certain point, another user can

continue it.

Important:

When using the remote debugging feature, the HTTP and the XDBC servers involved in the debugging

session must have the same module configuration.

Resources

For more information about the XQuery debugger for MarkLogic, watch our video demonstration:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2155

https://www.youtube.com/embed/eQ4ThDZq1bk

Related Information:

MarkLogic Development in Oxygen XML Editor (on page 2152)

Configuring a MarkLogic Database Connection (on page 2150)

Using Breakpoints for Debugging Queries that Import Modules with
MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place

breakpoints (on page 2232) in the modules. When starting a new debugging session, make sure that the

modules that you will debug are already opened in the editor. This is necessary so that the breakpoints in all

the modules will be considered. Also, make sure that there are no other open modules that are not involved in

the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view (on page 2125), open all the modules from the Modules container

of the XDBC application server (on page 2151) that performs the debugging.

2. Set breakpoints (on page 2233) in the module as needed.

3. Continue debugging (on page 2228) the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view (on page 2216) and make sure there are no older breakpoints (set on

resources that are not part of the current debugging context).

• Make sure you open the modules from the context of the application server that does the debugging

and place breakpoints there.

Related Information:

MarkLogic Database Connections (Deprecated) (on page 2148)

MarkLogic Development in Oxygen XML Editor (on page 2152)

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.

• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-

ml' (inherited from MarkLogic 3.2), '1.0-ml', and '1.0'.

• All declared variables are presented as strings. The Value column of the Variables view contains the

expression from the variable declaration. It can be evaluated by copying the expression with the Copy

value action from the contextual menu of the Variables view (on page 2226) and pasting it in the

XWatch view (on page 2218).

https://www.youtube.com/embed/eQ4ThDZq1bk

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2156

• There is no support for output to source mapping (on page 2229).

• There is no support for showing the trace (on page 2223).

• You can only set breakpoints (on page 2216) in imported modules in one of the following cases:

◦ When you open the module from the context of the application server involved in the debugging,

using the Data Source Explorer view (on page 2125).

◦ When the debugger automatically opens the modules in the Editor.

• No breakpoints (on page 2232) are set in modules from the same server that are not involved in the

current debugging session.

• No support for profiling (on page 2233) when an XQuery transformation is executed in the debugger.

MarkLogic Contextual Menu Actions

While browsing MarkLogic connections in the Data Source Explorer view (on page 2125), the various nodes

include the following contextual menu actions:

Connection Level Nodes

Configure Database Sources

Opens the Data Sources preferences page (on page 286) where you can configure

both data sources and connections.

Disconnect (when connected)

Stops the connection.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Container Level Nodes

Enable Debug Mode

Switches the server to a debugging mode. For more information, see MarkLogic

debugging sessions (on page 2153).

Use it to Execute Queries

The server will be used to process XQuery expressions against it.

Refresh

Performs a refresh on the selected node.

Module or Folder Level Nodes

Export

Allows you to export the folder on the remote connection to a local folder.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2157

Refresh

Performs a refresh on the selected node.

Requests Level Nodes

Refresh

Performs a refresh on the selected node.

Cancel all requests

Cancels all queries that are either running or stopped on the application server. You

can use this action to clean up the entire Requests container at the end of your

sessions.

Resource Level Nodes

Open

Opens the selected resource in the editor.

Open in System Application

When you use this action, Oxygen XML Editor downloads the selected resource

to a local temporary folder and opens the selected resource in the system

application that is currently set as the default application associated with that type

of resource. You can then edit the resource, save it, and when you switch the focus

back to the Data Source Explorer view, Oxygen XML Editor will detect that there

was a change and will ask if you want to upload the edited resource to the server.

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Refresh

Performs a refresh on the selected node.

Compare

Compares two selected resources using the Compare Files tool (on page 486).

Related Information:

Configuring a MarkLogic Database Connection (on page 2150)

MarkLogic Development in Oxygen XML Editor (on page 2152)

Debugging with MarkLogic (on page 2153)

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2158

MySQL Database Connections (Deprecated)

Oxygen XML Editor includes support for MySQL database connections. Oxygen XML Editor allows you to

browse the structure of a SQL Server database in the Data Source Explorer view (on page 2125), open tables

in the Table Explorer view (on page 2127), and perform various operations on the resources in the repository.

Configuring a MySQL Database Connection

To configure the support for a MySQL database, follow this procedure:

1. Configure MySQL Data Source drivers (on page 2158).

2. Configure a MySQL Connection. (on page 2159)

3. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

How to Configure MySQL Data Source Drivers

To connect to a MySQL server, you need to create a generic JDBC type data source based on the MySQL JDBC

driver available on the MySQL website.

To configure this data source, follow these steps:

1. Go to https://www.oxygenxml.com/database_drivers.html and download the appropriate MySQL driver.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

http://www.mysql.com/downloads/connector/j/
http://www.mysql.com/downloads/connector/j/
https://www.oxygenxml.com/database_drivers.html

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2159

Figure 544. Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.

5. Select Generic JDBC in the driver Type drop-down list.

6. Click the Add Files button and select the MySQL driver file that you downloaded.

The driver file for the MySQL server is called mysql-com.jar.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your MySQL connection (on page 2159).

How to Configure a MySQL Connection

To configure a connection to a MySQL server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2160

Figure 545. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the MySQL data source in the Data Source drop-down list.

5. Enter the connection details.

a. Enter the URL of the MySQL server.

b. Enter the user name for the connection to the MySQL server.

c. Enter the password for the connection to the MySQL server.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Generic JDBC Database Connections

Oxygen XML Editor includes support for Generic JDBC database connections.

Configuring a Generic JDBC Database Connection

To configure the support for a generic JDBC database, follow this procedure:

1. Configure Generic JDBC Data Source drivers (on page 2161).

2. Configure a Generic JDBC Connection (on page 2161).

3. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2161

How to Configure Generic JDBC Data Source Drivers

Starting with version 17, Oxygen XML Editor comes bundled with Java 11, which does not provide built-in

access to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC

bridge or use a platform-independent distribution of Oxygen XML Editor along with a Java VM version 7 or 6.

To configure a generic JDBC data source, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Generic JDBC in the driver Type drop-down list.

5. Add the driver file(s) using the Add Files button.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure a generic JDBC connection (on page 2161).

How to Configure a Generic JDBC Connection

To configure a connection to a generic JDBC database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select the Generic JDBC data source in the Data Source drop-down menu.

5. Enter the connection details.

a. Enter the URL of the generic JDBC database, with the following format:jdbc: <subprotocol>:

<subname>.

b. Enter the user name for the connection to the generic JDBC database.

c. Enter the password for the connection to the generic JDBC database.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

JDBC-ODBC Database Connections

Oxygen XML Editor includes support for JDBC-ODBC database connections.

How to Configure a JDBC-ODBC Connection

Starting with version 17, Oxygen XML Editor comes bundled with Java 11, which does not provide built-in

access to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC

bridge or use a platform-independent distribution of Oxygen XML Editor along with a Java VM version 7 or 6.

To configure a connection to an ODBC data source, follow these steps:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2162

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 546. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select JDBC-ODBC Bridge in the Data Source drop-down list.

5. Enter the connection details.

a. Enter the URL of the ODBC source.

b. Enter the user name of the ODBC source.

c. Enter the password of the ODBC source.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

BaseX Database Connections

Oxygen XML Editor includes support for BaseX database connections using a WebDAV connection. BaseX

is a light-weight XML database engine and XQuery processor. Oxygen XML Editor allows you to browse

the structure of a BaseX database in the Data Source Explorer view (on page 2125) and perform XQuery

executions.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2163

How to Configure a BaseX Connection

To configure a BaseX connection, follow these steps:

1. First of all, make sure the BaseX HTTP Server is started. For details about starting the BaseX HTTP

server, go to http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server. The configuration file for the

HTTP server is named .basex and is located in the BaseX installation directory. This file helps you to

find out which port the HTTP server using. The default port for BaseX WebDAV is 8984.

2. To ensure that everything is functioning, open a WebDAV URL inside a browser and check to see if it

works. For example, the following URL retrieves a document from a database named TEST: http://

localhost:8984/webdav/TEST/etc/factbook.xml.

3. Once you are sure that the BaseX WebDAV service is working, you can configure the WebDAV

connection in Oxygen XML Editor as described in How to Configure a WebDAV Connection (on page

2171). The WebDAV URL should resemble this: http://{hostname }:{port}/webdav/. If the BaseX

server is running on your own machine and it has the default configuration, the data required by the

WebDAV connection is:

◦ WebDAV URL: http://localhost:8984/webdav

◦ User: admin

◦ Password: admin

4. Once the WebDAV connection is created, to view your connection, go to the Data Source Explorer view

(on page 2125) (if the view is not displayed, it can be opened by selecting it from the Window > Show

View menu) or switch to the Database perspective (on page 3299).

BaseX Contextual Menu Actions

While browsing BaseX connections in the Data Source Explorer view (on page 2125), the various nodes

include the following contextual menu actions:

Connection Level Nodes

Configure Database Sources

Opens the Data Sources preferences page (on page 286) where you can configure

both data sources and connections.

Disconnect (when connected)

Stops the connection.

New Folder

Creates a new folder on the connection.

Import Files

Allows you to add a new file on the connection, in the current folder.

Refresh

Performs a refresh on the selected node.

http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2164

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Folder Level Nodes

New File or New Document

Creates a new file on the connection, in the current folder.

New Folder

Creates a new folder on the connection.

Import Folders

Imports folders on the server.

Import Files

Allows you to add a new file on the connection, in the current folder.

Export

Allows you to export the folder on the remote connection to a local folder.

Cut

Removes the current selection and places it in the clipboard.

Copy

Copies the current selection into the clipboard.

Paste

Pastes the copied selection.

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Resource Level Nodes

Open

Opens the selected resource in the editor.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2165

Open in System Application

When you use this action, Oxygen XML Editor downloads the selected resource

to a local temporary folder and opens the selected resource in the system

application that is currently set as the default application associated with that type

of resource. You can then edit the resource, save it, and when you switch the focus

back to the Data Source Explorer view, Oxygen XML Editor will detect that there

was a change and will ask if you want to upload the edited resource to the server.

Cut

Removes the current selection and places it in the clipboard.

Copy

Copies the current selection into the clipboard.

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Properties

Shows various properties of the current container.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Compare

Compares two selected resources using the Compare Files tool (on page 486).

Base X XQJ Connection

XQuery execution is possible in a BaseX connection through an XQJ connection.

Important:

The XQJ connector is only capable of running XQuery 1.0 scrips, therefore XQuery 3.0 and 3.1 scripts

are not supported.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2166

BaseX XQJ Data Source

First of all, create an XQJ data source as described in How to Configure an XQJ Data Source (on page 2166).

The BaseX XQJ API-specific files that must be added in the configuration dialog box are xqj-api-1.0.jar,

xqj2-0.1.0.jar and basex-xqj-1.2.3.jar (the version names of the JAR file may differ). These libraries can

be downloaded from xqj.net/basex/basex-xqj-1.2.3.zip. As an alternative, you can also find the libraries in the

BaseX installation directory, in the lib sub-directory.

BaseX XQJ Connection

The next step is to create an XQJ connection (on page 2167).

For a default BaseX configuration, the following connection details apply (you can modify them when

necessary):

• Port: 1984

• serverName: localhost

• user: admin

• password: admin

XQuery Execution

Now that the XQJ connection is configured, open the XQuery file you want to execute in Oxygen XML Editor

and create an XQuery Transformation on XML (on page 1596). In the Transformer drop-down menu, select the

name of the XQJ connection you created. Apply the transformation scenario and the XQuery will be executed.

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming

XML documents. An example of an XQuery engine that implements the XQJ API is Zorba.

1. If your XQJ Implementation is native, make sure the directory containing the native libraries of the

engine is added to your system environment variables: to PATH - on Windows, to LD_LIBRARY_PATH

- on Linux, or to DYLD_LIBRARY_PATH - on macOS. Restart Oxygen XML Editor after configuring the

environment variables.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

3. Click the New button in the Data Sources panel.

4. Enter a unique name for the data source.

5. Select XQuery API for Java (XQJ) in the Type combo box.

6. Click the Add button to add XQJ API-specific files.

You can manage the driver files using the Add, Remove, Detect, and Stop buttons.

Oxygen XML Editor detects any implementation of javax.xml.xquery.XQDataSource and presents it in

Driver class field.

7. Select the most suited driver in the Driver class combo box.

http://xqj.net/basex/basex-xqj-1.2.3.zip
http://www.zorba.io/home

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2167

8. Click the OK button to finish the data source configuration.

9. Continue on to configure the XQJ connection (on page 2167).

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured XQJ data sources (on page 2166) in the Data Source combo

box.

5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the

selected data source.

6. Click the OK button to finish the connection configuration.

IBM DB2 Database Connections (Deprecated)

Oxygen XML Editor includes support for IBM DB2 database connections. Oxygen XML Editor allows you to

browse the structure of an IBM DB2 database in the Data Source Explorer view (on page 2125), open tables in

the Table Explorer view (on page 2127), and perform various operations on the resources in the repository.

Figure 547. IBM DB2 Database Connection

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2168

Configuring an IBM DB2 Database Connection (Deprecated)

To configure the support for the IBM DB2 database, follow this procedure:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver

for JDBC and SQLJ download link. Fill out the download form and download the zip file. Unzip the

zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Editor for

configuring a DB2 data source (on page 2168).

2. Configure IBM DB2 Data Source drivers (on page 2168).

3. Configure an IBM DB2 Server Connection (on page 2169).

4. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

How to Configure IBM DB2 Data Source Drivers (Deprecated)

Note:

Available in the Enterprise edition only.

To configure a data source for connecting to an IBM DB2 server, follow these steps:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver

for JDBC and SQLJ download link. Fill out the download form and download the zip file.

2. Unzip the downloaded archive.

3. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

4. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

http://www-306.ibm.com/software/data/db2/express/download.html
http://www-306.ibm.com/software/data/db2/express/download.html

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2169

Figure 548. Data Source Drivers Configuration Dialog Box

5. Enter a unique name for the data source.

6. Select DB2 in the driver Type drop-down menu.

7. Click the Add Files button and select the IBM DB2 driver files from the archive that you downloaded and

unzipped.

The IBM DB2 driver files are:

◦ db2jcc.jar

◦ db2jcc_license_cisuz.jar

◦ db2jcc_license_cu.jar

8. Select the most appropriate Driver class.

9. Click the OK button to finish the data source configuration.

10. Continue on to configure your IBM DB2 connection (on page 2169).

How to Configure an IBM DB2 Connection (Deprecated)

Note:

The support to create an IBM DB2 connection is available in the Enterprise edition only.

To configure a connection to an IBM DB2 server, follow these steps:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2170

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 549. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select an IBM DB2 data source in the Data Source drop-down menu.

5. Enter the connection details.

a. Enter the URL to the installed IBM DB2 engine.

b. Enter the user name to access the IBM DB2 engine.

c. Enter the password to access the IBM DB2 engine.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

IBM DB2 Contextual Menu Actions (Deprecated)

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source

Explorer view (on page 2125), depending on the node where it is invoked:

Refresh

Performs a refresh on the selected node.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2171

Disconnect (available on Connection nodes)

Closes the current database connection. If a table is already open, you are warned to close it

before proceeding.

Configure Database Sources (available on Connection nodes)

Opens the Data Sources preferences page (on page 286) where you can configure both data

sources and connections.

Edit (available on Table nodes)

Opens the selected table in the Table Explorer view (on page 2127).

Export to XML (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in

the Import from Database (on page 2202) chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view (on page 2125), the

various nodes in IBM DB2 connections include the following additional contextual menu actions:

XML Schema Repository Level Nodes

Register

Opens a dialog box for adding a new schema file in the DB XML repository. In this

dialog box, you enter a collection name and the necessary schema files. Schema

dependencies management can be done by using the Add and Remove buttons.

Schema Level Nodes

Unregister

Removes the selected schema from the XML Schema Repository.

View

Opens the selected schema in Oxygen XML Editor.

WebDAV Connections

Oxygen XML Editor includes support for WebDAV server connections. Oxygen XML Editor allows you to

browse the structure of a WebDAV connection in the Data Source Explorer view (on page 2125) and perform

various operations on the resources in the repository.

How to Configure a WebDAV Connection

By default, Oxygen XML Editor contains built-in data source drivers for WebDAV connections. Based on

this data source, you can create a WebDAV connection for browsing and editing data from a database that

provides a WebDAV interface. The connection is available in the Data Source Explorer view (on page 2125).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2172

To configure a WebDAV connection, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the WebDAV data sources in the Data Source drop-down menu.

5. Enter the connection details:

a. Set the URL to the WebDAV repository in the field WebDAV URL.

b. Set the user name that is used to access the WebDAV repository in the User field.

c. Set the password that is used to access the WebDAV repository in the Password field.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

For more information about the WebDAV support in Oxygen XML Editor, watch our video

demonstration:

https://www.youtube.com/embed/vDXO36CqbvM

WebDAV Contextual Menu Actions

While browsing WebDAV connections in the Data Source Explorer view (on page 2125), the various nodes

include the following contextual menu actions:

Connection Level Nodes

Configure Database Sources

Opens the Data Sources preferences page (on page 286) where you can configure

both data sources and connections.

Disconnect (when connected)

Stops the connection.

New Folder

Creates a new folder on the connection.

Import Files

Allows you to add a new file on the connection, in the current folder.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

https://www.youtube.com/embed/vDXO36CqbvM

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2173

Folder Level Nodes

New File or New Document

Creates a new file on the connection, in the current folder.

New Folder

Creates a new folder on the connection.

Import Folders

Imports folders on the server.

Import Files

Allows you to add a new file on the connection, in the current folder.

Export

Allows you to export the folder on the remote connection to a local folder.

Cut

Removes the current selection and places it in the clipboard.

Copy

Copies the current selection into the clipboard.

Paste

Pastes the copied selection.

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Resource Level Nodes

Open

Opens the selected resource in the editor.

Open in System Application

When you use this action, Oxygen XML Editor downloads the selected resource

to a local temporary folder and opens the selected resource in the system

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2174

application that is currently set as the default application associated with that type

of resource. You can then edit the resource, save it, and when you switch the focus

back to the Data Source Explorer view, Oxygen XML Editor will detect that there

was a change and will ask if you want to upload the edited resource to the server.

Cut

Removes the current selection and places it in the clipboard.

Copy

Copies the current selection into the clipboard.

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Properties

Shows various properties of the current container.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Compare

Compares two selected resources using the Compare Files tool (on page 486).

SQL Execution Support

The database support in Oxygen XML Editor includes support for writing SQL statements, syntax highlighting,

folding (on page 3297), and dragging and dropping from the Data Source Explorer view (on page 2125).

It also includes transformation scenarios for executing the statements, and the results are displayed in the

Table Explorer view (on page 2127).

Drag and Drop from Data Source Explorer View

Dragging operations from the Data Source Explorer view (on page 2125) and dropping them in the SQL

Editor allows you to create SQL statements quickly by inserting the names of tables and columns in the SQL

statements.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2175

1. Configure a database connection (see the specific procedure for your database server in the Database

Connection Support (on page 2130) section).

2. Browse to the table you will use in your statement.

3. Drag the table or a column of the table into the editor where a SQL file is open.

Drag and drop actions are available both on the table and on its fields. A pop-up menu is displayed in

the SQL editor.

Figure 550. SQL Statement Editing with Drag and Drop

4. Select the type of statement from the pop-up menu.

Depending on your choice, dragging a table results in one of the following statements being inserted

into the document:

◦ SELECT `field1`,`field2`, FROM `catalog`. `table` (for example: SELECT

`DEPT`,`DEPTNAME`,`LOCATION` FROM `camera`.`cameraDesc`)

◦ UPDATE `catalog`. `table` SET `field1`=, `field2`=,.... (for example: UPDATE

`camera`.`cameraDesc` SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2176

◦ INSERT INTO `catalog`. `table` (`field1`,`field2`,) VALUES (, ,) (for example: INSERT INTO

`camera`.`cameraDesc` (`DEPT`,`DEPTNAME`,`LOCATION`) VALUES (, ,))

◦ DELETE FROM `catalog`. `table` (for example: DELETE FROM `camera`.`cameraDesc`)

Depending on your choice, dragging a column results in one of the following statements being inserted

into the document:

◦ SELECT `field` FROM `catalog`. `table` (for example: SELECT `DEPT` FROM

`camera`.`cameraDesc`)

◦ UPDATE `catalog`. `table` SET `field`= (for example: UPDATE `camera`.`cameraDesc` SET

`DEPT`=)

◦ INSERT INTO `catalog`. `table` (`field1) VALUES () (for example: INSERT INTO

`camera`.`cameraDesc` (`DEPT`) VALUES ())

◦ DELETE FROM `catalog`. `table` (for example: DELETE FROM `camera`.`cameraDesc` WHERE

`DEPT`=)

SQL Validation

SQL validation support is offered for IBM DB2. Note that if you choose a connection that does not support

SQL validation, you will receive a warning when trying to validate. The SQL document is validated using the

connection from the associated transformation scenario.

Executing SQL Statements

The steps for executing an SQL statement on a relational database are as follows:

1. Configure a transformation scenario (on page 1472) using the Configure Transformation

Scenario(s) action from the toolbar or the Document > Transformation menu.

A SQL transformation scenario needs a database connection. You can configure a connection using the

Preferences button from the SQL transformation dialog box.

The dialog box contains the list of existing scenarios that apply to SQL documents.

2. Set parameter values for SQL placeholders using the Parameters button from the SQL transformation

dialog box.

For example, in SELECT * FROM `test`.`department` where DEPT = ? or DEPTNAME = ? the two

parameters can be configured for the place holders (?) in the transformation scenario.

When the SQL statement is executed, the first placeholder is replaced with the value set for the first

parameter in the scenario, the second placeholder is replaced by the second parameter value, and so

on.

Restriction:

When a stored procedure is called in an SQL statement executed on an SQL Server database,

mixing inline parameter values with values specified using the Parameters button of the

scenario dialog box is not recommended. This is due to a limitation of the SQL Server driver

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2177

for Java applications. An example of stored procedure that is not recommended: call

dbo.Test(22, ?).

3. Execute the SQL scenario by clicking the OK or Apply associated button.

The result of a SQL transformation is displayed in a view (on page 560) at the bottom of the Oxygen

XML Editor window.

4. View more complex return values of the SQL transformation in a separate editor panel.

A more complex value returned by the SQL query (for example, an XMLTYPE or CLOB value) cannot be

displayed entirely in the result table.

a. Right-click the cell containing the complex value.

b. Select the action Copy cell from the contextual menu.

The action copies the value in the clipboard.

c. Paste the value into an appropriate editor.

For example, you can paste the value in an opened XQuery editor panel of Oxygen XML Editor.

XQuery and Databases

XQuery is a native XML query language that is useful for querying XML views of relational data to create

XML results. It also provides the mechanism to efficiently and easily extract information from Native XML

Databases (NXD) and relational data. The following database systems supported in Oxygen XML Editor offer

XQuery support:

• Native XML Databases:

◦ eXist

◦ MarkLogic (validation support available starting with version 5)

• Relational Databases:

◦ IBM DB2

◦ Microsoft SQL Server (validation support not available)

◦ Oracle (validation support not available)

Related information

Editing XQuery Documents (on page 1052)

Build Queries with Drag and Drop from the Data Source Explorer View

When a query is edited in the XQuery editor, the XPath expressions can be composed quickly by dragging them

from the Data Source Explorer view (on page 2125) and dropping them into the editor panel.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2178

1. Configure the data source drivers (on page 2130) for the particular relational database in the Data

Sources preferences page (on page 286).

2. Configure the connection (on page 2130) for the particular relational database in the Data Sources

preferences page (on page 286).

3. Browse the connection in the Data Source Explorer view (on page 2125), expanded to the table or

column that you want to insert in the query.

4. Drag the table or column name to the XQuery editor panel.

5. Drop the table or column name where the XPath expression is needed.

An XPath expression that selects the dragged name is inserted in the XQuery document at the cursor position.

XQuery Validation When Connected to a Database

With Oxygen XML Editor, you can validate your XQuery documents when connected to a database. When you

open an XQuery document from a connection that supports validation (for example, MarkLogic, or eXist), by

default Oxygen XML Editor uses this connection for validation. If you open an XQuery file using a MarkLogic

connection, the validation resolves imports better.

Related Information:

XQuery Validation (on page 1052)

XQuery Transformation for Databases

XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or document.

Data is stored in relational databases but it is often required that the data be extracted and transformed

as XML when interfacing to other components and services. Also, it is an XPath-based querying language

supported by most NXD vendors. To perform a query, you need an XQuery transformation scenario.

1. Configure the data source drivers and the connection (on page 2130) for the particular database.

2. Configure an XQuery transformation scenario.

a. Click the Configure Transformation Scenario toolbar button or go to menu Document >

Transformation > Configure Transformation Scenario.

The Configure Transformation Scenario dialog box (on page 1616) is opened.

b. Click the New button toward the bottom of the dialog box.

c. Select XML Transformation with XQUERY (on page 1520).

The New Scenario dialog box for configuring an XQuery scenario is opened.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2179

Figure 551. New Scenario Dialog Box

d. Insert the scenario name in the dialog box for editing the scenario.

e. Choose the database connection in the Transformer drop-down list.

f. Configure any other parameters as needed.

For an XQuery transformation, the output tab has an option called Sequence that allows you to

run an XQuery in lazy mode. The amount of data extracted from the database is controlled from

the Size limit on Sequence view option (on page 263) in the XQuery preferences page. If you

choose Perform FO Processing in the FO Processor tab, the Sequence option is ignored.

g. Click the OK button to finish editing the scenario.

Once the scenario is associated with the XQuery file, the query can include calls to specific XQuery

functions that are implemented by that engine. The available functions depend on the target database

engine selected in the scenario. For example, for eXist, the Content Completion Assistant (on page

3295) lists the functions supported by that database engine. This is useful for only inserting calls to

the supported functions (standard XQuery functions or extension ones) into the query .

3. Run the transformation scenario.

To view a more complex value returned by the query that cannot be entirely displayed in the XQuery

query result table at the bottom of the Oxygen XML Editor window (for example, an XMLTYPE or CLOB

value), do the following:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2180

◦ Right-click that table cell.

◦ Select the Copy cell action from the contextual menu to copy the value into the clipboard.

◦ Paste the value wherever you need it (for example, in an open XQuery editor panel of Oxygen

XML Editor).

Related information

XML Transformation with XQuery (on page 1520)

XQuery XQJ Transformation (on page 2180)

XQuery XQJ Transformation

XQuery API for Java (XQJ) refers to the common Java API for the XQuery 1.0 specification. The XQJ API

enables you to execute XQuery against an XML data source.

Important:

The XQJ connector is only capable of running XQuery 1.0 scrips, therefore XQuery 3.0 and 3.1 scripts

are not supported.

Oxygen XML Editor supports any transformer that offers an XQJ API implementation and it be used for

validating XQuery or transforming XML documents.

To configure the support for XQJ, do the following:

1. Configure an XQJ Data Source (on page 2166).

2. Configure an XQJ Connection (on page 2167).

3. To view your connection, go to the Data Source Explorer view (on page 2125) (if the view is not

displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the

Database perspective (on page 3299).

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming

XML documents. An example of an XQuery engine that implements the XQJ API is Zorba.

1. If your XQJ Implementation is native, make sure the directory containing the native libraries of the

engine is added to your system environment variables: to PATH - on Windows, to LD_LIBRARY_PATH

- on Linux, or to DYLD_LIBRARY_PATH - on macOS. Restart Oxygen XML Editor after configuring the

environment variables.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

3. Click the New button in the Data Sources panel.

4. Enter a unique name for the data source.

5. Select XQuery API for Java (XQJ) in the Type combo box.

6. Click the Add button to add XQJ API-specific files.

You can manage the driver files using the Add, Remove, Detect, and Stop buttons.

http://www.zorba.io/home

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2181

Oxygen XML Editor detects any implementation of javax.xml.xquery.XQDataSource and presents it in

Driver class field.

7. Select the most suited driver in the Driver class combo box.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure the XQJ connection (on page 2167).

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured XQJ data sources (on page 2166) in the Data Source combo

box.

5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the

selected data source.

6. Click the OK button to finish the connection configuration.

XQuery Database Debugging

Oxygen XML Editor includes a debugging interface that helps you to detect and solve problems with XQuery

transformations that are executed against MarkLogic databases.

For more information about the debugging support in Oxygen XML Editor, see Debugging XSLT Stylesheets

and XQuery Documents (on page 2209).

Debugging with MarkLogic

Oxygen XML Editor includes support for debugging XQuery transformations that are executed against a

MarkLogic database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source (on page 2150) and a MarkLogic connection (on page 2151).

2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Editor

accesses. On the server side, debugging must be activated in the XDBC server and in the Task Server

section of the server control console (the switch debug allow). If the debugging is not activated, the

MarkLogic server reports a DBG-TASKDEBUGALLOW error.

Note:

An XDBC application server must be running to connect to the MarkLogic server and this

XDBC server will be used to process XQuery expressions against the server. You can change

the XDBC application server that Oxygen XML Editor uses to process XQuery expressions by

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2182

selecting the Use it to execute queries action (on page 2156) from the contextual menu in the

Data Source Explorer view (on page 2125).

3. Open the XQuery file and start the debugging process.

◦ If you want to debug an XQuery file stored on the MarkLogic server, it is recommended to use the

Data Source Explorer view (on page 2125) and open the file from the application server that is

involved in the debugging process. This improves the resolving of any imported modules.

◦ The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective

(on page 359). If you have a MarkLogic validation scenario configured for the XQuery file, you

can choose to debug the scenario (on page 2228) directly.

◦ Otherwise, switch to the XQuery Debugger perspective (on page 3299), open the XQuery file in

the editor, and select the MarkLogic connection in the XQuery engine selector from the debug

control toolbar (on page 2211).

For general information about how a debugging session is started and controlled, see the

Working with the Debugger (on page 2228) section.

In a MarkLogic debugging session, you can use step actions and breakpoints (on page 2232) to help identify

problems. When you add a breakpoint (on page 2233) on a line where the debugger never stops, Oxygen

XML Editor displays a warning message. These warnings are displayed for breakpoints you add either in the

main XQuery (which you can open locally or from the server) or for breakpoints you add in any XQuery that

is opened from the connection that participates in the debugging session. For more information, see Using

Breakpoints for Debugging Queries that Import Modules with MarkLogic (on page 2155).

Remote Debugging with MarkLogic

Oxygen XML Editor allows you to debug remote applications that use XQuery (for example, web applications

that trigger XQuery executions). Oxygen XML Editor connects to a MarkLogic server, shows you the running

XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the

debugging queries in the exact context of the application. You can also switch a server to debug mode to

intercept all XQuery scripts.

Oxygen XML Editor also supports collaborative debugging. This feature allows multiple users to participate

in the same debugging session. You can start a debugging session and at a certain point, another user can

continue it.

Important:

When using the remote debugging feature, the HTTP and the XDBC servers involved in the debugging

session must have the same module configuration.

Resources

For more information about the XQuery debugger for MarkLogic, watch our video demonstration:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2183

https://www.youtube.com/embed/eQ4ThDZq1bk

Related Information:

MarkLogic Development in Oxygen XML Editor (on page 2152)

Configuring a MarkLogic Database Connection (on page 2150)

Using Breakpoints for Debugging Queries that Import Modules with
MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place

breakpoints (on page 2232) in the modules. When starting a new debugging session, make sure that the

modules that you will debug are already opened in the editor. This is necessary so that the breakpoints in all

the modules will be considered. Also, make sure that there are no other open modules that are not involved in

the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view (on page 2125), open all the modules from the Modules container

of the XDBC application server (on page 2151) that performs the debugging.

2. Set breakpoints (on page 2233) in the module as needed.

3. Continue debugging (on page 2228) the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view (on page 2216) and make sure there are no older breakpoints (set on

resources that are not part of the current debugging context).

• Make sure you open the modules from the context of the application server that does the debugging

and place breakpoints there.

Related Information:

MarkLogic Database Connections (Deprecated) (on page 2148)

MarkLogic Development in Oxygen XML Editor (on page 2152)

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.

• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-

ml' (inherited from MarkLogic 3.2), '1.0-ml', and '1.0'.

• All declared variables are presented as strings. The Value column of the Variables view contains the

expression from the variable declaration. It can be evaluated by copying the expression with the Copy

value action from the contextual menu of the Variables view (on page 2226) and pasting it in the

XWatch view (on page 2218).

https://www.youtube.com/embed/eQ4ThDZq1bk

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2184

• There is no support for output to source mapping (on page 2229).

• There is no support for showing the trace (on page 2223).

• You can only set breakpoints (on page 2216) in imported modules in one of the following cases:

◦ When you open the module from the context of the application server involved in the debugging,

using the Data Source Explorer view (on page 2125).

◦ When the debugger automatically opens the modules in the Editor.

• No breakpoints (on page 2232) are set in modules from the same server that are not involved in the

current debugging session.

• No support for profiling (on page 2233) when an XQuery transformation is executed in the debugger.

Integration with Microsoft SharePoint

Restriction:

The SharePoint integration is only available in the Enterprise edition of Oxygen XML Editor.

Oxygen XML Editor provides support for browsing and managing SharePoint connections in the Data Source

Explorer view (on page 2125) and there is also a specialized SharePoint Browser view (on page 2189). You

can easily create new resources on the repository, copy and move them using contextual actions or the drag

and drop support, or edit and transform the documents in the editor.

There are two types of integrations that are possible:

• SharePoint Online - A new implementation that uses the SharePoint REST API v.2 and it supports

OAuth credentials (access tokens). If you need authentication, you must use this type of integration.

• SharePoint - The older implementation that was implemented using SharePoint Web Services (now

deprecated) and it does NOT support OAuth credentials (access tokens).

Figure 552. SharePoint Connection in Data Source Explorer View

Related Information:

Working with Databases (on page 2125)

https://docs.microsoft.com/en-us/sharepoint/dev/apis/sharepoint-rest-graph

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2185

How to Configure a SharePoint Connection

By default, Oxygen XML Editor contains built-in data source drivers for SharePoint. Use this data source

to create a connection to a SharePoint server that will be available in the Data Source Explorer view or

SharePoint Browser view (on page 2189).

There are two types of possible SharePoint connections:

• SharePoint Online - A new implementation that uses the SharePoint REST API v.2 and it supports

OAuth credentials (access tokens). If you need authentication, you must use this type of integration.

• SharePoint - The older implementation that was implemented using SharePoint Web Services (now

deprecated) and it does NOT support OAuth credentials (access tokens).

SharePoint Online Connection

To configure a SharePoint connection, follow these steps:

1. Open the Connection dialog box using one of these methods:

◦ Select New SharePoint Online Connection from the Settings drop-down menu in the

SharePoint Browser view (or using the quick action (on page 2189)).

◦ Open the Preferences dialog box (Options > Preferences) (on page 132), go to Data Sources.

Select SharePoint Online in the Data Sources pane and in the Connections pane, click the

New button.

2. Enter a unique name for the connection.

3. Make sure SharePoint Online is selected in the Data Source combo box.

4. Enter the Tenant URL for your SharePoint repository and click OK.

In the SharePoint Browser view (on page 2189), you can select your connection using the Site drop-down

menu. Then select Log in with Microsoft account from the left pane (or user drop-down menu on the right

side of the view) to open Microsoft's log in page in your default browser. Once authenticated, your repository

content should be displayed in the view. If you have problems with the log-in process, see Troubleshooting

SharePoint Online Connections (on page 2186).

Note:

If you are still logged in when you close Oxygen XML Editor, the authentication persists the next time

the application is started. If, for some reason, the authentication fails to recover the access token, an

error is displayed in the Results pane at the bottom of the application. If this happens, you need to re-

authenticate Oxygen XML Editor by using the Log in with Microsoft account action.

SharePoint Connection (Older Version)

To configure a SharePoint connection, follow these steps:

https://docs.microsoft.com/en-us/sharepoint/dev/apis/sharepoint-rest-graph

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2186

1. Open the Connection dialog box using one of these methods:

◦ Select New SharePoint Connection from the Settings drop-down menu in the SharePoint

Browser view (or using the quick action (on page 2189)).

◦ Open the Preferences dialog box (Options > Preferences) (on page 132), go to Data Sources.

Select SharePoint in the Data Sources pane and in the Connections pane, click the New

button.

2. Enter a unique name for the connection.

3. Make sure SharePoint is selected in the Data Source combo box.

4. Fill-in the connection details:

a. Enter the SharePoint URL for your SharePoint repository.

b. Set the server domain in the Domain field. If you are using a SharePoint 365 account, leave this

field empty.

c. Set the user name to access the SharePoint repository in the User field.

d. Set the password to access the SharePoint repository in the Password field.

5. Click OK.

Troubleshooting SharePoint Online Connections

Allowed SharePoint Online Sites

SharePoint Online sites supported by Oxygen XML Editor have the following syntax:

• https://tenant.SharePoint.com

• https://tenant.SharePoint.com/sites/siteName

• https://tenant.SharePoint.com/sites/siteName/subsiteName1/..../subsiteNameK

• https://tenant.SharePoint.com/teams/siteName

• https://tenant.SharePoint.com/teams/siteName/subsiteName1/..../subsiteNameK

Authentication Workflow Problems

Once you configure the SharePoint Online Connection (on page 2185) and use the Log in with Microsoft

account action, the action will open the default browser for authentication. If this is the fist time you access

this SharePoint site, you will have to Grant Permissions to Oxygen XML Editor (on page 2187).

If the authentication is successful, the browser should display the Authentication complete page:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2187

Attention:

If you cannot get past the This page isn't working response while using Google Chrome, try using a

different browser.

Once you go back to Oxygen XML Editor, in the SharePoint Browser you should see your username details and

be able to browse the repository.

Grant Permissions to Oxygen XML Editor

When you first Log in and access your SharePoint server, you may need to grant SharePoint Enterprise

Application permissions for the Oxygen XML Editor application to:

• View your basic profile.

• Maintain access to data you have given access to.

• Edit or delete items in all site collections.

The Permissions requested form will appear when you first authenticate to your SharePoint server from

Oxygen XML Editor.

If you have administrative privileges, you are able to grant permissions directly from the form:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2188

Figure 553. Permissions Requested Form

If you do not have admin rights to give Oxygen XML Editor permissions to access the SharePoint

server, the Permissions requested form will suggest that you contact the administrator for your

SharePoint account so that they can grant the permissions.

The SharePoint global administrator should log in to https://portal.azure.com/, navigate to

Manage Azure Active Directory > Enterprise applications, and approve the request under the

Admin consent requests category.

https://portal.azure.com/

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2189

The administrator can also check the User settings category and configure the Users can

request admin consent to apps they are unable to consent to options and policies.

More consent settings can be configured by the admin under the User consent settings

category.

SharePoint Browser View

The SharePoint Browser view allows you to connect to a SharePoint repository and perform SharePoint-

specific actions on the available resources. To display this view, go to Window > Show View > SharePoint

Browser.

Getting Started

When you first open the view, it includes some quick actions to help you get connected to your SharePoint

repository (on page 2185) (these actions are also available in the Settings drop-down menu).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2190

Figure 554. SharePoint Browser View Quick Actions

The SharePoint Browser View Interface

The header stripe of the SharePoint Browser view includes:

Site drop-down menu

Use this drop-down to select and connect to an already defined SharePoint connection (on page

2185).

User drop-down menu

This drop-down includes

• Log in with Microsoft account (if logged out) - Opens the Microsoft login page in your

default browser and authenticates Oxygen XML Editor.

• Log out (if logged in) - Logs out of your Microsoft account and the authorization between

Oxygen XML Editor and Microsoft is revoked.

• Help - Opens the online user guide to a topic relevant to the current context.

Settings drop-down menu

This drop-down includes

• New SharePoint Online Connection - Opens the Connection dialog box with the

SharePoint Online data source automatically selected.

• New SharePoint Connection - Opens the Connection dialog box with the SharePoint

(older version) data source automatically selected.

• Configure Database Sources - Opens the Database Sources preferences page where you

can configure your SharePoint connection.

• Layout - Use this option to choose the layout for the view. You can choose between:

Automatic, Vertical, and Horizontal.

Once you are connected, the view is separated into two panes. The left pane is a navigation area that presents

the SharePoint site structure in a tree-like fashion with the following node types:

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2191

• Site

• Sub-site

• Folders

When a folder node is selected in the left pane, the right pane displays the contents of the folder (either

folders or files).

You can filter and sort the displayed items. To display the available filters of a column, click the filter widget

located on the column header. You can apply multiple filters at the same time.

Figure 555. Column Filter

Checking Documents In and Out

To check out a document from the server, right-click the file and select Check Out. You can discard the

previous checkout operation, making the file available for editing to other users, by selecting Discard Check

Out.

To check in a document that has been checked out, right-click the file and select Check In. For SharePoint

Online connections, you only have the option to enter a comment and click the Check In button to process

it. For SharePoint (older version), you can also choose the check in type (Minor Version, Major Version, or

Overwrite).

Related Information:

How to Configure a SharePoint Connection (on page 2185)

SharePoint Contextual Menu Actions

While browsing SharePoint connections in the Data Source Explorer view (on page 2125) or the SharePoint

Browser view (on page 2189), the following contextual menu actions are available, depending on the type of

node:

Connection Nodes (Data Source Explorer view only)

Configure Database Sources

Opens the Data Sources preferences page (on page 286) where you can configure

both data sources and connections.

Log in with Microsoft Account (when not connected)

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2192

Opens the Microsoft login page in your default browser and authenticates Oxygen

XML Editor.

Disconnect (when connected)

Stops the connection.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Site Nodes / Sub-site Nodes

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Folder Level Nodes

New File or New Document

Creates a new file on the connection, in the current folder.

New Folder

Creates a new folder on the connection.

Import Folders

Imports folders on the server.

Import Files

Allows you to add a new file on the connection, in the current folder.

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2193

Performs a refresh on the selected node.

Find/Replace in Files (Data Source Explorer view only)

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace text in multiple files from the connection.

Resource Level Nodes

Open

Opens the selected resource in the editor.

Open in System Application (Data Source Explorer view only)

When you use this action, Oxygen XML Editor downloads the selected resource

to a local temporary folder and opens the selected resource in the system

application that is currently set as the default application associated with that type

of resource. You can then edit the resource, save it, and when you switch the focus

back to the Data Source Explorer view, Oxygen XML Editor will detect that there

was a change and will ask if you want to upload the edited resource to the server.

Copy location

Allows you to copy (to the clipboard) an application-specific URL for the resource

that can then be used for various actions, such as opening or transforming the

resources.

Check Out

Checks out the selected document on the server.

Check In

Checks in the selected document on the server. This action opens the Check In

dialog box. For SharePoint Online connections, you only have the option to enter a

comment and click the Check In button to process it.

For SharePoint (older version), the following options are available:

• Minor Version - Increments the minor version of the file on the server.

• Major Version - Increments the major version of the file on the server.

• Overwrite - Overwrites the latest version of the file on the server.

• Comment - Allows you to add a comment for a file that you check in.

Discard Check Out

Discards the previous checkout operation, making the file available to other users.

Important:

Due to some API restrictions, the Discard Checkout action may not work

when SharePoint Online connections are made directly to a sub-site.

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2194

Rename

Renames the current resource

Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Compare

Compares two selected resources using the Compare Files tool (on page 486).

Browsing for Remote Files with SharePoint Online

The Open URL dialog box (used for browsing remote files) includes support for connecting to a SharePoint

Online server, with controls similar to the SharePoint Browser view (on page 2189). To open this dialog box,

go to File > Open URL (or click the Open URL toolbar button), then choose the Browse for remote

file option from the drop-down menu.

Figure 556. Open URL Dialog Box for SharePoint Online

The displayed dialog box is composed of the following:

Server Type

Specifies the type of server (SharePoint Online in this case).

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2195

Note:

If you select SharePoint On-Premises, the controls are similar to those for WebDav and

other servers (on page 398).

Server URL

Specifies the protocol and the host name or IP of the server.

User drop-down menu

This drop-down includes:

• Log in with Microsoft account (if logged out) - Opens the Microsoft login page in your

default browser and authenticates Oxygen XML Editor.

• Log out (if logged in) - Logs out of your Microsoft account and the authorization between

Oxygen XML Editor and Microsoft is revoked.

• Help - Opens the online user guide to a topic relevant to the current context.

Browse

Use this button to retrieve the data from the server. Once the authentication completes, the files

from the server will be available in the dialog box.

File URL

You can use this combo box to directly specify the URL to be opened or saved. This combo box

also displays the current selection when the user changes selection by browsing the tree of

folders and files on the server.

MS Azure Active Directory Authentication

It is possible to use your MS Azure Active Directory credentials for SharePoint authentication. To configure the

application to use your client ID and client secret, set the following Oxygen system properties (on page 343):

• com.oxygenxml.azure.active.directory.client.id - Specifies a custom client ID.

• com.oxygenxml.azure.active.directory.client.secret - Specifies a custom client secret.

Your application should allow the following API permissions:

Table 44. API Permissions - Microsoft Graph

Microsoft Graph

Name Type Description Admin consent

email Delegated View users' email ad

dress

No

Files.ReadWrite.All Delegated Have full access to all

files user can access

No

Oxygen XML Editor 27.1 | 14 - Databases and SharePoint | 2196

Table 44. API Permissions - Microsoft Graph (continued)

Microsoft Graph

offline_access Delegated Maintain access to data

you have given it access

to

No

openid Delegated Sign users in No

profile Delegated View users' basic profile No

Sites.ReadWrite.All Delegated Edit or delete items in all

site collections

No

User.Read Delegated Sign in and read user pro

file

No

Table 45. API Permissions - SharePoint

SharePoint

Name Type Description Admin consent

AllSites.Read Delegated Read items in all site col

lections

No

AllSites.Write Delegated Read and write items in

all site collections

No

Notice:

The Redirect URI should be set to: http://localhost/oauth/redirect

15.
Importing Data
Computer systems and databases contain data in incompatible formats and exchanging data between these

systems can be very time consuming. Converting the data to XML can greatly reduce the complexity and

create data that can be read by various types of applications.

Oxygen XML Editor offers support for importing text files, MS Excel files, Database Data, and HTML files

into XML documents. The XML documents can be further converted into other formats using the Transform

features (on page 1472).

Import from Text Files
Oxygen XML Editor includes the possibility of importing text files (txt or csv file extensions) as XML

documents.

To import a text file into an XML file, follow these steps:

1. Go to File > Import/Convert > Text File to XML.

A Select text file dialog box is displayed.

2. Select the URL of the text file (txt or csv file extensions).

3. Select the encoding of the text file.

4. Click the Next button.

The Import Criteria dialog box is displayed.

Oxygen XML Editor 27.1 | 15 - Importing Data | 2198

Figure 557. Import Criteria Dialog Box

5. Configure the settings for the conversion.

a. Select the Field delimiter for the import settings. You can choose between the following: Comma,

Semicolon, Tab, Space, or Pipe.

b. The Import settings section presents the input data in a tabular form. By default, all data items

are converted to element content (symbol), but this can be overridden by clicking the

individual column headers. Clicking a column header once causes the data from this column to

be converted to attribute values (symbol). Clicking a second time causes the column data to

be ignored (symbol) when generating the XML file. You can cycle through these three options

by continuing to click the column header.

c. First row contains field names - If this option is selected, the default column headers are

replaced (where such information is available) by the content of the first row. In other words, the

first row is interpreted as containing the field names. The changes are also visible in the preview

panel.

Oxygen XML Editor 27.1 | 15 - Importing Data | 2199

d. Customize - This button opens a Presentation Names dialog box that allows you to edit the

name, XML name, and conversion criterion for the root and row elements. The XML names can

be edited by double-clicking the desired item and entering the label. The conversion criteria can

also be modified by selecting one of the following options in the drop-down menu: ELEMENT,

ATTRIBUTE, or SKIPPED.

e. Import Settings - Clicking this button opens the Import preferences page (on page 275) that

allows you to configure more import options.

f. The XML Import Preview panel contains an example of what the generated XML document

looks like.

g. Open in editor - If selected, the new XML document created from the imported text file is opened

in the editor.

h. Save in file - If selected, the new XML document is saved in the specified path.

6. Click Import to generate the XML document.

Import from MS Excel Files
Oxygen XML Editor provides several methods for importing MS Excel files into an XML file. The first method

is to use the Oxygen XML Editor Smart Paste mechanism (on page 626) by simply copying data from Excel

and pasting it into a document in Author mode (note that this is only supported in DITA, DocBook, TEI, JATS,

and XHTML documents). You can also copy data from Excel and paste it into inserted cells in Grid mode,

but this is a more manual process. If you want to import an entire Excel file, Oxygen XML Editor also offers a

configurable import wizard that works with any type of XML document.

Smart Paste Method in Author Mode

If you are importing data into DITA, DocBook, TEI, JATS, or XHTML documents, you can open the Excel

spreadsheet in your office application, copy its content, and simply paste it into your document in Author

mode.

The Oxygen XML Editor Smart Paste mechanism (on page 626) will convert the pasted content to the

equivalent XML markup and considers various pasting solutions to keep the resulting document valid, while

preserving the original text styling (such as bold, italics, underline) and formatting (such as lists, tables,

paragraphs).

Grid Mode Method

The Grid mode in Oxygen XML Editor displays all content in an XML document as a structured grid of nested

tables and you can work with the cells in those tables much like you would with any spreadsheet application.

When importing Excel data into Grid mode, you first need to insert new cells in the particular nested table and

then you can paste data from Excel the same as you would in any table or spreadsheet.

1. Copy the particular cells from your Excel spreadsheet that you want to import into an XML file.

2. Switch to Grid mode in Oxygen XML Editor.

3. Expand the particular nodes and locate the nested table where you want to insert the copied cells.

Oxygen XML Editor 27.1 | 15 - Importing Data | 2200

4. Right-click a particular row or column where you want to insert the data and select Insert row or

Insert column, depending on the structure of the copied cells.

5. Paste the copied cells from the clipboard into the newly inserted cells in Grid mode.

6. You may need to make some manual adjustments. For example, if the selection of copied cells

contained an empty cell, Oxygen XML Editor might ignore that cell.

Import Wizard Method

To use the Import wizard to import an Excel file into an XML file, follow these steps:

1. Go to File > Import/Convert > MS Excel file to XML.

2. Select the URL of the Excel file. The sheets of the document you are importing are presented in the

Available Sheets section of this dialog box.

3. Click the Next button to proceed to the next stage of the wizard.

Figure 558. Import Wizard

Oxygen XML Editor 27.1 | 15 - Importing Data | 2201

4. Configure the settings for the conversion. This stage of the wizard offers the following options:

Import settings section

Presents the input data in a tabular form. By default, all data items are converted to

element content (symbol), but this can be overridden by clicking the individual

column headers. Clicking a column header once causes the data from this column to be

converted to attribute values (symbol). Clicking a second time causes the column

data to be ignored (symbol) when generating the XML file. You can cycle through

these three options by continuing to click the column header.

First row contains field names

If this option is selected, the default column headers are replaced (where such

information is available) by the content of the first row. In other words, the first row is

interpreted as containing the field names. The changes are also visible in the preview

panel.

Customize

This button opens a Presentation Names dialog box that allows you to edit the name,

XML name, and conversion criterion for the root and row elements. The XML names

can be edited by double-clicking the desired item and entering the label. The conversion

criteria can also be modified by selecting one of the following option in the drop-down

menu: ELEMENT, ATTRIBUTE, or SKIPPED.

Import Settings

Clicking this button opens the Import preferences page (on page 275) that allows you to

configure more import options.

Import formatted data (as displayed in Excel)

If this option is selected, the imported data retains the Excel data formatting (such as

the representation of numeric values or dates). If deselected, the data formatting is not

imported.

XML Import Preview panel

Contains an example of what the generated XML document will look like.

Open in editor

If selected, the new XML document created from the imported file is opened in the editor.

Save in file

If selected, the new XML document is saved in the specified path.

5. Click Import to generate the XML document.

Oxygen XML Editor 27.1 | 15 - Importing Data | 2202

Resources

For more information about exchanging data between Oxygen XML Editor and spreadsheet applications,

watch our video demonstration:

https://www.youtube.com/embed/8VwsF58zLkU

Related information

Exporting XML Content to Excel (on page 600)

Import Database Data as an XML Document
To import the data from a relational database table as an XML document, follow these steps:

1. Go to File > Import/Convert > Database Data to XML to start the Import wizard.

This opens a Select database table dialog box that lists all the defined database connections:

Figure 559. Select Database Table Dialog Box

2. Select the connection to the database that contains the appropriate data.

https://www.youtube.com/embed/8VwsF58zLkU

Oxygen XML Editor 27.1 | 15 - Importing Data | 2203

Only connections configured in relational data sources can be used to import data.

3. If you want to edit, delete, or add a data source or connection, click the Configure Database Sources

button.

The Preferences/Data Sources option page is opened.

4. Click Connect.

5. In the list of sources, expand a schema and choose the required table.

6. Click the Next button.

The Import Criteria dialog box is opened with a default query string in the SQL Query pane.

Figure 560. Import from Database Criteria Dialog Box

7. Configure the settings for the conversion.

a. SQL Preview - If this button is pressed, the Settings pane displays the labels that are used in the

XML document and the first five lines from the database. By default, all data items are converted

to element content (symbol), but this can be overridden by clicking the individual column

headers. Clicking a column header once causes the data from this column to be converted to

Oxygen XML Editor 27.1 | 15 - Importing Data | 2204

attribute values (symbol). Clicking a second time causes the column data to be ignored

(symbol) when generating the XML file. You can cycle through these three options by

continuing to click the column header.

b. Customize - This button opens a Presentation Names dialog box that allows you to edit the

name, XML name, and conversion criterion for the root and row elements. The XML names can

be edited by double-clicking the desired item and entering the label. The conversion criteria

can also be modified by selecting one of the following option in the drop-down menu: ELEMENT,

ATTRIBUTE, or SKIPPED.

c. Import Settings - Clicking this button opens the Import preferences page (on page 275) that

allows you to configure more import options.

d. The XML Import Preview panel contains an example of what the generated XML document

looks like.

e. Open in editor - If selected, the new XML document created from the imported file is opened in

the editor.

f. Save in file - If selected, the new XML document is saved in the specified path.

g. Generate XML Schema - Allows you to specify the path of the generated XML Schema file.

8. Click Import to generate the XML document.

Import from HTML Files
Oxygen XML Editor offers two methods for importing HTML files into an XML document. The first method is

to simply copy data from an HTML document and paste it into a document in Author mode, but this is only

supported in DITA, DocBook, TEI, JATS, and XHTML documents. Oxygen XML Editor also offers a configurable

import wizard that works with any type of XML document.

Smart Paste Method

If you are importing data into DITA, DocBook, TEI, JATS, or XHTML documents, you can open the HTML

document in your web browser, copy its content, and paste it into your document in Author mode.

The Oxygen XML Editor Smart Paste mechanism (on page 626) will convert the pasted content to the

equivalent XML markup and considers various pasting solutions to keep the resulting document valid, while

preserving the original text styling (such as bold, italics, underline) and formatting (such as lists, tables,

paragraphs).

Import Wizard Method

To use the Import wizard to import from HTML files, follow these steps:

1. Go to File > Import/Convert > HTML File to XHTML. The Import HTML to XHTML wizard is displayed.

2. Enter the URL of the HTML document.

3. Select the type of the resulting XHTML document:

Oxygen XML Editor 27.1 | 15 - Importing Data | 2205

◦ XHTML5

◦ XHTML 1.0 Transitional

◦ XHTML 1.0 Strict

4. Click the OK button.

Result: The resulting document is an XHTML file containing a DOCTYPE declaration that references the

XHTML DTD definition on the Web. The parsed content of the imported file is transformed to XHTML5, XHTML

Transitional, or XHTML Strict depending on the option you chose.

Import Content Dynamically
Along with the built-in support for various useful URL protocols (such as HTTPS or SFTP), Oxygen XML Editor

also provides special support for a convert protocol that can be used to chain predefined processors to

dynamically import content from various sources.

Important:

Starting with version 26, the dynamic conversion protocol is disabled by default. To enable it, you

must set the com.oxygenxml.enable.convert.url.protocol system property (on page 351) to the value

of true.

A dynamic conversion URL chains various processors that can be applied, in sequence, on a target resource

and has the following general syntax:

convert:/processor=xslt;ss=urn:processors:excel2d.xsl/processor=excel!/urn:files:my.xls

The previous example first applies a processor (excel) on a target identified by the identifier

(urn:files:sample.xls) and converts the Excel™ resource to XML. The second applied processor

(xslt) applies an XSLT stylesheet identified using the identifier (urn:processors:excel2d.xsl) over the

resulting content from the first applied processor. These identifiers are all mapped to real resources on disk

via an XML catalog that is configured in the application, as in the following example:

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <rewriteURI uriStartString="urn:files:" rewritePrefix="./resources/"/>

 <rewriteURI uriStartString="urn:processors:" rewritePrefix="./processors/"/>

</catalog>

The target resource part of the conversion URL must always follow the !/ pattern. It can be any of the

following:

• An absolute URL that points to a resource.

• An identifier that will be resolved to an actual resource via the XML Catalog (on page 3302) support in

the application. In the example above, the urn:files:sample.xls target resource is resolved via the XML

catalog.

Oxygen XML Editor 27.1 | 15 - Importing Data | 2206

• A relative location. This location can only be resolved to an actual resource URL when the application

has enough information about the location where the URL is referenced.

For example, for a DITA map (on page 3296) with a <topicref> such as:

<topicref href="convert:/.../processor=excel!/resources/sample.xls"/>

the resources/sample.xls path will be resolved relative to the DITA map location.

This type of URL can be opened in the application by using the Open URL action from the File menu. It can

also be referenced from existing XML resources via xi:include or as a topic reference from a DITA map.

A GitHub project that contains various dynamic conversion samples for producing DITA content from various

sources (and then publishing it) can be found here: https://github.com/oxygenxml/dita-glass.

Conversion Processors

A set of predefined conversion processors is provided in Oxygen XML Editor. Each processor has its own

parameters that can be set to control the behavior of the conversion process. All parameters that are resolved

to resources are passed through the XML catalog mapping.

The following predefined conversion processors are included:

• xslt Processor - Converts an XML input using the Saxon EE XSLT processor. The ss parameter

indicates the stylesheet resource to be loaded. All other specified parameters will be set as parameters

to the XSLT transformation.

convert:/processor=xslt;ss=urn:processors:convert.xsl;p1=v1!/urn:files:sample.xml

• xquery Processor - Converts an XML input using the Saxon EE XQuery processor. The ss parameter

indicates the XQuery script to be loaded. All other specified parameters will be set as parameters to the

XSLT transformation.

convert:/processor=xquery;ss=urn:processors:convert.xquery;p1=v1!/urn:files:sample.xml

• excel Processor - Converts an Excel™ input to an XML format that can later be converted by other

piped processors. It has a single parameter sn, which indicates the name of the sheet that needs to

be converted. If this parameter is missing, the XML will contain the combined content of all sheets

included in the Excel™ document.

convert:/processor=excel;sn=test!/urn:files:sample.xls

• java Processor - Converts an input to another format by applying a specific Java method. The jars

parameter is a comma-separated list of JAR (on page 3297) libraries, or folders that libraries will

be loaded from. The ccn parameter is the fully qualified name of the conversion class that will be

instantiated. The conversion class needs to have a method with the following signature:

 public void convert(String systemID, String originalSourceSystemID,

 InputStream is, OutputStream os, LinkedHashMap<String, String> properties)

 throws IOException

https://github.com/oxygenxml/dita-glass

Oxygen XML Editor 27.1 | 15 - Importing Data | 2207

convert:/processor=java;jars=libs;ccn=test.JavaToXML!/

urn:files:java/WSEditorBase.java

• js Processor - Converts an input to another format by applying a JavaScript method. The js parameter

indicates the script that will be used. The fn parameter is the name of the method that will be called

from the script. The method must take a string as an argument and return a string. If any of the

parameters are missing, an error is thrown and the conversion stops.

convert:/processor=js;js=urn:processors:md.js;fn=convertExternal!/urn:files:sample.md

• json Processor - Converts a JSON input to XML. It has no parameters.

convert:/processor=json!/urn:files:personal.json

• xhtml Processor - Converts HTML content to well-formed XHTML. It has no parameters.

convert:/processor=xhtml!/urn:files:test.html

• wrap Processor - Wraps content in a tag name making it well-formed XML. The rn parameter indicates

the name of the root tag to use. By default, it is wrapper. The encoding parameter specifies the encoding

that should be used to read the content. By default, it is UTF8. As an example, this processor can be

used if you want to process a comma-separated values file with an XSLT stylesheet to produce XML

content. The CSV file is first wrapped as well-formed XML, which is then processed with an xslt

processor.

convert:/processor=wrap!/urn:files:test.csv

• cache Processor - Caches the converted content obtained from the original document to a temporary

file. The cache will be used on subsequent uses of the same URL, thus increasing the speed for the

application returning the converted content. If the original URL points to the local disk, the cache will

be automatically invalidated when the original file content gets modified. Otherwise, if the original URL

points to a remote resource, the cache will need to be invalidated by reloading (Reload (F5) from the

toolbar) the URL content that is opened in the editor.

convert:/processor=cache/processor=xslt;…..!/urn:files:test.csv

Reverse Conversion Processors

All processors defined above can also be used for saving content back to the target resource if they are

defined in the URL as reverse processors. Reverse processors are evaluated right to left. These reverse

processors allow round-tripping content to and from the target resource.

As an example, the following URL converts HTML to DITA when the URL is opened using the h2d.xsl

stylesheet and converts DITA to HTML when the content is saved in the application using the d2h.xsl

stylesheet.

convert:/processor=xslt;ss=h2d.xsl/rprocessor=xslt;ss=d2h.xsl!/urn:files:sample.html

Oxygen XML Editor 27.1 | 15 - Importing Data | 2208

Important:

If you are publishing a DITA map that has such conversion URL references inside, you need to edit the

transformation scenario and set the value of the parameter fix.external.refs.com.oxygenxml to true.

This will instruct Oxygen XML Editor to resolve such references during a special pre-processing stage.

Depending on the conversion, you may also require additional libraries to be added using the Libaries

button in the Advanced tab of the transformation scenario.

Related Information:

https://github.com/oxygenxml/dita-glass

https://github.com/oxygenxml/dita-glass

16.
Debugging XSLT Stylesheets and XQuery Documents
Oxygen XML Editor includes a powerful debugging interface that helps you to detect and solve problems with

XSLT and XQuery transformations.

XSLT Debugger Perspective

The XSLT Debugger perspective (on page 3299) allows you to detect problems in an XSLT transformation by

executing the process step by step. To switch the focus to this perspective, select the XSLT Debugger

button in the top-right corner of the interface or Window > Open perspective > XSLT Debugger.

XQuery Debugger Perspective

The XQuery Debugger perspective (on page 3299) allows you to detect problems in an XQuery

transformation process by executing the process step by step in a controlled environment and inspecting

the information provided in the special views. To switch the focus to this perspective, select the XQuery

Debugger button in the top-right corner of the interface or Window > Open perspective > XQuery Debugger.

XSLT/XQuery Debugging Overview

The XSLT Debugger and XQuery Debugger perspectives (on page 3299) allows you to test and debug XSLT

1.0 / 2.0 / 3.0 stylesheets and XQuery 1.0 / 3.0 documents including complex XPath 2.0 / 3.0 expressions.

The interface presents simultaneous views of the source XML document, the XSLT/XQuery document and

the result document. As you go step by step through the XSLT/XQuery document the corresponding output is

generated step by step, and the corresponding position in the XML file is highlighted. At the same time, special

views provide various types of debugging information and events useful to understand the transformation

process.

The following set of features allow you to test and solve XSLT/XQuery problems:

• Support for XSLT 1.0 stylesheets (using Saxon 6.5.5 and Xalan XSLT engines), XSLT 2.0 / 3.0

stylesheets and XPath 2.0 / 3.0 expressions that are included in the stylesheets (using Saxon 12.5 XSLT

engine) and XQuery 1.0 / 3.0 (using Saxon 12.5 XQuery engine).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.

• Output to source mapping between every line of output and the instruction element / source context

that generated it.

• Breakpoints (on page 2232) on both source and XSLT/XQuery documents.

• Call stack on both source and XSLT/XQuery documents.

• Trace history on both source and XSLT/XQuery documents.

• Support for XPath expression evaluation during debugging.

• Step into imported/included stylesheets as well as included source entities.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2210

• Available templates and hits count.

• Variables view.

• Dynamic output generation.

Resources

For even more information, watch our video demonstration:

https://www.youtube.com/embed/m9d8c4V-LJw

Debugger Layout
The XML and XSL files are displayed in Text mode (on page 528). The other modes (Author mode (on page

364), Grid mode (on page 364)) are available only in the Editor perspective (on page 354).

The XSLT/XQuery Debugger perspective (on page 3299) contains the following components:

• Source Document View (XML) - Displays and allows the editing of XML files (documents).

• XSLT/XQuery Document View (XSLT/XQuery) - Displays and allows the editing of XSL files

(stylesheets) or XQuery documents.

• Output View - Displays the output that results from inputting a document (XML) and a stylesheet

(XSL) or XQuery document in the transformer. The transformation result is written dynamically while

the transformation is processed (using the Run button on the Control toolbar (on page 2214)).

Several actions are available in the contextual menu for this view, including Find/Replace, Copy, and

Format and Indent. There are two types of output views: a Text view (with XML syntax highlights)

and XHTML view. For large outputs, the XHTML view can be disabled (see Debugger Settings (on page

266)).

• Control Toolbar (on page 2211) - Contains a variety of actions to help you configure and control the

debugging process.

• Information Views (on page 2215) - The information views at the bottom of the editor display various

types of information to help you understand the transformation process.

Tip:

The Output view and the various other information views are dockable (on page 3295) so that you

can configure the workspace according to your preferences.

https://www.youtube.com/embed/m9d8c4V-LJw

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2211

Figure 561. Debugger Interface

XML documents and XSL stylesheets or XQuery documents that were opened in the Editor perspective (on

page 3299) are automatically sorted into the first two panes. When multiple files of each type are opened, the

individual documents and stylesheets are separated using the familiar tab management system that you are

used to in the Editor perspective. Selecting a tab brings the document or stylesheet into focus and enables

editing without the need to go back to the Editor perspective.

In Debugger mode, the normal editor toolbar is not available. However, functions are still accessible from the

Document menu and the contextual menus.

Bookmarks (on page 531) are replaced in the Debugger perspective by breakpoints (on page 2232).

During debugging, the current execution node is highlighted in both document (XML) and XSLT/XQuery views.

Related Information:

Steps in a Typical Debugging Process (on page 2228)

Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2229)

Supported Processors for XSLT / XQuery Debugging (on page 2239)

Performance Profiling of XSLT Stylesheets and XQuery Documents (on page 2233)

Control Toolbar

The Control toolbar contains all the actions that you need to configure and control the debugging process. The

following actions are described as they appear in the toolbar from left to right.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2212

Figure 562. Control Toolbar

XML source selector

The current selection represents the source document used as input by the transformation

engine. The selection list contains all open files (XML files being emphasized). This option

allows you to use other file types also as source documents. In an XQuery debugging session

this selection field can be set to the default value NONE, because usually XQuery documents do

not require an input source.

XSL / XQuery selector

The current selection represents the stylesheet or XQuery document to be used by the

transformation engine. The selection list contains all open files (XSLT / XQuery files being

emphasized).

Link with editor

When selected, the XML and XSLT/XQuery selectors display the names of the files open in the

central editor panels. This button is toggled off by default.

Output selector

The selection represents the output file specified in the associated transformation scenario. You

can specify the path by using the text field, the Insert Editor Variables (on page 333) button,

or the Browse button.

Configure parameters

Opens a dialog box that allows you to configure the XSLT / XQuery parameters to be used by the

transformation.

Edit extensions

Allows you to add and remove the Java classes and JARS (on page 3297) used as XSLT

extensions.

/ Turn on/off profiling

Enables / Disables current transformation profiling.

Enable XHTML output

Enables the rendering of the output in the XHTML output view (on page 2210) during the

transformation process. For performance issues, disable XHTML output when working with very

large files. Note that only XHTML conformant documents can be rendered by this view. To view

the output result of other formats, such as HTML, save the Text output area to a file and use an

external browser for viewing.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2213

When starting a debug session from the Editor perspective (on page 3299) by using the Debug

Scenario action, the state of this toolbar button reflects the state of the Show as XHTML output

option from the scenario.

Turn on/off output to source mapping

Enables or disables the output to source mapping between every line of output and the

instruction element / source context that generated it.

Debugger preferences

Quick link to Debugger preferences page (on page 266).

XSLT / XQuery engine selector

Lists the processors available for debugging XSLT and XQuery transformations (on page 2239).

XSLT / XQuery engine advanced options

If Saxon HE/PE/EE is selected, you can click this button to open the Advanced Saxon

Transformation Options page (on page 1508).

Step into

Starts the debugging process and runs until the next instruction is encountered.

Step over

Run until the current instruction and its sub-instructions are over. Usually this will advance to the

next sibling instruction.

Figure 563. Step over

Step out

Run until the parent of the current instruction is over. Usually this will advance to the next sibling

of the parent instruction.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2214

Figure 564. Step out

Run Shift + F5

Starts the debugging process. The execution of the process is paused when a breakpoint (on

page 2216) is encountered or the transformation ends.

Run to cursor

Starts the debugging process and runs until one of the following conditions occur: the line of

cursor is reached, a valid breakpoint (on page 2232) is reached or the execution ends.

Run to end

Runs the transformation until the end, without taking into account enabled breakpoints (on page

2232), if any.

Pause

Request to pause the current transformation as soon as possible.

Stop

Request to stop the current transformation without completing its execution.

Show current execution nodes

Reveals the current debugger context showing both the current instruction and the current node

in the XML source. Possible displayed states:

• Entering () or leaving () an XML execution node.

• Entering () or leaving () an XSL execution node.

• Entering () or leaving () an XPath execution node.

Note:

When you set a MarkLogic server as a processor, the Show current execution

nodes button is named Refresh current session context from server. Click this

button to refresh the information in all the views.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2215

Note:

For some XSLT processors (Saxon-HE/PE/EE), the debugger could be configured to step into the

XPath expressions affecting the behavior of the following debugger actions: Step into, Step over or

Step Out.

Related information

Advanced Saxon HE/PE/EE XQuery Transformation Options (on page 1523)

Debugging Information Views

The information views at the bottom of the editor is comprised of two panes that are used to display various

types of information used to understand the transformation process. For each information type there is a

corresponding tab. While running a transformation, relevant events are displayed in the various information

views. This enables the developer to obtain a clear view of the transformation progress. By using the debug

controls, developers can easily isolate parts of stylesheet. Therefore, they may be more easily understood and

modified.

The information types include the following:

Left side information views

• Breakpoints view (on page 2216)

• XWatch view (on page 2218)

• Context view (on page 2217)

• Messages view (on page 2219) (XSLT only)

• Variables view (on page 2226)

• Invocation Tree view (on page 2235)

Right side information views

• Stack view (on page 2220)

• Output Mapping Stack view (on page 2221)

• Trace view (on page 2223)

• Templates view (on page 2224) (XSLT only)

• Nodes/Values Set view (on page 2225)

• Hotspots view (on page 2236)

Tip:

The information views are dockable (on page 3295) so that you can configure the workspace

according to your preferences.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2216

Breakpoints View

The Breakpoints view lists all breakpoints (on page 2232) that are set on open documents. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu. Breakpoints can be inserted

(on page 2233) in the XML source document or the XSLT/XQuery document in debugging sessions.

Once you insert a breakpoint, it is automatically added to the list in the Breakpoints view and you can edit

its associated condition. A breakpoint can have an associated break condition that represents an XPath

expression evaluated in the current debugger context. For them to be processed, their evaluation result should

be a boolean value. A breakpoint with an associated condition only stops the execution of the Debugger if the

breakpoint condition is evaluated as true.

Figure 565. Breakpoints View

The Breakpoints view contains the following columns:

• Enabled - If selected, the current condition is evaluated and taken into account.

• Resource - Resource file and number of the line where the breakpoint is set. The Entire path of resource

file is available as tooltip.

• Condition - XSLT/XQuery expression to be evaluated during debugging. The expression will be

evaluated at every debug step.

Clicking a record highlights the breakpoint line in the document.

Note:

The breakpoints list is not deleted at the end of a transformation (it is preserved between debugging

sessions).

The following actions are available in the contextual menu of the table:

Go to

Moves the cursor to the source of the breakpoint.

Run to Breakpoint

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2217

Runs the debugger up to the point of this particular breakpoint and ignores the others

(regardless of whether they were previously enabled or disabled).

Enable

Enables the breakpoint.

Disable

Disables the breakpoint. A disabled breakpoint will not be evaluated by the Debugger.

Add

Allows you to add a new breakpoint and breakpoint condition.

Edit

Allows you to edit an existing breakpoint.

Remove

Deletes the selected breakpoint.

Enable all

Enables all breakpoints.

Disable all

Disables all breakpoints.

Remove all

Removes all breakpoints.

Related Information:

Using Breakpoints (on page 2232)

Context View

The context node is valid only for XSLT debugging sessions and is a source node corresponding to the XSL

expression that is evaluated. It is also called the context of execution. The context node implicitly changes

as the processor hits various steps (at the point where XPath expressions are evaluated). This node has the

same value as evaluating '.' (dot) XPath expression in XWatch view (on page 2218). The value of the context

node is presented as a tree in the Context view. If the view is not displayed, it can be opened by selecting it

from the Window > Show View menu.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2218

Figure 566. Context node view

The context nodes are presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are

displayed using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented

before the node name. The value of the selected attribute or node is displayed in the right side panel. The

Context view also presents the current mode of the XSLT processor if this mode differs from the default one.

The title bar displays the current element index and the number of elements that compose the current context

(this information is not available if you choose Xalan or Saxon 6 as processing engine).

XPath Watch (XWatch) View

The XWatch view shows XPath expressions evaluated during the debugging process. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

Expressions are evaluated dynamically as the processor changes its source context. When you type an XPath

expression in the Expression column, Oxygen XML Editor supports you with syntax highlight and content

completion assistance (on page 913).

Figure 567. XPath Watch View

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2219

Table 46. XWatch columns

Col

umn
Description

Ex

pres

sion

XPath expression to be evaluated (XPath 1.0 or 2.0 / 3.0 compliant).

Val

ue

Result of XPath expression evaluation. Value has a type (see the possible values (on page 2226) in

the Variables View (on page 2226)) section. For Node Set results, the number of nodes in the set is

shown in parenthesis.

Important:

Notes about working with the XWatch view:

• Expressions that reference variable names are not evaluated.

• The expression list is not deleted at the end of the transformation (it is preserved between

debugging sessions).

• To insert a new expression, click the first empty line of the Expression column and start typing.

As an alternative, right-click and select the Add action. Press Enter on the cell to add and

evaluate.

• To delete an expression, click its Expression column and delete its content. As an alternative,

right-click and select the Remove action. Press Enter on the cell to commit changes.

• If the expression result type is a Node Set, click it (Value column) and its value is displayed in

the Nodes/Values Set view (on page 2225).

• The Copy, Add, Remove and Remove All actions are available in every row's contextual menu.

Messages View

Using an xsl:message instruction is one way to signal special situations encountered during transformation as

well as a raw way of doing the debugging. The Messages view is available only for XSLT debugging sessions

and shows all xsl:message calls executed by the XSLT processor during transformation. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 568. Messages View

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2220

Table 47. Messages columns

Col

umn
Description

Mes

sage

Message content.

Termi

nate

Signals whether or not the processor terminates the transformation once it encounters the mes

sage (yes/no respectively).

Re

source

Resource file where xsl:message instruction is defined and the message line number. The complete

path of the resource is available as tooltip.

The following actions are available in the contextual menu:

Go to

Highlight the XSL fragment that generated the message.

Copy

Copies to clipboard message details (system ID, severity info, description, start location,

terminate state).

Clear all

Removes all messages from the view.

Important:

• Clicking a record from the table highlights the xsl:message declaration line.

• Message table values can be sorted by clicking the corresponding column header. Clicking the

column header switches the sorting order between: ascending, descending, no sort.

Stack View

The Stack view shows the current execution stack of both source and XSLT/XQuery nodes. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

During the transformation, two stacks are managed. One for source nodes being processed and the other for

XSLT/XQuery nodes being processed. Oxygen XML Editor shows both node types in one common stack. The

source (XML) nodes are preceded by a red color icon while XSLT/XQuery nodes are preceded by a green color

icon. The advantage of this approach is that you can always see the source scope on which an XSLT/XQuery

instruction is executed (the last red color node on the stack). The stack is oriented upside down.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2221

Figure 569. Stack View

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line

containing the XSLT element that is displayed on the selected line from the view.

Table 48. Stack Columns

Column Description

Order number, represents the depth of the node (0 is the stack base).

XML/XSLT/XQuery Node Node from source or stylesheet document currently being processed. One partic

ular stack node is the document root, noted as #document.

Attributes Attributes of the node (a list of id="value" pairs).

Resource Resource file where the node is located. The entire path is available as tooltip.

Important:

Remarks:

• Clicking a record from the stack highlights that node's location inside resource.

• Using Saxon, the stylesheet elements are qualified with XSL proxy, while using Xalan you only

see their names. (example: xsl:template using Saxon and template using Xalan).

• Only the Saxon processor shows element attributes.

• The Xalan processor shows also the built-in rules.

Output Mapping Stack View

The Output Mapping Stack view displays context data (on page 2229) and presents the XSLT templates/

XQuery elements that generated specific areas of the output. If the view is not displayed, it can be opened by

selecting it from the Window > Show View menu.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2222

Figure 570. Output Mapping Stack view

The Go to action of the contextual menu takes you to the line that contains the XSLT element displayed in the

Output Mapping Stack view.

Table 49. Output Mapping Stack Columns

Column Description

The order number in the stack of XSLT templates/XQuery elements. Number 0

corresponds to the bottom of the stack in the status of the XSLT/XQuery proces

sor. The highest number corresponds to the top of the stack.

XSL/XQuery Node The name of an XSLT template/XQuery element that participated in the genera

tion of the selected output area.

Attributes The attributes of the XSLT template/XQuery node.

Resource The name of the file containing the XSLT template/XQuery element.

Important:

Remarks:

• Clicking a record highlights that XSLT template definition/XQuery element inside the resource

(XSLT stylesheet file/XQuery file).

• Saxon only shows the applied XSLT templates having at least one hit from the processor. Xalan

shows all defined XSLT templates, with or without hits.

• The table can be sorted by clicking the corresponding column header. When clicking a column

header the sorting order switches between: ascending, descending, no sort.

• Xalan shows also the built-in XSLT rules.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2223

Related Information:

Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2229)

Stack View (on page 2220)

Trace View (on page 2223)

Templates View (on page 2224)

Trace View

Usually, the XSLT/XQuery processors signal the following events during transformation:

• - Entering a source (XML) node.

• - Leaving a source (XML) node.

• - Entering an XSLT/XQuery node.

• - Leaving an XSLT/XQuery node.

The Trace view catches all of these events, so you can see how the process evolved. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

The red icon lines denote source nodes while the green icon lines denote XSLT/XQuery nodes. It is possible

to save the element trace in a structured XML document (using the Export to XML action in the contextual

menu). Thus, you have the possibility of comparing the trace results from multiple debug sessions.

Figure 571. Trace History View

The contextual menu contains the following actions:

Go to

Moves the selection in the editor panel to the line containing the XSLT element or XML element

that is displayed on the selected line from the view;

Export to XML

Saves the entire trace list in XML format.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2224

Table 50. Trace History Columns

Column Description

Depth Shows you how deep the node is nested in the XML or stylesheet structure. The

bigger the number, the more nested the node is. A depth 0 node is the document

root.

XML/XSLT/XQuery Node Represents the node from the processed source or stylesheet document. One

particular node is the document root, noted as #document. Every node is preced

ed by an arrow that represents what action was performed on it (entering or leav

ing the node).

Attributes Attributes of the node (a list of id="value" pairs).

Resource Resource file where the node is located. The complete path of the resource file is

provided as tooltip.

Important:

Remarks:

• Clicking a record highlights that node's location inside the resource.

• Only the Saxon processor shows the element attributes.

• The Xalan processor shows also the built-in rules.

Templates View

The xsl:template is the basic element for stylesheets transformation. The Templates view is only available

during XSLT debugging sessions and shows all xsl:template instructions used by the transformation. If the

view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Being able to see the number of hits for each of the templates allows you to get an idea of the stylesheet

coverage by template rules with respect to the input source.

Figure 572. Templates view

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line that

contains the XSLT template displayed on the selected line from the view.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2225

Table 51. Templates columns

Col

umn
Description

Match The match attribute of the xsl:template.

Hits The number of hits for the xsl:template. Shows how many times the XSLT processor used this par

ticular template.

Priori

ty

The template priority as established by XSLT processor.

Mode The mode attribute of the xsl:template.

Name The name attribute of the xsl:template.

Re

source

The resource file where the template is located. The complete path of the resource file is available

as tooltip.

Important:

Remarks:

• Clicking a record highlights that template definition inside the resource.

• Saxon only shows the applied templates having at least one hit from the processor. Xalan

shows all defined templates, with or without hits.

• Template table values can be sorted by clicking the corresponding column header. When

clicking a column header the sorting order switches between: ascending, descending, no sort.

• Xalan shows also the built-in rules.

Nodes/Values Set View

The Nodes/Values Set view is always used in relation with the Variables view (on page 2226) and XWatch

view (on page 2218). If the view is not displayed, it can be opened by selecting it from the Window > Show

View menu. It shows an XSLT node set value in a tree form. This view is updated as a response to the

following events:

• You click a variable that has a node set value in the Variables (on page 2226) or XWatch view (on page

2218).

• You click a tree fragment in the Variables (on page 2226) or XWatch view (on page 2218).

• You click an XPath expression evaluated to a node set in the Variables (on page 2226) or XWatch view

(on page 2218).

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2226

Figure 573. Node Set view

The nodes / values set is presented in a tree-like fashion. The total number of items is presented in the

title bar. Nodes from a defined namespace bound to a prefix are displayed using the qualified name. If the

namespace is not bound to a prefix, the namespace URI is presented before the node name. The value of the

selected attribute or node is displayed in the right side panel.

Important:

Remarks:

• For longer values in the right side panel, the interface displays it with an ellipsis (...) at the end.

A more detailed value is available as a tooltip when hovering over it.

• Clicking a record highlights the location of that node in the source or stylesheet view.

Variables View

The Variables view displays variables and parameters (local and global), along with their values. If the view is

not displayed, it can be opened by selecting it from the Window > Show View menu.

Variables and parameters play an important role during an XSLT/XQuery transformation. Oxygen XML Editor

uses the following icons to differentiate variables and parameters:

• - Global variable.

• - Local variable.

• - Global parameter.

• - Local parameter.

The following value types are available:

• Boolean

• String

• Date - XSLT 2.0 / 3.0 only.

• Number

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2227

• Set

• Object

• Fragment - Tree fragment.

• Any

• Undefined - The value was not yet set, or it is not accessible.

Note:

When Saxon 6.5 is used, if the value is unavailable, then the following message is displayed in

the Value field: "The variable value is unavailable".

When Saxon 9 is used:

◦ If the variable is not used, the Value field displays "The variable is declared but never

used".

◦ If the variable value cannot be evaluated, the Value field displays "The variable value is

unavailable".

• Document

• Element

• Attribute

• ProcessingInstruction

• Comment

• Text

• Namespace

• Evaluating - Value under evaluation.

• Not Known - Unknown types.

Figure 574. Variables View

Table 52. Variables Columns

Column Description

Name Name of variable / parameter.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2228

Table 52. Variables Columns (continued)

Column Description

Value Type Type of variable/parameter.

Value Current value of variable / parameter.

The value of a variable (the Value column) can be copied to the clipboard for pasting it to other editor areas

with the Copy value action from the contextual menu. This is useful if you have long and complex values that

cannot be easily remembered just by looking at them once.

Important:

Remarks:

• Local variables and parameters are the first entries presented in the table.

• Clicking a record highlights the variable definition line.

• Variable values could differ depending on the transformation engine used or stylesheet version

set.

• If the value of the variable is a node set or a tree fragment, clicking it causes the Node Set view

(on page 2225) to be shown with the corresponding set of values.

• Variable table values can be sorted by clicking the corresponding column header. Clicking the

column header switches between the orders: ascending, descending, no sort.

Multiple Output Documents in XSLT 2.0 and XSLT 3.0

For XSLT 2.0 and XSLT 3.0 stylesheets that store the output in multiple files by using the xsl:result-document

instruction, the content of the file created in this way is displayed in an output view after the transformation is

finished. There is one view for each xsl:result-document instruction so that the output is not mixed while still

being presented in multiple views.

Steps in a Typical Debugging Process
Depending on your situation and needs, the debugging process might be more complex, but the following

procedure is an example of a typical debugging process:

1. Open the source XML document (on page 392) and the XSLT/XQuery document. (on page 392)

2. If you are in the Editor perspective (on page 3299), switch to the XSLT Debugger or XQuery Debugger

perspective (on page 3299) with one of the following actions:

◦ Select Window > Open perspective > XSLT Debugger/XQuery Debugger or the XSLT

Debugger/ XQuery Debugger button in the top-right corner of the interface.

◦ Select Document > XML Document > Debug scenario or use the Debug scenario action

on the toolbar.. This action initializes the Debugger perspective (on page 3299) with the

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2229

parameters of the transformation scenario. Any modification applied to the scenario parameters

(the transformer engine, XSLT parameters, transformer extensions, etc.) will be saved back in the

scenario when exiting from the Debugger perspective.

3. Select the source XML document in the XML source selector of the Control toolbar (on page 2212). In

the case of XQuery debugging, if your XQuery document has no implicit source, set the source selector

value to NONE.

4. Select the XSLT/XQuery document in the XSL/XQuery selector of the Control toolbar (on page 2212).

5. Set XSLT/XQuery parameters using the Configure parameters button on the Control toolbar (on page

2212).

6. Set one or more breakpoints (on page 2232).

7. Step through the stylesheet using the following buttons available on the Control toolbar (on page

2213):

◦ Step into

◦ Step over

◦ Step out

◦ Run

◦ Run to cursor

◦ Run to end

◦ Pause

◦ Stop

8. Examine the data in the information views to find the bug in the transformation process.

For more information about fixing bugs in the transformation, see: Identify the XSLT / XQuery

Expression that Generated Particular Output (on page 2229).

Related Information:

Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2229)

Identify the XSLT / XQuery Expression that Generated Particular
Output
To quickly spot the XSLT templates or XQuery expressions with problems, it is important to know what XSLT

template in the XSLT stylesheet (or XQuery expression in the XQuery document) and what element in the

source XML document generated a specified area in the output.

Some of the debugging capabilities (for example, Step in) can be used for this purpose. Using Step in, you can

see how output is generated and link it with the XSLT/XQuery element being executed in the current source

context. However, this can become difficult on complex XSLT stylesheets or XQuery documents that generate

a large output.

You can click particular text in the Output view or XHTML output view and the editor will select the XML

source context and the XSLT template/XQuery element that generated that text. Also, inspecting the whole

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2230

stack of XSLT templates/XQuery elements that determined the state of the XSLT/XQuery processor at the

moment of generating the specified output area speeds up the debugging process.

This is an example of a typical procedure for identifying an expression that generated particular output:

1. Switch to the XSLT Debugger or XQuery Debugger perspective (on page 3299) with one of the

following actions:

◦ Select Window > Open perspective > XSLT Debugger/XQuery Debugger or the XSLT

Debugger/ XQuery Debugger button in the top-right corner of the interface.

◦ Select Document > XML Document > Debug scenario or use the Debug scenario action

on the toolbar.. This action initializes the Debugger perspective (on page 3299) with the

parameters of the transformation scenario. Any modification applied to the scenario parameters

(the transformer engine, XSLT parameters, transformer extensions, etc.) will be saved back in the

scenario when exiting from the Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar (on page 2212). In

the case of XQuery debugging, if your XQuery document has no implicit source, set the source selector

value to NONE.

3. Select the XSLT/XQuery document in the XSL/XQuery selector of the Control toolbar (on page 2212).

4. Select the appropriate engine in the XSLT/XQuery engine selector of the Control toolbar (on page

2213).

5. Set XSLT/XQuery parameters using the Configure parameters button on the Control toolbar (on page

2212).

6. Apply the XSLT stylesheet or XQuery transformation using the Run to end button that is available on

the Control toolbar (on page 2214).

7. Inspect the mapping by clicking a section of the output in either the Text tab or XHTML tab of the

Output view (on page 358).

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2231

Figure 575. XHTML Output to Source Mapping

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2232

Figure 576. Text Output to Source Mapping

This action will highlight the XSLT / XQuery element and the XML source context. This XSLT template/

XQuery element that is highlighted in the XSLT/XQuery editor represents only the top of the stack of

XSLT templates/XQuery elements that determined the state of the XSLT/XQuery processor at the

moment of generating the clicked output section. In the case of complex transformations, inspecting

the whole stack of XSLT templates/XQuery elements speeds up the debugging process. This stack is

available in the Output Mapping Stack view (on page 2221).

Related Information:

Output Mapping Stack View (on page 2221)

Trace View (on page 2223)

Templates View (on page 2224)

Using Breakpoints
The Oxygen XML Editor XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather

information about variables and processor execution at particular points. To ensure breakpoints are persistent

between work sessions, they are saved at project level. You can set a maximum of 100 breakpoints per

project.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2233

Inserting Breakpoints

To insert a breakpoint, follow these steps:

1. Click the line where you want to insert the breakpoint in the XML source document or the XSLT/XQuery

document. Breakpoints are automatically created on the ending line of a start tag, even if you click a

different line.

2. Click the vertical stripe on the left side of the editor panel or use Shift+F7.

Result:

Once you insert a breakpoint, it is automatically added to the list in the Breakpoints view and you can edit

its associated condition. A breakpoint can have an associated break condition that represents an XPath

expression evaluated in the current debugger context. For them to be processed, their evaluation result should

be a boolean value. A breakpoint with an associated condition only stops the execution of the Debugger if the

breakpoint condition is evaluated as true.

Figure 577. Example: Breakpoints

Removing Breakpoints

To remove a breakpoint, click its icon () in the vertical stripe on the left side of the editor panel or right-click

the breakpoint and select Renove or Remove all.

Related Information:

Breakpoints View (on page 2216)

Performance Profiling of XSLT Stylesheets and XQuery
Documents
Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery

transformation to not meet customer expectations or you are trying to proactively identify issues prior to

deploying your XSLT/XQuery transformation, using the XSLT/XQuery profiler feature is essential to helping you

save time and ultimately ensure a better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processor that can be used for

debugging and it is available from the debugging perspective (on page 3299).

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2234

Enabling the Profiler

Enabling and disabling the profiler is controlled by the / Profiler button from the debugger Control

toolbar (on page 2212). The XSLT/XQuery profiler is off by default. This option is not available during a

debugger session so you need to set it before starting the transformation. For information about a common

debugging procedure, see Steps in a Typical Debugging Process (on page 2228).

Profiling Information Views

Immediately after enabling the profiler, two new information views are added to the current debugger

information views (on page 2215):

• Invocation tree view (on page 2235) on left side

• Hotspots view (on page 2236) on right side

Profiling data is available only after the transformation ends successfully.

On the left side (Invocation tree view (on page 2235)), you can examine how style instructions are processed.

This result view is also named call-tree, as it represents the order of style processing. The profiling result

shows the duration time for each of the style-instruction including the time needed for its called children.

On the right side (Hotspots view (on page 2236)), you can immediately spot the time the processor spent in

each instruction. As an instruction usually calls other instructions, the used time of the called instruction is

extracted from the duration time of the caller (the hotspot only presents the inherent time of the instruction).

Source Backmapping

In either the Invocation tree (on page 2235) or Hotspots view (on page 2236), you can use the backmapping

feature to find the XSLT stylesheet or XQuery expression definition. Clicking the selected item causes Oxygen

XML Editor to highlight the XSLT stylesheet or XQuery expression source line where the instruction is defined.

Figure 578. Source Backmapping

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2235

Saving and Customizing Profiling Data

The profiling data can be saved (exported) into XML and HTML format. In either the Invocation tree (on

page 2235) or Hotspots view (on page 2236), right-click anywhere in the view and select Export to XML

or Export to HTML. The HTML report can be customized based upon the profiling raw data. When you

select Export to HTML, Oxygen XML Editor will save it as XML and apply an XSLT stylesheet to render the

report as XML. You can customize these stylesheets to suit your needs. By default, they are located in:

[OXYGEN_INSTALL_DIR]/frameworks/profiler/.

Other Profiling Notes

• If you want to change the XSLT/XQuery profiler settings (on page 267), use the contextual menu and

choose the corresponding View settings entry.

• Profiling exhaustive transformations may run into an OutOfMemory error due to the large amount

of information being collected. If this is the case, you can close unused projects when running the

profiling or use high values for Java VM options -Xms and -Xmx. If this does not help you can shorten

your source XML file and try again.

Resources

For more information about the XSLT/XQuery Profiler, watch our video demonstration:

https://www.youtube.com/embed/4ftHschjLqA

Invocation Tree View

The Invocation Tree view shows a top-down call tree that represents how XSLT instructions or XQuery

expressions are processed. If the view is not displayed, it can be opened by selecting it from the Window >

Show View menu.

Figure 579. Invocation Tree View

The entries in the invocation tree include a few possible icons that indicate the following:

https://www.youtube.com/embed/4ftHschjLqA

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2236

• - Points to a call whose inherent time is insignificant compared to its total time.

• - Points to a call whose inherent time is significant compared to its total time (greater than 1/3rd of

its total time).

Every entry in the invocation tree includes textual information that depends on the XSLT/XQuery profiler

settings (on page 267):

• A percentage number of the total time that is calculated with respect to either the root of the tree or the

calling instruction.

• A total time measurement in milliseconds or microseconds. This is the total execution time that

includes calls into other instructions.

• A percentage number of the inherent time that is calculated with respect to either the root of the tree or

the calling instruction.

• An inherent time measurement in milliseconds or microseconds. This is the inherent execution time of

the instruction.

• An invocation count that shows how often the instruction has been invoked on this call-path.

• An instruction name that contains also the attributes description.

The Invocation Tree view also includes the following contextual menu actions:

Export to HTML

Selecting this option will save the profiling data as XML and then apply an XSLT

stylesheet to render the report as HTML. These stylesheets are included in the subfolder:

[OXYGEN_INSTALL_DIR]/frameworks/profiler/. You can use them to customize your

own report based on the profiling raw data.

Export to XML

Use this option to save the profiling data as an XML file in a specified location.

View settings

Opens the XSLT/XQuery Profiler preferences page (on page 267) that allows you to configure

various profiling settings.

Hotspots View

The Hotspots view displays a list of all instruction calls that lie above the threshold defined in the XSLT/

XQuery profiler settings (on page 267). If the view is not displayed, it can be opened by selecting it from the

Window > Show View menu.

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2237

Figure 580. Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated

and shown.

Every hotspot is described by the values from the following columns:

• Instruction - The name of the instruction.

• Time - The inherent time in milliseconds or microseconds of how much time has been spent in the

hotspot, along with a bar whose length is proportional to this value. All calls into this instruction are

summed up regardless of the particular call sequence.

• Hits - The invocation count of the hotspot entry.

If you click the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it that depends on the XSLT/XQuery

profiler settings (on page 267):

• A percentage number that is calculated with respect to either the total time or the called instruction.

• A time measured in milliseconds or microseconds of how much time has been contributed to the

parent hotspot on this call-path.

• An invocation count that shows how often the hotspot has been invoked on this call-path.

Note:

This is not the number of invocations of this instruction.

• An instruction name that also contains its attributes.

The Hotspots view also includes the following contextual menu actions:

Export to HTML

Selecting this option will save the profiling data as XML and then apply an XSLT

stylesheet to render the report as HTML. These stylesheets are included in the subfolder:

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2238

[OXYGEN_INSTALL_DIR]/frameworks/profiler/. You can use them to customize your

own report based on the profiling raw data.

Export to XML

Use this option to save the profiling data as an XML file in a specified location.

View settings

Opens the XSLT/XQuery Profiler preferences page (on page 267) that allows you to configure

various profiling settings.

Debugging XSLT that Call Java Extensions
It is possible to debug an XSLT that calls Java extensions. This is achieved through a transformation scenario

where the Java extensions are specified, and the debugging can be done based upon the same scenario.

To debug XSLT with Java extensions, follow this procedure:

1. Create an XSLT transformation on XML scenario (on page 1564) for your XSLT document (select

Configure Transformation Scenario(s) action from the toolbar, then click New, and select XSLT

transformation on XML).

2. In the New scenario dialog box, click the Extensions button (in the XSLT tab), specify the Java

extensions (JAR libraries) that are needed, and click OK.

3. Once you are finished configuring the transformation scenario, click OK, then select Save and close.

4. Use the Debug scenario action on the toolbar and the debugging will be based upon the same

transformation scenario you just configured and saved.

Tip:

You could achieve this during a typical debugging process (on page 2228) by specifying the Java

extensions using the Edit extensions button on the debugger control toolbar (on page 2212).

Related Information:

Validating XSLT Stylesheets that Call Java Extensions (on page 908)

Debugging Java Extensions

The XSLT/XQuery debugger does not step into Java classes that are configured as XSLT/XQuery extensions of

the transformation. To step into Java classes, inspect variable values, and set breakpoints (on page 2232) in

Java methods, you can set up a Java debug configuration in an IDE (such as the Eclipse SDK) as described in

the following steps:

Oxygen XML Editor 27.1 | 16 - Debugging XSLT Stylesheets and XQuery Documents | 2239

1. Create a debug configuration.

a. Make sure the [OXYGEN_INSTALL_DIR]/lib/oxygen.jar file and your Java extension

classes are on the Java classpath.

The Java extension classes should be the same classes that were set as an extension (on page

2212) of the XSLT/XQuery transformation in the debugging perspective (on page 3299).

b. Set the class ro.sync.exml.Oxygen as the main Java class of the configuration.

The main Java class ro.sync.exml.Oxygen is located in the oxygen.jar file.

2. Start the debug configuration.

Now you can set breakpoints and inspect Java variables as in any Java debugging process executed in

the selected IDE (Eclipse SDK, and so on.).

Supported Processors for XSLT / XQuery Debugging
The following built-in XSLT processors are integrated in the debugger and can be selected in the Control

Toolbar (on page 2211):

• Saxon 12.5 HE (Home Edition) - a limited version of the Saxon 9 processor, capable of running XSLT

1.0, XSLT 2.0 / 3.0 basic and XQuery 1.0 transformations, available in both the XSLT debugger and the

XQuery one,

• Saxon 12.5 PE (Professional Edition) - capable of running XSLT 1.0 transformations, XSLT 2.0 basic

ones and XQuery 1.0 ones, available in both the XSLT debugger and the XQuery one,

• Saxon 12.5 EE (Enterprise Edition) - a schema-aware processor, capable of running XSLT 1.0

transformations, XSLT 2.0 /3.0 basic ones, XSLT 2.0 / 3.0 schema-aware ones and XQuery 1.0 / 3.0

ones, available in both the XSLT debugger and the XQuery debugger,

• Saxon 6.5.5 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger,

• Xalan 2.7.2 (Deprecated) - capable of running only XSLT 1.0 transformations, available only in the XSLT

debugger.

17.
Framework and Author Mode Customization
This section contains information and tutorials about customizing the authoring experience through custom

frameworks and customizing the Author editing mode through CSS styling or API extensions.

Creating and Configuring Custom Frameworks
Oxygen XML Editor includes built-in, configured frameworks (on page 3297) for DocBook, DITA, TEI, XHTML,

and JATS, but you can also create your own customization to handle other types of documents. A common

use-case is wanting to customize the interface to accommodate the needs of your authoring team.

Fully configuring a framework usually involves customizing CSS stylesheets, XML schemas, GUI components

(menu actions, toolbars, inline components, content completion proposals, and more), configuring other more

general settings, then bundling the framework to share with your team. The CSS and GUI components are

used to customize the interface, while other general settings can be configured to accommodate custom

document templates, XML catalogs, transformation scenarios, and more.

Advanced users who are familiar with API development can also create custom Author mode operations (on

page 2288) for a particular framework.

This section includes information about numerous possibilities for creating and customizing a framework, and

how to share your customization with others.

Tip:

A sample framework customization package is available that you can dabble with and use to help

you get started. It can be downloaded from: https://www.oxygenxml.com/maven/com/oxygenxml/

samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip. The

package includes a sample CSS file, XSL file, schema files, document templates, an XML catalog file,

custom icons, and other resources.

Creating a Framework through the Configuration Dialog

The easiest way to create a custom framework (on page 3297) (document type) is by extending an existing

built-in framework, such as DITA or DocBook, and then making modifications to it. You can then easily share

the custom framework (on page 2399) with your team.

To create a custom framework by extending an existing one, follow these steps:

https://www.oxygenxml.com/maven/com/oxygenxml/samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip
https://www.oxygenxml.com/maven/com/oxygenxml/samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2241

1. In a location where you have full write access, create a folder structure similar to this:

custom_frameworks/dita-extension.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association > Locations (on page 148). Add the path to your custom_frameworks folder in the

Additional frameworks directories list and click OK or Apply to save your changes.

3. Go to the Document Type Association preferences page (on page 146) and select an existing

framework configuration (for example, DITA) and use the Extend button to create an extension for it.

Step Result: This opens the Document Type Configuration dialog box (on page 148) where you can

define the set of rules and settings for your custom framework.

4. Give the extension an appropriate name, select External for the Storage option, click the browsing

button () to specify the location of the custom directory you created in step 1.

5. Continue to configure the extension using the tabs on the bottom half of the dialog box. For details

about each of those tabs, see the child topics in the Document Type Configuration dialog box (on page

148) section. For even more information about customizing the extended framework, see the various

topics and tutorials in the Creating and Configuring Custom Frameworks (on page 2240) section.

Make sure that you save any resources you reference in your framework configuration (CSS files, new

document templates, schemas used for validation, catalogs, etc.) in your custom framework directory

you created in step 1.

6. Click OK to close the configuration dialog box and then OK or Apply to save your changes.

Results: You now have a fully functional framework that can be shared with others (on page 2399).

Note:

An alternative for creating a framework extension without using the UI is by Creating a Framework

Using an Extension Script (on page 2241).

Related information

Sharing a Framework (on page 2399)

Webinar: Creating Frameworks Using an Extension Script

Creating a Framework Using an Extension Script

A custom framework (on page 3297) (document type) can be created using a special XML descriptor file,

either from scratch or by extending an existing built-in framework (such as DITA or DocBook) and then making

modifications to it. You can then easily share the custom framework (on page 2399) with your team.

The easiest way to create such a descriptor is to use the New document wizard (on page 378) and choose the

Extend Framework Script or Create Framework Script template.

https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2242

Tip:

To see a visual, detailed look at how to create frameworks with an extension script, watch our

webinar: Creating Frameworks Using an Extension Script (some samples are also available on that

events page).

Creating a Custom Framework Starting from an Existing Framework

To create a custom framework by extending an existing one, follow these steps:

1. In a location where you have full write access, create a folder structure similar to this:

custom_frameworks/dita-extension.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association > Locations (on page 148). Add the path to your custom_frameworks folder in the

Additional frameworks directories list and click OK or Apply to save your changes and close the dialog

box.

3. Click the New button on the toolbar and select the Extend Framework Script template. Save it inside

the previously configured framework path (e.g. custom_frameworks/dita-extension).

4. Set the @base attribute on the script element to the value of the name of the extended framework (e.g.

DITA).

Note:

Removing the @base attribute will create a framework from scratch.

5. Edit the script as described in Framework Extension Script File (on page 2243).

To test your customization, open a document that matches the newly created framework and inspect how

your settings apply or go to Options > Preferences > Document Type Association and inspect the resulting

framework structure.

Note:

If you want to use the framework in an older Oxygen XML Editor version that does not have

support for these scripts, you can compile the script to obtain the *.framework file by using the

Compile Framework Extension script action from the contextual menu or by running the scripts/

compileFrameworkScript.bat external tool.

Creating a Custom Framework Without a Base Framework

To create a custom framework without starting from an existing one, follow these steps

https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2243

1. In a location where you have full write access, create a folder structure similar to this:

custom_frameworks/dita-extension.

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association > Locations (on page 148). Add the path to your custom_frameworks folder in the

Additional frameworks directories list and click OK or Apply to save your changes and close the dialog

box.

3. Click New button on the toolbar and select the Create Framework Script template. Save it inside the

previously configured framework path, custom_frameworks/dita-extension.

4. Edit the script as described in Framework Extension Script File (on page 2243).

To test your customization, open a document that matches the newly created framework and inspect how

your settings apply or go to Options > Preferences > Document Type Association and inspect the newly

generated framework structure.

Note:

If you want to use the framework in an older Oxygen XML Editor version that does not have

support for these scripts, you can compile the script to obtain the *.framework file by using the

Compile Framework Extension script action from the contextual menu or by running the scripts/

compileFrameworkScript.bat external tool.

Related information

Sharing a Framework (on page 2399)

Webinar: Creating Frameworks Using an Extension Script

Framework Extension Script File

The framework extension file is used to describe a new framework configuration. Optionally, you can extend

an existing built-in framework configuration (such as DITA or DocBook) and then make additions and changes

to it.

The easiest way to create such a file is to use the New document wizard (on page 378) and choose the Extend

Framework Script or Create Framework Script template.

The following examples assume that the newly created framework extends a built-in one.

Basic Information

Once you have created a new script file, you need to:

https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2244

• Specify the name of the framework using the <name> element. Optionally, you can also add a description

using the <description> element.

• If you want to extend an existing framework (such as DITA or DocBook), specify the name of the

extended framework using the @base attribute on the <script> element.

• The <priority> element might be needed to instruct Oxygen XML Editor to use this new framework

instead of the one being extended or another framework that matches the same document.

Example: Extending the Built-in DITA Framework

<script xmlns="http://www.oxygenxml.com/ns/framework/extend"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oxygenxml.com/ns/framework/extend

 http://www.oxygenxml.com/ns/framework/extend/frameworkExtensionScript.xsd"

 base="DITA">

 <name>My custom DITA framework</name>

 <description>A custom framework based on the built-in DITA framework</description>

 <priority>High</priority>

</script>

Changing the Association Rules

Oxygen XML Editor identifies the type of a document when the document matches at least one of the

association rules.

Example: Instructing the Built-in Associations to Inherit None to Add Your Own

<associationRules inherit="none">

 <addRule rootElementLocalName="concept"/>

 <addRule fileName="test.xml"/>

</associationRules>

Setting the Initial Editing Mode

You can set the default editing mode that is loaded when a document is opened for the first time. For example,

if the files are usually edited in the Author mode, you can set it as the initial page. For more details on the

possible values, see Document Type Configuration Dialog Box - Initial Edit Mode (on page 150).

Example: Setting the Initial Editing Mode to Author

<initialPage>Author</initialPage>

Changing the Classpath

The Classpath tab displays a list of folders and JAR (on page 3297) libraries that hold implementations

for API extensions, implementations for custom Author mode operations, various resources (such as

stylesheets), and framework (on page 3297) translation files. Oxygen XML Editor loads the resources looking

in the folders in the order they appear in the list.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2245

Example: Customizing and Extending the Classpath Inherited From the Base Framework

 <classpath inherit="all">

 <!-- Contribute this resource before the ones inherited from the base framework

 because Oxygen loads the resources looking in the folders in the order they

 appear in the list.

 -->

 <addEntry path="${framework}/resources_2x" position="before"/>

 <removeEntry path="${baseFramework}/refactoring/"/>

 </classpath>

Notice:

Relative paths in the framework extension file are automatically resolved to the location of the script

file.

Note:

When removing entries with framework editor variables, take into consideration how they were added

in the base framework.

• An entry present in the base framework with the path ${framework}/file can be removed

using an identical path or by using the ${baseFramework} variable: ${baseFramework}/

file.

• An entry present in the base framework with the path ${frameworkDir}/file can

be removed using an identical path or by using the ${baseFrameworkDir} variable:

${baseFrameworkDir}/file.

Sharing a Plugin Class Loader

If your framework uses the same JAVA extensions/classes as a plugin (on page 3299), it is recommended

that they share the same classloader. This way, the common classes are loaded by only one Class Loader and

they will both use the same static objects and have the ability to cast objects between one another.

<classpath parentClassLoaderID="com.oxygenxml.git.plugin"/>

Setting a Default Schema

You can specify a default schema for Oxygen XML Editor to use if an XML document does not contain a

schema declaration and no default validation scenario is associated with it.

Example: Setting a Default XML Schema Relative to the Script Location

<defaultSchema schemaType="xmlschema" href="xsd/my-schema.xsd"/>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2246

Changing XML Catalogs

For cases where you need to reference the location of a schema file from a remote web location and an

internet connection may not be available, an XML Catalog (on page 3302) may be used to map the web

location to a local file system entry.

Example: Customizing and Extending the XML Catalogs Inherited From the Base Framework

<xmlCatalogs inherit="all">

 <!-- Contribute this resource before the ones inherited from the base framework

 because Oxygen loads the resources looking in the folders in the order they

 appear in the list.

 -->

 <addEntry path="${framework}/catalog.xml" position="before"/>

 <removeEntry path="${baseFramework}/oldCatalog.xml"/>

</xmlCatalogs>

Notice:

Relative paths in the framework extension file are automatically resolved to the location of the script

file.

Changing the Document Templates

You can create your own custom document templates or remove templates inherited from the base

framework.

Example: Customizing and Extending the XML Catalogs Inherited From the Base Framework

<documentTemplates inherit="all">

 <!-- Contribute this resource before the ones inherited from the base framework

 to make them appear first in the list.

 -->

 <addEntry path="${framework}/newTemplates" position="before"/>

 <removeEntry path="${baseFramework}/oldTemplates"/>

</documentTemplates>

Notice:

Relative paths in the framework extension file are automatically resolved to the location of the script

file.

Adding New Transformation Scenarios and Removing Existing Ones

You can create new transformation scenarios and export them in one of the following locations:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2247

• The Transformation Scenarios View (on page 1622).

• The Configure Transformation Scenario(s) Dialog Box (on page 1616).

• The Transformation Tab (on page 173).

Example: Importing New Transformation Scenarios

The @href attribute from the <addScenarios> element is used to point to the location of the scenarios export file.

Relative paths are resolved relative to the script's location. The ${framework} editor variable also resolves to

the script's location. You can also remove any scenario inherited from the base framework or set the default

scenario (the one used when another specific scenario is not specified).

<transformationScenarios>

 <addScenarios href="scenarioExport.scenarios"/>

 <removeScenario name="DITA HTML5"/>

 <defaultScenarios>

 <name>DITA</name>

 <name>XML</name>

 </defaultScenarios>

</transformationScenarios>

Adding New Validation Scenarios and Removing Existing Ones

You can create new validation scenarios and export them in one of the following locations:

• The Configure Validation Scenario Dialog Box (on page 803).

• The Validation Tab (on page 174).

Example: Importing New Validation Scenarios

The @href attribute from the <addScenarios> element is used to point to the location of the scenarios export file.

Relative paths are resolved relative to the script's location. The ${framework} editor variable also resolves to

the script's location. You can also remove any scenario inherited from the base framework or set the default

scenario (the one used when another specific scenario is not specified).

<validationScenarios>

 <addScenarios href="validationScenarioExport.scenarios"/>

 <removeScenario name="DITA"/>

 <defaultScenarios>

 <name>DITA Validation</name>

 <name>XML Validation</name>

 </defaultScenarios>

</validationScenarios>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2248

Customizing the Author Mode Through New CSS Files

The Author mode layout is driven by CSS rules. To customize it, you need to create new CSS files and add

them in the new framework.

Example: Using Larger Fonts in Titles

<author>

 <css>

 <removeCss path="${framework}/base.css"/>

 <!--

 Adding CSS after the ones in the base gives the opportunity to

 override rules from previous CSSs.

 -->

 <addCss path="${framework}/titles.css" position="after"/>

 </css>

 </author>

The ${framework}/titles.css file contains a rule like this:

*[class~='topic/title'] {

 font-size:larger;

}

Example: Creating an Alternate CSS That Activates When the User Selects it in the Styles Menu

 <author>

 <css>

 <addCss path="${framework}/pink.css" title="Pink titles" alternate="true"/>

 </css>

 </author>

The ${framework}/pink.css file contains a rule like this:

*[class~='topic/title'] {

 color:#FF1493;

}

Control How CSS Styles are Handled in the Author mode

The Author mode layout is driven by CSS rules. You can configure how CSS styles are handled in the

framework by using the following attributes in the script file:

selectMultipleAlternateCSS

If set to true, any number of alternate CSS files can be activated and they will be applied like

layers. If set to false, the alternate styles are treated like a main CSS style and only one can be

selected at a time.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2249

Example: Using the selectMultipleAlternateCSS Attribute in the Script

<css selectMultipleAlternateCSS="true"/>

mergeDocumentCSS

Controls how CSS files are handled if there are CSS styles specified in the document. If set

to true, they will be merged with the CSS files from the framework. If set to false, they will be

ignored.

Example: Using the mergeDocumentCSS Attribute in the Script

<css mergeDocument="true"/>

Example: Changing the styling in the author mode

We add a new CSS located in the new framework directory and we remove a CSS contributed by the base

framework.

 <author>

 <css>

 <addCss path="css/style.css" />

 <removeCss path="${baseFramework}/resources/css/base.css"/>

 </css>

 </author>

Notice:

Relative paths in the framework extension file are automatically resolved to the location of the script

file.

Defining Author Actions for the New Framework

Create external author actions (on page 2258), save them in a specific subdirectory of your particular

framework directory (on page 2261), and they will be loaded automatically.

Removing Author Actions from the Base Framework

Suppose that the base framework configuration defines some author actions (on page 2257) that are

added in the main menu (on page 165), contextual menu (on page 165), toolbar (on page 168), or content

completion window (on page 168). If you do not want to inherit one of these actions in the new framework

and you also want to remove it from all the GUI elements, you can use the <removeAction> element:

<author>

 <authorActions>

 <removeAction id="action.to.remove"/>

 </authorActions>

</author>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2250

Note:

If the new framework has an external author action (on page 2258) with the same ID as one of the

actions specified in a <removeAction> element, the action will not be removed from the GUI elements

(menus, toolbars, content completion window).

Replacing Author Actions from the Base Framework

Suppose that the base framework configuration defines some author actions (on page 2257) that are

added in the main menu (on page 165), contextual menu (on page 165), toolbar (on page 168), or content

completion window (on page 168). If you want to keep one of these actions in all the GUI elements, but to

perform differently in the new framework, just create an external author action (on page 2258) with the same

ID as the action to replace and save it in the specific subdirectory within your new framework directory (on

page 2261).

Author Toolbar Configuration

The Author mode-specific toolbars for the new framework can be customized by:

• Adding or removing actions from toolbars.

• Changing toolbar groups by adding or removing actions.

• Creating new toolbars and action groups.

Example: Customizing the Toolbar

 <author>

 <toolbars>

 <toolbar>

 <!-- Remove an action inherited from the base framework. -->

 <removeAction id="bold"/>

 <!-- Insert an action into an existing group -->

 <group name="${i18n(link)}">

 <addAction id="insert.note"/>

 </group>

 <!-- Add actions, separators and new groups-->

 <separator/>

 <addAction id="insert.note"/>

 <group name="New group">

 <addAction id="insert.note"/>

 <addAction id="insert.table"/>

 </group>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2251

 </toolbar>

 </toolbars>

 </author>

Note:

If you create a toolbar or group configuration and a toolbar/group with the same name already exists

in the base framework, you will change the one inherited instead of creating a new one. You can

inspect the names of the existing toolbars/groups inherited from the base framework in the Toolbar

Subtab (on page 168).

Example: Creating a New Toolbar

A new toolbar is created if the @name attribute does not match a toolbar inherited from the base.

<author>

 <toolbars>

 <toolbar name="Extra Toolbar">

 <!-- Add actions, separators and new groups-->

 <separator/>

 <addAction id="insert.note"/>

 <group name="New group">

 <addAction id="insert.note"/>

 <addAction id="insert.table"/>

 </group>

 </toolbar>

 </toolbars>

 </author>

Example: Adding an Action in the Toolbar at a Specific Location

You can insert items (actions or groups) relative to other items already present in the toolbar because they

were inherited from the base framework configuration. The @anchor attribute specifies either the ID of an action

or the name of a group already present in the toolbar and the @position attribute specifies whether the new

item should be added before or after it.

Note:

If the @anchor attribute is missing, the entries will be added either first or last, according to @position

value.

 <toolbar>

 <addAction id="insert.note" anchor="bold" position="before"/>

 <group name="Table menu" anchor="${i18n(link)}" position="after">

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2252

 <addAction id="insert.table"/>

 </group>

 </toolbar>

Author Menu and Contextual Menu Configuration

The Author mode-specific menus for the new framework can be customized by:

• Adding or removing actions and submenus.

• Changing existing submenus by adding or removing actions.

Example: Customizing the Contextual Menu

 <contextualMenu>

 <!-- Add new actions and submenu -->

 <separator/>

 <addAction id="insert.table"/>

 <submenu name="Other actions">

 <addAction id="insert.note"/>

 </submenu>

 <!-- Contribute to an existing submenu -->

 <submenu name="${i18n(section)}">

 <addAction id="paragraph"/>

 </submenu>

 <!-- Remove a submenu inherited from the base framework. -->

 <removeSubmenu name="${i18n(link)}"/>

 </contextualMenu>

Note:

The framework main menu is configured similarly, inside a <menu> container.

Tip:

You can inspect the names of the submenus inherited from the base framework in the Contextual

Menu Subtab (on page 165) and Menu Subtab (on page 165).

Example: Adding an Action in the Contextual Menu at a Specific Location

You can insert new actions and submenus relative to other actions and submenus already present in the menu

because they were inherited from the base framework configuration. The @anchor attribute specifies the ID

of an Author mode action or a name of a submenu already present in the menu and the @position attribute

specifies whether the new action should be added before or after it.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2253

Note:

If the @anchor attribute is missing, the entries will be added either first or last, according to @position

value.

 <contextualMenu>

 <addAction id="insert.note" anchor="edit.image.map" position="before"/>

 <submenu name="Table menu" anchor="${i18n(insert)}" position="after">

 <addAction id="insert.table"/>

 </submenu>

 </contextualMenu>

Configuring the Content Completion in Author Mode

You can replace content completion entries obtained from the associated schema with Author mode actions

(on page 2257).

In the <authorActions> container, you can specify the Author mode actions to be contributed. Optionally, you

can mark them as a replacement for an existing schema proposal with the @replacedElement attribute.

The <schemaProposals> element allows you to remove proposals detected from the associated schema through

the <removeProposal> element. If some proposals were removed in the base framework configuration and you

want them re-added, you can do so through the <addProposal> element.

Example: Customizing the Content Completion Assistant

<contentCompletion>

 <authorActions>

 <addAction id="insert.note" replacedElement="note" inCCWindow="true"/>

 </authorActions>

 <schemaProposals>

 <removeProposal renderName="table"/>

 <!-- The base framework removed the "list" element proposal. We want it back... -->

 <addProposal renderName="list"/>

 </schemaProposals>

</contentCompletion>

Using Framework Extension Points

The Extensions tab specifies implementations of Java interfaces used to provide advanced functionality

to the document type. Libraries that contain the implementations must be present in the classpath of your

framework (on page 2244). The Javadoc available at https://www.oxygenxml.com/InstData/Editor/SDK/

javadoc/ contains details about how each API implementation functions.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2254

Example: Setting a Custom Extensions Bundle

<extensionPoints>

 <extension

 name="extensionsBundleClassName"

 value="ro.sync.ecss.extensions.dita.map.DITAMapExtensionsBundle"/>

</extensionPoints>

Reusing Parts of the Script Using XInclude

Elements in the script can be specified in dedicated files that can then be referenced using XInclude in the

script.

Example: Using XInclude to Reference Elements in the Script

<script xmlns="http://www.oxygenxml.com/ns/framework/extend">

 <name>New framework</name>

 <xi:include href="classpath.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>

</script>

Where the referenced classpath.xml has this content:

<classpath xmlns="http://www.oxygenxml.com/ns/framework/extend">

 <addEntry path="test.jar"/>

</classpath>

Notice:

Relative paths in the framework extension file are automatically resolved to the location of the script

file.

Customizing the Author Mode Editing Experience for a Framework

You can customize the editing experience in Author mode for you and any other user who shares the same

framework. This includes the ability to configure actions, menus, toolbars, icons, structure insertion shortcuts,

and content completion proposals specifically for a particular framework (on page 3297) (document type).

Advanced users who are familiar with API development can also create custom Author mode operations (on

page 2288) for a particular framework.

Configuring and Managing Multiple CSS Styles for a Framework

Oxygen XML Editor provides a Styles drop-down menu on the toolbar that allows you to select one main (non-

alternate) CSS style (on page 3298) and multiple alternate CSS styles (on page 3294). This makes it easy to

change the look of the document as it appears in Author mode.

An example of a common use case is when content authors want to use custom styling within a document.

You can select a main CSS stylesheet that styles the whole document and then apply alternate styles, as

layers, to specific parts of the document.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2255

Note:

When altering a CSS file configured as a stylesheet for the current document framework, you can

quickly check its effects in the Author mode by using the Reload document action that is available

on the toolbar.

Managing the CSS Styles

The main (on page 3298) and alternate (on page 3294) styles that are listed in the Styles drop-down menu

can be controlled in the Document Type configuration dialog box (on page 148). To access it, follow these

steps:

1. Open the Preferences dialog box (on page 132) .

2. Go to Document Type Association.

3. Select the appropriate document type and click the Edit button.

Important:

If you do not have access rights to the folder where the framework (on page 3297) files are

stored, you can either elevate read/write permissions on that framework folder or you can

extend the framework and customize the CSS stylesheets in the extension. If you want to share

the customized extension with the rest of your team, see Sharing the Extended Framework (on

page 2399).

The CSS styles (CSS files) associated with the particular document type are listed in the CSS subtab (on page

154) of the Author tab.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2256

Figure 581. Main and Alternate CSS Styles in the Document Type Configuration Dialog Box

You can Add, Edit, or Delete styles from this dialog box to manage the main (on page 3298) and

alternate (on page 3294) styles associated to the particular document type. You can also change the order of

the styles by using the Move Up and Move Down buttons. This also changes the order that they appear

in the Styles drop-down menu. The alternate styles are combined with the main CSS sequentially, in the order

that they appear in this list. Therefore, if the same style rules are included in multiple CSS files, the alternate

style that is listed last in this list takes precedence, since it is the last one to be combined (applied as a layer).

The URI column shows the path of each CSS file. The names listed in the Styles drop-down menu match the

values in the Title column. The value in the Alternate column determines whether it is a main or alternate CSS.

If the value is no, it is a main CSS. If the value is yes, it is an alternate CSS and the style can be combined with

a main CSS or other alternate styles when using the Styles drop-down menu.

Note:

To group alternate styles into categories (submenus), use a vertical bar character (|) in the Title

column. You can use multiple vertical bars for multiple submenus. The text before each vertical bar

will be rendered as the name of a submenu entry in the Styles drop-down menu, while the text after

the final vertical bar is rendered as the name of the style inside the submenu.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2257

Example: Suppose that you want to add two alternate stylesheets in separate submenus, with the

Title column set to My Styles|User Assistance|Hints and My Styles|User Actions|Inline Actions,

respectively.

Oxygen XML Editor will add a My Styles submenu with two submenus (User Assistance that contains

the Hints style, and User Actions that contains the Inline Actions style) in the Styles drop-down menu.

The Enable multiple selection of alternate CSSs checkbox (on page 155) at the bottom of the pane must be

selected for the alternate CSS styles (on page 3294) to be combined. They are applied like layers and you can

activate any number of them. If this option is not selected, the alternate styles are treated like main CSS styles

(on page 3298) and you can only select one at a time. By default, this option is selected. There are also a few

options that allow you to specify how to handle the CSS if there are CSS styles specified in the document. You

can choose to ignore or merge them.

The following rules apply for merging CSS styles:

• CSS files with the same title will be merged.

• CSS files without a title will contribute to all others.

• They are merged sequentially, in the order that they appear in the list.

Related information

Changing the Look of Documents in Author Mode Using the Styles Menu (on page 603)

CSS Subtab (on page 154)

Adding an extra CSS to customize the DITA visual editor

Creating and Customizing Author Mode Actions for a Framework

There are several possibilities for creating new Author mode actions:

• You can create new actions for a framework or edit existing ones using the Actions subtab of the

Document Type configuration dialog box (on page 148). In this case, the actions are stored internally in

the *.framework file.

• You can export existing actions from the Document Type configuration dialog box (on page 148) into

individual XML files or use a built-in template to create a new XML file that defines a single action. In

https://blog.oxygenxml.com/topics/customizeDITACSS.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2258

this case, the actions are stored externally as separate XML files. The benefits of using this approach

are explained in the Creating or Editing Actions Using an Individual XML File for Each Action (on page

2258) section below.

Creating or Editing Actions Using the Document Type Configuration Dialog Box

To add or configure Author mode actions for a framework (on page 3297) (document type) using the

Document Type configuration dialog box (on page 148), follow this procedure:

1. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Document Types

Association, and select the framework.

2. Select your framework and click the Edit button (or you can use the Duplicate or Extend button to

create an extension of the framework (on page 2240)).

3. In the resulting Document Type configuration dialog box (on page 148), go to the Author tab, then the

Actions subtab.

4. To create a new action, click the New button. To edit an existing action, select the action and click

the Edit button.

Step Result: In either case, this opens the Action configuration dialog box (on page 156) where you can

configure numerous aspects of the action.

5. Once you are finished, click OK several times to exit the configuration dialog box.

Result: Your changes are stored in the *.framework file for your particular framework.

Creating or Editing Actions Using an Individual XML File for Each Action

It is possible to work with Author mode actions outside the Document Type configuration dialog box (on

page 148) and store them externally from the *.framework file. You can either export existing actions or use a

template to create a new action from scratch. The benefits of using this approach are:

• You can share, copy, or reuse each individual action across multiple projects or frameworks.

• It is easier to develop and test action configurations. After configuring the XML file that defines an

action, you can test its functionality by opening a document from your particular framework and

invoking the action to see if it works as expected. If you did not get the desired result, you can simply

repeat the process until you are happy with the result without having to navigate through the framework

configuration dialog box.

Exporting Actions

To export existing Author mode actions into individual XML files, follow this procedure:

1. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Document Types

Association, and select the framework.

2. Select your framework and click the Edit button (or you can use the Duplicate or Extend button to

create an extension of the framework (on page 2240)).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2259

3. In the resulting Document Type configuration dialog box (on page 148), go to the Author tab, then the

Actions subtab.

4. [Important] Make sure the Storage option (on page 149) in the top part of the dialog box is set to

External and the external location must be a subdirectory of your current framework directory (see the

Notes About the Storage Path section (on page 2261)).

5. Select the action (or multiple actions) you want to export, right-click, and use the Export action (this

action is also located at the bottom of the table of actions).

Step Result: If you choose to export a single action, a resulting dialog box will allow you to select the

destination path for the new XML file that contains the configuration details of the action. If you export

multiple actions, they will automatically be saved as individual XML files inside a newly created folder

(it will have _externalAuthorActions at the end of the folder name) inside your current framework

directory.

6. [Important] Click OK several times to confirm your changes and exit the Preferences dialog box. The

files will not be created until you exit this dialog box.

Step Result: Each exported action is extracted from the framework configuration file and exported as

an individual XML file.

7. To configure and test a particular action, you can open its corresponding XML file in Oxygen XML Editor,

make changes, save the file, then open a document from your framework, test the action and repeat

until you get the desired result.

Note:

You can add or edit the action files outside of Oxygen XML Editor, but you will need to restart

the application each time to reload the changes.

Creating New Actions

To create a new Author mode action outside the framework configuration dialog box, follow these steps:

1. Open the New document wizard (on page 378), search for a template called Author Action, and choose

a storage path and file name. Remember that ultimately, it must be saved in a subdirectory of your

particular framework directory (see the Notes About the Storage Path section (on page 2261)).

Complete the creation process.

Step Result: The resulting XML file contains some hints and it is an example of an action configuration

that will insert a new paragraph.

2. Configure the action as needed and save your changes.

Note:

You can use XInclude to reuse different fragments (such as XPath expressions or configured

operations between actions).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2260

Example: Reusing and XPath Expression

<a:operations>

 <a:operation id="InsertFragmentOperation">

 <a:xpathCondition>

 <xi:include href="expression.txt"

 xmlns:xi="http://www.w3.org/2001/XInclude" parse="text"/>

 </a:xpathCondition>

 <a:arguments>

 <a:argument name="insertLocation">

 <xi:include href="expression.txt"

 xmlns:xi="http://www.w3.org/2001/XInclude" parse="text"/>

 </a:argument>

 </a:arguments>

 </a:operation>

 </a:operations>

Where the content of the expression.txt file is self::para.

Example: Reusing an Entire Operation

 <a:operations xmlns:a="http://www.oxygenxml.com/ns/author/external-action">

 <xi:include href="operation.xml"

 xpointer="element(/1/1)" xmlns:xi="http://www.w3.org/2001/XInclude" />

 </a:operations>

Where the content of operation.xml is:

<a:operations xmlns:a="http://www.oxygenxml.com/ns/author/external-action">

 <a:operation id="ToggleSurroundWithElementOperation">

 <a:xpathCondition>ancestor-or-self::p</a:xpathCondition>

 <a:arguments>

 <a:argument name="element"><i/></a:argument>

 </a:arguments>

 </a:operation>

</a:operations>

Step Result: At this point, the action has been created but it needs to be added to the UI (in a toolbar or

menu).

3. Add the new action to a UI component. For example, to add it in a toolbar, open the Document Type

configuration dialog box (on page 148), go to the Author tab, then the Toolbar subtab (on page 168),

and add the action.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2261

4. To test the action, you can open a document from your framework and test the action. If you don't get

the desired result, open the action file, make changes, then test them again. Repeat until you get the

desired result.

Note:

You can add or edit the action files outside of Oxygen XML Editor, but you will need to restart

the application each time to reload the changes.

Notes About the Storage Path

As mentioned above, it is imperative that the action configuration files be stored in a specific subdirectory of

your particular framework directory.

There are two possible naming conventions for this subdirectory:

• {framework_directory}/externalAuthorActions - If there are multiple framework subdirectories inside

{framework_directory}, using this path structure will make the actions available to all of them.

• {framework_directory}/{framework_file_name}_externalAuthorActions - Using this

path structure will make the actions only available in the framework stored inside the

{framework_file_name}.framework file.

Note:

When exporting actions from the UI (on page 2258), this is the directory structure that is used.

Action Configuration Tips

• If an action is configured to insert a fragment that contains entities, you need to wrap it in CDATA

markup.

• For a list of default operation, see Built-in Author Mode Operations (on page 2261).

Resources

For more information about customizing Author mode actions, see the following resources:

• Webinar: Improving the Authoring Experience Through Custom Actions.

• Webinar: Working with DITA in Oxygen - Customizing the Editing Experience.

Related information

Framework Configuration Dialog Box: Actions Subtab (on page 155)

Built-in Author Mode Operations

This topic lists the default operations for the Author mode.

https://www.oxygenxml.com/events/2020/webinar_improving_the_oxygen_authoring_experience_through_custom_actions.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2262

ChangeAttributeOperation

This operation allows you to add/modify/remove an attribute. You can use this operation in your own custom

Author mode action to modify the value for a certain attribute on a specific XML element. The arguments of

the operation are:

name

The attribute local name.

namespace

The attribute namespace.

elementLocation

The XPath location that identifies the element.

value

The new value for the attribute. If empty or null the attribute will be removed.

editAttribute

If an in-place editor exists for this attribute, it will automatically activate the in-place editor and

start editing.

removeIfEmpty

The possible values are true and false. True means that the attribute should be removed if an

empty value is provided. The default behavior is to remove it.

ChangeAttributesOperation

This operation allows you to add/modify/remove multiple attributes. You can use this operation in your own

custom Author mode action to modify the value for one or more attributes for one or more XML elements. The

arguments of the operation are:

elementLocations

The XPath location that identifies the elements whose attributes will be affected. If not defined,

the element at the cursor location will be used.

attributeNames

The names of the attributes to add, modify, or remove, separated by the new-line character (\n).

The values can be local names or Clark notations.

values

The new attributes values, each on a new line, separated by the new-line character (\n). An

empty value will remove the attribute if removeIfEmpty is set to true.

removeIfEmpty

The possible values are true (default) and false. True means that the attribute will be removed if

an empty value is provided.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2263

ChangePseudoClassesOperation

Operation that sets a list of pseudo-class values to nodes identified by an XPath expression. It can also

remove a list of values from nodes identified by an XPath expression. The operation accepts the following

parameters:

setLocations

An XPath expression indicating a list of nodes that will have the specified list of pseudo-classes

set. If it is not defined, then the element at the cursor position will be used.

setPseudoClassNames

A space-separated list of pseudo-class names that will be set on the matched nodes.

removeLocations

An XPath expression indicating a list of nodes that will have the specified list of pseudo-classes

removed. If it is not defined, then the element at the cursor position will be used.

removePseudoClassNames

A space-separated list of pseudo-class names that will be removed from the matched nodes.

includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included

when evaluating XPath expressions. If set to no, they are ignored.

DeleteElementOperation

Deletes the node indicated by the elementLocation parameter XPath expression. If missing, the operation will

delete the node at the cursor location.

DeleteElementsOperation

Deletes the nodes indicated by the elementLocations parameter XPath expression. If missing, the operation

will delete the node at the cursor location.

ExecuteCommandLineOperation

This operation allows you to start a process executing a given command line. It has the following arguments:

name

The name of the operation (or name of the console panel that corresponds to the process run by

an action built over this operation).

workingDirectory

The path to the directory where the command line is executed. The default value is "." (current

directory).

cmdLine

The command line to be executed (accepts editor variables (on page 2278)).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2264

showConsole

If set to true, the console panel will be displayed in Oxygen XML Editor. The default value is

false.

wait

If set to true, the command line will wait for the operation to finish. The default value is false.

ExecuteCustomizableTransformationScenarioOperation

Allows you to run a publishing transformation scenario configured at framework level with a specified set of

parameters.

Notice:

This operation is not applicable to the Oxygen XML Author Component or the Oxygen XML Web

Author.

It supports the following arguments:

scenarioName

The name of the transformation scenario to execute.

scenarioParameters

Provided parameters for the transformation scenario. The parameters are inserted as name=value

pairs separated by line breaks. The set parameters are taken into account for XSLT, DITA,

Chemistry, and ANT transformation scenario types.

markInProgressXPathLocation

XPath expression that identifies the element(s) on which a specific -oxy-transformation-in-

progress pseudo class is set before transformation is started. The pseudo class is reset when

the transformation ends or is cancelled. If this XPath expression is not defined, the current node

is used.

markOthersInProgressXPathLocation

XPath expression that identifies other elements on which a specific -oxy-transformation-in-

progress-others pseudo class is set before the transformation is started. The pseudo class is

reset when the transformation ends.

ExecuteMultipleActionsOperation

This operation allows the execution of a sequence of actions, defined as a list of action IDs. The actions must

be defined by the corresponding framework, or one of the common actions for all frameworks supplied by

Oxygen XML Editor.

actionIDs

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2265

The action IDs list that will be executed in sequence, the list must be a string sequence

containing the IDs separated by commas or new lines.

ExecuteMultipleWebappCompatibleActionsOperation

An implementation of an operation that runs a sequence of Oxygen XML Web Author-compatible actions,

defined as a list of IDs.

ExecuteTransformationScenariosOperation

This operation allows running one or more transformation scenarios defined in the current document type

association (on page 3296), in the project options, or in the global options. A use case would be to add a

toolbar button that triggers publishing to various output formats. The argument of the operation is:

scenarioNames

The list of scenario names that will be executed, separated by new lines.

ExecuteValidationScenariosOperation

This operation allows running one or more validation scenarios defined in the current document type

association (on page 3296), in the project options, or in the global options. The single argument for the

operation is:

scenarioNames

The list of scenario names that will be executed, separated by new lines.

InsertEquationOperation

Inserts a fragment containing a MathML equation at the cursor offset. The argument of this operation is:

fragment

The XML fragment containing the MathML content that should be inserted.

InsertFragmentOperation

Inserts an XML fragment at the current cursor position. The selection, if there is one, remains unchanged.

The fragment will be inserted in the current context of the cursor position meaning that if the current

XML document uses some namespace declarations then the inserted fragment must use the same

declarations. The namespace declarations of the inserted fragment will be adapted to the existing namespace

declarations of the XML document. For more details about its list of parameters, see Arguments of

InsertFragmentOperation (on page 2284).

InsertOrReplaceFragmentOperation

Similar to InsertFragmentOperation (on page 2265), except it removes the selected content before inserting

the fragment. Also, the insertPosition parameter has another possible value: Replace. If this value is used, the

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2266

operation deletes the node selected by the XPath expression denoted by the insertLocation parameter. For

more details about its list of parameters, see Arguments of InsertFragmentOperation (on page 2284).

InsertOrReplaceTextOperation

Inserts a text at current position removing the selected content, if any. The argument of this operation is:

text

The text section to insert.

InsertXIncludeOperation

Insert an XInclude element at the cursor offset. Opens a dialog box that allows you to browse and select

content to be included in your document and automatically generates the corresponding XInclude instruction.

JSOperation

Allows you to call the Java API from custom JavaScript content. For some sample JSOperation

implementations, see https://github.com/oxygenxml/javascript-sample-operations.

Notice:

For the Oxygen XML Web Author, this operation cannot be invoked using the JavaScript API. However,

it can be used when configuring an Action for Author mode using the Document Type Configuration

dialog box (on page 159).

This operation accepts the following parameter:

script

The JavaScript content to execute. It must have a function called doOperation(), which can

use the predefined authorAccess variable. The authorAccess variable has access to the entire

ro.sync.ecss.extensions.api.AuthorAccess Java API.

The following example is a script that retrieves the current value of the type attribute on

the current element, allows the end-user to edit its new value and sets the new value in the

document:

function doOperation(){

 //The current node is either entirely selected...

 currentNode = authorAccess.getEditorAccess().getFullySelectedNode();

 if(currentNode == null){

 //or the cursor is placed in it

 caretOffset = authorAccess.getEditorAccess().getCaretOffset();

 currentNode = authorAccess.getDocumentController().getNodeAtOffset

 (caretOffset);

 }

https://github.com/oxygenxml/javascript-sample-operations
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2267

 //Get current value of the @type attribute

 currentTypeValue = "";

 currentTypeValueAttr = currentNode.getAttribute("type");

 if(currentTypeValueAttr != null){

 currentTypeValue = currentTypeValueAttr.getValue();

 }

 //Ask user for new value for attribute.

 newTypeValue = javax.swing.JOptionPane.showInputDialog

 ("Input @type value", currentTypeValue);

 if(newTypeValue != null){

 //Create and set the new attribute value for the @type attribute.

 attrValue = new Packages.ro.sync.ecss.extensions.api.node.AttrValue

 (newTypeValue);

 authorAccess.getDocumentController().setAttribute

 ("type", attrValue, currentNode);

 }

}

Tip:

You can call functions defined inside a script called commons.js from your custom

script content so that you can use that external script file as a library of functions. Note

that this commons.js file must be placed in the root of the framework directory (for

example, [OXYGEN_INSTALL_DIR]/frameworks/dita/commons.js) because that

is the only location where Oxygen XML Editor will look for it.

MoveCaretOperation

Flexible operation for moving the cursor within a document and it is also capable of performing a selection.

The operation accepts the following arguments:

xpathLocation

An XPath expression that identifies the node relative to where the cursor will be moved. If the

expression identifies more than one node, only the first one will be taken into account.

position

The position relative to the node obtained from the XPath expression where the cursor will be

moved. When also choosing to perform a selection, you can use the following possible values:

• Before - Places the cursor at the beginning of the selection.

• Inside, at the beginning - Places the cursor at the beginning of the selection.

• After - Places the cursor at the end of the selection.

• Inside, at the end - Places the cursor at the end of the selection.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2268

selection

Specifies if the operation should select the element obtained from the XPath expression, its

content, or nothing at all. The possible values of the argument are: None, Element, and Content.

MoveElementOperation

Flexible operation for moving an XML element to another location from the same document. XPath

expressions are used to identify the source element and the target location. The operation takes the following

parameters:

sourceLocation

XPath expression that identifies the content to be moved.

deleteLocation

XPath expression that identifies the node to be removed. This parameter is optional. If missing,

the sourceLocation parameter will also identify the node to be deleted.

surroundFragment

A string representation of an XML fragment. The moved node will be wrapped in this string

before moving it in the destination.

targetLocation

XPath expression that identifies the location where the node must be moved to.

insertPosition

Argument that indicates the insert position.

moveOnlySourceContentNodes

When set to true, only the content of the source element is moved.

processTrackedChangesForXpathLocations

When nodes are located via an XPath expression and the nodes are deleted with Change

Tracking (on page 3301) enabled, they are considered as being present by default (thus, the

change tracking is ignored). If you set this argument to true and change tracking is enabled,

deleted nodes will be ignored when the XPath locations are computed (thus, the change tracking

is NOT ignored).

alwaysPreserveTrackedChangesInMovedContent

When set to true, tracked changes are included when a copied fragment is inserted in a

document, regardless of the current state of the Track Changes feature.

OpenInSystemAppOperation

Opens a resource in the system application that is associated with the resource in the operating system. The

arguments of this operation are:

resourcePath

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2269

An XPath expression that, when executed, returns the path of the resource to be opened. Editor

variables (on page 333) are expanded in the value of this parameter, before the expression is

executed.

isUnparsedEntity

Possible values are true or false. If the value is true, the value of the resourcePath argument is

treated as the name of an unparsed entity.

ReloadContentOperation

Reloads the content of the editor by re-reading the information from the URL used to open it. It accepts the

following argument:

markAsNotModified

The possible values are true and false. After reloading the editor, the content may appear

as modified and in some cases where the content is already present on the file server, you

would not want the user to save it again. You can set this flag to true to prevent the editor from

showing the content as modified.

RemovePseudoClassOperation

An operation that removes a pseudo-class from an element. Accepts the following parameters:

name

Name of the pseudo-class to be removed.

includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included

when evaluating XPath expressions. If set to no, they are ignored.

elementLocation

The XPath location that identifies the element. If it is not defined, then the element at the cursor

position is used. It can also identify multiple elements, in which case the pseudo class will be

removed from all of them.

Example:

Suppose that there is a pseudo-class called myClass on the element paragraph and there are CSS

styles matching the pseudo-class.

paragraph:myClass{

 font-size:2em;

 color:red;

}

paragraph{

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2270

 color:blue;

}

In the previous example, by removing the pseudo-class, the layout of the paragraph is rebuilt by

matching the other rules (in this case, the foreground color of the paragraph element will become

blue.

RenameElementOperation

This operation allows you to rename all occurrences of the elements identified by an XPath expression. The

operation requires two parameters:

elementName

The new element name.

elementLocation

The XPath expression that identifies the element occurrences to be renamed. If this parameter is

missing, the operation renames the element at current cursor position.

ReplaceElementContentOperation

An operation that replaces the content of the element at the cursor location (or fully selected element). The

operation accepts the following parameters:

fragment

Specifies the fragment that will be inserted as the element content.

elementLocation

An XPath expression that identifies the element. If it is not defined, then the element at the

cursor position is used.

SetPseudoClassOperation

An operation that sets a pseudo-class to an element. The operation accepts the following parameters:

elementLocation

An XPath expression that identifies the element that will have the pseudo-class set. If it is not

defined, then the element at the cursor position is used.

name

The pseudo-class local name.

includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included

when evaluating XPath expressions. If set to no, they are ignored.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2271

ShowElementDocumentationOperation

Opens the associated specification HTML page for the current element. The operation accepts as parameter a

URL pattern that points to the HTML page containing the documentation.

StopCurrentTransformationScenarioOperation

Allows you to stop the transformation scenario that is currently running.

Notice:

This operation is not applicable to the Oxygen XML Author Component or the Oxygen XML Web

Author.

SurroundWithFragmentOperation

Surrounds the selected content with a text fragment. Since the fragment can have multiple nodes, the

surrounded content will be always placed in the first leaf element. If there is no selection, the operation

will simply insert the fragment at the cursor position. For more details about the list of parameters go to:

Arguments of SurroundWithFragmentOperation (on page 2287).

SurroundWithTextOperation

This operation has two arguments (two text values) that will be inserted before and after the selected content.

If there is no selected content, the two sections will be inserted at the cursor position. The arguments of the

operation are:

header

The text that is placed before the selection.

footer

The text that is placed after the selection.

TogglePseudoClassOperation

An implementation of an operation to toggle on/off the pseudo-class of an element. Accepts the following

parameters:

name

Name of the pseudo-class to be toggled on/off.

includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included

when evaluating XPath expressions. If set to no, they are ignored.

elementLocation

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2272

The XPath location that identifies one or more elements that will have the pseudo class toggled.

If it is not defined, then the element at the cursor position is used.

Example:

paragraph:myClass{

 color:red;

}

paragraph{

 color:blue;

}

By default, the paragraph content is rendered in blue. Suppose that you have a

TogglePseudoClassOperation configured for the myClass pseudo-class. Invoking it the first

time will set the myClass pseudo-class and the paragraph will be rendered in red. Invoking the

operation again, will remove the pseudo-class and the visible result will be a blue rendered

paragraph element.

ToggleSurroundWithElementOperation

This operation allows wrapping and unwrapping content in a specific wrapper element that can have certain

attributes specified on it. It is useful to implement toggle actions such as highlighting text as bold, italic, or

underline. The operation supports processing multiple selection intervals, such as multiple cells within a table

column selection. The arguments of the operation are:

element

The element to wrap or unwrap content.

schemaAware

This argument applies only on the surround with element operation and controls whether or not

the insertion is valid, based upon the schema. If the insertion is not valid, then wrapping action

will be broken up into smaller intervals until the wrapping action is valid. For example, if you try

to wrap a paragraph element with a bold element, it would not be valid, so the operation will wrap

the text inside the paragraph instead, since it would be valid at that position.

ToggleCommentOperation

This operation allows for commenting or un-commenting the selected content. It does not have any

arguments. If the selection is text, the operation wraps the selection in a comment. If the selection is a

comment, the operation removes the comment.

UnwrapTagsOperation

This operation allows removing the element tags either from the current element or for an element identified

with an XPath location. The argument of the operation is:

unwrapElementLocation

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2273

An XPath expression that identifies the element to unwrap. If it is not defined, the element at the

cursor position is unwrapped.

XQueryUpdateOperation

Allows you to execute an XQuery Update script directly over content in Author mode.

Notice:

This operation is not applicable to the Oxygen XML Author Component or the Oxygen XML Web

Author.

It supports the following arguments:

script

The XQuery Update script to be executed. The value can either be an XQuery script or a URL

that points to the XQuery Update script. You can use the ${framework} (on page 340) or

${frameworkDir} (on page 341) editor variables to refer the scripts from the framework directory.

The script will be executed in the context of the node at the cursor position. If the script declares

the following variable, it will also receive the selected nodes (assuming that entire nodes are

selected):

declare variable $oxyxq:selection external;

In the example below (on page 2273), you can see how this argument is used.

externalParams

A string that can assign multiple key-value pairs separated by a comma or a new line character.

For example, if an XQuery script declares two external parameters like this:

declare variable $param1 external;

declare variable $param2 external;

You can pass custom values for each parameter by setting the externalParams to

param1=value1,param2=value2.

expandXincludeReferences

Makes all Xinclude elements transparent to the XQuery transformer. When the Xinclude

references are transparent, the XQueryUpdateOperation can use the referenced elements for

further processing in the current document, but it cannot change their values in the original

document. The default value is false, which means the Xinclude elements are not transparent.

An example of an XQuery Update Script that converts paragraphs to list items:

declare namespace oxyxq = "http://www.oxygenxml.com/ns/xqu";

(: This variable will be linked to the selected nodes assuming that there are

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2274

actually fully selected nodes. For example this selection will return null:

<p>{SEL_START}text{SEL_END} in para</p>

but this will give two "p" elements:

{SEL_END}<p>text</p><p>text2</p>{SEL_END}

If a multiple selection exists it will also be processed and forwarded.

 Again, only fully selected nodes will be passed.

:)

declare variable $oxyxq:selection external;

(: We will process either the selection or the context node :)

let $toProcess := if (empty($oxyxq:selection)) then

 (.)

else

 ($oxyxq:selection)

return if (not(empty($toProcess))) then

 (

 (: Create the list :)

 let $ul :=

 {

 for $sel in $toProcess

 return

 {$sel}

 }

 return

 (

 (: Delete the processed nodes :)

 for $sel in $toProcess

 return

 delete node $sel,

 (: Inserts the constructed list :)

 insert node $ul

 before $toProcess[1]

)

)

 else

 ()

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2275

XSLTOperation and XQueryOperation

Applies an XSLT or XQuery script on a source element and then replaces or inserts the result in a specified

target element.

Notice:

For Oxygen XML Web Author, these operations cannot be invoked using the JavaScript API.

These operations accept the following parameters:

sourceLocation

An XPath expression indicating the element that the script will be applied on. If it is not defined,

then the element at the cursor position will be used.

There may be situations where you want to look at an ancestor of the current element and make

decisions in the script based on that. To do this, you can set the sourceLocation to point to an

ancestor node then use the oxy:current-element() function to access the current element, as in

the following example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"

 xpath-default-namespace="http://docbook.org/ns/docbook"

 xmlns:oxy="http://www.oxygenxml.com/ns/author/xpath-extension-functions"

 exclude-result-prefixes="oxy">

 <xsl:template match="/">

 <xsl:apply-templates select="oxy:current-element()"/>

 </xsl:template>

 <xsl:template match="para">

 <!-- And the context is again inside the current element,

 but we can use information from the entire XML -->

 <xsl:variable

 name="keyImage" select="//imagedata[@fileref='images/lake.jpeg']

 /ancestor::inlinemediaobject/@xml:id/string()"/>

 <xref linkend="{$keyImage}" role="key_include"

 xmlns="http://docbook.org/ns/docbook"/>

 </xsl:template>

</xsl:stylesheet>

targetLocation

An XPath expression indicating the insert location for the result of the transformation. If it is not

defined then the insert location will be at the cursor location.

script

https://www.oxygenxml.com/maven/com/oxygenxml/oxygen-webapp/27.1.0.0/jsdoc/

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2276

The script content (XSLT or XQuery). The base system ID for this will be the framework file, so

any include/import reference will be resolved relative to the .framework file that contains this

action definition.

For example, for the following script, the imported xslt_operation.xsl needs to be located

in the current framework directory.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:import href="xslt_operation.xsl"/>

</xsl:stylesheet>

You can also use a path for an included or imported reference. When using a path, the following

apply:

• A relative path is resolved to the framework directory.

• The ${framework} editor variable (on page 340) can also be used to reference resources

from the framework directory.

• The path is passed through the catalog mappings. It helps to use an absolute URL

(for instance, http://www.oxygenxml.com/fr/testy.xsl) and map it in the

catalog.xml file from the framework directory to a resource from the framework.

action

The insert action relative to the node determined by the target XPath expression. It can be:

Replace, At cursor position, Before, After, Inside as first child or Inside as last child.

caretPosition

The position of the cursor after the action is executed. It can be: Preserve, Before, Start, First

editable position, End, or After. If this parameter is not set, you can still indicate the position of

the cursor by using the ${caret} editor variable (on page 339) in the inserted content.

expandEditorVariables

Parameter controlling the expansion of editor variables (on page 333) returned by the script

processing. Expansion is enabled by default.

suspendTrackChanges

It has 2 possible values (true and false). The default value is false. When set to true, the Track

Changes (on page 3301) feature is deactivated. When using this argument, after the action is

finished, the state of the Track Changes feature is restored to its initial value.

externalParams

A string that can assign multiple key-value pairs separated by a comma or a new line character.

For example, if an XQuery script declares two external parameters like this:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2277

declare variable $param1 external;

declare variable $param2 external;

You can pass custom values for each parameter by setting the externalParams to

param1=value1,param2=value2.

escapeEntityRefs

Escapes entity references in processed content to plain text and unescapes them back in the

returned content.

XSLTOperation Example: Sort a list with respect to the language declared on the root element:

Suppose you want an action that will sort a list with respect to the language declared on the root element and

you have an XML file like this:

<article xml:lang="en">

 B

 C

 A

</article>

The XSLTOperation needs to be configured as follows:

• sourceLocation is set to /* so that the script has access to the root element and its children.

• targetLocation is left untouched (assuming that the action is active only when the cursor is inside the

list).

The XSLT script would look like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:oxy="http://www.oxygenxml.com/ns/author/xpath-extension-functions"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs oxy" version="2.0">

 <xsl:template match="/">

 <!--

 sourceLocation parameter was set to /* to have a larger context.

 We can pinpoint the element that contained the caret

 using the oxy:current-element() function.

 -->

 <xsl:apply-templates select="oxy:current-element()"/>

 </xsl:template>

 <xsl:template match="ul">

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2278

 <!-- Because the sourceLocation parameter was set to /* we now have access to

 the root element and its attributes. -->

 <xsl:variable name="lang" select="/*/@xml:lang"/>

 <xsl:variable name="collationURI">

 <xsl:value-of select="concat('http://www.w3.org/2013/collation/UCA?lang=', $lang)"/>

 </xsl:variable>

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <!-- Copy the list items, but sorted. -->

 <xsl:apply-templates select="li">

 <xsl:sort collation="{$collationURI}" select="text()"/>

 </xsl:apply-templates>

 </xsl:copy>

 </xsl:template>

 <!-- This copy template will handle the contents of the list items. -->

 <xsl:template match="@* | node()">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

Using Entities and Xincludes with the XSLTOperation

• Entities are treated as plain text and not expanded.

• Xincludes are resolved in the result, and you can alter the XML obtained afterward using the XSLT/

XQuery script of the operation, but you cannot alter the included document itself.

Editor Variables in Author Mode Operations

Author mode operations can include parameters that contain the following editor variables (on page 333):

• ${caret} - The position where the cursor is located. This variable can be used in a code template, in

Author mode operations, or in a selection plugin.

Note:

The ${caret} editor variable is available only for parameters that take XML content as values.

It is replaced with the ${UNIQUE_CARET_MARKER_FOR_AUTHOR} macro. The default Author

operations process this macro and position the cursor at the designated offset.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2279

Note:

The ${caret} editor variable can be used for setting a fixed cursor position

inside an XML fragment. To set the cursor position depending on the fragment

inserted in the document, you can use AuthorDocumentFilter and inside the

insertFragment(AuthorDocumentFilterBypass, int, AuthorDocumentFragment) method,

use the AuthorDocumentFragment.setSuggestedRelativeCaretOffset(int) API on the given

fragment.

• ${selection} - The currently selected text content in the currently edited document. This variable can be

used in a code template, in Author mode operations, or in a selection plugin.

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...),

'default_value', @id)} - To prompt for values at runtime, use the ask('message', type,

('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default-value'') editor variable.

You can set the following parameters:

◦ 'message' - The displayed message. Note the quotes that enclose the message.

◦ 'default-value' - Optional parameter. Provides a default value.

◦ @id - Optional parameter. Used for identifying the variable to reuse the answer using the

${answer(@id)} editor variable.

◦ type - Optional parameter (defaults to generic), with one of the following values:

Note:

The title of the dialog box will be determined by the type of parameter and as follows:

▪ For url and relative_url parameters, the title will be the name of the parameter and

the value of the 'message'.

▪ For the other parameters listed below, the title will be the name of that respective

parameter.

▪ If no parameter is used, the title will be "Input".

Notice:

Editor variables that are used within a parameter of another editor variable must be

escaped within single quotes for them to be properly expanded. For example:

${ask('Provide a date',generic,'${date(yyyy-MM-dd'T'HH:MM)}')}

Parameter

Format: ${ask('message', generic, 'default')}

Description: The input is considered to be generic text that requires no

special handling.

generic (default)

Example:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2280

Parameter

▪ ${ask('Hello world!')} - The dialog box has a Hello world! message

displayed.

▪ ${ask('Hello world!', generic, 'Hello again!')} - The dialog box has a

Hello world! message displayed and the value displayed in the input

box is 'Hello again!'.

Format: ${ask('message', url, 'default_value')}

Description: Input is considered a URL. Oxygen XML Editor checks that

the provided URL is valid.

url

Example:

▪ ${ask('Input URL', url)} - The displayed dialog box has the name In

put URL. The expected input type is URL.

▪ ${ask('Input URL', url, 'http://www.example.com')} - The displayed

dialog box has the name Input URL. The expected input type is

URL. The input field displays the default value http://www.example

.com.

Format: ${ask('message', relative_url, 'default')}

Description: Input is considered a URL. This parameter provides a file

chooser, along with a text field. Oxygen XML Editor tries to make the URL

relative to that of the document you are editing.

Note:

If the $ask editor variable is expanded in content that is not yet

saved (such as an untitled file, whose path cannot be determined),

then Oxygen XML Editor will transform it into an absolute URL.

relative_url

Example:

${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has the

name 'File location'. The URL inserted in the input box is made relative to

the currently edited document location.

Format: ${ask('message', password, 'default')}

Description: The input is hidden with bullet characters.

password

Example:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2281

Parameter

▪ ${ask('Input password', password)} - The displayed dialog box has

the name 'Input password' and the input is hidden with bullet sym

bols.

▪ ${ask('Input password', password, 'abcd')} - The displayed dialog

box has the name 'Input password' and the input hidden with bullet

symbols. The input field already contains the default abcd value.

Format: ${ask('message', combobox, ('real_value1':'rendered_value1';..

.;'real_valueN':'rendered_valueN'), 'default')}

Description: Displays a dialog box that offers a drop-down menu. The

drop-down menu is populated with the given rendered_value values.

Choosing such a value will return its associated value (real_value).

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

combobox

Example:

▪ ${ask('Operating System', combobox, ('win':'Microsoft Win

dows';'macos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog

box has the name 'Operating System'. The drop-down menu dis

plays the three given operating systems. The associated value will

be returned based upon your selection.

Note:

In this example, the default value is indicated by the osx

key. However, the same result could be obtained if the de

fault value is indicated by macOS, as in the following ex

ample: ${ask('Operating System', combobox, ('win':'Mi

crosoft Windows';'macos':'macOS';'lnx':'Linux/UNIX'), 'mac

OS')}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2282

Parameter

▪ ${ask('Mobile OS', combobox, ('ios':'iOS';'and':'Android'), 'Android')}

▪ ${ask('Mobile OS', combobox, (${xpath_eval(for $pair in (['ios',

'iOS'], ['and', 'Android']) return "'" || $pair?1 || "':'" || $pair?2 || "';")}),

'ios')}

Format: ${ask('message', editable_combobox, ('real_value1':'rendered_

value1';...;'real_valueN':'rendered_valueN'), 'default')}

Description: Displays a dialog box that offers a drop-down menu with ed

itable elements. The drop-down menu is populated with the given ren

dered_value values. Choosing such a value will return its associated real

value (real_value) or the value inserted when you edit a list entry.

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

editable_com

bobox

Example:

▪ ${ask('Operating System', editable_combobox, ('win':'Microsoft

Windows';'macos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog

box has the name 'Operating System'. The drop-down menu dis

plays the three given operating systems and also allows you to ed

it the entry. The associated value will be returned based upon your

selection or the text you input.

▪ ${ask('Operating System', editable_combobox, (${xpath_eval(for

$pair in (['win', 'Microsoft Windows'], ['macos', 'macOS'], ['lnx', 'Lin

ux/UNIX']) return "'" || $pair?1 || "':'" || $pair?2 || "';")}), 'ios')}

Format: ${ask('message', radio, ('real_value1':'rendered_value1';...;'real_

valueN':'rendered_valueN'), 'default')}

radio

Description: Displays a dialog box that offers a series of radio buttons.

Each radio button displays a 'rendered_value and will return an associat

ed real_value.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2283

Parameter

Note:

The list of 'real_value':'rendered_value' pairs can be computed

using ${xpath_eval()}.

Note:

The 'default' parameter specifies the default-selected value and

can match either a key or a value.

Example:

▪ ${ask('Operating System', radio, ('win':'Microsoft Windows';'ma

cos':'macOS';'lnx':'Linux/UNIX'), 'macos')} - The dialog box has the

name 'Operating System'. The radio button group allows you to

choose between the three operating systems.

Note:

In this example, macOS is the default-selected value and if

selected, it would return macos for the output.

▪ ${ask('Operating System', radio, (${xpath_eval(for $pair in (['win',

'Microsoft Windows'], ['macos', 'macOS'], ['lnx', 'Linux/UNIX']) return

"'" || $pair?1 || "':'" || $pair?2 || "';")}), 'ios')}

• ${timeStamp} - The timestamp, which is the current time in Unix format. For example, it can be used to

save transformation results in multiple output files on each transformation.

• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the

Java UUID class.

• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not

guaranteed to be universally unique.

• ${cfn} - Current file name without the extension and parent folder. The current file is the one currently

open and selected.

• ${cfne} - Current file name with extension. The current file is the one currently open and selected.

• ${cf} - Current file as file path, that is the absolute file path of the currently edited document.

• ${cfd} - Current file folder as file path, that is the path of the currently edited document up to the name

of the parent folder.

• ${frameworksDir} - The path (as file path) of the frameworks directory. When used to define

references inside a framework configuration, it expands to the parent folder of that specific framework

folder. Otherwise, it expands to the main frameworks folder defined in the Document Type

Association > Locations preferences page.

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2284

• ${pd} - The file path to the folder that contains the current project file (.xpr).

• ${oxygenInstallDir} - Oxygen XML Editor installation folder as file path.

• ${homeDir} - The path (as file path) of the user home folder.

• ${pn} - Current project name.

• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables

are managed by the operating system. If you are looking for Java System Properties, use the

${system(var.name)} editor variable.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can

be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are

looking for operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java

SimpleDateFormat class. Example: yyyy-MM-dd.

Note:

This editor variable supports both the xs:date and xs:datetime parameters. For details about

xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go

to: http://www.w3.org/TR/xmlschema-2/#dateTime.

How to Find More Information About the Arguments of an Operation

If you need to find more information about the arguments of an operation, there are several places where this

information is available:

• In the API documentation for the particular operation.

• By invoking the getArguments() method on the operation.

• In the source code of the operation.

• In Oxygen XML Editor:

1. Go to Options > Preferences > Document Type Association, select a document type and click

the New, Edit, Duplicate, or Extend button (on page 146).

2. Go to the Author tab and then the Actions subtab. At the bottom of this subtab, click New to

open the Action dialog box (on page 156).

3. Locate the Operation field and click the Choose button on the right side. This will open a dialog

box that displays the default operations.

4. Double-click the operation (or select it and click OK).

The arguments for the operation will now be displayed in the Action dialog box (on page 156).

Arguments of InsertFragmentOperation

fragment

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2285

This argument has a textual value. This value is parsed by Oxygen XML Editor as it was already

in the document at the cursor position. You can use entity references declared in the document

and it is namespace aware. The fragment may have multiple roots.

You can even use namespace prefixes that are not declared in the inserted fragment, if they are

declared in the document where the insertion is done. For the sake of clarity, you should always

prefix and declare namespaces in the inserted fragment!

If the fragment contains namespace declarations that are identical to those found in the

document, the namespace declaration attributes will be removed from elements contained by

the inserted fragment.

There are two possible scenarios:

• Prefixes that are not bound explicitly

For instance, the fragment:

<x:item id="dty2"/>

&ent;

<x:item id="dty3"/>

Can be correctly inserted in the document: ('|' marks the insertion point):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE x:root [

 <!ENTITY ent "entity">

]>

<x:root xmlns:x="nsp">

 |

</x:root>

Result:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE x:root [

 <!ENTITY ent "entity">

]>

<x:root xmlns:x="nsp">

 <x:item id="dty2"/>

 &ent;

 <x:item id="dty3"/>

</x:root>

• Default namespaces

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2286

If there is a default namespace declared in the document and the document fragment

(on page 3296) does not declare a namespace, the elements from the fragment are

considered to be in no namespace.

For instance, the fragment:

<item id="dty2"/>

<item id="dty3"/>

Inserted in the document:

<?xml version="1.0" encoding="UTF-8"?>

<root xmlns="nsp">

|

</root>

Gives the result document:

<?xml version="1.0" encoding="UTF-8"?>

<root xmlns="nsp">

 <item xmlns="" id="dty2"/>

 <item xmlns="" id="dty3"/>

</root>

insertLocation

An XPath expression that is relative to the current node. It selects the reference node for the

fragment insertion. When missing, the fragment will be inserted at the cursor position.

insertPosition

Specifies where the insertion is made relative to the reference node selected by the

insertLocation. It can be one of the following constants:

• Inside as first child (default value) - The fragment is inserted as first child of the reference

node.

• Inside as last child - The fragment is inserted as the last child of the reference node.

• After - The fragment is inserted after the reference node.

• Before - The fragment is inserted before the reference node.

goToNextEditablePosition

After inserting the fragment, the first editable position is detected and the cursor is placed

at that location. It handles any in-place editors used to edit attributes. It will be ignored if the

fragment specifies a cursor position using the ${caret} editor variable (on page 339). The

possible values of this action are true and false.

schemaAware

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2287

This argument applies only on the surround with element operation and controls whether or not

the insertion is valid, based upon the schema. If the insertion is not valid, then wrapping action

will be broken up into smaller intervals until the wrapping action is valid. For example, if you try

to wrap a paragraph element with a bold element, it would not be valid, so the operation will wrap

the text inside the paragraph instead, since it would be valid at that position.

insertEvenIfInvalid

The possible values of this argument are true and false. If true, the content that would make

the document invalid is accepted. If false and the insertion is not valid, the operation will not be

executed and an error message will be displayed.

Arguments of SurroundWithFragmentOperation

fragment

The XML fragment that will surround the selection. For example, consider the fragment:

<F>

 <A>

 <C></C>

</F>

and the document:

<doc>

 <X></X>

 <Y></Y>

 <Z></Z>

<doc>

Considering the selected content to be surrounded is the sequence of elements X and Y, then the

result is:

<doc>

 <F>

 <A>

 <X></X>

 <Y></Y>

 <C></C>

 </F>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2288

 <Z></Z>

<doc>

Since the element A was the first leaf in the fragment, it received the selected content. The

fragment was then inserted in the place of the selection.

Note:

If the first leaf is not the desired location for the surrounded fragment, you can use

ro.sync.ecss.extensions.commons.operations.InsertOrReplaceFragmentOperation and

set the following arguments:

fragment

The XML fragment that will surround the selection. Use the ${selection}

editor variable in the location you want to place the surrounded fragment.

schemaAware

Set it to false to avoid moving the fragment if it is not valid at the given

location.

schemaAware

This argument applies only on the surround with element operation and controls whether or not

the insertion is valid, based upon the schema. If the insertion is not valid, then wrapping action

will be broken up into smaller intervals until the wrapping action is valid. For example, if you try

to wrap a paragraph element with a bold element, it would not be valid, so the operation will wrap

the text inside the paragraph instead, since it would be valid at that position.

Note:

If a selection exists, the surround with fragment operation is not schema aware.

Adding a Custom Operation to an Existing Framework

This task explains how to add a custom Author mode operation to an existing framework (on page 3297)

(document type).

1. Set up a sample project by following the instructions for installing the SDK.

Tip:

The SDK contains a sample framework project called oxygen-sample-framework.

2. A variety of classes in the simple.documentation.framework.operations package implement the

ro.sync.ecss.extensions.api.AuthorOperation interface. Depending on your use-case, modify one of

these classes.

3. Pack the operation class inside a Java JAR library.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/InsertOrReplaceFragmentOperation.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2289

4. Copy the JAR library to your framework directory (for example,

[OXYGEN_INSTALL_DIR]/frameworks/[FRAMEWORK_DIR]).

5. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Document Type

Association, and edit the document type (you need write access to the [OXYGEN_INSTALL_DIR]) to

open the Document Type configuration dialog box (on page 148).

a. In the Classpath tab, add a reference to your JAR library (for example, ${framework}/

customAction.jar).

b. Go to the Author tab, then go to the Actions subtab.

c. Click the New button and use the Action dialog box (on page 156) to create a new action that

uses your custom operation.

d. Mount the action to the toolbars or menus. You can also define a shortcut key.

6. Share the modifications (on page 2399) with your colleagues. The files that should be

shared are your customAction.jar library and the .framework configuration file from the

[OXYGEN_INSTALL_DIR]/frameworks/[FRAMEWORK_DIR] directory.

Related Information:

AuthorOperation API

Example: Configuring the Insert Section Action for a Framework

This topic describes the procedure for defining the Insert Section action for a custom framework (on page

3297). It is assumed that the icon files, (Section16.gif) for the menu item and (Section20.gif)

for the toolbar, are already available. Although you could use the same icon size for both the menu

and toolbar, usually the icons from the toolbars are larger than the ones found in the menus. These

files should be placed in your custom framework directory ([OXYGEN_INSTALL_DIR]\frameworks

\[CUSTOM_FRAMEWORK_DIR]).

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2290

Figure 582. Action Dialog Box

1. Set the ID field to insert_section. This is a unique action identifier.

2. Set the Name field to Insert Section. This will be the action's name, displayed as a tooltip when the

action is placed in the toolbar, or as the menu item name.

3. Set the Menu access key to i. On Windows, the menu items can be accessed using Alt+letter keys

combination, when the menu is visible. The letter is visually represented by underlining the first letter

from the menu item name having the same value.

4. Add a Description.

5. Set the Large icon (20x20) field to ${framework}/Section20.gif. A good practice is to store the image

files inside the framework directory and use editor variable (on page 333) ${framework} to make the

image relative to the framework location.

If the images are bundled in a JAR (on page 3297) archive together with some Java operations

implementation, for instance, it might be convenient for you to reference the images not by the file

name, but by their relative path location in the class-path.

If the image file Section20.gif is located in the images directory inside the JAR archive, you can

reference it by using /images/Section20.gif. The JAR file must be added into the Classpath list.

6. Set the Small icon (16x16) field to ${framework}/Section16.gif.

7. Click the text field next to Shortcut key and set it to Ctrl+Shift+S (Meta+Shift+S on macOS). This will be

the key combination to trigger the action using the keyboard only.

The shortcut is enabled only by adding the action to the main menu of Author mode (on page 2292),

which contains all the actions that the author will have in a menu for the current document type.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2291

8. At this time the action has no functionality added to it. Next you must define how this action operates.

An action can have multiple operation modes. The first action mode enabled by the evaluation of its

associated XPath expression will be executed when the action is triggered by the user. The XPath

expression needs to be version 2.0 and its scope must be only element and attribute nodes of the

edited document. Otherwise, the expression will not return a match and will not trigger the action. If

the expression is left empty, the action will be enabled anywhere in the scope of the root element. For

this example, suppose you want the action to add a section only if the current element is either a <book>,

<article>, or another <section>.

a. Set the XPath expression field to:

local-name()='section' or local-name()='book' or

 local-name()='article'

b. Set the invoke operation field to InsertFragmentOperation built-in operation, designed to insert

an XML fragment at the cursor position. This belongs to a set of built-in operations, a complete

list of which can be found in the Author Default Operations (on page 2261) section. This set can

be expanded with your own Java operation implementations.

c. Configure the arguments section as follows:

<section xmlns=

"http://www.oxygenxml.com/sample/documentation">

 <title/>

</section>

insertLocation - leave it empty. This means the location will be at the cursor position.

insertPosition - select "Inside".

Example: Configuring the Insert Table Action for a Framework

This topic describes the procedure for defining the Insert Table action for a custom framework (on page

3297). Suppose that you want to create an action that inserts a table with three rows and three columns into

a document and the first row is the table header. As with the insert section action (on page 2289), you will use

the InsertFragmentOperation built-in operation.

Place the icon files for the menu item, and for the toolbar, in your custom framework directory

([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]).

1. Set ID field to insert_table.

2. Set Name field to Insert table.

3. Set Menu access key field to t.

4. Set Description field to Adds a table element.

5. Set Toolbar icon to ${framework} / toolbarIcon.png.

6. Set Menu icon to ${framework} / menuIcon.png.

7. Set Shortcut key to Ctrl + Shift + T (Command + Shift + T on macOS).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2292

8. Set up the action's functionality:

a. Set XPath expression field to true().

true() is equivalent with leaving this field empty.

b. Set Invoke operation to use InsertFragmentOperation built-in operation that inserts an XML

fragment to the cursor position.

c. Configure operation's arguments as follows:

fragment - set it to:

<table xmlns=

"http://www.oxygenxml.com/sample/documentation">

 <header><td/><td/><td/></header>

 <tr><td/><td/><td/></tr>

 <tr><td/><td/><td/></tr>

</table>

insertLocation - to add tables at the end of the section use the following code:

ancestor::section/*[last()]

insertPosition - Select After.

Using Retina/HiDPI Icons for the Actions from a Framework

Higher resolution icons can also be included in customized frameworks (on page 3297) for rendering

them in a Retina or HiDPI display. The icons can be referenced directly from the Document Type

Congifuration dialog box (on page 148) (from the Action dialog box (on page 156)) or from an API

(ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer (on page 2380)).

As with any image, the higher resolution icons are stored in the same images folder as the normal resolution

images and they are identified by a scaling factor that is included in the name of the image files. For instance,

icons with a Retina scaling factor of 2 will include @2x in the name (for example, myIcon@2x.png).

Developers should not specify the path of the alternate icons (@2x or @3x) in the Action dialog box (on page

156) or the XMLNodeRendererCustomizer API (on page 2380). When using a Retina or HiDPI display, Oxygen

XML Editor automatically searches the folder of the normal icon for a corresponding image file with a Retina

scaling factor in the name. If the higher resolution icon file does not exist, the normal icon is scaled and used

instead.

Related Information:

Retina/HiDPI Images in Author Mode (on page 737)

Customizing the Menu for a Framework

Defined actions can be grouped into customized menus in the Oxygen XML Editor menu bar.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2293

1. Open the Document Type configuration dialog box (on page 148), select your custom framework (on

page 3297), and go to the Author tab.

2. Go to the Menu subtab. In the left side you have the list of actions and some special entries:

◦ Submenu - Creates a submenu. You can nest an unlimited number of menus.

◦ Separator - Creates a separator into a menu. This way you can logically separate the menu

entries.

3. The right side of the panel displays the current actions for that menu tree. To change its name, click

this label to select it, then click the Edit button.

4. Select the Submenu label in the left panel section and the appropriate label in the right panel section,

then click the Add as child button. Change the submenu name to Table, using the Edit button.

5. Select the Insert section action in the left panel section and the Table label in the right panel section,

then click the Add as sibling button.

6. Now select the Insert table action in the left panel section and the Table in the right panel section. Click

the Add as child button.

Figure 583. Configuring the Menu

When opening a test document for a custom framework in Author mode, the menu you created is displayed

in between the Tools and the Document menus. The upper part of the menu contains generic Author mode

actions (common to all document types) and the two actions created previously (with Insert table under the

Table submenu).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2294

Figure 584. Author Mode Menu

Customizing the Contextual Menu for a Framework

The contextual menu is displayed when you right-click in the Author editing area. You can only configure the

bottom part of the menu, since the top part is reserved for a list of generic actions (such as Copy, Paste, Undo,

etc.)

1. Open the Document Type configuration dialog box (on page 148) for the particular framework (on page

3297) and go to the Author tab. Next, go to the Contextual Menu subtab.

2. Follow the same steps as explained in the Configuring the Main Menu (on page 2292), except

changing the menu name because the contextual menu does not have a name.

Note:

You can choose to reuse a submenu that contains general authoring actions. In this case,

all actions (both general and framework-specific ones) are grouped together under the same

submenu.

Figure 585. Configuring the Contextual Menu

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2295

To test it, open the test file, and open the contextual menu. In the lower part there is shown the Table sub-

menu and the Insert section action.

Customizing the Content Completion Assistant for Author Mode Only

You can customize the content of the following Author controls, adding items (which, when invoked, perform

custom actions) or filtering the default contributed ones:

• Content Completion Assistant (on page 3295) window

• Elements view (on page 646)

• Insert Element menus (from the Outline view (on page 551) or breadcrumb (on page 615) contextual

menus)

You can use the content completion customization support in a custom framework (on page 3297) by

following this procedure:

1. Open the Document type configuration dialog box (on page 148) for your custom framework and select

the Author tab. Next, go to the Content Completion tab (on page 168).

Figure 586. Customize Content Completion

The top side of the Content Completion section contains the list with all the actions defined within

the custom framework and the list of actions that you decided to include in the Content Completion

Assistant list of proposals. The bottom side contains the list with all the items that you decided to

remove from the Content Completion Assistant list of proposals.

2. If you want to add a custom action to the list of current Content Completion proposals, select the

action item from the Available actions list and click the Add as child or Add as sibling button

to include it in the Current actions list. A Content Completion Item dialog box appears, giving you the

possibility to select where to provide the selected action.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2296

Figure 587. Content Completion Item Dialog Box

3. If you want to exclude a certain item from the Content Completion proposals, you can use the Add

button from the Filter - Remove content completion items list. The Remove item dialog box is

displayed, allowing you to input the item name and to choose the controls that filter it. The Item name

combo box accepts wildcards.

Figure 588. Remove Item Dialog Box

Note:

In the Item name drop-down menu, <SPLIT> refers to the action of splitting the element and

creating a new one, while <ENTER> refers to the action of inserting a new line.

Related Information:

Customizing the Content Completion Assistant Using a Configuration File (on page 2302)

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2297

Customizing the Toolbars for a Framework

This procedure describes how to add defined actions to a toolbar for a custom framework (on page 3297).

You can also create additional custom toolbars with existing or custom actions.

1. Open the Document Type configuration dialog box (on page 148) for your custom framework and select

the Author tab.

2. Go to the Toolbar subtab.

Figure 589. Configuring the Toolbar

The panel is divided in two sections. The left side contains a list of actions, while the right side contains

an action tree, displaying the list of actions added in the toolbar. The special entry called Separator

allows you to visually separate the actions in the toolbar.

3. To add an action, select it in the left panel and select the particular toolbar label where you want it

added in the right panel section, then click the Add as child or Add as sibling button.

Result: When opening a document for the particular framework in Author mode, the toolbar with the new

buttons will be displayed in the toolbar area.

Tip:

If you have many custom toolbar actions, or want to group actions according to their category, add

more toolbars with custom names and split the actions to better suit your purpose. If your toolbar

is not displayed when switching to the Author mode, right-click the main toolbar, select Configure

Toolbars, and make sure the appropriate toolbar (such as the Author Custom Actions toolbar) is

selected.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2298

Note:

A maximum of 16 toolbars can be added. If you add more, all extra toolbars will be automatically

converted to sub-toolbars for the last added toolbar.

Customizing Text-to-Markup Shortcut Patterns

Some built-in frameworks include a configuration file that defines shortcut patterns that can be used in

Author mode to automatically insert a certain XML structure. More specifically, the XML structure (fragment)

automatically replaces a specific prefix pattern. For example, if you are editing a DITA document using the

built-in DITA framework, entering a hyphen (-) followed by a space at the beginning of a paragraph would

automatically replace them with an unordered list element () with a child list item element (). This is

made possible by the AutoCorrect mechanism in Oxygen XML Editor.

It is possible to customize the particular configuration file (structureAutocorrect.xml) to define your

own markup insertion shortcut patterns by following these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the

particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association. Select the particular document type, click the Edit button, and in the Classpath tab (on

page 153) add a link to that resources folder (if it does not already exist).

3. Create a new structureAutocorrect.xml file or edit an existing one (this file already exists in the

resources folder of particular document types and you can use an existing file as a starting point for

your customization).

4. Make the appropriate changes to your structureAutocorrect.xml file. The file should look like

this:

<structure-autocorrect>

 <!-- Unordered lists -->

 <prefix-replacement prefix="-">

 </prefix-replacement>

 <!-- Ordered lists -->

 <prefix-replacement prefix="1.">

 </prefix-replacement>

 <!-- Code block -->

 <prefix-replacement prefix="```">

 <codeblock/>

 </prefix-replacement>

</structure-autocorrect>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2299

Using this example, when a user enters one of the defined prefixes at the start of an element that

allows the corresponding fragment, Oxygen XML Editor will automatically replace the prefix with its

corresponding fragment. For example, entering a hyphen (-) at the beginning of a paragraph followed

by a space would automatically replace them with an unordered list element () with a child list

item element (). Any subsequently added content would be placed inside the first node/element

that does not have a child node/element (in this example, the cursor would be placed in the first

element).

5. Save the file in the resources folder for the particular document type, using the fixed name:

structureAutocorrect.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/

resources/structureAutocorrect.xml).

6. Restart the application and open a document for your particular framework to test your customization.

Note:

Once the file is created, changes that you make to it are processed by Oxygen XML Editor when

you press the Reload toolbar button.

Customizing Smart Paste Support

The Smart Paste feature (on page 626) preserves certain style and structure information when copying

content from some of the most common applications and pasting into frameworks (document types) that

support Smart Paste (on page 627) in Oxygen XML Editor. For other document types, the default behavior of

the paste operation is to keep only the text content without the styling.

The style of the pasted content can be customized by editing an XSLT stylesheet for a particular document

type (framework (on page 3297)). The XSLT stylesheet must accept an XHTML flavor of the copied content

as input, and transform it to the equivalent XML markup that is appropriate for the target document type of the

paste operation.

How to Customize the Smart Paste Mapping

To customize the mapping between the markup of the copied content and the markup of the pasted content

for a particular document type, follow these steps:

1. Make sure the particular framework contains a folder named resources in the following path

structure:

/frameworks/[Document Type]/resources

2. Create an XSLT file named xhtml2content.xsl and save it in the resources folder for the

particular framework.

For example: /frameworks/[Document Type]/resources/xhtml2content.xsl

3. Add your customized styling in the XSLT file. A list of supported parameters can be found in the

Supported Parameters for the Custom Smart Paste XSLT (on page 2301) section below.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2300

Tip:

The built-in DITA framework includes an xhtml2ditaDriver.xsl file (in

[OXYGEN_INSTALL_DIR]/frameworks/dita/resources) that imports various other

stylesheets that apply cleanup and handle the conversion from the pasted HTML content to

DITA. If you are using a custom extension of the DITA framework, you can copy the entire

contents of the built-in dita/resources folder and customize the stylesheets according to

your needs.

4. You can test modifications done in the stylesheet by pasting content without having to restart Oxygen

XML Editor.

Result: When you paste content from external applications (such as a web browser or and Office document)

to a document that is open in Author mode, and that matches the particular framework, the styling from the

xhtml2content.xsl stylesheet will be applied on the clipboard contents.

Customized Smart Paste Stylesheet Sample:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xhtml="http://www.w3.org/1999/xhtml"

 xmlns="urn:hl7-org:v3"

 exclude-result-prefixes="xsl xhtml">

 <xsl:output method="xml" indent="no" omit-xml-declaration="yes"/>

 <xsl:template match="xhtml:b | xhtml:strong">

 <content styleCode="bold" >

 <xsl:apply-templates select="@* | node()"/>

 </content>

 </xsl:template>

 <xsl:template match="*">

 <xsl:apply-templates select="@* | node()"/>

 </xsl:template>

 <xsl:template match="@* | node()">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2301

Supported Parameters for the Custom Smart Paste XSLT

The following parameters can be used in your XSLT stylesheet for customizing the Smart Paste mechanism:

inTableContext

The custom XSLT stylesheet receives this parameter with a value of true if the end-user is

pasting content inside a table.

folderOfPasteTargetXml

A URL pointing to the folder where the currently edited XML document is located. This is used to

save images relative to the current XML document.

context.path.names

A sequence of element names showing the current context in the XML document where the

paste occurred.

context.path.uris

A sequence of namespaces, one for each context path name.

context.path.separator

The separator between the path names. Its value can be used to split the context path names to

a sequence.

By default, there is an extra check in place to ensure that the applied XSLT does not remove the original text

from the pasted content. If there is a file called externalPasteOptions.xml in the resources folder, you

can use it to specify the default behavior for checking if the XSLT stylesheet loses content during conversion:

<!-- Options that control external paste

(automatic conversions when pasting HTML and URL flavors from the clipboard). -->

<pasteOptions>

 <!-- True to check if the entire sequence of words which get pasted are

 converted to the target vocabulary. If the check fails, the content

 will be inserted as a simple sequence of words without any formatting. -->

 <checkEntireContentIsFullyPreserved>true</checkEntireContentIsFullyPreserved>

</pasteOptions>

Related Information:

Smart Paste in Author Mode (on page 626)

Oxygen XML Blog: How Special Paste Works in Oxygen (DITA)

Handling When URLs or XHTML Fragments are Dropped or Pasted in Author Mode (on page 2396)

Customize the Content Completion Assistant

Oxygen XML Editor gathers information from the associated schemas (DTDs, XML Schema, RelaxNG) to

determine the proposals that appear in the Content Completion Assistant (on page 3295). Oxygen XML Editor

https://blog.oxygenxml.com/topics/howSpecialPasteWorksInOxygen.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2302

also includes support that allows you to customize the Content Completion Assistant to suit your specific

needs.

There are two ways to customize the Content Completion Assistant in Oxygen XML Editor:

• You can add, modify, or remove actions that are proposed for each particular document type

(framework (on page 3297)) by using the Content Completion subtab in the Document Type

Association configuration dialog box (on page 168). To access this subtab, open the Preferences

dialog box (Options > Preferences) (on page 132), go to Document Type Association, use the

New, Edit, Duplicate, or Extend button (on page 146), click on the Author tab, and then the Content

Completion subtab.

Note:

This works only for Author visual mode.

• You can use a cc_config.xml configuration file that is specific to each document type (framework)

to configure the values that are proposed in certain contexts, to customize the attributes or elements

that are proposed, or to customize how certain aspects of the proposals are rendered in the interface.

The rest of the topics in this section explain how you can use this configuration file to customize the

content completion.

Resources

To see more ideas for various advanced customization possibilities (including how to insert or reject

proposals for the content completion assistant), watch our Webinar: Working with DITA in Oxygen -

Customizing the Editing Experience.

Related information

Customizing the Content Completion Assistant for Author Mode Only (on page 2295)

Customizing the Content Completion Assistant Using a Configuration File

Oxygen XML Editor gathers information from the associated schemas (DTDs, XML Schema, RelaxNG) to

determine the proposals that appear in the Content Completion Assistant (on page 3295). Oxygen XML Editor

also includes support that allows you to customize the Content Completion Assistant to suit your specific

needs.

There are two ways to customize the Content Completion Assistant in Oxygen XML Editor:

• You can add, modify, or remove actions that are proposed for each particular document type

(framework (on page 3297)) by using the Content Completion subtab in the Document Type

Association configuration dialog box (on page 168). To access this subtab, open the Preferences

dialog box (Options > Preferences) (on page 132), go to Document Type Association, use the

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2303

New, Edit, Duplicate, or Extend button (on page 146), click on the Author tab, and then the Content

Completion subtab.

• You can use a cc_config.xml configuration file that is specific to each document type (framework)

to configure the values that are proposed in certain contexts, to customize the attributes or elements

that are proposed, or to customize how certain aspects of the proposals are rendered in the interface.

The rest of the topics in this section explain how you can use this configuration file to customize the

content completion.

Resources

To see more ideas for various advanced customization possibilities (including how to insert or reject

proposals for the content completion assistant), watch our Webinar: Working with DITA in Oxygen -

Customizing the Editing Experience.

Related Information:

Customizing the Content Completion Assistant for Author Mode Only (on page 2295)

Configuring the Proposals for Elements and Attributes

There are many cases where elements have a relaxed content model and can accept a large number of child

elements. For example, the DITA list item element () accepts more than 60 child elements. Oxygen XML

Editor includes support to allow the content architect to put some constraints on the possible elements or

attributes, or to impose some best practices in the way content is edited.

For an example of a specific use-case, suppose that you want to restrict DITA list item elements () to only

accept paragraph elements (<p>). In this case, the Content Completion Assistant (on page 3295) should not

offer any element other than a paragraph (<p>) when a list item () is inserted into a document. It would also

be helpful if the required child element (<p>) was automatically inserted whenever a list item () is inserted.

One method of changing the content model is to alter the element definition in the associated schema (XML

Schema, DTD, RelaxNG), but this may be complicated in some cases. Fortunately, Oxygen XML Editor offers

a simple, alternative method of using a configuration file to customize the content completion proposals for

each element.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant (on page 3295), follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the

particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association. Select the particular document type, click the Edit button, and in the Classpath tab (on

page 153) add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2304

a. To easily create a new configuration file, you can use the Content Completion Configuration

document template that is included in Oxygen XML Editor (File > New > Framework templates

> Oxygen Extensions > Content Completion Configuration). The document template includes

details about how each element and attribute is used in the configuration file.

b. If a configuration file (cc_config.xml) already exists for the particular document type (in the

resources folder), you can modify this existing file.

c. If you extend a framework, you need to copy the content of the cc_config.xml file from the

base framework and modify it (e.g. create a resources folder in your framework extension

folder and place the file there). You also need to make sure that the folder that contains the

cc_config.xml file in your extension (e.g. resources) is listed in the Classpath tab (on page

153) before the one from the base framework.

If you only want to make small changes or add extra rules in your custom content completion

configuration file, you need to name it cc_config_ext.xml and all the rules inside it are

merged with the base cc_config.xml file. The merging is done by taking all the rules specified

in the cc_config_ext.xml file into consideration after processing the set of rules from the

base cc_config.xml file.

4. Make the appropriate changes to your custom configuration file.

5. Save the file in the resources folder for the particular document type, using the fixed name:

cc_config.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/

cc_config.xml).

6. Restart the application and open an XML document. In the Content Completion Assistant you should

see your customizations.

Tip:

In some cases, you can simply use the Refresh (F5) action to test your customizations,

without having to restart the application.

Attention:

In the Classpath tab (on page 153), if you have references to multiple resources folders,

each with its own cc_config.xml file, the first reference listed in the Classpath tab takes

precedence and the multiple configuration files are not combined.

Configuring Elements or Attributes that are Proposed for Each Element

For the purposes of customizing the elements or attributes that are proposed for each individual element, the

configuration file (cc_config.xml) uses <elementProposals> elements. This element allows you to customize

or filter the child elements and attributes for an element.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2305

Warning:

Note that you can only choose elements or attributes that are already allowed by the schema in a

particular context. For example, you cannot specify an element that is not allowed by the schema as a

child of a particular node.

Elements:

To control the elements that are proposed for an element, you can use the following attributes for the

<elementProposals> element:

• path - A path within the document that matches the element that will have its content completion

proposals changed. For example, "title" matches all the <title> elements in the document, while

"chapter/title" matches only the <title> elements that are direct children of the <chapter> element.

You can use simplified forms of XPath in this attribute.

The XPath expressions can accept multiple attribute conditions and inside each condition you can use

AND/OR boolean operators and parentheses to override the priority.

You can use one or more of the following attribute conditions (default attribute values are not taken

into account):

◦ element[@attr] - Matches all instances of the specified element that include the specified

attribute.

◦ element[not(@attr)] - Matches all instances of the specified element that do not include the

specified attribute.

◦ element[@attr = "value"] - Matches all instances of the specified element that include the

specified attribute with the given value.

◦ element[@attr != "value"] - Matches all instances of the specified element that include the

specified attribute and its value is different than the one given.

Example: The following are examples of how you could use multiple boolean operators and

parentheses inside an attribute condition:

*[@a and @b or @c and @d]

*[@a and (@b or @c) and @d]

The following are just examples of how simplified XPath expressions might look like:

◦ elementName

◦ //elementName

◦ /elementName1/elementName2/elementName3

◦ //xs:localName

◦ //xs:documentation[@lang="en"]

Note:

Using a namespace prefix requires that you declare it on the <elementProposals> element or on

an ancestor element. For example:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2306

<elementProposals xmlns:db5="http://docbook.org/ns/docbook"

 path="db5:listitem" insertElements="db5:para" />

Other Important Notes:

◦ If the @path attribute is missing, the customization will apply to the proposals for all

elements. You can intentionally omit this attribute and use possibleElements (on page

2306) or rejectElements (on page 2307) to specify or restrict particular elements for a

framework (on page 3297).

For example, suppose that in your DITA documents, you want to restrict your users from

using <image> and <fig> elements because you do not want images to be included in your

output. The configuration file should look like this:

<elementProposals rejectElements="image fig" />

Since the @path attribute is missing, the specified element will be filtered out from the

proposals for the entire framework.

◦ If the particular document type has name namespaces, the @path should contain the

qualified name. For example, in TEI documents, if you want to set a list of possible

attributes for the element, you need to use a qualified name like this (notice the

declaration of the namespace prefix "t" and its usage):

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oxygenxml.com/ns/ccfilter/config

 http://www.oxygenxml.com/ns/ccfilter/config/ccConfigSchemaFilter.xsd"

 xmlns="http://www.oxygenxml.com/ns/ccfilter/config"

 xmlns:t="http://www.tei-c.org/ns/1.0">

 <elementProposals path="t:span" possibleAttributes="type"/>

• insertElements - A space-separated sequence of child element names. Each time the element specified

in the @path attribute is inserted into the document, these child elements will also be inserted in the

order that they are listed. For example, insertElements="b i" will insert exactly one element,

followed by an <i> element. An empty value ("") means that no child elements should be inserted.

Note:

If this attribute is missing, the default required child elements will be inserted, as specified in

the associated schema for the document.

• possibleElements - A space-separated list of element names that will be shown in the content

completion list when invoked inside an element that is specified in the @path attribute. For example,

"b i codeph ph" means that the Content Completion Assistant will contain these four elements when

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2307

invoked on the element specified in the @path attribute. The following other possible values are also

supported:

◦ NONE - There will be no proposals in the content completion list.

◦ ALL - All the possible elements specified in the associated schema will be presented in the

content completion list. This is also the default behavior if this attribute is missing.

◦ INSERTED - The proposals will be the same list of elements that are defined in the

@insertElements attribute.

When using this attribute to specify multiple elements, only use one entry with the element names

separated by a space:

<elementProposals possibleElements="b i codeph ph" />

• rejectElements - A space-separated list of element names that will be filtered out from the list of

proposals that are presented in the content completion list. Each time the element specified in the @path

attribute is inserted into the document, the list of proposals in the Content Completion Assistant will

include the entries that are defined in the associated schema, minus the elements specified in this

attribute.

Note:

This setting makes the application behave as if the rejected elements were not allowed by

the schema in that location. Most of the toolbar actions take the schema into account when

inserting content. If the inserted content is not allowed by the schema in that particular

location, the application tries to find another location within close proximity where the content

is allowed.

For example, suppose you reject the insertions of images in paragraphs. If a user has the

cursor inside a paragraph and uses the toolbar action that inserts an image, the image will be

inserted after the current paragraph rather than at the current location.

If you want to avoid having users insert an element directly from the content completion

mechanism and want them to use a toolbar action instead, it is better to use the Document

Type Configuration (on page 168) dialog box to remove the element.

When using this attribute to specify multiple elements, only use one entry with the element names

separated by a space:

<elementProposals rejectElements="image fig imagemap foreign" />

• contentType - Forces an element to have an imposed content type. The possible values are:

elementOnly, mixed, or empty.

<elementProposals path="section" insertElements="title p" contentType="elementOnly"/>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2308

• merge - By default, if there are multiple element proposal rules that match the current element context,

then only the rule that has the most specific path is used. By setting the @merge attribute to true on the

proposal rules that might match the same element context, all the rules will be applied. Example:

 <elementProposals

 path="/*[not(@xml:lang='ja')]//*"

 rejectElements="japaneseTag"

 merge="true"/>

 <elementProposals

 path="/*[@xml:lang!='he']//*"

 rejectElements="hebrewTag"

 merge="true"

 />

Attributes:

To control the attributes that are proposed for an element, you can use the following attributes for the

<elementProposals> element:

• path - A path within the document that matches the element that will have its attribute proposals

changed. For example, "title" matches all the <title> elements in the document, while "chapter/

title" matches only the <title> elements that are direct children of the <chapter> element. You can use

simplified forms of XPath in this attribute. For examples of such forms of XPath expressions, see the

note in XML Preferences (on page 216).

Note:

If this attribute is missing, the customization will apply to the proposals for all elements.

You can intentionally omit this attribute and use possibleAttributes (on page 2309) or

rejectAttributes (on page 2309) to specify or restrict attributes for an entire framework.

For example, suppose that you only want to allow a limited set of attributes in a customized

framework. The configuration file should look like this:

<elementProposals possibleAttributes="

 id domains href scope format type conref

 props keyref class"/>

Since the @path attribute is missing, this applies to the entire framework and only the specified

attributes will be proposed.

• insertAttributes - A space-separated sequence of attribute names that will be inserted along with the

element.

<elementProposals path="ol/li" insertAttributes="product platform"/>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2309

• insertAttribute - This is similar to the preceding attribute, but this one also allows you to specify a value

for the attribute that will be inserted. This attribute should be used like this:

<elementProposals path="ol/li">

 <insertAttribute name="platform" value="test"/>

</elementProposals>

• possibleAttributes - A space-separated list of attribute names that will be shown in the content

completion list when invoked inside an element that is specified in the @path attribute.

When using this attribute to specify multiple attributes, only use one entry with the attribute names

separated by a space:

<elementProposals possibleAttributes="scope format type"/>

• rejectAttributes - A space-separated list of attribute names that will be filtered out from the list of

proposals that are presented in the content completion list. Each time the element specified in the @path

attribute is inserted into the document, the list of proposals in the Content Completion Assistant will

include the entries that are defined in the associated schema, minus the attributes specified in this

attribute.

When using this attribute to specify multiple attributes, only use one entry with the attribute names

separated by a space:

<elementProposals rejectAttributes="importance platform product"/>

Other Important Notes About the Configuration File

Important:

• By default, the element names that do not have a namespace prefix are considered from no-

namespace. Consider declaring the namespace mapping on the root of the configuration file

and prefixing the element names from the @elementPath and @model attributes.

• This configuration file only affects the content completion assistance. It has no effect on

validation or operations invoked from other areas in the interface (such as the toolbar or

menus).

• To test the effects of your changes, you should restart the application, although in some cases,

you can simply use the Reload (F5) action to test your customizations.

• When an XML element from the document is matched against a list of configured

elementProposals, the first one in sequence takes precedence. Therefore, make sure you place

the more specific elementProposals (those with a longer path) first in your configuration file.

• Simple wildcard patterns can be used in the following attributes: @possibleElements,

@rejectElements, @possibleAttributes, and @rejectAttributes. For example, code*, *block, con*ref,

_*.

• Editor variables (on page 333) can be used in the @value attribute of the <insertAttribute>

element. For example:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2310

<elementProposals path="prolog/critdates/created">

 <insertAttribute name="date" value="${date(yyyy-MM-dd)}"/>

</elementProposals>

• Only simple recursion cases are detected and avoided by the editor, and logged to the

console. Therefore, if complex elementProposals patterns are defined, you should avoid infinite

recursions.

Examples: Configuring the Element Proposals

• Example 1: Automatically Insert Elements

Suppose that you want to automatically insert a paragraph element (<p>) whenever a DITA ordered list

item element (<ol/li>) is inserted, and also to not allow any other element besides a paragraph inside

the ordered list items.

To achieve this, the configuration file should include the following:

<elementProposals path="ol/li" insertElements="p"

 possibleElements="_INSERTED_"/>

Tip:

This particular example modifies an action that inserts a list in a DITA document. There are

several ways to invoke this action in the interface. For example, there is a toolbar button and

an action in the DITA menu that inserts a list. However, since the configuration file only affects

the Content Completion Assistant, this modification will have no effect on the behavior of the

toolbar or menu action. Those actions would need to be configured separately if you want

the result to be the same as the content completion proposal. For more information, see

Customizing the Author Mode Editing Experience for a Framework (on page 2254).

• Example 2: Insert Complex Element Structure

For a more complex example, suppose that you want to insert a complex structure whenever a DITA

<prolog> element is inserted.

For instance, if you want to insert the following structure inside <prolog> elements:

 <prolog>

 <author></author>

 <metadata>

 <keywords>

 <keyword></keyword>

 <keyword></keyword>

 </keywords>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2311

 </metadata>

 </prolog>

the configuration file should include the following:

 <elementProposals path="prolog" insertElements="author metadata"/>

 <elementProposals path="prolog/metadata" insertElements="keywords"/>

 <elementProposals path="prolog/metadata/keywords"

 insertElements="keyword, keyword"/>

• Example 3: Limit Possible Elements

Suppose that you also want to limit the proposals for the <keywords> element to only allow the user to

insert <audience> or <keyword> elements. The configuration file should include the following:

<elementProposals path="prolog/metadata" insertElements="keywords"

 possibleElements="audience keywords"/>

Suppose that you want to simply restrict your users from inserting <image> elements inside DITA list

item elements (), but still propose all the other elements that are defined in the associated schema.

The configuration file should look like this:

<elementProposals path="li" rejectElements="image" />

Examples: Configuring the Attributes Proposals

• Example 1: Automatically Insert Attributes

Suppose that you want to insert an @id attribute (with an empty value) whenever a DITA list item

element () is inserted. The configuration file should include the following:

<elementProposals path="li" insertAttributes="id"/>

• Example 2: Limit Possible Attributes

Suppose that you also want to limit the number of choices for attributes that are presented to the user

whenever a DITA list item element () is inserted. The configuration file should look like this:

<elementProposals path="li" insertAttributes="id"

 possibleAttributes="id product platform audience"/>

Suppose that you want to simply restrict your users from inserting @conref attributes inside DITA topics

(<topic> element), but still propose all the other attributes that are defined in the associated schema.

The configuration file should look like this:

<elementProposals path="topic" rejectAttributes="conref" />

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2312

Related information

Configuring the Proposals for Attribute and Element Values (on page 2312)

Customizing the Rendering of Elements (on page 2318)

Configuring the Proposals for Attribute and Element Values

Oxygen XML Editor includes support for configuring the proposed values that appear in the Content

Completion Assistant (on page 3295). To do so, a configuration file is used, along with the associated

schema, to add or replace possible values for attributes or elements that are proposed in the Content

Completion Assistant.

For an example of a specific use-case, suppose that you want the Content Completion Assistant to propose

several possible values for the language code when you use an @xml:lang attribute.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant (on page 3295), follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the

particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association. Select the particular document type, click the Edit button, and in the Classpath tab (on

page 153) add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.

a. To easily create a new configuration file, you can use the Content Completion Configuration

document template that is included in Oxygen XML Editor (File > New > Framework templates

> Oxygen Extensions > Content Completion Configuration). The document template includes

details about how each element and attribute is used in the configuration file.

b. If a configuration file (cc_config.xml) already exists for the particular document type (in the

resources folder), you can modify this existing file.

c. If you extend a framework, you need to copy the content of the cc_config.xml file from the

base framework and modify it (e.g. create a resources folder in your framework extension

folder and place the file there). You also need to make sure that the folder that contains the

cc_config.xml file in your extension (e.g. resources) is listed in the Classpath tab (on page

153) before the one from the base framework.

If you only want to make small changes or add extra rules in your custom content completion

configuration file, you need to name it cc_config_ext.xml and all the rules inside it are

merged with the base cc_config.xml file. The merging is done by taking all the rules specified

in the cc_config_ext.xml file into consideration after processing the set of rules from the

base cc_config.xml file.

4. Make the appropriate changes to your custom configuration file.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2313

5. Save the file in the resources folder for the particular document type, using the fixed name:

cc_config.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/

cc_config.xml).

6. Restart the application and open an XML document. In the Content Completion Assistant you should

see your customizations.

Tip:

In some cases, you can simply use the Refresh (F5) action to test your customizations,

without having to restart the application.

Attention:

In the Classpath tab (on page 153), if you have references to multiple resources folders,

each with its own cc_config.xml file, the first reference listed in the Classpath tab takes

precedence and the multiple configuration files are not combined.

Configuring Proposed Values

For the purposes of adding or replacing the values that are proposed, the configuration file (cc_config.xml)

includes a series of valueProposals instructions that will match an element or attribute name and has the

following attributes:

• path - A path within the document that matches the element or attribute that will have its content

completion proposals changed. For example:

◦ path="title" matches all the <title> elements in the document.

◦ path="chapter/title" matches only the <title> elements that are direct children of the <chapter>

element.

◦ path="@xml:lang" matches all the @xml:lang attributes in the document.

◦ path="title/@xml:lang" matches only the @xml:lang attributes that appear on <title> elements.

You can use simplified forms of XPath in this attribute.

The XPath expressions can accept multiple attribute conditions and inside each condition you can use

AND/OR boolean operators and parentheses to override the priority.

You can use one or more of the following attribute conditions (default attribute values are not taken

into account):

◦ element[@attr] - Matches all instances of the specified element that include the specified

attribute.

◦ element[not(@attr)] - Matches all instances of the specified element that do not include the

specified attribute.

◦ element[@attr = "value"] - Matches all instances of the specified element that include the

specified attribute with the given value.

◦ element[@attr != "value"] - Matches all instances of the specified element that include the

specified attribute and its value is different than the one given.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2314

Example: The following are examples of how you could use multiple boolean operators and

parentheses inside an attribute condition:

*[@a and @b or @c and @d]

*[@a and (@b or @c) and @d]

The following are just examples of how simplified XPath expressions might look like:

◦ elementName

◦ //elementName

◦ /elementName1/elementName2/elementName3

◦ //xs:localName

◦ //xs:documentation[@lang="en"]

Note:

Using a namespace prefix requires that you declare it on the <elementProposals> element or on

an ancestor element. For example:

<elementProposals xmlns:db5="http://docbook.org/ns/docbook"

 path="db5:listitem" insertElements="db5:para" />

• editable - Specifies the editable state of the attribute values, as reflected in the Attributes view (on

page 641) and the In-place Attributes Editor (on page 643). The possible values for the @editable

attribute are:

◦ true - The attribute values can be edited by choosing from a combo box or manually providing a

value.

◦ false - The attribute values cannot be edited.

◦ onlyAllowedItems - The attribute values can be edited, but only by choosing from a list of

proposed values, in a non-editable combo box.

The new value proposals are specified in the <valueProposals> element through:

• One or more <item> elements, which are grouped inside an <items> element.

Tip:

The <item> element can have a @listValue attribute, which can be set to true if you want those

items to be part of a list attribute value (such as attr="item1 item2").

• An <xslt> element that references an XSLT script that gets executed and must return an <items>

element.

The behavior of the <items> or <xslt> elements are specified with the help of the @action attribute, which can

have any of the following values:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2315

• append - Adds new values to appear in the proposals list (default value).

• addIfEmpty - Adds new values to the proposals list only if no other values are contributed by the

schema.

• replace - Replaces the values contributed by the schema with new values to appear in the proposals

list.

The values in the configuration file can be specified either directly or by calling an external XSLT file that will

extract data from an external source. An <xslt> element must be used in this situation.

Note:

valueProposals offers more flexibility compared to the old match element that was marked as

deprecated.

<match elementName="lg" elementNS="http://www.oxygenxml.com/ns/samples">

 <items action="replace">

 <item value="stanza"/>

 <item value="refrain"/>

 </items>

</match>

Other Important Notes About the Configuration File

Important:

• This configuration file only affects the content completion assistance, not validation.

• To test the effects of your changes, you should Refresh the source document (on page 769).

Example: Specifying Values Directly

If you want to specify the values directly, the configuration file should look like this:

<!-- Replaces the values for an element with the local name "lg",

 from the given namespace -->

<valueProposals path="x:lg" xmlns:x="http://www.oxygenxml.com/ns/samples">

 <items action="replace">

 <item value="stanza"/>

 <item value="refrain"/>

 </items>

</valueProposals>

<!-- Adds two values for an attribute "type", from no namespace -->

<valueProposals path="@type" editable="onlyAllowedItems">

 <items>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2316

 <item value="stanza"/>

 <item value="refrain"/>

 </items>

</valueProposals>

Example: Using Attribute Conditions

The possible values of an attribute depend on the value of another attribute from the same element:

<valueProposals path="property[@name='color']">

 <items>

 <item value="red"/>

 <item value="blue"/>

 </items>

</valueProposals>

<valueProposals path="property[@name='shape']">

 <items>

 <item value="rectangle"/>

 <item value="square"/>

 </items>

</valueProposals>

Example: Calling an External XSLT Script

If you want to collect values from an external XSLT script, the configuration file should include something like

this:

<xslt href="../xsl/get_values_from_db.xsl" useCache="false" action="replace"/>

In this example, the get_values_from_db.xsl is executed to extract values from a database.

Tip:

You can use xsl:message as a debugging mechanism. These messages are presented in the results

area at the bottom of the application whenever the Content Completion Assistant is invoked.

Note:

A comprehensive XSLT sample is included in the Content Completion Configuration document

template (in the Framework Templates > Oxygen Extensions section of the New document wizard (on

page 378)).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2317

Note:

If @useCache is set to false, then the XSLT will be invoked any time the proposals are needed. If @useCache

is set to true, then the XSLT is executed once and the obtained proposals are kept in a cache and

returned every time the proposals are requested again. You can use the Validate action to drop the

cached values and recompute them.

Configuring Proposed Values in the Context Where the Content Completion was Invoked

Web Author Customization Note:

This particular scenario is not supported for an Oxygen XML Web Author customization.

A more complex scenario is if you want to choose the possible values to propose, depending on the context of

the element where the content completion was invoked.

Suppose that you want to propose certain possible values for one property (for example, color) and other

values for another property (for example, shape). If the property represents a color, then the values should

represent applicable colors, while if the property represents a shape, then the values should represent

applicable shapes. See the following code snippets:

Your main document:

<sampleArticle>

 <!-- The possible values for @value should be "red" and "blue" -->

 <property name="color" value=""/>

 <!-- The possible values for @value should be "square" and "rectangle" -->

 <property name="shape" value=""/>

</sampleArticle>

The content completion configuration file:

<config xmlns="http://www.oxygenxml.com/ns/ccfilter/config">

 <valueProposals path="property/@value">

 <xslt href="get_values.xsl" useCache="false" action="replace"/>

 </valueProposals>

</config>

The stylesheet that defines the possible values based on the context of the property on which the content

completion was invoked:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 version="3.0">

 <xsl:param name="documentSystemID" as="xs:string"></xsl:param>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2318

 <xsl:param name="contextElementXPathExpression" as="xs:string"></xsl:param>

 <xsl:template name="start">

 <xsl:apply-templates select="doc($documentSystemID)"/>

 </xsl:template>

 <xsl:template match="/">

 <xsl:variable name="propertyElement" as="element()">

 <xsl:evaluate xpath="$contextElementXPathExpression" context-item="./*"/>

 </xsl:variable>

 <items>

 <xsl:if test="$propertyElement/@name = 'color'">

 <item value='red'/>

 <item value='blue'/>

 </xsl:if>

 <xsl:if test="$propertyElement/@name = 'shape'">

 <item value='rectangle'/>

 <item value='square'/>

 </xsl:if>

 </items>

 </xsl:template>

</xsl:stylesheet>

The contextElementXPathExpression parameter will be bound to an XPath expression that identifies the

element in the context where the content completion was invoked.

Related information

Configuring the Proposals for Elements and Attributes (on page 2303)

Customizing the Rendering of Elements (on page 2318)

Customizing the Rendering of Elements

In addition to the support for configuring the proposals that appear in the Content Completion Assistant (on

page 3295), Oxygen XML Editor also includes support for customizing how the elements are rendered. You

can do this by using the XMLNodeRendererCustomizer API extension (on page 2380), but you can also use

the same configuration file that is used to configure the content completion proposals.

For an example of a specific use-case, suppose that in DITA you want the names of paragraph elements

(<p>) to be rendered as "Paragraph" instead of "p" in the various components in Author mode (such as in the

Outline view (on page 551), Elements view (on page 646), Attributes view (on page 641), and the breadcrumb

navigation bar). To achieve this, you can use the <elementRenderings> element in the configuration file.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2319

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant (on page 3295), follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the

particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association. Select the particular document type, click the Edit button, and in the Classpath tab (on

page 153) add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.

a. To easily create a new configuration file, you can use the Content Completion Configuration

document template that is included in Oxygen XML Editor (File > New > Framework templates

> Oxygen Extensions > Content Completion Configuration). The document template includes

details about how each element and attribute is used in the configuration file.

b. If a configuration file (cc_config.xml) already exists for the particular document type (in the

resources folder), you can modify this existing file.

c. If you extend a framework, you need to copy the content of the cc_config.xml file from the

base framework and modify it (e.g. create a resources folder in your framework extension

folder and place the file there). You also need to make sure that the folder that contains the

cc_config.xml file in your extension (e.g. resources) is listed in the Classpath tab (on page

153) before the one from the base framework.

If you only want to make small changes or add extra rules in your custom content completion

configuration file, you need to name it cc_config_ext.xml and all the rules inside it are

merged with the base cc_config.xml file. The merging is done by taking all the rules specified

in the cc_config_ext.xml file into consideration after processing the set of rules from the

base cc_config.xml file.

4. Make the appropriate changes to your custom configuration file.

5. Save the file in the resources folder for the particular document type, using the fixed name:

cc_config.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/

cc_config.xml).

6. Restart the application and open an XML document. In the Content Completion Assistant you should

see your customizations.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2320

Tip:

In some cases, you can simply use the Refresh (F5) action to test your customizations,

without having to restart the application.

Attention:

In the Classpath tab (on page 153), if you have references to multiple resources folders,

each with its own cc_config.xml file, the first reference listed in the Classpath tab takes

precedence and the multiple configuration files are not combined.

Changing the Rendering of Elements (Their Names, Annotations, and Icons)

For the purposes of customizing how the content completion elements are rendered, you can use the <render>

element inside a <elementRenderings> element to specify how element names, their annotations, and their icons

are rendered.

The <elementRenderings> element supports the @platform attribute, which can have one of the following values:

webapp

The element renderings are only applied to Oxygen XML Web Author.

standalone

The element renderings are only applied to standalone distributions of Oxygen.

eclipse

The element renderings are only applied to Eclipse plugin distributions of Oxygen.

Note:

If the @platform attribute is missing, the element renderings are applied to all types of

distributions.

You can use the following attributes for the <render> element:

element

Identifies the element to be customized, in the form of a qualified name. If it does not have a

prefix, it is considered to be from noNamespace.

as

Provides the name (label) that will be displayed for the element in various components in Author

mode (the Content Completion Assistant, the breadcrumb navigation bar, the Full Tags display

mode (on page 607), and the Outline (on page 551), Elements (on page 646), and Attributes (on

page 641) views). This attribute is optional. If it is missing, the name of the element is used.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2321

If you want to translate this label into another language, use the ${i18n(key_name)} editor

variable (on page 341). The following code snippet shows how the DITA paragraph elements

(<p>) can be translated:

<elementRenderings>

 <render element="p" as="${i18n(cc_p)}"/>

</elementRenderings>

Note:

The cc_p id is a key that identifies the translations available for the paragraph element.

iconPath

Optional attribute that specifies the icon for the element. This is shown in the Content

Completion Assistant and the Outline view (on page 551) in Author mode. If it is a relative

path, the full path of the icon image file will be computed starting from the directory of the

configuration file (for example, a value of "myImg.png" will cause Oxygen XML Editor to load

"frameworks/$ {framework}/resources/myImg.png"). If you want to access a built-in

resource, the value can begin with a forward slash "/", and the image file will be searched for in

the Oxygen XML Editor classpath resources (for example,"/images/OrderedList16.png"

will load an icon from the built-in Oxygen XML Editor JAR file resources.

xml:lang (Deprecated)

It is recommended to use the ${i18n(key_name)} editor variable (on page 341) instead. Optional

attribute that could be used to render the same element differently, depending on the language.

If there are multiple <render> elements for the same @element attribute (element name) and the

@xml:lang attribute is missing on one of them, that one will be considered the default fallback

value to be used if none of the others match the language specified in the interface.

Note:

The default entry should be listed first, since the application tries to match them in

sequence and the last match found is the one that is used.

For example, suppose that you want the name of DITA paragraph elements (<p>) to be rendered

as "Paragraphe" if the language is French, "Absatz" if the language is German, and "Paragraph"

if the language is English (or any other language). Your configuration file should look something

like this:

<elementRenderings>

 <render element="p" as="Paragraph"/>

 <render element="p" as="Paragraphe" xml:lang="fr"/>

 <render element="p" as="Absatz" xml:lang="de"/>

</elementRenderings>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2322

You can also use the configuration file to customize the annotations for elements. For this purpose, the

<render> element also accepts the following element to change the tooltip annotations for an element (in both

Author mode and Text mode):

annotation

This element can be used within the <render> element to customize the tooltip annotations that

are displayed for the element in various components in Author mode (such as tooltips shown in

the Content Completion Assistant documentation window, the breadcrumb navigation bar, the

Full Tags display mode (on page 607), and the Outline (on page 551), Elements (on page 646),

Attributes (on page 641) views), as well as the tooltips that are displayed when you hover over

elements in Text mode. You can use HTML content to style the annotations (see the example

below (on page 2323)).

Note:

If this element is missing, the styling for the annotations for that element is collected

from the associated schema (on page 632).

Tip:

The annotations can also be translated in the configuration file. For example:

<elementRenderings>

 <render element="p" as="${i18n(cc_p)}">

 <annotation>${i18n(cc_p)}</annotation>

 </render>

</elementRenderings>

Other Important Notes About the Configuration File for Rendering Elements

Important:

• This configuration file only affects the content completion assistance, not validation.

• To test the effects of your changes, you should restart the application, although in some cases,

you can simply use the Reload (F5) action to test your customizations.

• If the framework (on page 3297) has an associated style guide, then the annotations

defined in the configuration file will take precedence over those defined in the style

guide. To check to see if your framework uses a style guide, look for the following folder:

${oXygenInstallDir}frameworks/${framework}/styleguide/. If that folder exists,

it is recommended that you make your annotation changes directly in the style guide, rather

than in the configuration file.

• If an XMLNodeRendererCustomizer API extension (on page 2380) has been implemented for

the framework and a configuration file is also used, the rendering customization for an element

will be the result of merging the two. For example, if the XMLNodeRendererCustomizer

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2323

implementation customizes the element name, while the configuration file specifies an icon

for the element, the properties of both customizations will be rendered. However, if both

implementations define the same property (for example, both specify the rendering of an

element name), the customizations defined in the configuration file take precedence.

• The rendering customizations defined in the configuration file also apply to aspects of the

Oxygen XML Web Author interface.

Example: Changing the Rendering of an Element

Suppose that you want to render the name of the DITA <title> element to begin with a capital letter, use a

custom icon for it, and provide specific documentation for that element in the various components in Author

mode. The configuration file should look like this:

<elementRenderings>

 <render element="title" as="Title" iconPath="cimg/AcceptAll16.png">

 <annotation>

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Documentation for the Title Element</title>

 </head>

 <body>

 <p>A <i>heading</i> or label for the main parts of a topic</p>

 </body>

 </html>

 </annotation>

 </render>

</elementRenderings>

Related Information:

Configuring the Proposals for Attribute and Element Values (on page 2312)

Configuring the Proposals for Elements and Attributes (on page 2303)

Customizing XML Node Rendering (on page 2380)

Schema Annotations in Author Mode (on page 632)

Customizing Annotations in the Content Completion Assistant (on page 2323)

Customizing Annotations in the Content Completion Assistant

Oxygen XML Editor gathers documentation from the associated schemas (DTD, XML Schema, RelaxNG)

and presents it for each element or attribute. For example, if you open the Content Completion Assistant

(on page 3295) for a recognized XML vocabulary, documentation is displayed for each element provided by

the associated schema. Similar information is displayed when you hover over tag names presented in the

Elements view (on page 646). If you hover over attributes in the Attributes view (on page 641) you also see

information about each attribute, gathered from the same schema.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2324

If you have a framework configuration (on page 148) set up for your XML vocabulary, there is a special XML

configuration file that can be added to provide additional documentation information or links to additional

information for certain elements and attributes.

To provide this additional information in the Content Completion Assistant, follow these steps:

1. Create a new folder in the configuration directory for the document type.

Example: OXYGEN_INSTALL_DIR/frameworks/dita/styleguide

2. Use the New document wizard to create a file using the Content Completion Styleguide document

template (in the Framework Templates > Oxygen Extensions section).

3. Save the file in the folder created in step 1, using the fixed name:

contentCompletionElementsMap.xml.

4. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Document Type

Association, and edit the document type configuration for your XML vocabulary. Now you need to

indicate where Oxygen XML Editor will locate your mapping file by doing one of the following:

◦ In the Classpath tab add a link to the newly created folder.

◦ In the Catalogs tab add a new catalog file (on page 842). The selected file needs to contain the

following:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN"

 "http://www.oasis-open.org/committees/entity/release/1.1/catalog.dtd">

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <uri name="http://www.oxygenxml.com/{processed_dt_name}/styleguide/

contentCompletionElementsMap.xml" uri="contentCompletionElementsMap.xml"/>

</catalog>

where {processed_dt_name} is the name of the document type in lower case and with spaces

replaced by underscores.

Note:

If Oxygen XML Editor finds a mapping file in both locations, the one in the Catalogs tab

takes precedence.

5. Make the appropriate changes to your custom mapping file.

Example: You can look at how the DITA mapping file is configured: OXYGEN_INSTALL_DIR/

frameworks/dita/styleguide/contentCompletionElementsMap.xml

The associated XML Schema contains additional details about how each element and attribute is used

in the mapping file.

6. Re-open the application and open an XML document.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2325

In the Content Completion Assistant (on page 3295), you should see the additional annotations for each

element.

Translating Annotations

Annotations in the Content Completion Assistant can be displayed in various languages. Based on

the language set for the interface, Oxygen XML Editor looks for several filename formats to determine

the information to load for the content completion annotations. These files that begin with the name

contentCompletionElementsMap, are located in the styleguide folder for each built-in framework (for

example, OXYGEN_INSTALL_DIR/frameworks/dita/styleguide).

For example, for English, the files are loaded in the following order (from specific to more general):

• contentCompletionElementsMap_en_US.xml or

contentCompletionElementMap_en_UK.xml, and so on

• contentCompletionElementsMap_en.xml

• contentCompletionElementsMap.xml

If you want the annotations to be displayed in another language, you need to create similar files for the

particular language. For example, to show annotations in German, create a file with one of the following

names (and store it in the styleguide folder for your framework):

• contentCompletionElementsMap_de_DE.xml

• contentCompletionElementsMap_de.xml

Related Information:

Customizing the Rendering of Elements (on page 2318)

Customizing the Content Completion Assistant for Author Mode Only

You can customize the content of the following Author controls, adding items (which, when invoked, perform

custom actions) or filtering the default contributed ones:

• Content Completion Assistant (on page 3295) window

• Elements view (on page 646)

• Insert Element menus (from the Outline view (on page 551) or breadcrumb (on page 615) contextual

menus)

You can use the content completion customization support in a custom framework (on page 3297) by

following this procedure:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2326

1. Open the Document type configuration dialog box (on page 148) for your custom framework and select

the Author tab. Next, go to the Content Completion tab (on page 168).

Figure 590. Customize Content Completion

The top side of the Content Completion section contains the list with all the actions defined within

the custom framework and the list of actions that you decided to include in the Content Completion

Assistant list of proposals. The bottom side contains the list with all the items that you decided to

remove from the Content Completion Assistant list of proposals.

2. If you want to add a custom action to the list of current Content Completion proposals, select the

action item from the Available actions list and click the Add as child or Add as sibling button

to include it in the Current actions list. A Content Completion Item dialog box appears, giving you the

possibility to select where to provide the selected action.

Figure 591. Content Completion Item Dialog Box

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2327

3. If you want to exclude a certain item from the Content Completion proposals, you can use the Add

button from the Filter - Remove content completion items list. The Remove item dialog box is

displayed, allowing you to input the item name and to choose the controls that filter it. The Item name

combo box accepts wildcards.

Figure 592. Remove Item Dialog Box

Note:

In the Item name drop-down menu, <SPLIT> refers to the action of splitting the element and

creating a new one, while <ENTER> refers to the action of inserting a new line.

Related Information:

Customizing the Content Completion Assistant Using a Configuration File (on page 2302)

Configuring Transformation Scenarios for a Framework

When distributing a framework (on page 3297) to users, it is a good idea to have the transformation scenarios

already configured. This helps the content authors publish their work in various formats. By being contained

in the framework configuration, the scenarios can be distributed along with the actions, menus, toolbars, and

catalogs.

To create a transformation scenario for your framework, follow these steps:

1. Create an xsl folder inside your custom framework directory

([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]).

The folder structure for the documentation framework should be:

oxygen

 frameworks

 [CUSTOM_FRAMEWORK_DIR]

 schema

 css

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2328

 templates

 xsl

2. Create an xsl file and save it in the xsl folder. To help you get started, you can use the sample

sdf.xsl file found in the sample framework customization package.

3. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document

Type Associations. Select the particular framework, click the Edit button to open Document Type

Configuration dialog box (on page 148), and choose the Transformation tab. Click the New button

and choose the appropriate type of transformation (for example, XML transformation with XSLT).

In the New scenario dialog box, fill in the following fields:

◦ Fill in the Name field with the name of your transformation scenario.

◦ Set the XSL URL field to path of your custom stylesheet (for example, ${framework}/xsl/

mycustom.xsl).

Figure 593. Configuring a New XSLT Transformation Scenario

4. Change to the Output tab. Configure the fields as follows:

◦ Set the Save as field to ${cfd}/${cfn}.html. This means the transformation output file will

have the name of the XML file and the html extension and will be stored in the same folder.

◦ Select the Open in Browser/System Application option.

Note:

To set the browser or system application that will be used, open the Preferences dialog

box (Options > Preferences) (on page 132), go to Global, and set it in the Default

https://www.oxygenxml.com/maven/com/oxygenxml/samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2329

Internet browser field. This will take precedence over the default system application

settings.

◦ Select the Saved file option.

5. Click the OK button to save the new scenario.

Now the scenario is listed in the Transformation tab:

Figure 594. Transformation Tab

To test the transformation scenario that you just created, you can use the sample sdf.xml file found in the

sample framework customization package. Click the Apply Transformation Scenario(s) button to display

the Transform with dialog box. The scenario list contains the scenario you defined earlier. Select the SDF

to HTML scenario that you just defined and click the Apply associated button. The HTML file is saved in the

same folder as the XML file and displayed in the browser.

Configuring Validation Scenarios for a Framework

You can distribute a framework (on page 3297) with a series of already configured validation scenarios. Also,

this provides enhanced validation support that allows you to use multiple grammars to check the document.

For example, you can use Schematron rules to impose guidelines that are otherwise impossible to enforce

using conventional validation.

Note:

If a main file is associated with the current file, the validation scenarios defined in the main file, along

with any Schematron schema defined in the default scenarios for that particular framework, are used

for the validation. These take precedence over other types of validation units defined in the default

scenarios for the particular framework. For more information on main files, see Contextual Project

Operations Using 'Main Files' Support (on page 430) or Modular Contextual XML Editing Using 'Main

Files' Support (on page 845).

To associate a validation scenario with a specific framework, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association.

2. Select the document type and click the Edit button to open the Document Type Configuration dialog

box (on page 148), then choose the Validation tab. This tab displays a list of document types. To set

one or more of the validation scenarios listed in this tab to be used as the default validation scenario

https://www.oxygenxml.com/maven/com/oxygenxml/samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2330

(when another one is not specified in the validation process) for a specific document type, check the

Default box for that specific document type.

3. To edit an existing scenario, select the scenario and click the Edit button. To add a new scenario,

click the New button.

In either case, a scenario configuration dialog box is displayed. It lists all the validation units for the

scenario.

Figure 595. Validation Scenario Configuration Dialog Box

This scenario configuration dialog box allows you to configure the following information and options:

Name

The name of the validation scenario.

URL of the file to validate

The URL of the main module that includes the current module. It is also the entry module

of the validation process when the current one is validated. To edit the URL, double-click

its cell and specify the URL of the main module by doing one of the following:

◦ Enter the URL in the text field or select it from the drop-down list.

◦ Use the Browse drop-down button to browse for a local, remote, or archived

file.

◦ Use the Insert Editor Variable button to insert an editor variable (on page 333)

or a custom editor variable (on page 343).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2331

Figure 596. Insert an Editor Variable

File type

The type of the document that is validated in the current validation unit. Oxygen XML

Editor automatically selects the file type depending on the value of the URL of the file to

validate field.

Validation engine

You can select one of the engines available in Oxygen XML Editor for validation of the

particular document type:

◦ Default engine - The default engine is used to run the validation for the current

document type, as specified in the preferences page for that type of document (for

example, XSLT preferences page (on page 255), XQuery preferences page (on page

263), XML Schema preferences page (on page 248)).

◦ DITA Validation engine - Performs DITA-specific checks in the context of the

specifications (it is similar to the process when using the Validate and Check

for Completeness action (on page 2995) in the DITA Maps Manager, but for a

local file rather than an entire DITA map (on page 3296)).

◦ DITA Map Validation and Completeness Check engine - Performs a validation

process that checks the DITA map document and all referenced topics and

maps (it is similar to the process when using the Validate and Check for

Completeness action (on page 2995) in the DITA Maps Manager).

◦ DITA-OT Project Validation and Completeness Check engine - Performs a

validation process that checks each context from the provided DITA-OT project

file (it is similar to the process when using the Validate and Check for

Completeness action (on page 2995) in the DITA Maps Manager).

◦ Table Layout Validation engine - Looks for table layout problems (for more

information, see the Report table layout problems option (on page 3000)).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2332

Automatic validation

If this option is selected, the validation operation defined by this row is also applied by the

automatic validation feature (on page 790). If the Automatic validation feature is disabled

in the Document Checking preferences page (on page 236), then this option is ignored, as

the preference setting has a higher priority.

Schema

This option becomes active when you set the File type to XML Document and allows you

to specify the schema used for the validation unit.

Settings

Depending on the selected validation engine, clicking the Settings button either opens

the Specify Schema dialog box or the Configure validation engine dialog box.

◦ Specify Schema Dialog Box

This dialog box allows you to specify a custom schema to be used for the

validation process.

Figure 597. Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema

Uses the schema detected for the particular document (on page

832).

Use custom schema

Allows you to specify the schema using the following options:

▪ URL - Allows you to specify or select a URL for the schema.

It also keeps a history of the last used schemas. The URL

must point to the schema file that can be loaded from the local

disk or from a remote server through HTTP(S) or SFTP (or a

custom protocol (on page 2555)). You can specify the URL by

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2333

using the text field, the history drop-down, the Insert Editor

Variables (on page 333) button, or the browsing actions in the

Browse drop-down list.

▪ Schema type - Select a possible schema type from this combo

box that is populated based on the extension of the schema

file that was entered in the URL field. The possible schema

types are: XML Schema, DTD, Relax NG, Relax NG Compact,

Schematron, or NVDL.

▪ Embedded Schematron rules - If you have selected XML

Schema or Relax NG schemas with embedded Schematron

rules and you want to use those embedded rules, select this

option.

▪ Extensions- Opens a dialog box that allows you to specify

Java extension JARs (on page 3297) to be used during the

validation.

▪ Public ID - Allows you to specify a public ID if you have

selected a DTD.

▪ Schematron phase - If you select a Schematron schema, this

drop-down list allows you to select a Schematron phase that

you want to use for validation. The listed phases are defined in

the Schematron document.

◦ Configure Validation Engine Dialog Box

This dialog box allows you to configure options for checking the DITA map

document and all referenced topics and maps (similar to the process done when

using the Validate and Check for Completeness action (on page 2995) in the

DITA Maps Manager).

Note:

The options presented in the Configure validation engine dialog box

depends on type of validation engine. For example, when configuring the

DITA-OT Project Validation and Completeness Check validation engine,

the dialog box has slightly fewer options (omitting those that are not

applicable).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2334

Figure 598. Example of the Configure Validation Engine Dialog Box

The Configure Validation Engine dialog box contains the following options:

Batch validate referenced DITA resources

This option specifies the level of validation that applies to referenced

DITA files:

▪ If the checkbox is left unchecked (default setting), the DITA

files will be validated using the rules defined in the DTD or XML

Schema declared in the document.

▪ If the checkbox is selected, the DITA files will be validated

using rules defined in their associated validation scenario (on

page 802).

Check the existence of non-DITA references resources

Extends the validation of referenced resources to non-DITA files.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2335

Include remote resources

Select this option if you want to check that remote

referenced binary resources (such as images, movie

clips, ZIP archives) exist at the specified location.

Use DITAVAL filters

The content of the map is filtered by applying a profiling condition set

before validation. You can choose between the following options:

▪ From the current condition set - The map is filtered using the

condition set currently applied in the DITA Maps Manager view

(on page 2950). Clicking the Details icon opens a topic in

the Oxygen XML Editor User Guide that explains how to create

a profiling condition set.

▪ From all available condition sets - For each available condition

set, the map content is filtered using that set before validation.

▪ From the associated transformation scenario - The filtering

condition set is specified explicitly as a DITAVAL file in the

current transformation scenario associated with the DITA

map.

▪ Other DITAVAL files - For each DITAVAL file from this list,

the map content is filtered using the DITAVAL file before

validation. Use the Add or Remove buttons to configure

the list. The Add button opens a dialog box that allows you

to select a local or remote path to a DITAVAL file. You can

specify the path by using the text field, its history drop-down,

the Insert Editor Variables (on page 333) button, or the

browsing actions in the Browse drop-down list.

Report references to resources outside of the DITA map folder

If selected, it will report any references to DITA resources that are

located outside the main DITA map (on page 3301) folder.

Report links to topics not referenced in DITA maps

Checks that all the topics referenced by other topics are also linked in

the DITA map. Also reports related links defined in relationship tables

whose target topics are not referenced in the DITA Map.

Report multiple references to the same topic

If selected, it will report warnings when a topic is referenced multiple

times in the DITA map, unless a unique @copy-to attribute is used on

the <topicref> element for any topic that is referenced multiple times.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2336

For example, it will not report a warning if there is a topic referenced

twice, but the second <topicref> has a @copy-to attribute set:

<topicref href="topic.dita"/>

.....

 <topicref href="topic.dita" copy-to="topic2.dita"/>

On the other hand, it will report a warning if there is a topic

referenced twice and none of the reference-type elements has a

@copy-to attribute set or both of them have the @copy-to attribute set to

the same value:

<topicref href="topic.dita" copy-to="topic2.dita"/>

......

 <topicref href="topic.dita" copy-to="topic2.dita"/>

Check for duplicate topic IDs within the DITA map context

Checks for multiple topics with the same ID in the context of the

entire map.

Report duplicate key definitions

Checks the DITA map for multiple key references with the same key

defined for them. This is helpful because if you have two different

resources with the same value for the @keys attribute, all references

will point to the first one encountered and the other will be ignored.

Note:

This option takes key scopes (on page 3116) into account.

For example, if you have something like this:

<topicref href="t2.dita" keys="k2"/>

 <topicgroup keyscope="ks">

 <topicref href="t2.dita" keys="k2"/>

 </topicgroup>

it will not report the "k2" key as a duplicate because it is

defined in a key scope (on page 3116) on the second

occurrence.

Report unreferenced key definitions

Checks the entire DITA map and reports any key definitions that are

not referenced anywhere. Note that if the Use DITAVAL filters option

is selected, this check will search for unreferenced key definitions

based upon your selected filter.

Report unreferenced reusable elements

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2337

Checks the entire DITA map and reports any detected reusable

elements that are not referenced anywhere. It looks for elements that

have an ID specified in the following types of topic references:

▪ Any <topicref> that contains a @processing-role attribute set to

resource-only.

▪ Any other referenced topic that contains elements that are

reused elsewhere through a @conref or @conkeyref.

Report table layout problems

Looks for table layout problems. The types of errors that may be

reported include:

▪ If a row has fewer cells than the number of columns detected.

▪ For a CALS table, if a cell has a vertical span greater than the

available rows count.

▪ For a CALS table, if the number of <colspecs> is different than

the number of columns detected from the table @cols attribute.

▪ For a CALS table, if the number of columns detected from the

table @cols attribute is different than the number of columns

detected in the table structure.

▪ For a CALS table, if the value of the @cols, @rowsep, or @colsep

attributes are not numeric.

▪ For a CALS table, if the @namest, @nameend, or @colname attributes

point to an incorrect column name.

Identify possible conflicts in profile attribute values

When the profiling attributes of a topic contain values that are not

found in parent topic profiling attributes, the content of the topic is

overshadowed when generating profiled output. This option reports

these possible conflicts.

Report attributes and values that conflict with profiling preferences

Looks for profiling attributes and values that are not defined in the

Profiling / Conditional Text preferences page (on page 196) (you can

click the Profiling Preferences button to open this preferences

page). It also checks if profiling attributes defined as single-value

have multiple values set in the searched topics.

Additional Schematron checks

Allows you to select a Schematron file that Oxygen XML Editor will

use for the validation of DITA resources. You can specify the path

by using the text field, its history drop-down, the Insert Editor

Variables (on page 333) button, or the browsing actions in the

Browse drop-down list.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2338

Advanced Tip:

Some APIs are available that retrieve information about DITA

keys that are referenced within a topic. The APIs can be

called from XSLT Stylesheets (including XML Refactoring

operations) or Schematron schemas. For details, see API

Documentation: DITAXSLTExtensionFunctionUtil.

Move Up

Moves the selected validation unit up one spot in the list.

Move Down

Moves the selected validation unit down one spot in the list.

Add

Adds a new validation unit to the list.

Remove

Removes an existing validation unit from the list.

4. Configure any of the existing validation units according to the information above, and you can use

the buttons at the bottom of the table to add, remove, or move validation units. Note that if you add a

Schematron validation unit, you can also select the validation phase.

5. Click Ok.

The newly created validation scenario is now included in the list of scenarios in the Validation tab (on

page 174). You can use the Default checkbox to specify that the new scenario be used as the default

validation scenario when another specific scenario is not specified in the validation process.

Customizing New Document Templates for a Framework

You can create your own custom document templates and attach them to a custom framework (on page

3297). You can then share the custom framework (on page 2399) so that all users will have access to the

templates in the New document wizard (on page 378).

To create your own custom document template and have it appear in the new document wizard, follow these

steps:

1. Create a new file and customize it to become a starting point for creating new files of this type.

Tip:

You can use editor variables (on page 333) in the template file content and they will be

expanded when the files are opened. Also, see Customizing Document Templates (on page

388) for other template customization tips (for example, you could add placeholders or hints

(on page 391) to assist authors).

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2339

2. Save the new template in a directory (for example, called templates) within your custom framework

directory.

Attention:

The name that you use to save the template will be the name that appears in the new

document wizard, including capitalization, space, and characters (for example, My Custom

Template1.xml will appear in the new file wizard as My Custom Template1). You can also

configure the displayed name in a properties file by following the procedure found in the

Configure the Displayed Names for Document Templates (on page 390) section.

3. Open the Document Type configuration dialog box (on page 148) for that specific framework, go to

the Templates tab (on page 171), and click the button in the bottom-right corner to add your new

directory to the list. It is recommended that the reference be made relative to the framework directory

(for example, ${frameworkDir}/templates). Binding to an absolute file (e. g.: C:\some_dir

\templates) makes the association difficult to share between users.

4. Click OK for all of the dialog boxes to save your changes.

5. To test the template, open the new document wizard (New toolbar button or File > New) and you

should see your custom template in the folder for your custom framework (in the Framework templates

section).

Related information

Customizing Document Templates (on page 388)

Configuring XML Catalogs

For cases where you need to reference the location of a schema file from a remote web location and an

Internet connection may not be available, an XML Catalog (on page 3302) may be used to map the web

location to a local file system entry. The following procedure presents an example of using an XML catalog in

a custom framework (on page 3297) by modifying an XML Schema file.

1. Create a catalog file that will help the parser locate the schema for validating the XML document. The

file must map the location of the schema to a local version of the schema.

Example:

Create a new XML file called catalog.xml and save it in your custom framework directory

([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]). The content of the file

should look like this:

<?xml version="1.0"?>

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <uri name="http://www.oxygenxml.com/SDF/abs.xsd"

 uri="schema/abs.xsd"/>

 <uri name="http://www.oxygenxml.com/SDF/abs.xsd"

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2340

 uri="schema/abs.xsd"/>

</catalog>

2. Add catalog files to your custom framework using the Catalogs tab (on page 172) from the Document

Type configuration dialog box (on page 148).

To test the catalog settings, restart Oxygen XML Editor and try to validate a new sample document for your

custom framework. There should be no errors.

Example:

The schema that validates the document refers the other file abs.xsd through an import element:

<xs:import namespace=

 "http://www.oxygenxml.com/sample/documentation/abstracts"

 schemaLocation="http://www.oxygenxml.com/SDF/abs.xsd"/>

The @schemaLocation attribute references the abs.xsd file:

xsi:schemaLocation="http://www.oxygenxml.com/sample/documentation/abstracts"

 http://www.oxygenxml.com/SDF/abs.xsd"/>

The catalog mapping is:

http://www.oxygenxml.com/SDF/abs.xsd -> schema/abs.xsd

This means that all the references to http://www.oxygenxml.com/SDF/abs.xsd must be resolved to the

abs.xsd file located in the schema directory (note that the schema directory needs to be in the same folder

as the XML Catalog). The URI element is used by URI resolvers (for example, to resolve a URI reference used in

an XSLT stylesheet).

Localizing Frameworks

Oxygen XML Editor supports framework (on page 3297) localization (translating framework actions, buttons,

and menu entries to various languages). This lets you develop and distribute a framework to users that speak

other languages without changing the distributed framework. Changing the language used in Oxygen XML

Editor in the Global preferences page is enough to set the right language for each framework.

To localize the content of a framework, follow this procedure:

1. Create a translation.xml file that contains all the translation (key, value) mappings. The

translation.xml has the following format:

<translation>

 <languageList>

 <language description="English" lang="en_US"/>

 <language description="German" lang="de_DE"/>

 <language description="French" lang="fr_FR"/>

 </languageList>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2341

 <key value="list">

 <comment>List menu item name.</comment>

 <val lang="en_US">List</val>

 <val lang="de_DE">Liste</val>

 <val lang="fr_FR">Liste</val>

 </key>

......................

</translation>

Oxygen XML Editor matches the GUI language with the language set in the translation.xml file.

If this language is not found, the first available language declared in the <languagelist> tag for the

corresponding framework is used.

2. The translation.xml file must be stored in a directory named i18n located in the framework folder.

You also need to add a reference to the i18n directory in the Classpath list corresponding to the edited

document type (on page 153).

Note:

If you are working with an extension of a framework, you have to add the reference to your

directory after (below) the reference to the i18n directory for the base directory:

3. After you create this file, you can use the keys defined in it to customize the name and description of

the following:

◦ Actions

◦ Menu entries

◦ Contextual menus

◦ Toolbars

◦ Static CSS content

For example, if you want to localize the bold action, open the Preferences dialog box (Options >

Preferences) (on page 132) and go to Document Type Association. Use the New or Edit button

to open the Document type configuration dialog box (on page 148), go to Author > Actions, and

rename the bold action to ${i18n(translation_key)}. Actions with a name format other than

${i18n(translation_key)} are not localized. Translation_key corresponds to the key from the

translation.xml file.

4. Next, open the translation.xml file and edit the translation entry if it exists or create one if it does

not exist. This is an example of an entry in the translation.xml file:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2342

<key value="translation_key">

 <comment>Bold action name.</comment>

 <val lang="en_US">Bold</val>

 <val lang="de_DE">Bold</val>

 <val lang="fr_FR">Bold</val>

 </key>

To use a description from the translation.xml file in the Java code used by your custom

framework, use the new ro.sync.ecss.extensions.api.AuthorAccess.getAuthorResourceBundle() API

method to request the associated value for a certain key. This allows all the dialog boxes that you

present from your custom operations to have labels translated in multiple languages.

You can also reference a key directly in the CSS content:

title:before{

 content:"${i18n(title.key)} : ";

}

Tip:

You can enter any language you want in the <languagelist> tag and any number of keys.

DocBook Example:

The translation.xml file for the DocBook framework is located

here:[OXYGEN_INSTALL_DIR]/frameworks/docbook/i18n/translation.xml. In the

Classpath list corresponding to the DocBook document type, the following entry was added:

${framework}/i18n/.

To see how the DocBook actions are defined to use these keys for their name and

description, open the Preferences dialog box (Options > Preferences) (on page 132)

and go to Document Type Association > Author > Actions. If you look in the Java class

ro.sync.ecss.extensions.docbook.table.SADocbookTableCustomizerDialog available in the

oxygen-sample-framework module of the Oxygen SDK Maven archetype, you can see how the new

ro.sync.ecss.extensions.api.AuthorResourceBundle API is used to retrieve localized descriptions for

various keys.

Framework Java Extensibility Guide

Advanced users can extend the functionality of custom frameworks and Author mode. The Oxygen SDK is

also available to provide developers the ability to extend the functionality of Oxygen XML Editor.

You can add extensions (on page 3299) to your custom framework (on page 3297) (document type) by using

the Extensions tab from the Document Type configuration dialog box (on page 148).

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/oxygen_sdk.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2343

Note:

It is possible for a plugin to share the same classes with a framework. For further details, go to How to

Share the Classloader Between a Framework and a Plugin (on page 2556).

Related Information:

Extending Oxygen With the SDK (on page 2522)

SDK Common Use Cases (on page 2589)

Configuring an Extensions Bundle

All extensions (on page 3299) that are provided by Oxygen XML Editor are includes in a single bundle.

Note:

The individual extensions can still be set (open the Preferences dialog box (Options > Preferences)

(on page 132), go to Document Type Association, double-click a document type, and go to the

extension tab), and if present, they take precedence over the single provider. However, this practice is

discouraged and the single provider should be used instead.

The extensions bundle is represented by the ro.sync.ecss.extensions.api.ExtensionsBundle class. The

provided implementation of the ExtensionsBundle is instantiated when the Document Type Association

(on page 3296) rules defined for the custom framework (on page 3297) matches a document opened in

the editor. Therefore, references to objects that need to be persistent throughout the application running

session must not be kept in the bundle because the next detection event can result in creating another

ExtensionsBundle instance.

To configure an extensions bundle, follow this procedure:

1. Create a new Java project in your IDE. Create a lib folder in the Java project folder and copy in it the

oxygen.jar file from the [OXYGEN_INSTALL_DIR]/lib folder.

2. Create the class (for example, simple.documentation.framework.SDFExtensionsBundle) to extend the

abstract class ro.sync.ecss.extensions.api.ExtensionsBundle.

For example:

public class SDFExtensionsBundle extends ExtensionsBundle {

3. A Document Type ID and a short description should be defined by implementing the

getDocumentTypeID and getDescription methods. The Document Type ID is used to uniquely identify the

current framework. Such an ID must be provided especially if options related to the framework need to

be persistently stored and retrieved between sessions.

For example:

public String getDocumentTypeID() {

 return "Simple.Document.Framework.document.type";

}

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2344

public String getDescription() {

 return "A custom extensions bundle used for the Simple Document" +

 "Framework document type";

}

4. [Optional] To be notified about the activation of the custom Author Extension in relation with an

open document, ro.sync.ecss.extensions.api.AuthorExtensionStateListener should be implemented.

The activation and deactivation events received by this listener should be used to perform custom

initializations and to register or remove listeners such as ro.sync.ecss.extensions.api.AuthorListener,

ro.sync.ecss.extensions.api.AuthorMouseListener, or ro.sync.ecss.extensions.api.AuthorCaretListener.

The custom Author Extension state listener should be provided by implementing the

createAuthorExtensionStateListener method.

For example:

public AuthorExtensionStateListener createAuthorExtensionStateListener() {

 return new SDFAuthorExtensionStateListener();

}

The AuthorExtensionStateListener is instantiated and notified about the activation of the framework

when the rules of the Document Type Association match a document opened in the Author editing

mode. The listener is notified about the deactivation when another framework is activated for the

same document, the user switches to another mode or the editor is closed. A complete description

and implementation of ro.sync.ecss.extensions.api.AuthorExtensionStateListener can be found in

Implementing an Author Extension State Listener (on page 2357).

If Schema-Aware mode (on page 189) is active in Oxygen XML Editor, all

actions that can generate invalid content will be redirected toward the

ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. The handler can resolve a

specific case, let the default implementation take place, or reject the edit entirely by throwing

ro.sync.ecss.extensions.api.InvalidEditException. The actions that are forwarded to this handler include

typing, delete, or paste.

For more details about this handler, see Handling Schema-Aware Editing Events (on page 2394).

5. [Optional] You can customize the content completion proposals by creating a schema manager filter

extension. The interface that declares the methods used for content completion proposals filtering is

ro.sync.contentcompletion.xml.SchemaManagerFilter. The filter can be applied on elements, attributes,

or on their values. The createSchemaManagerFilter method is responsible for creating the content

completion filter. A new SchemaManagerFilter will be created each time a document matches the rules

defined by the Document Type Association that contains the filter declaration.

For example:

public SchemaManagerFilter createSchemaManagerFilter() {

 return new SDFSchemaManagerFilter();

}

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExtensionStateListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorMouseListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/InvalidEditException.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2345

A detailed presentation of the schema manager filter can be found in the Configuring a Content

Completion Handler (on page 2350) section.

6. [Optional] The Author mode supports link-based navigation between documents and document

sections. Therefore, if the document contains elements defined as links to other elements (for example,

links based on the @id attributes), the extension should provide the means to find the referenced

content. To do this, an implementation of the ro.sync.ecss.extensions.api.link.ElementLocatorProvider

interface should be returned by the createElementLocatorProvider method. Each time an element

pointed by a link needs to be located, the method is invoked.

For example:

public ElementLocatorProvider createElementLocatorProvider() {

 return new DefaultElementLocatorProvider();

}

For more information on how to implement an element locator provider, see the Configuring a Link

Target Element Finder (on page 2374) section.

7. [Optional] The drag and drop functionality can be extended by implementing the

ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener interface. Relevant methods from the

listener are invoked when the mouse is dragged, moved over, or exits the Author editing mode, when

the drop action changes, and when the drop occurs. Each method receives the DropTargetEvent

containing information about the drag and drop operation. The drag and drop extensions are available

in Author mode for both Oxygen XML Editor Eclipse plugin and standalone application. The Text

mode corresponding listener is available only for Oxygen XML Editor Eclipse plugin. The methods

corresponding to each implementation are: createAuthorAWTDndListener, createTextSWTDndListener,

and createAuthorSWTDndListener.

public AuthorDnDListener createAuthorAWTDndListener() {

 return new SDFAuthorDndListener();

}

For more details about the Author mode drag and drop listeners, see the Configuring a custom Drag

and Drop Listener (on page 2352) section.

8. [Optional] Another extension that can be included in the bundle is the reference resolver. For example,

the references represented by the ref element and the attribute indicating the referenced resource is

location. To be able to obtain the content of the referenced resources you will have to implement a

Java extension class that implements ro.sync.ecss.extensions.api.AuthorReferenceResolver. The

method responsible for creating the custom references resolver is createAuthorReferenceResolver.

The method is called each time a document opened in an Author editing mode matches the Document

Type Association where the extensions bundle is defined. The instantiated references resolver object is

kept and used until another extensions bundle corresponding to another document type is activated as

result of the detection process.

For example:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/editor/xmleditor/pageauthor/AuthorDnDListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReferenceResolver.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2346

public AuthorReferenceResolver createAuthorReferenceResolver() {

 return new ReferencesResolver();

}

A more detailed description of the references resolver can be found in the Configuring a References

Resolver (on page 2353) section.

9. [Optional] To be able to dynamically customize the default CSS styles for a

certain ro.sync.ecss.extensions.api.node.AuthorNode, an implementation of

ro.sync.ecss.extensions.api.StylesFilter can be provided. The extensions bundle method responsible

for creating the StylesFilter is createAuthorStylesFilter. The method is called each time a document

opened in an Author editing mode matches the Document Type Association where the extensions

bundle is defined. The instantiated filter object is kept and used until another extensions bundle

corresponding to another document type is activated as a result of the detection process.

For example:

public StylesFilter createAuthorStylesFilter() {

 return new SDFStylesFilter();

}

See the Configuring CSS Styles Filter (on page 2373) section for more details about the styles filter

extension.

10. [Optional] To edit data in custom tabular format, implementations of

the ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider and the

ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interfaces should be provided.

The two methods from the ExtensionsBundle specifying these two extension points are

createAuthorTableCellSpanProvider and createAuthorTableColumnWidthProvider.

For example:

public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {

 return new TableCellSpanProvider();

}

public AuthorTableColumnWidthProvider

 createAuthorTableColumnWidthProvider() {

 return new TableColumnWidthProvider();

}

The two table information providers are not reused for different tables. The methods are called for each

table in the document so new instances should be provided every time. Read more about the cell span

and column width information providers in Configuring a Table Cell Span Provider (on page 2366) and

Configuring a Table Column Width Provider (on page 2360) sections.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSpanProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2347

If the functionality related to one of the previous extension points does not need to be modified, then

the developed ro.sync.ecss.extensions.api.ExtensionsBundle should not override the corresponding

method and leave the default base implementation to return null.

11. [Optional] An XML vocabulary can contain links to various areas of a document. If the document

contains elements defined as links, you can choose to present a more relevant text description for each

link. To do this, an implementation of the ro.sync.ecss.extensions.api.link.LinkTextResolver interface

should be returned by the createLinkTextResolver method. This implementation is used each time the

oxy_link-text() function (on page 2476) is encountered in the CSS styles associated with an element.

For example:

public LinkTextResolver createLinkTextResolver() {

 return new DitaLinkTextResolver();

}

Oxygen XML Editor offers built-in implementations for DITA and

DocBook: ro.sync.ecss.extensions.dita.link.DitaLinkTextResolver and

ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver respectively.

12. Pack the compiled class into a JAR (on page 3297) file.

13. Copy the JAR file into your custom framework directory (for example, frameworks/sdf).

14. Add the JAR file to the class path. To do this, open the Preferences dialog box (Options > Preferences)

(on page 132), go to Document Type Association, select the document type (for example, SDF), click

the Edit button, select the Classpath tab, and click the Add button. In the displayed dialog box, enter

the location of the JAR file relative to the Oxygen XML Editor frameworks folder.

15. Register the Java class by going to the Extensions tab. Click the Choose button and select the name of

the class (for example, SDFExtensionsBundle).

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen

XML Editor website.

Related information

ExtensionsBundle Javadoc

Sample DITA (framework) extension that sets a custom ExtensionsBundle implementation for customizing

links

Adding a Custom Image Decorator for Author Mode

The AuthorImageDecorator extension point allows you to add a custom decorator over images in Author

mode. For example, you could use it to add a message over an image informing the user that they can double-

click the image to edit it.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/LinkTextResolver.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/dita/link/DitaLinkTextResolver.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/link/DocbookLinkTextResolver.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2348

How to Implement an AuthorImageDecorator

To implement your own AuthorImageDecorator, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorImageDecorator interface.

2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following

methods:

a. If you have configured an extensions bundle (on page 2343), you

can return the AuthorImageDecorator implementation using the

ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorImageDecorator() method.

b. Specify the AuthorImageDecorator in the Author image decorator individual extension in the

Extensions tab (on page 175) of the Document Type configuration dialog box (on page 148) for

your particular document type.

Example

The following example illustrates an implementation for presenting a simple message over an image that

informs the user that they can double-click the image to edit it:

/**

 * Custom Author image decorator for drawing string over images.

 */

public class CustomAuthorImageDecorator extends AuthorImageDecorator {

 /**

 * @see ro.sync.ecss.extensions.api.AuthorImageDecorator#paint

(ro.sync.exml.view.graphics.Graphics, int, int, int, int,

 ro.sync.exml.view.graphics.Rectangle,

 ro.sync.ecss.extensions.api.node.AuthorNode,

 ro.sync.ecss.extensions.api.AuthorAccess, boolean)

 */

 @Override

 public void paint(Graphics g, int x, int y, int imageWidth, int imageHeight,

 Rectangle originalSize, AuthorNode element,

 AuthorAccess authorAccess, boolean wasAnnotated) {

 if ("image".equals(CommonsOperationsUtil.getLocalName(element.getName()))) {

 g.drawString(

 "[Double-click to edit image]",

 // Draw near the top-left corner

 x + 15,

 y + 15);

 }

 }

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorImageDecorator.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2349

Example result: In the top-left corner of the image, the following message will be displayed: [Double-click to

edit image].

Adding Custom Persistent Highlights

The Author API includes a class that allows you to create or remove custom persistent highlights, set new

properties for the highlights, and customize their appearance. An example of a possible use case would be

if you want to implement your own way of editing review comments. The custom persistent highlights get

serialized in the XML document as processing instructions, with the following format:

<?oxy_custom_start prop1="val1"....?> xml content <?oxy_custom_end?>

This functionality is available through the AuthorPersistentHighlighter class that is accessible through the

AuthorEditorAccess#getPersistentHighlighter() method.

For more information, see the JavaDoc details for this class at https://www.oxygenxml.com/InstData/Editor/

SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html.

Configuring the Automatic ID Generation and Unique Attributes Recognizer

The ro.sync.ecss.extensions.api.UniqueAttributesRecognizer interface can be implemented if you want to

provide for your framework (on page 3297) the following features:

• Automatic ID generation - You can automatically generate unique IDs for newly inserted elements.

Implementations are already available for the DITA and DocBook frameworks (on page 3297). The

following methods can be implemented to accomplish this: assignUniqueIDs(int startOffset, int

endOffset), isAutoIDGenerationActive()

• Avoiding copying unique attributes when "Split" is called inside an element - You can split the current

block element (on page 3294) by pressing the "Enter" key and then choosing "Split". This is a very

useful way to create new paragraphs, for example. All attributes are by default copied on the new

element but if those attributes are IDs you sometimes want to avoid creating validation errors in the

editor. Implementing the following method, you can decide whether or not an attribute should be copied

during the split: boolean copyAttributeOnSplit(String attrQName, AuthorElement element)

Tip:

The ro.sync.ecss.extensions.commons.id.DefaultUniqueAttributesRecognizer class is an

implementation of the interface that can be extended by your customization to provide easy

assignation of IDs in your framework (on page 3297). You can also check out the DITA and

DocBook implementations of ro.sync.ecss.extensions.api.UniqueAttributesRecognizer to see

how they were implemented and connected to the extensions bundle.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/package-summary.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/author/WSAuthorEditorPageBase.html#getPersistentHighlighter()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/UniqueAttributesRecognizer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/id/DefaultUniqueAttributesRecognizer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/UniqueAttributesRecognizer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2350

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Configuring Content Completion Proposals

You can filter or contribute to proposals offered for content completion by implementing the

ro.sync.contentcompletion.xml.SchemaManagerFilter interface.

import java.util.List;

import ro.sync.contentcompletion.xml.CIAttribute;

import ro.sync.contentcompletion.xml.CIElement;

import ro.sync.contentcompletion.xml.CIValue;

import ro.sync.contentcompletion.xml.Context;

import ro.sync.contentcompletion.xml.SchemaManagerFilter;

import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;

import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;

import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

You can implement the various callbacks of the interface either by returning the default values given by

Oxygen XML Editor or by contributing to the list of proposals. The filter can be applied on elements, attributes

or on their values. Attributes filtering can be implemented using the filterAttributes method and changing

the default content completion list of ro.sync.contentcompletion.xml.CIAttribute for the element provided

by the current ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext context. For example, the

SDFSchemaManagerFilter checks if the element from the current context is the table element and adds the

frame attribute to the table list of attributes.

/**

 * Filter attributes of the "table" element.

 */

public List<CIAttribute> filterAttributes(List<CIAttribute> attributes,

 WhatAttributesCanGoHereContext context) {

 // If the element from the current context is the 'table' element add the

 // attribute named 'frame' to the list of default content completion proposals

 if (context != null) {

 ContextElement contextElement = context.getParentElement();

 if ("table".equals(contextElement.getQName())) {

 CIAttribute frameAttribute = new CIAttribute();

 frameAttribute.setName("frame");

 frameAttribute.setRequired(false);

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/CIAttribute.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/WhatAttributesCanGoHereContext.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2351

 frameAttribute.setFixed(false);

 frameAttribute.setDefaultValue("void");

 if (attributes == null) {

 attributes = new ArrayList<CIAttribute>();

 }

 attributes.add(frameAttribute);

 }

 }

 return attributes;

}

The elements that can be inserted in a specific context can be filtered using the filterElements method. The

SDFSchemaManagerFilter uses this method to replace the td child element with the th element when header is

the current context element.

public List<CIElement> filterElements(List<CIElement> elements,

 WhatElementsCanGoHereContext context) {

 // If the element from the current context is the 'header' element remove the

 // 'td' element from the list of content completion proposals and add the

 // 'th' element.

 if (context != null) {

 Stack<ContextElement> elementStack = context.getElementStack();

 if (elementStack != null) {

 ContextElement contextElement = context.getElementStack().peek();

 if ("header".equals(contextElement.getQName())) {

 if (elements != null) {

 for (Iterator<CIElement> iterator =

elements.iterator(); iterator.hasNext();) {

 CIElement element = iterator.next();

 // Remove the 'td' element

 if ("td".equals(element.getQName())) {

 elements.remove(element);

 break;

 }

 }

 } else {

 elements = new ArrayList<CIElement>();

 }

 // Insert the 'th' element in the list of content completion proposals

 CIElement thElement = new SDFElement();

 thElement.setName("th");

 elements.add(thElement);

 }

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2352

 }

 } else {

 // If the given context is null then the given list of content completion

 // elements contains global elements.

 }

 return elements;

}

The elements or attributes values can be filtered using the filterElementValues or filterAttributeValues

methods.

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Configuring a Custom Drag and Drop Listener

Sometimes it is useful to perform various operations when certain objects are dropped from outside sources

in the editing area. You can choose from three interfaces to implement depending on whether you are using

the Eclipse plugin or the standalone version of the application, or if you want to add the handler for the Text or

Author modes.

Interfaces for the Drag and Drop Listener

ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener

Receives callbacks from the standalone application for Drag And Drop in Author mode.

com.oxygenxml.editor.editors.author.AuthorDnDListener

Receives callbacks from the Eclipse plugin for Drag And Drop in Author mode.

com.oxygenxml.editor.editors.TextDnDListener

Receives callbacks from the Eclipse plugin for Drag And Drop in Text mode.

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

To configure how dropped URLs or XHTML fragments are handled in documents, see Handling When URLs or

XHTML Fragments are Dropped or Pasted in Author Mode (on page 2396).

Related Information:

Customizing Smart Paste Support (on page 2299)

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/editor/xmleditor/pageauthor/AuthorDnDListener.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2353

Configuring a Reference Resolver

This information is helpful if you need to provide a handler for resolving references and obtain the content

they reference. For example, suppose the element that has references is ref and the attribute indicating the

referenced resource is location. You need to implement a Java extension class for obtaining the referenced

resources.

1. Create the class simple.documentation.framework.ReferencesResolver. This class must implement the

ro.sync.ecss.extensions.api.AuthorReferenceResolver interface.

import ro.sync.ecss.extensions.api.AuthorReferenceResolver;

import ro.sync.ecss.extensions.api.AuthorAccess;

import ro.sync.ecss.extensions.api.node.AttrValue;

import ro.sync.ecss.extensions.api.node.AuthorElement;

import ro.sync.ecss.extensions.api.node.AuthorNode;

public class ReferencesResolver

 implements AuthorReferenceResolver {

2. The hasReferences method verifies if the handler considers the node to have references. It takes

AuthorNode as an argument that represents the node that will be verified. The method will return true

if the node is considered to have references. In the following example, to be a reference, the node must

be an element with the name ref and it must have an attribute named location.

public boolean hasReferences(AuthorNode node) {

 boolean hasReferences = false;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement element = (AuthorElement) node;

 if ("ref".equals(element.getLocalName())) {

 AttrValue attrValue = element.getAttribute("location");

 hasReferences = attrValue != null;

 }

 }

 return hasReferences;

}

3. The method getDisplayName returns the display name of the node that contains the expanded

referenced content. It takes AuthorNode as an argument that represents the node that needs the

display name. The referenced content engine will ask this AuthorReferenceResolver implementation

for the display name for each node that is considered a reference. In the following example, the display

name is the value of the location attribute from the ref element.

public String getDisplayName(AuthorNode node) {

 String displayName = "ref-fragment";

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement element = (AuthorElement) node;

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReferenceResolver.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2354

 if ("ref".equals(element.getLocalName())) {

 AttrValue attrValue = element.getAttribute("location");

 if (attrValue != null) {

 displayName = attrValue.getValue();

 }

 }

 }

 return displayName;

}

4. The method resolveReference resolves the reference of the node and returns a SAXSource with the

parser and its input source. It takes AuthorNode as an argument that represents the node that needs

the reference resolved, the systemID of the node, the AuthorAccess with access methods to the Author

mode data model and a SAX EntityResolver that resolves resources that are already opened in another

editor or resolve resources through the XML Catalog (on page 3302). In the implementation, you

need to resolve the reference relative to the systemID, and create a parser and an input source over the

resolved reference.

public SAXSource resolveReference(

 AuthorNode node,

 String systemID,

 AuthorAccess authorAccess,

 EntityResolver entityResolver) {

 SAXSource saxSource = null;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement element = (AuthorElement) node;

 if ("ref".equals(element.getLocalName())) {

 AttrValue attrValue = element.getAttribute("location");

 if (attrValue != null) {

 String attrStringVal = attrValue.getValue();

 try {

 URL absoluteUrl = new URL(new URL(systemID),

 authorAccess.getUtilAccess().correctURL(attrStringVal));

 InputSource inputSource = entityResolver.resolveEntity(null,

 absoluteUrl.toString());

 if(inputSource == null) {

 inputSource = new InputSource(absoluteUrl.toString());

 }

 XMLReader xmlReader = authorAccess.newNonValidatingXMLReader();

 xmlReader.setEntityResolver(entityResolver);

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2355

 saxSource = new SAXSource(xmlReader, inputSource);

 } catch (MalformedURLException e) {

 logger.error(e, e);

 } catch (SAXException e) {

 logger.error(e, e);

 } catch (IOException e) {

 logger.error(e, e);

 }

 }

 }

 }

 return saxSource;

}

5. The method getReferenceUniqueID should return a unique identifier for the node reference. The unique

identifier is used to avoid resolving the references recursively. The method takes AuthorNode as an

argument that represents the node with the reference. In the following example, the unique identifier is

the value of the location attribute from the ref element.

public String getReferenceUniqueID(AuthorNode node) {

 String id = null;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement element = (AuthorElement) node;

 if ("ref".equals(element.getLocalName())) {

 AttrValue attrValue = element.getAttribute("location");

 if (attrValue != null) {

 id = attrValue.getValue();

 }

 }

 }

 return id;

}

6. The method getReferenceSystemIDshould return the systemID of the referenced content. It takes

AuthorNode as an argument that represents the node with the reference and the AuthorAccess with

access methods to the Author mode data model. For example, the value of the location attribute is

used from the ref element and resolved relatively to the XML base URL of the node.

public String getReferenceSystemID(AuthorNode node,

 AuthorAccess authorAccess) {

 String systemID = null;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement element = (AuthorElement) node;

 if ("ref".equals(element.getLocalName())) {

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2356

 AttrValue attrValue = element.getAttribute("location");

 if (attrValue != null) {

 String attrStringVal = attrValue.getValue();

 try {

 URL absoluteUrl = new URL(node.getXMLBaseURL(),

 authorAccess.getUtilAccess().correctURL(attrStringVal));

 systemID = absoluteUrl.toString();

 } catch (MalformedURLException e) {

 logger.error(e, e);

 }

 }

 }

 }

 return systemID;

}

In the listing below, the XML document contains the ref element:

<ref location="referenced.xml">Reference</ref>

When no reference resolver is specified, the reference has the following layout:

Figure 599. Reference with no specified reference resolver

When the above implementation is configured, the reference has the expected layout:

Figure 600. Reference with reference resolver

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2357

Configuring a State Listener for Author Mode

The ro.sync.ecss.extensions.api.AuthorExtensionStateListener implementation is notified when the Author

mode extension (where the listener is defined) is activated or deactivated in the document type detection

process.

import ro.sync.ecss.extensions.api.AuthorAccess;

import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;

public class SDFAuthorExtensionStateListener implements

 AuthorExtensionStateListener {

 private AuthorListener sdfAuthorDocumentListener;

 private AuthorMouseListener sdfMouseListener;

 private AuthorCaretListener sdfCaretListener;

 private OptionListener sdfOptionListener;

When the association rules of the framework (on page 3297) (document type) configuration match that of

a document open in the Author editing mode, the activation event received by this listener should be used to

perform custom initializations and to register listeners such as ro.sync.ecss.extensions.api.AuthorListener,

ro.sync.ecss.extensions.api.AuthorMouseListener, or ro.sync.ecss.extensions.api.AuthorCaretListener.

public void activated(AuthorAccess authorAccess) {

 // Get the value of the option.

 String option = authorAccess.getOptionsStorage().getOption(

 "sdf.custom.option.key", "");

 // Use the option for some initializations...

 // Add an OptionListener.

 authorAccess.getOptionsStorage().addOptionListener(sdfOptionListener);

 // Add author DocumentListeners.

 sdfAuthorDocumentListener = new SDFAuthorListener();

 authorAccess.getDocumentController().addAuthorListener(

 sdfAuthorDocumentListener);

 // Add MouseListener.

 sdfMouseListener = new SDFAuthorMouseListener();

 authorAccess.getEditorAccess().addAuthorMouseListener(sdfMouseListener);

 // Add CaretListener.

 sdfCaretListener = new SDFAuthorCaretListener();

 authorAccess.getEditorAccess().addAuthorCaretListener(sdfCaretListener);

 // Other custom initializations...

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExtensionStateListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorMouseListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2358

}

The authorAccess parameter received by the activated method can be used to gain access to specific Author

mode actions and informations related to components such as the editor, document, workspace, tables, or the

change tracking manager.

If options specific to the custom developed Author Extension need to be stored or retrieved, a reference to

the ro.sync.ecss.extensions.api.OptionsStorage can be obtained by calling the getOptionsStorage method

from the authorAccess. The same object can be used to register ro.sync.ecss.extensions.api.OptionListener

listeners. An option listener is registered in relation with an option key and will be notified about the value

changes of that option.

An AuthorListener can be used if events related to the Author mode document modifications are of interest.

The listener can be added to the ro.sync.ecss.extensions.api.AuthorDocumentController. A reference to the

document controller is returned by the getDocumentController method from the authorAccess. The document

controller can also be used to perform operations involving document modifications.

To provide access to the Author mode component-related functionality and information, the authorAccess has

a reference to the ro.sync.ecss.extensions.api.access.AuthorEditorAccess that can be obtained when calling

the getEditorAccess method. At this level, AuthorMouseListener and AuthorCaretListener can be added to

provide notification of mouse and cursor events that occur in the Author editor mode.

The deactivation event is received when another framework is activated for the same document, the user

switches to another editor mode or the editor is closed. The deactivate method is typically used to unregister

the listeners previously added on the activate method and to perform other actions. For example, options

related to the deactivated Author Extension can be saved at this point.

public void deactivated(AuthorAccess authorAccess) {

 // Store the option.

 authorAccess.getOptionsStorage().setOption(

 "sdf.custom.option.key", optionValue);

 // Remove the OptionListener.

 authorAccess.getOptionsStorage().removeOptionListener(sdfOptionListener);

 // Remove DocumentListeners.

 authorAccess.getDocumentController().removeAuthorListener(

 sdfAuthorDocumentListener);

 // Remove MouseListener.

 authorAccess.getEditorAccess().removeAuthorMouseListener(sdfMouseListener);

 // Remove CaretListener.

 authorAccess.getEditorAccess().removeAuthorCaretListener(sdfCaretListener);

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/OptionsStorage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/OptionListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/access/AuthorEditorAccess.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2359

 // Other actions...

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Configuring Tables

There are standard CSS properties used to indicate what elements are tables, table rows and table cells. What

CSS is missing is the possibility to indicate the cell spanning, row separators or the column widths. Oxygen

XML Editor offers support for adding extensions to solve these problems.

The table in this example is a simple one. The header must be formatted in a different way than the ordinary

rows, so it will have a background color.

table{

 display:table;

 border:1px solid navy;

 margin:1em;

 max-width:1000px;

 min-width:150px;

}

table[width]{

 width:attr(width, length);

}

tr, header{

 display:table-row;

}

header{

 background-color: silver;

 color:inherit

}

td{

 display:table-cell;

 border:1px solid navy;

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2360

 padding:1em;

}

Suppose that in the schema, the <td> tag has the attributes @row_span and @column_span that are not

automatically recognized by Oxygen XML Editor, a Java extension will be implemented that will provide

information about the cell spanning. See the section Configuring a Table Cell Span Provider (on page 2366).

Suppose the column widths are specified by the @width attribute of the <customcol> elements that are not

automatically recognized by Oxygen XML Editor. It is necessary to implement a Java extension that will

provide information about the column widths. For more information, see Configuring a Table Column Width

Provider (on page 2360).

The table from the example does not make use of the attributes @colsep and @rowsep (which are automatically

recognized) but if you want the rows to be separated by horizontal lines, it is necessary to implement a Java

extension that will provide information about the row and column separators. For more information, see

Configuring a Table Cell Row and Column Separator Provider (on page 2369).

Configuring a Table Column Width Provider

In a custom framework (on page 3297), the <table> element as well as the table columns can have specified

widths. For these widths to be considered by Author mode, you need to provide the means for determining

them. As explained in Configuring Tables (on page 2359), if you use the table element attribute width Oxygen

XML Editor can determine the table width automatically. In this example the table has <col> elements with

@width attributes that are not recognized by default. You will need to implement a Java extension class to

determine the column widths.

1. Create the class simple.documentation.framework.TableColumnWidthProvider. This class must

implement the ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interface.

import ro.sync.ecss.extensions.api.AuthorAccess;

import ro.sync.ecss.extensions.api.AuthorOperationException;

import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;

import ro.sync.ecss.extensions.api.WidthRepresentation;

import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableColumnWidthProvider

 implements AuthorTableColumnWidthProvider {

2. Method init is taking as argument an ro.sync.ecss.extensions.api.node.AuthorElement that represents

the XML <table> element. In our case the column widths are specified in <col> elements from the <table>

element. In such cases you must collect the span information by analyzing the <table> element.

public void init(AuthorElement tableElement) {

 this.tableElement = tableElement;

 AuthorElement[] colChildren = tableElement.getElementsByLocalName("customcol");

 if (colChildren != null && colChildren.length > 0) {

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2361

 for (int i = 0; i < colChildren.length; i++) {

 AuthorElement colChild = colChildren[i];

 if (i == 0) {

 colsStartOffset = colChild.getStartOffset();

 }

 if (i == colChildren.length - 1) {

 colsEndOffset = colChild.getEndOffset();

 }

 // Determine the 'width' for this col.

 AttrValue colWidthAttribute = colChild.getAttribute("width");

 String colWidth = null;

 if (colWidthAttribute != null) {

 colWidth = colWidthAttribute.getValue();

 // Add WidthRepresentation objects for the columns this 'customcol'

 // specification spans over.

 colWidthSpecs.add(new WidthRepresentation(colWidth, true));

 }

 }

 }

}

3. The method isTableAcceptingWidth should check if the table cells are a <td> element.

public boolean isTableAcceptingWidth(String tableCellsTagName) {

 return "td".equals(tableCellsTagName);

}

4. The method isTableAndColumnsResizable should check if the table cells are a <td> element. This

method determines if the table and its columns can be resized by dragging the edge of a column.

public boolean isTableAndColumnsResizable(String tableCellsTagName) {

 return "td".equals(tableCellsTagName);

}

5. Methods getTableWidth and getCellWidth are used to determine the table and column width. The

table layout engine will ask this ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider

implementation what is the table width for each table element and the cell width for each cell element

from the table that was marked as cell in the CSS using the property display:table-cell. The

implementation is simple and just parses the value of the width attribute. The methods must return

null for the tables / cells that do not have a specified width.

public WidthRepresentation getTableWidth(String tableCellsTagName) {

 WidthRepresentation toReturn = null;

 if (tableElement != null && "td".equals(tableCellsTagName)) {

 AttrValue widthAttr = tableElement.getAttribute("width");

 if (widthAttr != null) {

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2362

 String width = widthAttr.getValue();

 if (width != null) {

 toReturn = new WidthRepresentation(width, true);

 }

 }

 }

 return toReturn;

}

public List<WidthRepresentation>

getCellWidth(AuthorElement cellElement, int colNumberStart,

 int colSpan) {

 List<WidthRepresentation> toReturn = null;

 int size = colWidthSpecs.size();

 if (size >= colNumberStart && size >= colNumberStart + colSpan) {

 toReturn = new ArrayList<WidthRepresentation>(colSpan);

 for (int i = colNumberStart; i < colNumberStart + colSpan; i ++) {

 // Add the column widths

 toReturn.add(colWidthSpecs.get(i));

 }

 }

 return toReturn;

}

6. Methods commitTableWidthModification and commitColumnWidthModifications are used to commit

changes made to the width of the table or its columns when using the mouse drag gestures.

public void commitTableWidthModification

(AuthorDocumentController authorDocumentController,

 int newTableWidth, String tableCellsTagName) throws AuthorOperationException {

 if ("td".equals(tableCellsTagName)) {

 if (newTableWidth > 0) {

 if (tableElement != null) {

 String newWidth = String.valueOf(newTableWidth);

 authorDocumentController.setAttribute("width", new AttrValue(newWidth),

 tableElement);

 } else {

 throw new AuthorOperationException("Cannot find the table element.");

 }

 }

 }

}

public void commitColumnWidthModifications

 (AuthorDocumentController authorDocumentController,

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2363

 WidthRepresentation[] colWidths, String tableCellsTagName)

 throws AuthorOperationException {

 if ("td".equals(tableCellsTagName)) {

 if (colWidths != null && tableElement != null) {

 if (colsStartOffset >= 0 && colsEndOffset >= 0

&& colsStartOffset < colsEndOffset) {

 authorDocumentController.delete(colsStartOffset, colsEndOffset);

 }

 String xmlFragment = createXMLFragment(colWidths);

 int offset = -1;

 AuthorElement[] header = tableElement.getElementsByLocalName("header");

 if (header != null && header.length > 0) {

 // Insert the cols elements before the 'header' element

 offset = header[0].getStartOffset();

 }

 if (offset == -1) {

 throw new AuthorOperationException(

 "No valid offset to insert column width");

 }

 authorDocumentController.insertXMLFragment(xmlFragment, offset);

 }

 }

}

private String createXMLFragment(WidthRepresentation[] widthRepresentations) {

 StringBuffer fragment = new StringBuffer();

 String ns = tableElement.getNamespace();

 for (int i = 0; i < widthRepresentations.length; i++) {

 WidthRepresentation width = widthRepresentations[i];

 fragment.append("<customcol");

 String strRepresentation = width.getWidthRepresentation();

 if (strRepresentation != null) {

 fragment.append(" width=\"" + width.getWidthRepresentation() + "\"");

 }

 if (ns != null && ns.length() > 0) {

 fragment.append(" xmlns=\"" + ns + "\"");

 }

 fragment.append("/>");

 }

 return fragment.toString();

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2364

7. The following three methods are used to determine what type of column width specifications the table

column width provider support. In our case all types of specifications are allowed:

public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {

 return true;

}

public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName) {

 return true;

}

public boolean isAcceptingProportionalColumnWidths(String tableCellsTagName) {

 return true;

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen

XML Editor website.

In the listing below, the XML document contains the table element:

<table width="300">

 <customcol width="50.0px"/>

 <customcol width="1*"/>

 <customcol width="2*"/>

 <customcol width="20%"/>

 <header>

 <td>C1</td>

 <td>C2</td>

 <td>C3</td>

 <td>C4</td>

 </header>

 <tr>

 <td>cs=1, rs=1</td>

 <td>cs=1, rs=1</td>

 <td row_span="2">cs=1, rs=2</td>

 <td row_span="3">cs=1, rs=3</td>

 </tr>

 <tr>

 <td>cs=1, rs=1</td>

 <td>cs=1, rs=1</td>

 </tr>

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2365

 <tr>

 <td column_span="3">cs=3, rs=1</td>

 </tr>

</table>

When no table column width provider is specified, the table has the following layout:

Figure 601. Table layout when no column width provider is specified

When the above implementation is configured, the table has the correct layout:

Figure 602. Columns with custom widths

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2366

Configuring a Table Cell Span Provider

In a custom framework (on page 3297), the <table> element can have cells that span over multiple columns

and rows. As explained in Configuring Tables (on page 2359), you need to indicate Oxygen XML Editor a

method to determine the cell spanning. If you use the @rowspan and @colspan attributes, Oxygen XML Editor can

determine the cell spanning automatically. In the following example, the <td> element uses the @row_span and

@column_span attributes that are not recognized by default. You will need to implement a Java extension class

for defining the cell spanning.

1. Create the class simple.documentation.framework.TableCellSpanProvider. This class must implement

the ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;

import ro.sync.ecss.extensions.api.node.AttrValue;

import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSpanProvider

 implements AuthorTableCellSpanProvider {

2. The init method takes ro.sync.ecss.extensions.api.node.AuthorElement that represents the XML <table>

element as its argument. In this example, the cell span is specified for each of the cells so you leave

this method empty. However, there are cases (such as the CALS table model) when the cell spanning is

specified in the <table> element. In such cases, you must collect the span information by analyzing the

<table> element.

public void init(AuthorElement table) {

}

3. The getColSpan method is taking as argument the table cell. The table layout engine will ask this

AuthorTableSpanSupport implementation what is the column span and the row span for each XML

element from the table that was marked as cell in the CSS using the property display:table-cell. The

implementation is simple and just parses the value of column_span attribute. The method must return

null for all the cells that do not change the span specification.

public Integer getColSpan(AuthorElement cell) {

 Integer colSpan = null;

 AttrValue attrValue = cell.getAttribute("column_span");

 if(attrValue != null) {

 // The attribute was found.

 String cs = attrValue.getValue();

 if(cs != null) {

 try {

 colSpan = new Integer(cs);

 } catch (NumberFormatException ex) {

 // The attribute value was not a number.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSpanProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2367

 }

 }

 }

 return colSpan;

}

4. The row span is determined in a similar manner:

public Integer getRowSpan(AuthorElement cell) {

 Integer rowSpan = null;

 AttrValue attrValue = cell.getAttribute("row_span");

 if(attrValue != null) {

 // The attribute was found.

 String rs = attrValue.getValue();

 if(rs != null) {

 try {

 rowSpan = new Integer(rs);

 } catch (NumberFormatException ex) {

 // The attribute value was not a number.

 }

 }

 }

 return rowSpan;

}

5. The method hasColumnSpecifications always returns true considering column specifications always

available.

public boolean hasColumnSpecifications(AuthorElement tableElement) {

 return true;

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen

XML Editor website.

6. In the listing below, the XML document contains the table element:

<table>

 <header>

 <td>C1</td>

 <td>C2</td>

 <td>C3</td>

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2368

 <td>C4</td>

 </header>

 <tr>

 <td>cs=1, rs=1</td>

 <td column_span="2" row_span="2">cs=2, rs=2</td>

 <td row_span="3">cs=1, rs=3</td>

 </tr>

 <tr>

 <td>cs=1, rs=1</td>

 </tr>

 <tr>

 <td column_span="3">cs=3, rs=1</td>

 </tr>

</table>

When no table cell span provider is specified, the table has the following layout:

Figure 603. Table layout when no cell span provider is specified

When the above implementation is configured, the table has the correct layout:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2369

Figure 604. Cells spanning multiple rows and columns.

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Configuring a Table Cell Row and Column Separator Provider

In a custom framework (on page 3297), the <table> element has separators between rows. As explained in

Configuring Tables (on page 2359), you need to indicate a method to determine the way rows and columns

are separated. If you use the @rowsep and @colsep cell element attributes, or your table is conforming to the

CALS table model, Oxygen XML Editor can determine the cell separators. Even if there are no attributes that

define the separators, you can still force a separator between rows by implementing a Java extension.

1. Create the class simple.documentation.framework.TableCellSepProvider. This class must implement

the ro.sync.ecss.extensions.api.AuthorTableCellSepProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSepProvider;

import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSepProvider implements AuthorTableCellSepProvider{

2. The init method takes the ro.sync.ecss.extensions.api.node.AuthorElement interface that represents

the XML <table> element as its argument. If the separator information is implicit, it does not depend on

the current table, so you leave this method empty. However, there are cases (such as the CALS table

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSepProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2370

model) when the cell separators are specified in the <table> element. In such cases, you should initialize

your provider based on the given argument.

public void init(AuthorElement table) {

}

3. The getColSep method takes the table cell as its argument. The table layout engine will ask this

AuthorTableCellSepProvider implementation if there is a column separator for each XML element

from the table that was marked as cell in the CSS using the property display:table-cell. The following

example returns false, meaning there will not be column separators.

 /**

 * @return false - No column separator at the right of the cell.

 */

 @Override

 public boolean getColSep(AuthorElement cellElement, int columnIndex) {

 return false;

 }

4. The row separators are determined in a similar manner. This time the example returns true, forcing a

separator between the rows.

 /**

 * @return true - A row separator below each cell.

 */

 @Override

 public boolean getRowSep(AuthorElement cellElement, int columnIndex) {

 return true;

 }

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen

XML Editor website.

5. In the example below, the XML document contains the table element:

 <table>

 <header>

 <td>H1</td>

 <td>H2</td>

 <td>H3</td>

 <td>H4</td>

 </header>

 <tr>

 <td>C11</td>

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2371

 <td>C12</td>

 <td>C13</td>

 <td>C14</td>

 </tr>

 <tr>

 <td>C21</td>

 <td>C22</td>

 <td>C23</td>

 <td>C24</td>

 </tr>

 <tr>

 <td>C31</td>

 <td>C32</td>

 <td>C33</td>

 <td>C34</td>

 </tr>

 </table>

When the borders for the <td> element are removed from the CSS, the row separators become visible:

Figure 605. Row separators provided by the Java implementation.

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Customizing Attribute Value Editors

The CustomAttributeValueEditor extension point allows you customize the attribute value editing mechanisms

in Oxygen XML Editor. It changes the Browse button found in the attribute editors to an Edit button.

When a user clicks that Edit button, your custom attribute value editor will be presented.

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2372

The Edit button can be accessed in the following attribute editors:

• The Attributes view in Author mode (on page 641) (when the Expand button is used to reveal an

expanded panel).

• The Attributes view in Text mode (on page 554) (when the Expand button is used to reveal an

expanded panel).

• The In-place Attributes Editor (on page 643) when invoked in Author mode.

• The In-place Attributes Editor invoked in the Outline view (on page 551).

How to Implement a CustomAttributeValueEditor

To implement your own CustomAttributeValueEditor, follow this procedure:

1. Extend the ro.sync.ecss.extensions.api.CustomAttributeValueEditor abstract class.

2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following

methods:

a. If you have configured an extensions bundle (on page 2343), you

can return the CustomAttributeValueEditor implementation using the

ro.sync.ecss.extensions.api.ExtensionsBundle.createCustomAttributeValueEditor() method.

b. Specify the CustomAttributeValueEditor in the Author custom attribute value editor individual

extension in the Extensions tab (on page 175) of the Document Type configuration dialog box

(on page 148) for your particular document type.

Example

The following example creates a very simple custom attribute value editor:

/**

 * A custom attribute value editor.

 */

public class MyCustomAttributeValueEditor extends CustomAttributeValueEditor {

 /**

 * @see ro.sync.ecss.extensions.api.Extension#getDescription()

 */

 @Override

 public String getDescription() {

 return "My custom attribute value editor";

 }

 /**

 * @see ro.sync.ecss.extensions.api.CustomAttributeValueEditor#getAttributeValue

 (ro.sync.ecss.extensions.api.EditedAttribute, java.lang.Object)

 */

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/CustomAttributeValueEditor.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2373

 @Override

 public String getAttributeValue(EditedAttribute attribute, Object parentComponent)

 throws CancelledByUserException {

 // Show an input dialog for collecting the new value

 return JOptionPane.showInputDialog

 ("Set a new value for " + attribute.getAttributeQName() + ":");

 }

 /**

 * @see ro.sync.ecss.extensions.api.CustomAttributeValueEditor#shouldHandleAttribute

 (ro.sync.ecss.extensions.api.EditedAttribute)

 */

 @Override

 public boolean shouldHandleAttribute(EditedAttribute attribute) {

 // Handle all attributes

 return true;

 }

}

Example result: If a user were to click the Edit button in any of the attribute editors, the following dialog

box would be displayed that allows the user to insert a value for the particular attribute:

Customizing the CSS Styles Filter

You can modify the CSS styles for each ro.sync.ecss.extensions.api.node.AuthorNode rendered in the Author

mode using an implementation of ro.sync.ecss.extensions.api.StylesFilter. You can implement the various

callbacks of the interface either by returning the default value given by Oxygen XML Editor or by contributing

to the value. The received styles ro.sync.ecss.css.Styles can be processed and values can be overwritten with

your own. For example, you can override the KEY_BACKGROUND_COLOR style to return your own implementation

of ro.sync.exml.view.graphics.Color or override the KEY_FONT style to return your own implementation of

ro.sync.exml.view.graphics.Font.

For instance, in this simple document example, the filter can change the value of the KEY_FONT property for the

<table> element:

package simple.documentation.framework;

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/css/Styles.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/view/graphics/Color.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/view/graphics/Font.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2374

import ro.sync.ecss.css.Styles;

import ro.sync.ecss.extensions.api.StylesFilter;

import ro.sync.ecss.extensions.api.node.AuthorNode;

import ro.sync.exml.view.graphics.Font;

public class SDFStylesFilter implements StylesFilter {

 public Styles filter(Styles styles, AuthorNode authorNode) {

 if (AuthorNode.NODE_TYPE_ELEMENT == authorNode.getType()

 && "table".equals(authorNode.getName())) {

 styles.setProperty(Styles.KEY_FONT, new Font(null, Font.BOLD, 12));

 }

 return styles;

 }

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Customizing Elements that Wrap Profiled Content

For each framework (on page 3297) (document type), you can configure the phrase-type elements that wrap

the profiled content by setting a custom ro.sync.ecss.extensions.api.ProfilingConditionalTextProvider. This

configuration is set by default for DITA and DocBook frameworks.

Customizing the Link Target Reference Finder

The link target reference finder represents the support for finding references from links that indicate specific

elements inside an XML document. This support will only be available if a schema is associated with the

document type.

If you do not define a custom link target reference finder, the DefaultElementLocatorProvider implementation

(on page 2375) will be used by default. The interface that should be implemented for a custom link target

reference finder is ro.sync.ecss.extensions.api.link.ElementLocatorProvider. As an alternative, the

ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider implementation can also be extended.

The used ElementLocatorProvider will be queried for an ElementLocator when a link location must be

determined (when a link is clicked). Then, to find the corresponding (linked) element, the obtained

ElementLocator will be queried for each element from the document.

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ProfilingConditionalTextProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2375

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Creating a Custom Link Target Reference Finder

If you need to create a custom link target reference finder you can do so by creating the class that will

implement the ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface. As an alternative,

your class could extend ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider, the default

implementation.

Note:

The complete source code of the ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider,

ro.sync.ecss.extensions.commons.IDElementLocator or

ro.sync.ecss.extensions.commons.XPointerElementLocator can be found in the oxygen-sample-

framework project.

Default Link Target Reference Finder

The DefaultElementLocatorProvider implementation is used by default to find link target references. It offers

support for the most common types of links:

• Links based on ID attribute values (on page 2376).

• XPointer element() scheme (on page 2377).

The method getElementLocator determines what ElementLocator should be used. In the default

implementation, it checks if the link is an XPointer element() scheme. Otherwise, it assumes it is an ID. A non-

null IDTypeVerifier will always be provided if a schema is associated with the document type.

The link string argument is the anchor (on page 3294) part of the of the URL that is composed from the value

of the link property specified for the link element in the CSS.

public ElementLocator getElementLocator(IDTypeVerifier idVerifier,

 String link) {

 ElementLocator elementLocator = null;

 try {

 if(link.startsWith("element(")){

 // xpointer element() scheme

 elementLocator = new XPointerElementLocator(idVerifier, link);

 } else {

 // Locate link element by ID

 elementLocator = new IDElementLocator(idVerifier, link);

 }

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/IDElementLocator.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/XPointerElementLocator.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2376

 } catch (ElementLocatorException e) {

 logger.warn("Exception when create element locator for link: "

 + link + ". Cause: " + e, e);

 }

 return elementLocator;

}

ID Element Locator

The IDElementLocator is an implementation of the abstract class

ro.sync.ecss.extensions.api.link.ElementLocator for links that use an ID.

The constructor only assigns field values and the method endElement is empty for this implementation.

The method startElement checks each of the element's attribute values and when one matches the link, it

considers the element found if one of the following conditions is satisfied:

• The qualified name of the attribute is xml:id.

• The attribute type is ID.

The attribute type is checked with the help of the method IDTypeVerifier.hasIDType.

public boolean startElement(String uri, String localName,

 String name, Attr[] atts) {

 boolean elementFound = false;

 for (int i = 0; i < atts.length; i++) {

 if (link.equals(atts[i].getValue())) {

 if("xml:id".equals(atts[i].getQName())) {

 // xml:id attribute

 elementFound = true;

 } else {

 // check if attribute has ID type

 String attrLocalName =

 ExtensionUtil.getLocalName(atts[i].getQName());

 String attrUri = atts[i].getNamespace();

 if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {

 elementFound = true;

 }

 }

 }

 }

 return elementFound;

}

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2377

XPointer Element Locator

XPointerElementLocator is an implementation of the abstract class

ro.sync.ecss.extensions.api.link.ElementLocator for links that have one of the following XPointer element()

scheme patterns:

element (elementID)

Locate the element with the specified ID.

element (/1/2/3)

A child sequence appearing alone identifies an element by means of stepwise navigation, which

is directed by a sequence of integers separated by slashes (/). Each integer n locates the nth

child element of the previously located element.

element (elementID/3/4)

A child sequence appearing after a NCName identifies an element by means of stepwise

navigation, starting from the element located by the given name.

The constructor separates the ID/integers, which are delimited by slashes(/) into a sequence of identifiers

(an XPointer path). It will also check that the link has one of the supported patterns of the XPointer element()

scheme.

public XPointerElementLocator(IDTypeVerifier idVerifier, String link)

 throws ElementLocatorException {

 super(link);

 this.idVerifier = idVerifier;

 link = link.substring("element(".length(), link.length() - 1);

 StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);

 xpointerPath = new String[stringTokenizer.countTokens()];

 int i = 0;

 while (stringTokenizer.hasMoreTokens()) {

 xpointerPath[i] = stringTokenizer.nextToken();

 boolean invalidFormat = false;

 // Empty xpointer component is not supported

 if(xpointerPath[i].length() == 0){

 invalidFormat = true;

 }

 if(i > 0){

 try {

 Integer.parseInt(xpointerPath[i]);

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2378

 } catch (NumberFormatException e) {

 invalidFormat = true;

 }

 }

 if(invalidFormat){

 throw new ElementLocatorException(

 "Only the element() scheme is supported when locating XPointer links."

 + "Supported formats: element(elementID), element(/1/2/3),

 element(elemID/2/3/4).");

 }

 i++;

 }

 if(Character.isDigit(xpointerPath[0].charAt(0))){

 // This is the case when xpointer have the following pattern /1/5/7

 xpointerPathDepth = xpointerPath.length;

 } else {

 // This is the case when xpointer starts with an element ID

 xpointerPathDepth = -1;

 startWithElementID = true;

 }

}

The method startElement will be invoked at the beginning of every element in the XML document(even when

the element is empty). The arguments it takes are

uri

The namespace URI, or the empty string if the element has no namespace URI or if namespace

processing is disabled.

localName

Local name of the element.

qName

Qualified name of the element.

atts

Attributes attached to the element. If there are no attributes, this argument will be empty.

The method returns true if the processed element is found to be the one indicated by the link.

The XPointerElementLocator implementation of the startElement will update the depth of the current element

and keep the index of the element in its parent. If the xpointerPath starts with an element ID then the current

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2379

element ID is verified to match the specified ID. If this is the case the depth of the XPointer is updated taking

into account the depth of the current element.

If the XPointer path depth is the same as the current element depth then the kept indices of the current

element path are compared to the indices in the XPointer path. If all of them match then the element has been

found.

public boolean startElement(String uri, String localName,

 String name, Attr[] atts) {

 boolean linkLocated = false;

 // Increase current element document depth

 startElementDepth ++;

 if (endElementDepth != startElementDepth) {

 // The current element is the first child of the parent

 currentElementIndexStack.push(new Integer(1));

 } else {

 // Another element in the parent element

 currentElementIndexStack.push(new Integer(lastIndexInParent + 1));

 }

 if (startWithElementID) {

 // This the case when xpointer path starts with an element ID.

 String xpointerElement = xpointerPath[0];

 for (int i = 0; i < atts.length; i++) {

 if(xpointerElement.equals(atts[i].getValue())){

 if(idVerifier.hasIDType(

 localName, uri, atts[i].getQName(), atts[i].getNamespace())){

 xpointerPathDepth = startElementDepth + xpointerPath.length - 1;

 break;

 }

 }

 }

 }

 if (xpointerPathDepth == startElementDepth){

 // check if xpointer path matches with the current element path

 linkLocated = true;

 try {

 int xpointerIdx = xpointerPath.length - 1;

 int stackIdx = currentElementIndexStack.size() - 1;

 int stopIdx = startWithElementID ? 1 : 0;

 while (xpointerIdx >= stopIdx && stackIdx >= 0) {

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2380

 int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);

 int currentElementIndex =

 ((Integer)currentElementIndexStack.get(stackIdx)).intValue();

 if(xpointerIndex != currentElementIndex) {

 linkLocated = false;

 break;

 }

 xpointerIdx--;

 stackIdx--;

 }

 } catch (NumberFormatException e) {

 logger.warn(e,e);

 }

 }

 return linkLocated;

}

The method endElement will be invoked at the end of every element in the XML document (even when the

element is empty).

The XPointerElementLocator implementation of the endElement updates the depth of the current element

path and the index of the element in its parent.

public void endElement(String uri, String localName, String name) {

 endElementDepth = startElementDepth;

 startElementDepth --;

 lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();

}

Customizing XML Node Rendering

You can use this API extension to customize the way an XML node is rendered in the Outline view (on page

551) in Author mode, breadcrumb navigation bar (on page 615) in Author mode, Outline view (on page 551)

in Text mode, Content Completion Assistant (on page 3295) window, or DITA Maps Manager view (on page

2950).

Note:

Oxygen XML Editor uses XMLNodeRendererCustomizer implementations for the following

frameworks (on page 3297): DITA, DITA Map, DocBook 4, DocBook 5, TEI, XHTML, XSLT, and XML

Schema.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2381

There are two methods to provide an implementation of

ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer:

• As a part of a bundle, returning it from the createXMLNodeCustomizer() method of the

ExtensionsBundle associated with your document type in the Document type configuration dialog box

(on page 148) (Extensions bundle field in the Extensions tab).

• As an individual extension, associated with your document type in the Document type configuration

dialog box (on page 148) (XML node renderer customizer field in the Individual extensions section of

the Extensions tab).

Support for Retina/HiDPI Displays

To support Retina or HiDPI displays, the icons provided by the XMLNodeRendererCustomizer should be

backed up by a copy of larger size using the proper Retina/HiDPI naming convention (on page 738).

For example, for the <title> element, if the XMLNodeRendererCustomizer returns the path

${framework}/images/myImg.png, then to support Retina images with a scaling factor of 2, an

extra file (myImg@2x.png)should be added to the same images directory (${framework}/images/

myImg@2x.png). If the higher resolution icon (the @2x file) does not exist, the normal icon is scaled and used

instead.

For more information about using Retina/HiDPI images, refer to the Using Retina/HiDPI Images in Author

Mode (on page 737) section.

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Related Information:

Customizing the Rendering of Elements (on page 2318)

Using Retina/HiDPI Icons for the Actions from a Framework (on page 2292)

Customizing Author Operations

Oxygen XML Editor Author mode has a built-in set of operations covering the insertion of text and XML

fragments (see the Author Default Operations (on page 2261)) and the execution of XPath expressions on the

current document edited in Author mode. However, there are situations where you need to extend this set. The

following examples are just a few of the possible situations:

• You need to enter an element whose attributes will be edited by the user through a graphical user

interface.

• The user must send selected element content (or the whole document) to a+ server for some kind of

processing.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/node/customizer/XMLNodeRendererCustomizer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2382

• Content authors need to extract pieces of information from a server and insert it directly into the edited

XML document.

• You need to apply an XPath expression on the current document and process the nodes of the resulting

node set.

To extend the Oxygen XML Editor Author mode functionality through Java, you will need the Oxygen SDK

available on the Oxygen XML Editor website. It includes the source code of the Author mode operations in the

built-in document types and the full documentation (in Javadoc format) of the public API available for Author

mode custom actions.

The subsequent Java examples make use of AWT classes. If you are developing extensions for the Oxygen

XML Editor XML Editor plugin for Eclipse, you will have to use their SWT counterparts.

Attention:

Make sure the Java classes of your custom Author mode operations are compiled with the same Java

version used by Oxygen XML Editor. Otherwise, the classes may not be loaded by the Java virtual

machine. For example, if you run a version of Oxygen XML Editor with a Java 11 virtual machine but

the Java classes of your custom Author mode operations are compiled with a Java 12 or later virtual

machine, then the custom operations cannot be loaded and used by the Java 11 virtual machine.

Important:

From a legal standpoint, you can freely develop and share extensions using the Oxygen SDK ONLY if

you have a legal, active license to use Oxygen XML Editor and ONLY if such extensions are used from

inside Oxygen XML Editor. To use such extensions outside of Oxygen XML Editor (for example, a 3rd-

party application that has Oxygen XML Editor built in to it), an additional license must be purchased to

use the SDK according the Oxygen XML SDK Licensing Policy .

Related Information:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/

AuthorOperation.html

Extending Oxygen With the SDK (on page 2522)

Example 1 - Simple Use of a Dialog Box from an Author Mode Operation

In this example, functionality is added for inserting images in a custom framework (on page 3297). The

images are represented by the <image> element. The location of the image file is represented by the value of

the @href attribute. In the Java implementation, a dialog box will be displayed with a text field where the user

can enter a full URL or browse for a local file.

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/oxygen_sdk/licensing.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2383

1. Set up a sample project following this set of instructions. The framework project is oxygen-sample-

framework.

2. Modify the simple.documentation.framework.InsertImageOperation class that implements the

ro.sync.ecss.extensions.api.AuthorOperation interface. This interface defines three methods:

doOperation, getArguments and getDescription

A short description of these methods follows:

◦ The doOperation method is invoked when the action is performed either by pressing the toolbar

button, by selecting the menu item or by pressing the shortcut key. The arguments taken by this

method can be one of the following combinations:

▪ An object of type ro.sync.ecss.extensions.api.AuthorAccess and a map.

▪ Argument names and values.

◦ The getArguments method is used by Oxygen XML Editor when the action is configured. It

returns the list of arguments (name and type) that are accepted by the operation.

◦ The getDescription method is used by Oxygen XML Editor when the operation is configured. It

returns a description of the operation.

Example:

Here is the implementation of these three methods:

/**

 * Performs the operation.

 */

public void doOperation(

 AuthorAccess authorAccess,

 ArgumentsMap arguments)

 throws IllegalArgumentException,

 AuthorOperationException {

JFrame oxygenFrame = (JFrame) authorAccess.getWorkspaceAccess().getParentFrame()

;

 String href = displayURLDialog(oxygenFrame);

 if (href.length() != 0) {

 // Creates the image XML fragment.

 String imageFragment =

 "<image xmlns='http://www.oxygenxml.com/sample/documentation' href='"

 + href + "'/>";

 // Inserts this fragment at the cursor position.

 int caretPosition = authorAccess.getEditorAccess().getCaretOffset();

 authorAccess.getDocumentController().insertXMLFragment

(imageFragment, caretPosition);

 }

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2384

}

/**

 * Has no arguments.

 *

 * @return null.

 */

public ArgumentDescriptor[] getArguments() {

 return null;

}

/**

 * @return A description of the operation.

 */

public String getDescription() {

 return "Inserts an image element. Asks the user for a URL reference.";

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen

XML Editor website.

Important:

Make sure you always specify the namespace of the inserted fragments.

<image xmlns='http://www.oxygenxml.com/sample/documentation'

 href='path/to/image.png'/>

3. Package the compiled class into a JAR (on page 3297) file. An example of an Ant script that packages

the classes folder content into a JAR archive named sdf.jar is listed below:

<?xml version="1.0" encoding="UTF-8"?>

<project name="project" default="dist">

 <target name="dist">

 <jar destfile="sdf.jar" basedir="classes">

 <fileset dir="classes">

 <include name="**/*"/>

 </fileset>

 </jar>

 </target>

</project>

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2385

4. Copy the sdf.jar file into your custom framework directory

([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]).

5. Add the sdf.jar to the class path. To do this, open the Preferences dialog box (Options >

Preferences) (on page 132), go to Document Type Association, select SDF, and click the Edit button.

6. Select the Classpath tab in the lower part of the Document Type configuration dialog box (on page 148)

and click the Add button. In the displayed dialog box, enter the location of the JAR file, relative to

the Oxygen XML Editor frameworks folder.

7. Next, create the action that will use the defined operation. Go to the Actions subtab. Copy

the icon files for the menu item and for the toolbar in your custom framework directory

([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]).

8. Define the action's properties:

◦ Set ID to insert_image.

◦ Set Name to Insert image.

◦ Set Menu access key to letter i.

◦ Set Toolbar action to ${framework}/toolbarImage.png.

◦ Set Menu icon to ${framework}/menuImage.png.

◦ Set Shortcut key to Ctrl (Meta on macOS)+Shift+i.

9. Next, set up the operation. You want to add images only if the current element is a <section>, <book> or

<article>.

◦ Set the value of XPath expression to

local-name()='section' or local-name()='book'

 or local-name()='article'

◦ Set the Invoke operation field to simple.documentation.framework.InsertImageOperation.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2386

Figure 606. Selecting the Operation

10. Add the action to the toolbar, using the Toolbar panel.

To test the action, open or create an XML file and place the cursor at a valid location. Then click the button

associated with the action from the toolbar. In the dialog box, select an image URL and click OK. The image is

inserted into the document.

Example 2 - Operations with Arguments - Report from Database Operation

In this example, an operation is created that connects to a relational database and executes an SQL

statement. The result should be inserted in the edited XML document as a table. To make the operation fully

configurable, it will have arguments for the database connection string, the user name, the password and the

SQL expression.

1. Set up a sample project following this set of instructions. The framework project is oxygen-sample-

framework.

2. Create the class simple.documentation.framework.QueryDatabaseOperation. This class must implement

the ro.sync.ecss.extensions.api.AuthorOperation interface.

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2387

import ro.sync.ecss.extensions.api.ArgumentDescriptor;

import ro.sync.ecss.extensions.api.ArgumentsMap;

import ro.sync.ecss.extensions.api.AuthorAccess;

import ro.sync.ecss.extensions.api.AuthorOperation;

import ro.sync.ecss.extensions.api.AuthorOperationException;

public class QueryDatabaseOperation implements AuthorOperation{

3. Now define the operation's arguments. For each of them, you will use a String constant representing

the argument name:

private static final String ARG_JDBC_DRIVER ="jdbc_driver";

private static final String ARG_USER ="user";

private static final String ARG_PASSWORD ="password";

private static final String ARG_SQL ="sql";

private static final String ARG_CONNECTION ="connection";

4. You must describe the argument name and type. To do this, implement the getArguments method that

will return an array of argument descriptors:

public ArgumentDescriptor[] getArguments() {

 ArgumentDescriptor args[] = new ArgumentDescriptor[] {

 new ArgumentDescriptor(

 ARG_JDBC_DRIVER,

 ArgumentDescriptor.TYPE_STRING,

 "The name of the Java class that is the JDBC driver."),

 new ArgumentDescriptor(

 ARG_CONNECTION,

 ArgumentDescriptor.TYPE_STRING,

 "The database URL connection string."),

 new ArgumentDescriptor(

 ARG_USER,

 ArgumentDescriptor.TYPE_STRING,

 "The name of the database user."),

 new ArgumentDescriptor(

 ARG_PASSWORD,

 ArgumentDescriptor.TYPE_STRING,

 "The database password."),

 new ArgumentDescriptor(

 ARG_SQL,

 ArgumentDescriptor.TYPE_STRING,

 "The SQL statement to be executed.")

 };

 return args;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2388

These names, types and descriptions will be listed in the Arguments table when the operation is

configured.

5. When the operation is invoked, the implementation of the doOperation method extracts the arguments,

forwards them to the method that connects to the database and generates the XML fragment. The XML

fragment is then inserted at the cursor position.

public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)

 throws IllegalArgumentException, AuthorOperationException {

 // Collects the arguments.

 String jdbcDriver = (String)map.getArgumentValue(ARG_JDBC_DRIVER);

 String connection = (String)map.getArgumentValue(ARG_CONNECTION);

 String user = (String)map.getArgumentValue(ARG_USER);

 String password = (String)map.getArgumentValue(ARG_PASSWORD);

 String sql = (String)map.getArgumentValue(ARG_SQL);

 int caretPosition = authorAccess.getCaretOffset();

 try {

 authorAccess.getDocumentController().insertXMLFragment(

 getFragment(jdbcDriver, connection, user, password, sql), caretPosition);

 } catch (SQLException e) {

 throw new AuthorOperationException(

 "The operation failed due to the following database error: "

 + e.getMessage(), e);

 } catch (ClassNotFoundException e) {

 throw new AuthorOperationException(

 "The JDBC database driver was not found. Tried to load ' "

 + jdbcDriver + "'", e);

 }

}

6. The getFragment method loads the JDBC driver, connects to the database and extracts the data. The

result is a <table> element from the http://www.oxygenxml.com/sample/documentation namespace.

The <header> element contains the names of the SQL columns. All the text from the XML fragment is

escaped. This means that the '<' and '&' characters are replaced with the '<' and '&' character

entities to ensure that the fragment is well-formed.

private String getFragment(String jdbcDriver, String connectionURL, String user,

 String password, String sql) throws SQLException, ClassNotFoundException {

 Properties pr = new Properties();

 pr.put("characterEncoding", "UTF8");

 pr.put("useUnicode", "TRUE");

 pr.put("user", user);

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2389

 pr.put("password", password);

 // Loads the database driver.

 Class.forName(jdbcDriver);

 // Opens the connection

 Connection connection = DriverManager.getConnection(connectionURL, pr);

 java.sql.Statement statement = connection.createStatement();

 ResultSet resultSet = statement.executeQuery(sql);

 StringBuffer fragmentBuffer = new StringBuffer();

 fragmentBuffer.append(

 "<table xmlns=" +

 "'http://www.oxygenxml.com/sample/documentation'>");

 //

 // Creates the table header.

 //

 fragmentBuffer.append("<header>");

 ResultSetMetaData metaData = resultSet.getMetaData();

 int columnCount = metaData.getColumnCount();

 for (int i = 1; i <= columnCount; i++) {

 fragmentBuffer.append("<td>");

 fragmentBuffer.append(xmlEscape(metaData.getColumnName(i)));

 fragmentBuffer.append("</td>");

 }

 fragmentBuffer.append("</header>");

 //

 // Creates the table content.

 //

 while (resultSet.next()) {

 fragmentBuffer.append("<tr>");

 for (int i = 1; i <= columnCount; i++) {

 fragmentBuffer.append("<td>");

 fragmentBuffer.append(xmlEscape(resultSet.getObject(i)));

 fragmentBuffer.append("</td>");

 }

 fragmentBuffer.append("</tr>");

 }

 fragmentBuffer.append("</table>");

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2390

 // Cleanup

 resultSet.close();

 statement.close();

 connection.close();

 return fragmentBuffer.toString();

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen

XML Editor website.

7. Package the compiled class into a JAR (on page 3297) file.

8. Copy the JAR file and the JDBC driver files into your custom framework directory

([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]).

9. Add the JARS to the class path. To do this, open the Document Type Association preferences page

(on page 146), select SDF and click the Edit button. Select the Classpath tab in the lower part of the

Document Type configuration dialog box (on page 148) and click the Add button. In the displayed

dialog box, enter the location of the JAR file, relative to the Oxygen XML Editor frameworks folder.

10. Go to the Actions subtab. The action properties are:

◦ Set ID to clients_report.

◦ Set Name to Clients Report.

◦ Set Menu access key to letter r.

◦ Set Description to Connects to the database and collects the list of clients.

◦ Set Toolbar icon to ${framework}/TableDB20.png (the TableDB20.png icon is stored in the

frameworks/sdf folder).

◦ Leave empty the Menu icon.

◦ Set shortcut key to Ctrl + Shift + C (Command + Shift + C on macOS).

11. The action will work only if the current element is a section. Set up the operation as follows:

◦ Set XPath expression to:

local-name()='section'

◦ Use the Java operation defined earlier to set the Invoke operation field. Click the Choose button,

then select simple.documentation.framework.QueryDatabaseOperation. Once selected, the

list of arguments is displayed. In the figure below the first argument, jdbc_driver, represents

the class name of the MySQL JDBC driver. The connection string has the URL syntax: jdbc://

<database_host>:<database_port>/<database_name>.

The SQL expression used in the example follows, but it can be any valid SELECT expression that

can be applied to the database:

SELECT userID, email FROM users

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2391

12. Add the action to the toolbar, using the Toolbar panel.

Figure 607. Java Operation Arguments Setup

To test the action, open or create an XML file and place the cursor at a valid location. Then click the

Create Report button from the toolbar. You can see below the toolbar with the action button and sample

table inserted by the Clients Report action.

Figure 608. Table Content Extracted from the Database

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2392

Handling Author Mode Action Events

The AuthorActionEventHandler extension point allows you to handle certain Author mode actions in a special

way. For example, a specific use-case would be if you want to insert new lines when you press Enter instead of

it opening the Content Completion Assistant (on page 3295).

How to Implement an AuthorActionEventHandler

To implement your own AuthorActionEventHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorActionEventHandler interface.

2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following

methods:

a. If you have configured an extensions bundle (on page 2343), you

can return the AuthorActionEventHandler implementation using the

ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorActionEventHandler() method.

b. Specify the AuthorActionEventHandler in the Author action event handler individual extension in

the Extensions tab (on page 175) of the Document Type configuration dialog box (on page 148)

for your particular document type.

Example

The following example illustrates the use-case mentioned in the introduction, that is an implementation for

inserting a new line when the user presses Enter in Author mode. It uses the canHandleEvent method to

make sure the insertion will be performed in an element that will preserve the new-line character. Then the

handleEvent method inserts the new line at the current cursor position.

public class CustomAuthorActionEventHandler implements AuthorActionEventHandler

{

 /**

 * @see ro.sync.ecss.extensions.api.AuthorActionEventHandler#canHandleEvent

(AuthorAccess, AuthorActionEventType)

 */

 @Override

 public boolean canHandleEvent(AuthorAccess authorAccess,

AuthorActionEventType type) {

 boolean canHandle = false;

 if (type == AuthorActionEventType.ENTER) {

 AuthorDocumentController documentController =

authorAccess.getDocumentController();

 int caretOffset = authorAccess.getEditorAccess().getCaretOffset();

 try {

 AuthorNode nodeAtOffset = documentController.getNodeAtOffset(caretOffset);

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorActionEventHandler.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2393

 if (nodeAtOffset instanceof AuthorElement) {

 AuthorElement elementAtOffset = (AuthorElement) nodeAtOffset;

 AttrValue xmlSpace = elementAtOffset.getAttribute("xml:space");

 if (xmlSpace != null && xmlSpace.getValue().equals("preserve")) {

 canHandle = true;

 }

 }

 } catch (BadLocationException ex) {

 if (logger.isDebugEnabled()) {

 logger.error(ex.getMessage(), ex);

 }

 }

 }

 return canHandle;

 }

 /**

 * @see ro.sync.ecss.extensions.api.AuthorActionEventHandler#handleEvent

(ro.sync.ecss.extensions.api.AuthorAccess,

ro.sync.ecss.extensions.api.AuthorActionEventHandler.AuthorActionEventType)

 */

 @Override

 public boolean handleEvent(AuthorAccess authorAccess,

 AuthorActionEventType eventType) {

 int caretOffset = authorAccess.getEditorAccess().getCaretOffset();

 // Insert a new line

 authorAccess.getDocumentController().insertText(caretOffset, "\n");

 return true;

 }

 /**

 * @see ro.sync.ecss.extensions.api.Extension#getDescription()

 */

 @Override

 public String getDescription() {

 return "Insert a new line";

 }

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2394

Handling Schema-Aware Editing Events

The AuthorSchemaAwareEditingHandlerAdapter extension point allows you to handle certain Author mode

actions in various ways. For example, implementing the AuthorSchemaAwareEditingHandlerAdapter makes

it possible to handle events such as typing, the keyboard delete event at a given offset (using Delete or

Backspace keys), delete element tags, delete selection, join elements, or paste fragment. It also makes it

possible to improve solutions that are proposed by the paste mechanism in Oxygen XML Editor when pasting

content (through the use of some specific methods (on page 2395)).

How to Implement an AuthorSchemaAwareEditingHandlerAdapter

For this handler to be called, the Schema-Aware Editing option (on page 189) must be set to On or Custom

in the Schema-Aware preferences page (on page 189). The handler can either resolve a specific case, let the

default implementation take place, or reject the edit entirely by throwing an InvalidEditException.

To implement your own AuthorSchemaAwareEditingHandlerAdapter, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter extension.

2. To instruct Oxygen XML Editor to use this newly created implementation,

configure an extensions bundle (on page 2343) and return the

AuthorSchemaAwareEditingHandlerAdapter implementation using the

ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorSchemaAwareEditingHandlerAdapter()

method.

Example

Typing events can be handled using the handleTyping method. For example, the

AuthorSchemaAwareEditingHandler checks if the schema is not a learned one, was loaded successfully, and if

the Smart paste and drag and drop option (on page 190) is selected. If these conditions are met, the event will

be handled.

public class AuthorSchemaAwareEditingHandlerAdapter

 extends AuthorSchemaAwareEditingHandler {

/**

 * @see AuthorSchemaAwareEditingHandler#handleTyping

(int, char, ro.sync.ecss.extensions.api.AuthorAccess)

 */

public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)

throws InvalidEditException {

 boolean handleTyping = false;

 AuthorSchemaManager authorSchemaManager =

authorAccess.getDocumentController().getAuthorSchemaManager();

 if (!authorSchemaManager.isLearnSchema() &&

 !authorSchemaManager.hasLoadingErrors() &&

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2395

 authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping()) {

 try {

 AuthorDocumentFragment characterFragment =

authorAccess.getDocumentController().createNewDocumentTextFragment

(String.valueOf(ch));

 handleTyping = handleInsertionEvent

(offset, new AuthorDocumentFragment[] {characterFragment}, authorAccess);

 } catch (AuthorOperationException e) {

 throw new InvalidEditException

(e.getMessage(), "Invalid typing event: " + e.getMessage(), e, false);

 }

 }

 return handleTyping;

}

Note:

The complete source code for framework customization examples can be found in the oxygen-

sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML

Editor website.

Methods for Improving the Paste Mechanism

getAncestorDetectionOptions

When pasting content in Author mode, if the result causes the document to become invalid,

Oxygen XML Editor will propose solutions to make it valid. As a possible solution, Oxygen

XML Editor might surround the pasted content in a sequence of ancestor elements. This

getAncestorDetectionOptions method allows you to choose which parent elements might be a

possible solution.

canBeReplaced

Allows you to improve solutions that might be proposed by the paste mechanism when pasting

content in Oxygen XML Editor. For example, when pasting an element inside an empty element

with the same name, this canBeReplaced method allows Oxygen XML Editor to replace the

empty node rather than pasting it after or before the empty node. The callback could also reject

this behavior if, for instance, the replacement node contains attributes.

Related Information:

AuthorDocumentFragment Class

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/developer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html#getAncestorDetectionOptions()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html#canBeReplaced(ro.sync.ecss.extensions.api.node.AuthorNode)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2396

Handling When URLs or XHTML Fragments are Dropped or Pasted in Author
Mode

The AuthorExternalObjectInsertionHandler extension can be used to configure how URLs or XHTML

fragments from external applications are handled when they are dropped or pasted in Author mode.

How to Implement an AuthorExternalObjectInsertionHandler

To implement your own AuthorExternalObjectInsertionHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler interface.

2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following

methods:

a. If your framework is an extension of DITA, DocBook, TEI, or XHTML, you can specify the

AuthorExternalObjectInsertionHandler in the Author extern object Insertion handler individual

extension in the Extensions tab (on page 175) of the Document Type configuration dialog box

(on page 148) for your particular document type.

b. Otherwise, you can configure an extensions bundle (on page 2343), then

return the AuthorExternalObjectInsertionHandler implementation using the

ro.sync.ecss.extensions.api.ExtensionsBundle.createAuthorExternalObjectInsertionHandler()

method.

3. You can use a stylesheet to convert the pasted XHTML to your own XML vocabulary by overwriting the

following method:

ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler.getImporterStylesheetFileName(AuthorAccess)

and return the file name of the stylesheet that will be applied. The path to the importer stylesheet must

also be added in the Classpath tab (on page 153) in the Document Type configuration dialog box (on

page 148) for your particular document type.

Example

The following example illustrates an implementation for the DITA framework:

 /**

 * @see ro.sync.ecss.extensions.api.ExtensionsBundle#

createExternalObjectInsertionHandler()

 */

 @Override

 public AuthorExternalObjectInsertionHandler createExternalObjectInsertionHandler() {

 return new DITAExternalObjectInsertionHandler();

 }

 /**

 * @see ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler#

getImporterStylesheetFileName(ro.sync.ecss.extensions.api.AuthorAccess)

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExternalObjectInsertionHandler.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExternalObjectInsertionHandler.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExternalObjectInsertionHandler.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2397

 */

 @Override

 protected String getImporterStylesheetFileName(AuthorAccess authorAccess) {

 return "xhtml2ditaDriver.xsl";

 }

Tip:

For XHTML fragments, there is another method that you could use to configure how they are handled

when they are pasted in Author mode. For more information, see Customizing Smart Paste Support

(on page 2299).

Presenting an Edit Properties Dialog Box for Actions in Author Mode

The EditPropertiesHandler extension point allows you to present a specialized dialog box when the action

of double-clicking an element tag is intercepted in Author mode. For example, you could use it to present a

dialog box that allows the user to editing the properties of an image.

How to Implement an EditPropertiesHandler

To implement your own EditPropertiesHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.EditPropertiesHandler interface.

2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following

methods:

a. If you have configured an extensions bundle (on page 2343), you

can return the EditPropertiesHandler implementation using the

ro.sync.ecss.extensions.api.ExtensionsBundle.createEditPropertiesHandler() method.

b. Specify the EditPropertiesHandler in the Author edit properties handler individual extension in

the Extensions tab (on page 175) of the Document Type configuration dialog box (on page 148)

for your particular document type.

Example

The following example illustrates an implementation for presenting a simple properties editing dialog box

when a user double-clicks an <image> tag in Author mode (with tags displayed from the Tags display

mode drop-down menu):

public class CustomEditPropertiesHandler implements EditPropertiesHandler {

 /**

 * @see ro.sync.ecss.extensions.api.Extension#getDescription()

 */

 @Override

 public String getDescription() {

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/EditPropertiesHandler.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2398

 return "Sample implementation that handles properties for a table element.";

 }

 /**

 * @see ro.sync.ecss.extensions.api.EditPropertiesHandler#canEditProperties

(ro.sync.ecss.extensions.api.node.AuthorNode)

 */

 @Override

 public boolean canEditProperties(AuthorNode authorNode) {

 // If this node is an image element we can edit its properties.

 return "image".equals(authorNode.getDisplayName());

 }

 /**

 * @see ro.sync.ecss.extensions.api.EditPropertiesHandler#editProperties

(ro.sync.ecss.extensions.api.node.AuthorNode,

 ro.sync.ecss.extensions.api.AuthorAccess)

 */

 @Override

 public void editProperties(AuthorNode authorNode, AuthorAccess authorAccess) {

 // If we receive this call then it surely an image.

 AuthorElement imageElement = (AuthorElement) authorNode;

 String currentValue = "";

 AttrValue altValue = imageElement.getAttribute("alt");

 if (altValue != null) {

 currentValue = altValue.getValue();

 }

 String newValue = JOptionPane.showInputDialog(

 (Component) authorAccess.getWorkspaceAccess().getParentFrame(),

 "Alternate text",

 currentValue);

 if (newValue != null) {

 authorAccess.getDocumentController().setAttribute

("alt", new AttrValue(newValue), imageElement);

 }

 }

}

Example result: If a user were to double-click an <image> tag icon () in Author mode, the following dialog

box would be displayed that allows the user to edit the alternate text property for the image:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2399

Sharing a Framework

You can create a custom framework by extending a built-in document type (on page 2240) (such as DITA or

DocBook) using the Document Type Association preferences page (on page 146), make modifications to it,

and then share the extension with your team.

Sharing the Extended Framework

There are several ways that you can share the extended custom framework (on page 2240) with others:

• Distribute the extended framework along with a project by following these steps:

1. In a location where you have full write access, create a folder for your project.

2. Go to the Project view (on page 414) and create a project. Save it in the folder you created in

step 1.

3. Create a custom framework by extending an existing one (on page 2240), if you have not

already done so, and copy the custom framework directory to the folder you created in step 1.

Make sure your custom framework directory includes any resources that are referenced in your

framework (CSS files, new document templates, schemas used for validation, catalogs, etc.).

4. Go to Options > Preferences > Document Type Association > Locations (on page 148) and

select Project Options (on page 3300) at the bottom of the page.

5. In the Additional frameworks directories list, add an entry using the ${pd} editor variable (on

page 341) like this: ${pd}/custom_frameworks.

6. You can then share the new project directory with other users. For example, you can commit

it to your version control system and have them update their working copy. When they open

the customized project file in their Project view (on page 414), the new framework becomes

available in the list of document types.

• Pack and deploy the extended framework as an add-on (on page 2400).

• Distribute the directory of the extended framework (on page 2240) to the other members of your

team. They will simply copy that directory to their /frameworks directory. The new framework will be

available in their list of document types when Oxygen XML Editor starts.

To test the extended framework, the other members of your team can check the list of document types in

the Document Type Association preferences page (on page 146) to see if the framework is present and if it

appears before the built-in frameworks (meaning that it has higher priority).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2400

Packing and Deploying Frameworks as Add-ons

In Oxygen XML Editor, custom framework (on page 3297) can be packed and deployed as an add-on.

Packing a Framework as an Add-on

This procedure is suitable for developers who want a better control over the add-on (on page 3299) package

or those who want to automate some of the steps:

1. Pack the full custom framework (on page 2240) (or an extension of a framework) as a ZIP file or a

Java Archive (on page 3297). Note that you should pack the entire root directory not just its contents.

2. [Optional] If you created a Java Archive at the previous step, digitally sign the package. You will need a

certificate signed by a trusted authority. To sign the JAR, you can either use the jarsigner command-line

tool inside Oracle's Java Development Kit ([JDK_DIR]/bin/jarsigner.exe) or if you are working

with Apache Ant (on page 3294), you can use the signjar task (a front for the jarsigner command-line

tool). The benefit of having a signed add-on is that you can verify the integrity of the add-on issuer.

If you do not have such a certificate, you can generate one yourself using the keytool command-line

utility.

Note:

This approach is recommended for tests since anyone can create a self-signed certificate.

3. Create a descriptor file. You can use a template that Oxygen XML Editor provides by going to File > New

and selecting the Oxygen add-ons update site template. The products the add-on is compatible with

can be specified in the template. Once deployed, this descriptor file is referenced as update site.

Deploying an Add-on

To deploy an add-on, copy the ZIP or Java Archive (on page 3297) file and the descriptor file to an HTTP

server. The URL to this location serves as the Update Site URL.

Related Information:

Oxygen XML Add-on Repositories

Basic Framework Customization Tutorial
This section contains topics meant to provide a general tutorial for customizing a framework (on page 3297).

It includes information about creating a basic document type association, some basic customizations, testing

the configuration, packaging and deploying the custom framework, and more.

Tip:

A sample framework customization package is available that you can dabble with and use to help

you get started. It can be downloaded from: https://www.oxygenxml.com/maven/com/oxygenxml/

samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip. The

https://www.oxygenxml.com/oxygen_sdk/community.html
https://www.oxygenxml.com/maven/com/oxygenxml/samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip
https://www.oxygenxml.com/maven/com/oxygenxml/samples/oxygen-sample-framework/24.0.0.0/oxygen-sample-framework-24.0.0.0-package.zip

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2401

package includes a sample CSS file, XSL file, schema files, document templates, an XML catalog file,

custom icons, and other resources.

Framework Customization Overview

The most important elements of a document type customization are represented by an XML Schema to define

the XML structure, the CSS to render the information and the XML instance template that links the first two

together.

XML Grammar

To provide as-you-type validation and to compute valid insertion proposals, Oxygen XML Editor needs an XML

grammar (XML Schema, DTD, or Relax NG) associated to the XML. The grammar specifies how the internal

structure of the XML is defined. For information about associating a schema and how Oxygen XML Editor

detects the schema, see Associating a Schema to XML Documents (on page 831).

Consider a use-case where several users are testing a system and must send report results to a content

management system. The customization should provide a visual editor for this type of document. The

following XML Schema, test_report.xsd defines a report with results of a testing session. The report

consists of a title, few lines describing the test suite that was run, and a list of test results (each with a name

and a boolean value indicating if the test passed or failed).

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="report">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="title"/>

 <xs:element ref="description"/>

 <xs:element ref="results"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="description">

 <xs:complexType>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="line">

 <xs:complexType mixed="true">

 <xs:sequence minOccurs="0"

 maxOccurs="unbounded">

 <xs:element name="important"

 type="xs:string"/>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2402

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="results">

 <xs:complexType>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="entry">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="test_name"

 type="xs:string"/>

 <xs:element name="passed"

 type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

CSS Stylesheet

A set of rules must be defined for describing how the XML document is to be rendered in Author mode.

This is done using Cascading Style Sheets (CSS). CSS is a language used to describe how an HTML or XML

document should be formatted by a browser. CSS is widely used in the majority of websites.

The elements from an XML document are displayed in the layout as a series of boxes. Some of the boxes

contain text and may flow one after the other, from left to right. These are called inline boxes. There are also

other types of boxes that flow one below the other (such as paragraphs). These are called block boxes.

For example, consider the way a traditional text editor arranges the text. A paragraph is a block, because it

contains a vertical list of lines. The lines are also blocks. However, blocks that contain inline boxes arrange its

children in a horizontal flow. That is why the paragraph lines are also blocks, while the traditional "bold" and

"italic" sections are represented as inline boxes.

The CSS allows us to specify that some elements are displayed as tables. In CSS, a table is a complex

structure and consists of rows and cells. The table element must have children that have a table-row style.

Similarly, the row elements must contain elements with a table-cell style.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2403

To make it easy to understand, the following section describes how each element from a schema is formatted

using a CSS file. Note that this is just one of infinite possibilities for formatting the content.

report

The root of a report document. It should be rendered as a box that contains all other elements.

To achieve this, the display type is set to block. Additionally, some margins are set for it. The

CSS rule that matches this element is:

report{

 display:block;

 margin:1em;

}

title

The title of the report. Usually titles have a large font. The block display is used so that the

subsequent elements will be placed below it, and its font is changed to double the size of the

normal text.

title {

 display:block;

 font-size:2em;

}

description

Contains several lines of text describing the report. The lines of text are displayed one below the

other, so the description has the block display. Also, the background color is changed to make it

standout.

description {

 display:block;

 background-color:#EEEEFF;

 color:black;

}

line

A line of text in the description. A specific aspect is not defined and it just indicates that the

display should be block style.

line {

 display:block;

}

important

Defines important text from the description. Since it can be mixed with text, its display property

must be set to inline. Also, the text is emphasized with boldto make it easier to spot.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2404

important {

 display:inline;

 font-weight:bold;

}

results

Displays the list of test_names and the results for each one. To make it easier to read, it is

displayed as a table, with a green border and margins.

results{

 display:table;

 margin:2em;

 border:1px solid green;

}

entry

The results are displayed as a table so the entry is a row in the table. Thus, the display is table-

row.

entry {

 display:table-row;

}

test_name, passed

The name of the individual test, and its result. They are cells in the results table with the display

set to table-cell. Padding and a border are added to emphasize the table grid.

test_name, passed{

 display:table-cell;

 border:1px solid green;

 padding:20px;

}

passed{

 font-weight:bold;

}

The full content of the CSS file test_report.css is:

report {

 display:block;

 margin:1em;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2405

description {

 display:block;

 background-color:#EEEEFF;

 color:black;

}

line {

 display:block;

}

important {

 display:inline;

 font-weight:bold;

}

title {

 display:block;

 font-size:2em;

}

results{

 display:table;

 margin:2em;

 border:1px solid green;

}

entry {

 display:table-row;

}

test_name, passed{

 display:table-cell;

 border:1px solid green;

 padding:20px;

}

passed{

 font-weight:bold;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2406

Figure 609. Report Rendered in Author Mode

Note:

You can edit attributes in-place in the Author mode using form-based controls (on page 622).

XML Instance Template

Based on the XML Schema and CSS file Oxygen XML Editor can help the content author in loading, editing, and

validating the test reports. An XML document template must be created as a kind of skeleton that the users

can use as a starting point for creating new test reports. The template must be generic enough and reference

the XML Schema file and the CSS stylesheet.

This is an example:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css" href="test_report.css"?>

<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="test_report.xsd">

 <title>Automated test report</title>

 <description>

 <line>This is the report of the test automatically ran.

 Each test suite is ran at 20:00h each day.

 Please <important>check</important> the failed ones!</line>

 </description>

 <results>

 <entry>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2407

 <test_name>Database connection test</test_name>

 <passed>true</passed>

 </entry>

 <entry>

 <test_name>XSLT Transformation test</test_name>

 <passed>true</passed>

 </entry>

 <entry>

 <test_name>DTD validation test</test_name>

 <passed>false</passed>

 </entry>

 </results>

</report>

The processing instruction xml-stylesheet associates the CSS stylesheet to the XML file. The href pseudo

attribute contains the URI reference to the stylesheet file. In the example, the CSS is in the same directory as

the XML file.

The next step is to place the XSD file and the CSS file on a web server and modify the template to use the

HTTP URLs, like this:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

 href="http://www.mysite.com/reports/test_report.css"?>

<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation=

 "http://www.mysite.com/reports/test_report.xsd">

 <title>Test report title</title>

 <description>

.......

If you want to share the files with other team members, you could create an archive containing the

test_report.xml, test_report.css, and test_report.xsd and send it to the other users.

Creating and Configuring a Custom Framework

This basic tutorial is meant to provide an example of creating and configuring a custom document type

(framework (on page 3297)). This basic tutorial offers examples for creating a custom schema, adjusting the

authoring experience through custom CSS styling, and creating a custom action.

Step 1: Organize Framework Files

First, create a new folder for your customized framework (on page 3297). This folder will be used to store all

files related to the documentation framework. The folder structure will look something like this:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2408

oxygen

 frameworks

 sdf

 schema

 css

The frameworks directory is the container where all the Oxygen XML Editor framework customizations are

located. Each subdirectory contains files related to a specific type of XML documents (schemas, catalogs,

stylesheets, CSS stylesheets, etc.) Distributing a framework means delivering a framework directory.

It is assumed that you have the right to create files and folders inside the Oxygen XML Editor installation

directory. If you do not have this right, you will have to install another copy of the program in a folder you have

access to, the home directory for instance, or your desktop.

To test your framework distribution, copy it in the frameworks directory of the newly installed application and

start Oxygen XML Editor by running the provided start-up script files.

You should copy the created schema files abs.xsd and sdf.xsd, sdf.xsd being the main schema, to the

schema directory and the CSS file sdf.css to the css directory.

Step 2: Extend an Existing Framework

The easiest way to create a custom framework (on page 3297) (document type) is by extending an existing

built-in framework, such as DITA or DocBook, and then making modifications to it.

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association > Locations (on page 148). Add the path to your custom framework directory in the

Additional frameworks directories list and click OK or Apply to save your changes.

2. Go to the Document Type Association preferences page (on page 146) and select an existing

framework configuration (for example, DocBook) and use the Extend button to create an extension for

it.

Step Result: This opens the Document Type Configuration dialog box (on page 148) where you can

define the set of rules and settings for your custom framework.

3. Give the extension an appropriate name, select External for the Storage option, click the browsing

button () to specify the location of your custom framework directory.

4. Click OK to close the configuration dialog box and then OK or Apply to save your changes.

Results: You now have a fully functional framework that you can continue to customize.

Step 3: Create a Custom XML Schema

To illustrate an example of creating an XML Schema for a custom DocBook framework (on page 3297),

suppose the documents are either articles or books, and composed of sections. The sections may contain

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2409

<title>, <para>, <figure>, <table>, and other <section> elements. To complete the picture, each section includes a

<def> element from another namespace.

The first schema file:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.oxygenxml.com/sample/documentation"

 xmlns:doc="http://www.oxygenxml.com/sample/documentation"

 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"

 elementFormDefault="qualified">

 <xs:import namespace=

 "http://www.oxygenxml.com/sample/documentation/abstracts"

 schemaLocation=

 "abs.xsd"/>

The namespace of the documents will be http://www.oxygenxml.com/sample/documentation. The namespace

of the <def> element is http://www.oxygenxml.com/sample/documentation/abstracts.

Next, the structure of the sections is defined. They all start with a <title>, then have the optional <def> element

then either a sequence of other sections, or a mixture of paragraphs, images, and tables.

<xs:element name="book" type="doc:sectionType"/>

<xs:element name="article" type="doc:sectionType"/>

<xs:element name="section" type="doc:sectionType"/>

<xs:complexType name="sectionType">

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element ref="abs:def" minOccurs="0"/>

 <xs:choice>

 <xs:sequence>

 <xs:element ref="doc:section" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:choice maxOccurs="unbounded">

 <xs:element ref="doc:para"/>

 <xs:element ref="doc:image"/>

 <xs:element ref="doc:table"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

</xs:complexType>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2410

The paragraph contains text and other custom styling markup, such as bold () and italic (<i>) elements.

<xs:element name="para" type="doc:paragraphType"/>

<xs:complexType name="paragraphType" mixed="true">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="emphasis"/>

 <xs:element name="i"/>

 </xs:choice>

</xs:complexType>

The <image> element has an attribute with a reference to the file containing image data.

<xs:element name="image">

 <xs:complexType>

 <xs:attribute name="href" type="xs:anyURI" use="required"/>

 </xs:complexType>

</xs:element>

The <table> element contains a header row and then a sequence of rows (<tr> elements) each of them

containing the cells. Each cell has the same content as the paragraphs.

 <xs:element name="table">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="header">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="td" maxOccurs="unbounded"

 type="doc:paragraphType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="tr" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="td" type="doc:tdType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2411

<xs:complexType name="tdType">

 <xs:complexContent>

 <xs:extension base="doc:paragraphType">

 <xs:attribute name="row_span" type="xs:integer"/>

 <xs:attribute name="column_span" type="xs:integer"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

The <def> element is defined as a text only element in the imported schema abs.xsd:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace=

 "http://www.oxygenxml.com/sample/documentation/abstracts">

 <xs:element name="def" type="xs:string"/>

</xs:schema>

Now the XML data structure will be styled.

Step 4: Associate the Schema to the Framework

In the bottom section of the Document Type configuration dialog box (on page 148), there are a series of tabs.

The Schema tab refers to the schema that is used for validation of the documents that match the defined

association rules.

Important:

If the document references a schema directly (for example, using a DOCTYPE declaration,

xsi:schemaLocation attribute, or a Relax NG xml-model processing instruction), the schema defined in

this Schema tab is not used for validation or content completion.

Schema Type

Select from the combo box the value XML Schema.

Schema URI

Enter the value of the schema location (for example, ${framework}/schema/sdf.xsd). Use the

${frameworks} editor variable (on page 341) in the schema URI path instead of a full path to be

valid for multiple Oxygen XML Editor installations.

Important:

The ${frameworks} variable is expanded at the time of validation into the absolute

location of the directory containing the framework (on page 3297).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2412

Step 5: Create a Custom CSS

If you read the Framework Customization Overview (on page 2401) then you already have some basic

knowledge about creating simple styles. The example document contains elements from various

namespaces, so you need to use CSS Level 3 extensions (supported by the Author mode layout engine) to

associate specific properties with that element.

Defining the General Layout

Now the basic layout of the rendered documents is created.

Elements that are stacked one on top of the other are: book, article, section, title, figure, table, image.

These elements are marked as having block style for display. Elements that are placed one after the other in a

flowing sequence are: b, i. These will have inline display.

/* Vertical flow */

book,

section,

para,

title,

image,

ref {

 display:block;

}

/* Horizontal flow */

b,i {

 display:inline;

}

Important:

Having block display children in an inline display parent results in Oxygen XML Editor changing the

style of the parent to block display.

Styling an Element

The title of any section must be bold and smaller than the title of the parent section. To create this effect, a

sequence of CSS rules must be created. The * operator matches any element, it can be used to match titles

having progressive depths in the document.

title{

 font-size: 2.4em;

 font-weight:bold;

}

* * title{

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2413

 font-size: 2.0em;

}

* * * title{

 font-size: 1.6em;

}

* * * * title{

 font-size: 1.2em;

}

It is useful to have before the title a constant text, indicating that it refers to a section. This text can include

also the current section number. The :before and :after pseudo-elements will be used, plus the CSS counters.

First declare a counter named sect for each book or article. The counter is set to zero at the beginning of

each such element:

book,

article{

 counter-reset:sect;

}

The sect counter is incremented with each section, that is a direct child of a book or an article element.

book > section,

article > section{

 counter-increment:sect;

}

The "static" text that will prefix the section title is composed of the constant "Section ", followed by the

decimal value of the sect counter and a dot.

book > section > title:before,

article > section > title:before{

 content: "Section " counter(sect) ". ";

}

To make the documents easy to read, you add a margin to the sections. In this way the higher nesting level,

the larger the left side indent. The margin is expressed relatively to the parent bounds:

section{

 margin-left:1em;

 margin-top:1em;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2414

Figure 610. A sample of nested sections and their titles.

In the above screenshot you can see a sample XML document rendered by the CSS stylesheet. The selection

"avoids" the text that is generated by the CSS "content" property. This happens because the CSS generated

text is not present in the XML document and is just a visual aid.

Styling Inline Elements

The "bold" style is obtained by using the font-weight CSS property with the value bold, while the "italic" style is

specified by the font-style property:

b {

 font-weight:bold;

}

i {

 font-style:italic;

}

Styling Images

The CSS 2.1 does not specify how an element can be rendered as an image. To overpass this limitation,

Oxygen XML Editor supports a CSS Level 3 extension allowing to load image data from a URL. The URL of the

image must be specified by one of the element attributes and it is resolved through the catalogs specified in

Oxygen XML Editor.

image{

 display:block;

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2415

 content: attr(href, url);

 margin-left:2em;

}

The image element has the required @href attribute of type xs:anyURI. The @href attribute contains an image

location so the rendered content is obtained by using the function:

attr(href, url)

The first argument is the name of the attribute pointing to the image file. The second argument of the attr

function specifies the type of the content. If the type has the url value, then Oxygen XML Editor identifies the

content as being an image. If the type is missing, then the content will be the text representing the attribute

value.

Oxygen XML Editor handles both absolute and relative specified URLs. If the image has an absolute URL

location (for example: "http://www.oasis-open.org/images/standards/oasis_standard.jpg") then it is loaded

directly from this location. If the image URL is relative specified to the XML document (for example: "images/

my_screenshot.jpg") then the location is obtained by adding this value to the location of the edited XML

document.

An image can also be referenced by the name of a DTD entity that specifies the location of the image file. For

example, if the document declares an entity graphic that points to a JPEG image file:

<!ENTITY graphic SYSTEM "depo/keyboard_shortcut.jpg" NDATA JPEG>

and the image is referenced in the XML document by specifying the name of the entity as the value of an

attribute:

<mediaobject>

 <imageobject>

 <imagedata entityref="graphic" scale="50"/>

 </imageobject>

</mediaobject>

The CSS should use the functions url, attr and unparsed-entity-uri for displaying the image in the Author

mode:

imagedata[entityref]{

 content: url(unparsed-entity-uri(attr(entityref)));

}

To take into account the value of the @width attribute of the imagedata and use it for resizing the image, the CSS

can define the following rule:

imagedata[width]{

 width:attr(width, length);

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2416

Figure 611. Samples of images in Author

Step 6: Associate the Custom CSS to the Framework

Once you have customized your framework through CSS styling rules, you then need to associate the custom

CSS file (on page 154).

Step 7: Testing the Framework Customization

To test the new framework (on page 3297) customization, create an XML instance that conforms with the

association rules that you specified in your framework customization. You will not specify an XML Schema

location directly in the document, using an xsi:schemaLocation attribute. Instead, Oxygen XML Editor will

detect its associated document type and use the specified schema.

<book xmlns="http://www.oxygenxml.com/sample/documentation"

 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">

 <title>My Technical Book</title>

 <section>

 <title>XML</title>

 <abs:def>Extensible Markup Language</abs:def>

 <para>In this section of the book I will

 explain different XML applications.</para>

 </section>

</book>

When trying to validate the document there should be no errors. Now modify the title to title2. Validate

again. This time there should be as error.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2417

 Invalid content was found starting with element

 'title2'. One of '{"http://www.oxygenxml.com/sample/documentation":title}'

 is expected.

Undo the tag name change, go to Author mode, and Oxygen XML Editor should load the CSS from the

document type association (on page 3296) and create a layout similar to this:

Figure 612. Example: Testing a Framework Customization

CSS Support in Author Mode
The visual Author editing mode can be customized by creating CSS files to define styles for the XML elements

and other components. The Author editing mode supports most CSS 2.1 selectors, numerous CSS 2.1

properties, and some CSS 3 selectors. Oxygen XML Editor also supports stylesheets coded with the LESS

dynamic stylesheet language. Also, Oxygen XML Editor has added some custom functions and properties that

extend the W3C CSS specification and are useful for a wide range of use-cases for developers who customize

Author mode through custom frameworks (on page 2240).

Resources

To see a visual demonstration of various advanced customization possibilities (including ideas for tailoring

the editing experience using CSS), watch our Webinar: Working with DITA in Oxygen - Customizing the Editing

Experience.

Associating a CSS with an XML Document

Associating a Stylesheet with an XML Document

The rendering of an XML document in the Author mode is driven by a CSS stylesheet that conforms to the

version 2.1 of the CSS specification from the W3C consortium. Some CSS 3 features, such as namespaces

and custom extensions, of the CSS specification are also supported. Oxygen XML Editor also supports

stylesheets coded with the LESS dynamic stylesheet language.

There are several methods for associating a stylesheet (CSS or LESS) with an XML document:

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
http://www.w3.org/TR/CSS21/

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2418

• Insert the xml-stylesheet processing instruction with the @type attribute at the beginning of the XML

document. The easiest way to do this is by using the Associate XSLT/CSS Stylesheet action that is

available on the toolbar or in the Document > XML Document menu.

CSS example:

<?xml-stylesheet type="text/css" href="test.css"?>

LESS example:

<?xml-stylesheet type="text/css" href="test.less"?>

• Add a new CSS or LESS file to a framework (on page 3297) (document type). To do so, open the

Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type Association.

Edit the appropriate framework, open the Author tab, then the CSS subtab. Click the New button to

add a new CSS or LESS file.

Note:

The built-in frameworks are read-only, so you need to Extend (on page 147) or Duplicate (on

page 147) them to configure them as custom frameworks.

If a document has no CSS association or the referenced stylesheet files cannot be loaded, a default one is

used. A warning message is also displayed at the beginning of the document, presenting the reason why the

CSS cannot be loaded.

Figure 613. Document with no CSS association default rendering

For information about associating a CSS to a framework (document type), see Configuring and Managing

Multiple CSS Styles for a Framework (on page 2254).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2419

Handling CSS Imports

When a CSS document contains imports to other CSS documents, the references are also passed through the

XML Catalog (on page 3302) URI mappings to determine an indirect CSS referenced location.

Example: CSS Import

For example, if you can have a CSS import, such as:

@import "http://host/path/to/location/custom.css";

and then add your own XML Catalog (on page 3302) file that maps the location to a custom CSS in the XML

Catalog preferences page (on page 244):

<uri name="http://host/path/to/location/custom.css"

 uri="path/to/custom.css"/>

Adding a Custom Default CSS for Every XML Document

To add a custom CSS that is applied to every XML document, add a mapping in your XML Catalog (on page

3302) file that looks like this:

<uri name="http://www.oxygenxml.com/extensions/author/css/userCustom.css"

 uri="path/to/custom.css"/>

This extra mapped CSS location will be parsed every time the application processes the CSS stylesheets used

to render the opened XML document in the visual Author editing mode. This allows your custom CSS to be

used without the need to modify all other CSS stylesheets contributed in the document type configuration.

Editor Variables in CSS Imports

You can use various editor variables (on page 333) in CSS imports. When editing an XML document with an

associated CSS in Author mode, the editor variables will be expanded and resolved.

Example: Editor Variable in a CSS Import

For example, the following editor variable:

@import "${framework(DITA)}/custom.css";

is resolved in the DITA framework (on page 3297) folder where the custom.css is placed. In the Document

Type Association preferences page (on page 146), you can see a list of document type. The name for your

particular document type needs to be passed as a parameter to the framework() function.

Note:

If you use editor variables like ${cfdu} (Current File Directory URL), it will be expanded to the URL of

the current CSS document that contains the imports rather than the XML document that references

the CSS.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2420

Displaying Processing Instructions from Other XML Editors

By default, some external processing instructions are hidden (for example, certain processing instructions

used to store metadata in other XML editors). If you want them to be displayed (for example, to edit them),

they must be associated with the current document using a CSS (on page 2417) like this:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

oxy|processing-instruction[Pub],

oxy|processing-instruction[PubTbl],

oxy|processing-instruction[xm-replace_text],

oxy|processing-instruction[xm-deletion_mark],

oxy|processing-instruction[xm-insertion_mark_start],

oxy|processing-instruction[xm-insertion_mark_end]

{

 display:block !important;

}

Specifying Media Types in the CSS

The CSS stylesheets can specify how a document is presented on different types of media (on the screen,

paper, etc.) You can specify that some of the selectors from your CSS should be taken into account only in the

Oxygen XML Editor Author mode and ignored in other media types. This can be accomplished by using the

oxygen media type.

Example: oxygen Media Type

b{

 font-weight:bold;

 display:inline;

}

@media oxygen{

 b{

 text-decoration:underline;

 }

}

This example results in the text being bold if the document is opened in a web browser that does not

recognize @media oxygen, while the text is bold and underlined when opened in Oxygen XML Editor Author

mode.

You can also use the oxygen media type to specify CSS selectors to be applied in certain operating systems

or platforms by using the os and platform properties. For example, you can specify one set of style rules for

displaying Oxygen XML Editor in Windows, and another set of style rules for macOS. The supported properties

are as follows:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2421

• os - The possible values are: win, linux, or mac.

• platform - The possible values are: standalone, eclipse, or webapp.

Example: os and platform Properties

@media oxygen AND (os:"win") AND (platform:"standalone") {

 p{

 content:"PPP";

 }

}

Related information

@media Rule (on page 2421)

CSS At-Rules

Oxygen XML Editor supports some of the standard at-rules specified by CSS Level 2.1 and 3. The @media rule

also include support for some style rules that are specific to Oxygen XML Editor.

@font-face At-Rule

Oxygen XML Editor allows you to use custom fonts in the Author mode by specifying them in the CSS using

the @font-face media type. Only the src and font-family CSS properties can be used for this media type.

Example: @font-face Rule

@font-face{

 font-family:"Baroque Script";

 /*The location of the loaded TTF font must be relative to the CSS*/

 src:url("BaroqueScript.ttf");

}

@media Rule

The @media rule allows you to set different style rules for multiple types of media in the same stylesheet. For

example, you can set the font size to be different on the screen than on paper. Oxygen XML Editor supports

several media types, allowing you to set the style rules for presenting a document on various media (on

screen, paper, etc.)

Supported Media Types

• screen - The styles marked with this media type are used only for rendering a document on screen.

• print - The styles marked with this media type are used only for printing a document.

• all - The styles marked with this media type are used for rendering a document in all supported types of

media.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2422

• oxygen - The styles marked with this media type are used only for rendering a document in the Oxygen

XML Editor Author mode. For more information, see Specifying Media Types in the CSS (on page

2420).

• oxygen-dark-theme - The styles marked with this media type are used only for rendering a document in

the Oxygen XML Editor Author mode when a dark theme is used (for example, Graphite).

• oxygen-high-contrast-black - The styles marked with this media type are used only for rendering a

document in the Oxygen XML Editor Author mode on a Windows High Contrast Theme with a black

background.

• oxygen-high-contrast-white - The styles marked with this media type are used only for rendering a

document in the Oxygen XML Editor Author mode on a Windows High Contrast Theme with a white

background.

Example: @media Rule

@media oxygen{

 b{

 text-decoration:underline;

 }

}

@media oxygen-high-contrast-white{

 b{

 font-weight:bold;

 }

}

Supported Properties

Oxygen XML Editor also supports a few properties to set specific style rules that depend upon the size of the

visible area in Author mode. These supported properties are as follows:

• min-width - The styles selected in this property are applied if the visible area in Author mode is equal to

or greater than the specified value.

• max-width - The styles selected in this property are applied if the visible area in Author mode is less

than or equal to the specified value.

Example: min-width and max-width Properties

@media (min-width:500px){

 p{

 content:'XXX';

 }

}

@media (max-width:700px){

 p:after{

 content:'yyy';

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2423

 }

}

Related information

Specifying Media Types in the CSS (on page 2420)

Standard W3C CSS Supported Features

Oxygen XML Editor supports most of the CSS Level 3 selectors and most of the CSS Level 2.1 properties

Supported CSS Selectors

Tip:

CSS rules that match attributes are always more specific than element selectors. For more

information, see https://drafts.csswg.org/selectors-3/#specificity.

The following table lists the CSS selectors that are supported in Oxygen XML Editor:

Expression Name CSS Level Description / Example

* Universal selector CSS Level 2 Matches any element

E Type selector CSS Level 2 Matches any E element (i. e. an ele

ment with the local name E)

E F Descendant selector CSS Level 2 Matches any F element that is a de

scendant of an E element.

E > F Child selectors CSS Level 2 Matches any F element that is a child

of an element E.

E:lang(c) Language pseudo-class CSS Level 2 Matches element of type E if it is in

(human) language c (the document

language specifies how language is

determined).

E + F Adjacent selector CSS Level 2 Matches any F element immediately

preceded by a sibling element E.

E ~ F General sibling selector CSS Level 3 Matches any F element preceded by

a sibling element E.

E[foo] Attribute selector CSS Level 2 Matches any E element with the

"foo" attribute set (whatever the val

ue).

https://drafts.csswg.org/selectors-3/#specificity

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2424

Expression Name CSS Level Description / Example

E[foo="warning"] Attribute selector with value CSS Level 2 Matches any E element whose "foo"

attribute value is exactly equal to

"warning".

E[foo~="warning"] Attribute selector containing

value

CSS Level 2 Matches any E element whose "foo"

attribute value is a list of space-sepa

rated values, one of which is exactly

equal to "warning".

E[lang|="en"] Attribute selector containing

hyphen separated values

CSS Level 2 Matches any E element whose "lang"

attribute has a hyphen-separated list

of values beginning (from the left)

with "en".

E:before and E:af

ter

Pseudo-elements CSS Level 2 The ':before' and ':after' pseu

do-elements can be used to insert

generated content before or after an

element's content.

E:first-child The first-child pseudo-class CSS Level 2 Matches element E when E is the first

child of its parent.

E:not(s) Negation pseudo-class CSS Level 2
An E element that does not match

simple selector s.

E:has Relational pseudo-class CSS Level 4
The :has() relational pseudo-class is

a functional pseudo-class that takes

a relative selector as an argument.

For more information, see :has Rela

tional Pseudo-Class (on page 2429).

E:hover The hover pseudo-class CSS Level 2
The :hover pseudo-class applies

while the user designates an element

with a pointing device, but does not

necessarily activate it. When moving

the pointing device over an element,

all the parent elements up to the root

are taken into account.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2425

Expression Name CSS Level Description / Example

E:focus The focus pseudo-class CSS Level 2
The :focus pseudo-class applies

while an element has the focus (ac

cepts keyboard input).

E:focus-within The generalized input focus

pseudo-class

CSS Level 4
The :focus-within pseudo-class ap

plies to elements that will have the

:focus pseudo-class applied. Addi

tionally, the ancestors of an element

that matches :focus-within also

match.

E:marker The marker pseudo-class CSS Level 4 The ::marker pseudo-element repre

sents the automatically generated

marker box of a list item.

E#myid The ID selector CSS Level 2
Matches any E element with ID equal

to "myid".

Important:

Limitation: In Oxygen XML

Editor the match is per

formed only taking into ac

count the attributes with the

exact name: "id".

E[att^="val"] Substring matching attribute

selector

CSS Level 3 An E element whose att attribute val

ue begins exactly with the string val.

E[att$="val"] Substring matching attribute

selector

CSS Level 3 An E element whose att attribute val

ue ends exactly with the string val.

E[att*="val"] Substring matching attribute

selector

CSS Level 3 An E element whose att attribute val

ue contains the substring val.

E:root Root pseudo-class CSS Level 3 Matches the root element of the doc

ument. In HTML, the root element is

always the HTML element.

E:empty Empty pseudo-class CSS Level 3 An E element that has no text or child

elements.

E:nth-child(n) The nth-child pseudo-class CSS Level 3 An E element, the nth child of its par

ent.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2426

Expression Name CSS Level Description / Example

E:nth-last-

child(n)

The nth-last-child pseu

do-class

CSS Level 3
An E element, the nth child of its par

ent, counting from the last one.

E:nth-of-type(n) The nth-of-type pseudo-class CSS Level 3
An E element, the nth sibling of its

type.

E:nth-last-of-

type(n)

The nth-last-of-type pseu

do-class

CSS Level 3
An E element, the nth sibling of its

type, counting from the last one.

E:last-child The last-child pseudo-class CSS Level 3
An E element, last child of its parent.

E:first-of-type The first-of-type pseudo-class CSS Level 3
An E element, first sibling of its type.

E:last-of-type The last-of-type pseudo-class CSS Level 3
An E element, last sibling of its type.

E:only-child The only-child pseudo-class CSS Level 3
An E element, only child of its parent.

E:only-of-type The only-of-type pseudo-class CSS Level 3
An E element, only sibling of its type.

ns|E Element namespace selector CSS Level 3
An element that has the local name E

and the namespace given by the pre

fix ns. The namespace prefix can be

bound to a URI by the at-rule:

@namespace

 ns "http://some_namespace_uri";

See Namespace Selector (on page

2426).

E!>F The subject selector CSS Level 4

(experimental)
An element that has the local name E

and has a child F. See Subject Selec

tor (on page 2428).

Namespace Selector

In the CSS 2.1 standard, the element selectors ignore the namespaces of the elements they are matching.

Only the local name of the elements are considered in the selector matching process.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2427

Oxygen XML Editor uses a different approach that is similar to the CSS Level 3 specification. If the element

name from the CSS selector is not preceded by a namespace prefix it is considered to match an element with

the same local name as the selector value and ANY namespace. Otherwise, the element must match both the

local name and the namespace.

In CSS up to version 2.1, the name tokens from selectors match all elements from ANY namespace that have

the same local name. Example:

<x:b xmlns:x="ns_x"/>

<y:b xmlns:y="ns_y"/>

Are both matched by the rule:

b {font-weight:bold}

Starting with CSS Level 3, you can create selectors that are namespace aware.

Example: Defining prefixed and default namespaces

Given the namespace declarations:

@namespace sync "http://sync.example.org";

@namespace "http://example.com/foo";

Then:

sync|A

Represents the name A in the http://sync.example.org namespace.

*|B

Represents the name B in ANY namespace, including NO NAMESPACE.

C

Represents the name C in ANY namespace, including NO NAMESPACE.

Example: Defining prefixed namespaces combined with pseudo-elements

To match the <def> element its namespace declares, bind it to the abs prefix and then write a CSS rule:

@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

Then:

abs|def

Represents the name "def" in the http://www.oxygenxml.com/sample/documentation/abstracts

namespace.

abs|def:before

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2428

Represents the :before pseudo-element of the "def" element from the http://www.oxygenxml.com/

sample/documentation/abstracts namespace.

Subject Selector

Oxygen XML Editor supports the subject selector described in CSS Level 4 (currently a working draft at

W3C http://www.w3.org/TR/selectors4/). This selector matches a structure of the document, but unlike a

compound selector, the styling properties are applied to the subject element (the one marked with "!") instead

of the last element from the path.

The subject of the selector can be explicitly identified by appending an exclamation mark (!) to one of the

compound selectors in a selector. Although the element structure that the selector represents is the same

with or without the exclamation mark, indicating the subject in this way can change which compound selector

represents the subject in that structure.

Example:

table! > caption {

 border: 1px solid red;

}

A border will be drawn to the table elements that contain a caption, as direct child.

This is different from:

table > caption {

 border: 1px solid red;

}

This draws a border around the caption.

Taking Processing Instructions into Account in CSS Subject Selectors

You can test for the existence of specific processing instructions (PI) in the child hierarchy of a subject

selector.

For example:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

chapter! > oxy|processing-instruction[important][level="high"]{

 color:red;

}

This would change the color of a DocBook chapter to red if it contains the important processing instruction:

<chapter>

 <title>A title</title>

http://www.w3.org/TR/selectors4/

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2429

 <?important level='high'?>

</chapter>

Descendant Selectors Limitation

Important:

The current implementation has a known limitation. The general descendant selectors are taken

into account as direct child selectors. For example, the following two CSS selectors are considered

equivalent:

a:has(b c)

and:

a:has(b>c)

Related information

:has Relational Pseudo-Class (on page 2429)

:has Relational Pseudo-Class

Oxygen XML Editor supports the CSS Level 4 subject selector (currently a working draft at W3C http://

www.w3.org/TR/selectors4/), as described in Subject Selector (on page 2428). Oxygen XML Editor also

supports the :has relational pseudo-class that has similar functionality and it can match an element by taking

its child elements into account. For more information, see https://drafts.csswg.org/selectors-4/#relational.

You can create conditions that take into account the structure of the matching element.

Example: has Pseudo Class

table:has(tbody > thead){

 border: 1px solid red;

}

This example will result in a border being drawn for the table elements that contain at least a <thead> element

in the <tbody> element.

Taking Processing Instructions into Account in CSS Subject Selectors

You can test for the existence of specific processing instructions (PI) in the child hierarchy of a subject

selector.

For example:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

chapter! > oxy|processing-instruction[important][level="high"]{

http://www.w3.org/TR/selectors4/
http://www.w3.org/TR/selectors4/
https://drafts.csswg.org/selectors-4/#relational

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2430

 color:red;

}

This would change the color of a DocBook chapter to red if it contains the important processing instruction:

<chapter>

 <title>A title</title>

 <?important level='high'?>

</chapter>

Descendant Selectors Limitation

Important:

The current implementation has a known limitation. The general descendant selectors are taken

into account as direct child selectors. For example, the following two CSS selectors are considered

equivalent:

a:has(b c)

and:

a:has(b>c)

Supported CSS Properties

Oxygen XML Editor validates all CSS 2.1 properties, but does not render aural and paged categories properties

in Author mode, as well as some of the values of the visual category that are listed below under the Ignored

Values column. For the Oxygen XML Editor-specific (extension) CSS properties, see CSS Extensions (on page

2444).

Name Rendered Values Ignored Values

background background-color | background-im

age | background-position | back

ground-repeat | inherit | initial | unset

background-attachment NONE

background-color <color> | inherit | initial | unset transparent

background-image <uri> | none | inherit | initial | unset

background-position top | right | bottom | left | center | ini

tial | unset

<percentage> | <length> (on

page 2436)

background-repeat repeat | repeat-x | repeat-y | no-re

peat | inherit | initial | unset

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2431

Name Rendered Values Ignored Values

border [<border-width> || <border-style> ||

<border-color>] | inherit | initial | un

set

Not yet supported on table row or

table row groups.

border-collapse NONE

border-color <color> | inherit | initial | unset transparent

border-radius <length> (on page 2436) | <percent

age>

Works only for border-type 'solid',

'dashed', 'dotted', 'wave'. Does not

work when background-image is

specified. Percent values are not

fully supported.

border-spacing NONE

border-style <border-style> | inherit | initial | un

set

border-top / border-right / bor

der-bottom / border-left

[<border-width> || <border-style> ||

<border-color>] | inherit | initial | un

set

border-top-color / border-right-

color / border-bottom-color / bor

der-left-color

<color> | inherit | initial | unset transparent

border-top-left-radius / border-top-

right-radius / border-bottom-left-ra

dius / border-bottom-right-radius

<length> (on page 2436) | <percent

age>

Works only for border-type 'solid',

'dashed', 'dotted', 'wave'. Does not

work when background-image is

specified.

border-top-style / border-right-style /

border-bottom-style / border-left-

style

<border-style> | inherit | initial | un

set

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2432

Name Rendered Values Ignored Values

border-top-width / border-right-

width / border-bottom-width / bor

der-left-width

<border-width> | inherit | initial | un

set

border-width <border-width> | inherit | initial | un

set

bottom <length> (on page 2436) | <percent

age> | inherit | initial | unset

auto

caption-side NONE

clear NONE

clip NONE

color <color> | inherit | initial | unset

content normal | none | [<string> | <URI> |

<counter> | attr(<identifier>) | open-

quote | close-quote]+ | inherit | ini

tial | unset

Tip:

Also see CSS Level 3 tar

get-counter() and tar

get-counters() Functions

(on page 2439)

no-open-quote | no-close-quote

counter-increment [<identifier> <integer> ?]+ | none |

inherit | initial | unset

counter-reset [<identifier> <integer> ?]+ | none |

inherit | initial | unset

cursor NONE

direction ltr| rtl | inherit | initial | unset

display inline | block | list-item | table | ta

ble-row-group | table-header-group

| table-footer-group | table-row | ta

ble-column-group | table-column |

table-cell | table-caption | none | in

herit | initial | unset

grid | run-in | inline-block | in

line-table - considered block

empty-cells show | hide | inherit | initial | unset

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2433

Name Rendered Values Ignored Values

float NONE

font [['font-style' || 'font-weight']? 'font-

size' [/ 'line-height']? 'font-family'] |

inherit | initial | unset

'font-variant' 'line-height'

caption | icon | menu | mes

sage-box | small-caption | sta

tus-bar

font-family [[<family-name> | <generic-fami

ly>] [, <family-name> | <generic-fam

ily>]*] | inherit | initial | unset

font-size <absolute-size> | <relative-size> |

<length> (on page 2436) | <percent

age> | inherit | initial | unset

font-style normal | italic | oblique | inherit | ini

tial | unset

font-variant NONE

font-weight normal | bold | bolder | lighter | 100

| 200 | 300 | 400 | 500 | 600 | 700 |

800 | 900 | inherit | initial | unset

height NONE

left <length> (on page 2436) | <percent

age> | inherit | initial | unset

auto

letter-spacing normal | <length> (on page 2436) |

inherit | initial | unset

line-height normal | <number> | <length> (on

page 2436) | <percentage> | inherit

| initial | unset

list-style ['list-style-type'] | inherit | initial | un

set

'list-style-position' || 'list-style-

image'

list-style-image NONE

list-style-position NONE

list-style-type disc | circle | square | decimal | low

er-roman | upper-roman | lower-latin

| upper-latin | lower-alpha | upper-al

pha | -oxy-lower-cyrillic-ru | -oxy-low

er-cyrillic-uk | -oxy-upper-cyrillic-ru |

-oxy-upper-cyrillic-uk | box | diamond

lower-greek | armenian | geor

gian

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2434

Name Rendered Values Ignored Values

| check | hyphen | none | inherit | ini

tial | unset

margin <margin-width> | inherit | initial | un

set | auto

margin-right / margin-left <margin-width> | inherit | initial | un

set | auto

margin-top / margin-bottom <margin-width> | inherit | initial | un

set

max-height NONE

max-width <length> (on page 2436) | <percent

age> | none | inherit - supported for

inline, block-level, and replaced ele

ments (such as images, tables, ta

ble cells) | initial | unset

min-height Absolute values, such as 230px, 1in,

7pt, 12em | initial | unset
Values proportional to the par

ent element height, such as 30%

min-width <length> (on page 2436) | <percent

age> | inherit - supported for inline,

block-level, and replaced elements

(such as images, tables, table cells)

| initial | unset

outline [<outline-width> || <outline-style> ||

<outline-color>] | inherit | initial | un

set

outline-color [<color> | invert | inherit | initial | un

set

outline-style [<border-style> | inherit | initial | un

set

outline-width [<border-width> | inherit | initial | un

set

overflow NONE

padding <padding-width> | inherit | initial | un

set

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2435

Name Rendered Values Ignored Values

padding-top / padding-right /

padding-bottom / padding-left

<padding-width> | inherit | initial | un

set

position absolute | fixed (supported for block

display elements) | relative (support

ed for block and inline display ele

ments)

absolute | fixed not supported

for inline display elements

quotes NONE

right <length> (on page 2436) | <percent

age> | inherit | initial | unset

auto

table-layout auto | initial | unset fixed | inherit

text-align left | right | center | inherit | initial |

unset

justify

text-decoration none | [underline || overline || line-

through] | inherit | initial | unset

blink

text-decoration-style solid | double | dotted | dashed |

wavy | inherit | initial | unset

text-indent <length> (on page 2436) | <percent

age> | inherit | initial | unset

text-transform none | capitalize | uppercase | lower

case | inherit | initial | unset

top <length> (on page 2436) | <percent

age> | inherit | initial | unset

auto

unicode-bidi bidi-override| normal| embed| inherit

| initial | unset

vertical-align baseline | sub | super | top | text-top

| middle | bottom | text-bottom | in

herit | initial | unset

<percentage> | <length> (on

page 2436)

visibility visible | hidden | inherit | initial | un

set | -oxy-collapse-text

collapse

white-space normal | pre | nowrap | pre-wrap |

pre-line | initial | unset

width <length> (on page 2436) | <percent

age> | auto | inherit - supported for

inline, block-level, and replaced ele

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2436

Name Rendered Values Ignored Values

ments (such as images, tables, ta

ble cells) | initial | unset

word-spacing NONE

z-index NONE

<length> - Refers to distance measurements and is expressed in units such as mm, cm, in, em, rem, ex, pc, pt, px.

For more information, see the W3 CSS Level 3 length type specifications.

Related Information:

CSS Extensions (on page 2444)

Transparent Colors

CSS3 supports RGBA colors. The RGBA declaration allows you to set opacity (via the Alpha channel) as part of

the color value. A value of 0 corresponds to a completely transparent color, while a value of 1 corresponds to a

completely opaque color. To specify a value, you can use either a real number between 0 and 1, or a percent.

Example: RGBA Color

personnel:before {

 display:block;

 padding: 1em;

 font-size: 1.8em;

 content: "Employees";

 font-weight: bold;

 color:#EEEEEE;

 background-color: rgba(50, 50, 50, 0.6);

}

attr() Function: Properties Values Collected from the Edited Document

In CSS Level 2.1 you may collect attribute values and use them as content only for the pseudo-elements. For

instance, the :before pseudo-element can be used to insert some content before an element. This is valid in

CSS 2.1:

title:before{

 content: "[Audience Level: " attr(audience) "]";

}

If the <title> element from the XML document is:

<title audience="Expert">Changing the Timing Belt</title>

Then the title will be displayed as:

http://www.w3.org/TR/css3-values/#lengths

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2437

[Audience Level: Expert] Changing the Timimg Belt

In Oxygen XML Editor, the use of attr() function is available not only for the content property, but also for

any other property. This is similar to the CSS Level 3 working draft: http://www.w3.org/TR/2006/WD-css3-

values-20060919/#functional. The arguments of the function are:

attr (attribute_name , attribute_type , default_value)

attribute_name

The attribute name. This argument is required.

attribute_type

The attribute type. This argument is optional. If it is missing, argument's type is considered

string. This argument indicates what is the meaning of the attribute value and helps to perform

conversions of this value. Oxygen XML Editor accepts one of the following types:

color

The value represents a color. The attribute may specify a color in various formats.

Oxygen XML Editor supports colors specified either by name (red, blue, green, etc.)

or as an RGB hexadecimal value #FFEEFF.

url

The value is a URL pointing to a media object. Oxygen XML Editor supports only

images. The attribute value can be a complete URL, or a relative one to the XML

document. Note that this URL is also resolved through the catalog resolver.

integer

The value must be interpreted as an integer.

number

The value must be interpreted as a float number.

length

The value must be interpreted as an integer.

percentage

The value must be interpreted relative to another value (length, size) expressed in

percents.

em

The value must be interpreted as a size. 1 em is equal to the font-size of the

relevant font.

ex

http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional
http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2438

The value must be interpreted as a size. 1 ex is equal to the height of the x

character of the relevant font.

px

The value must be interpreted as a size expressed in pixels relative to the viewing

device.

mm

The value must be interpreted as a size expressed in millimeters.

cm

The value must be interpreted as a size expressed in centimeters.

in

The value must be interpreted as a size expressed in inches. 1 inch is equal to 2.54

centimeters.

pt

The value must be interpreted as a size expressed in points. The points used by

CSS2 are equal to 1/72th of an inch.

pc

The value must be interpreted as a size expressed in picas. 1 pica is equal to 12

points.

default_value

This argument specifies a value that is used by default if the attribute value is missing. This

argument is optional.

Example: attr Function

Consider the following XML instance:

<sample>

 <para bg_color="#AAAAFF">Blue paragraph.</para>

 <para bg_color="red">Red paragraph.</para>

 <para bg_color="red" font_size="2">Red paragraph with large font.</para>

 <para bg_color="#00AA00" font_size="0.8" space="4">

 Green paragraph with small font and margin.</para>

</sample>

The <para> elements have @bg_color attributes with RGB color values (such as #AAAAFF). You can use the attr()

function to change the elements appearance in the editor based on the value of this attribute:

background-color:attr(bg_color, color);

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2439

The font_size represents the font size in em units. You can use this value to change the style of the element:

font-size:attr(font_size, em);

The complete CSS rule is:

para{

 display:block;

 background-color:attr(bg_color, color);

 font-size:attr(font_size, em);

 margin:attr(space, em);

}

The document is rendered as:

CSS Level 3 target-counter() and target-counters() Functions

The CSS Level 3 functions target-counter and target-counters can be used as values for the content property

to retrieve counter values and display information obtained from a target at the end of a link.

The target-counter Function

This function retrieves the value of the innermost counter with a given name.

target-counter (<fragment> , <counter-name> [, <counter-style>] ?)

fragment

The URI fragment pointing to the ID of the target element.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2440

counter-name

The name of the counter. This argument is required.

counter-style

This optional argument can be used to format the result.

Example:

HTML:

<nav>

 <li class="frontmatter">Preface

 <li class="frontmatter">Introduction

 <li class="bodymatter">Chapter One

</nav>

CSS:

.frontmatter a::after { content: leader('.') target-counter(attr(href), page, lower-roman) }

.bodymatter a::after { content: leader('.') target-counter(attr(href), page, decimal) }

Result:

The target-counters Function

This function fetches the value of all counters of a given name from the end of a link and formats them by

inserting a given string between the value of each nested counter.

target-counter (<fragment> , <counter-name> , <delimiter> [, <counter-style>] ?)

fragment

The URI fragment pointing to the ID of the target element.

counter-name

The name of the counter. This argument is required.

delimiter

The string to be inserted between the value of each nested counter. This argument is required.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2441

counter-style

This optional argument can be used to format the result.

Related information

https://www.w3.org/TR/css-gcpm-3/#target-counter

https://www.w3.org/TR/css-gcpm-3/#target-counters

calc() Function

The calc() function allows mathematical expressions with addition (+), subtraction (-), multiplication (*),

division (/) to be used as component values. Percentages are solved relative to the dimensions of the

containing parent block. It can be used when length values are accepted:

elem {

 width: calc(100% - 1em);

}

For more information, see: https://drafts.csswg.org/css-values-3/#calc-notation

Custom CSS Properties (CSS Variables)

Custom properties (also referred to as CSS variables) are properties defined by CSS authors that contain

specific values to be reused throughout a document.

Complex websites have many CSS rules, often with a lot of repeated values. For example, the same color

might be used in dozens of different places, requiring a global search-and-replace operation if that color needs

to be changed. Custom properties allow a value to be stored in one place, then referenced in multiple other

places. An additional benefit is semantic identifiers. For example, --main-text-color is easier to understand

than #00ff00, especially if this same color is also used in other contexts.

Custom properties follow the same rules as other CSS properties, so you are able to define and use them at

multiple levels, following standard CSS cascading and specificity rules.

Usage

A custom property name begins with a double hyphen (--) and its value that can be any valid CSS value. You

use the custom property value by specifying your custom property name inside the var() function, in place of a

regular property value:

Defining a Custom Property

element {

 --main-bg-color: brown;

 background-color: var(--main-bg-color);

}

https://www.w3.org/TR/css-gcpm-3/#target-counter
https://www.w3.org/TR/css-gcpm-3/#target-counters
https://drafts.csswg.org/css-values-3/#calc-notation

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2442

Note:

Custom property names are case sensitive: --my-color will be treated as a separate custom property

from --My-color.

Inheritance of Custom Properties

If you define a custom property on an element, you will be able to access it on all of its descendents.

Inheritance

<one>

 <two>

 <three/>

 <four/>

 </two>

</one>

one {

 --color:green;

}

three {

 --color:red;

}

* {

 color: var(--color);

}

Result:

• <one> has the color green.

• <two> has the color green.

• <three> has the color red.

• <four> has the color green.

Custom Properties Fallback Values

The var() function has two arguments. The first argument is the name of the custom property to be

substituted. The second argument (optional) is a fallback value, which is used as the substitution value when

the referenced custom property is invalid or undefined.

Specifying a Fallback Value

one {

 color: var(--color, blue);

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2443

}

one {

 color: var(--color, var(--fallback-color, red));

}

Dependencies

A custom property can reference the value of another custom property through the var() function.

A Custom Property Safely Using a Variable

:root {

 --border-color: red;

 --main-border: 1px solid var(--border-color, green);

}

p {

 border: var(--main-border);

}

Combining Custom Variables with calc()

:root {

 --foo: 10px;

 --bar: calc(var(--foo) + 10px);

}

p {

 font-size: var(--bar);

}

CAUTION:

This can create cyclic dependencies where two or more custom properties each attempt to reference

each other.

An Invalid Situation of Variables Depending on Each Other

:root {

 --color: var(--bg-color);

 --bg-color: var(--color);

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2444

CSS Extensions

CSS stylesheets provide support for displaying documents. When editing non-standard documents, Oxygen

XML Editor CSS extensions are useful.

Examples of how they can be used:

• Property for marking foldable elements (on page 3297) in large files.

• Enforcing a display mode for the XML tags, regardless of the current mode selected by the user.

• Constructing a URL from a relative path location.

• String processing functions.

Built-in CSS Selectors

When Oxygen XML Editor renders content in the Author mode, it adds built-in CSS selectors (in addition to

the CSS stylesheets linked in the XML or specified in the document type associated to the XML document).

These built-in CSS selectors are processed before all other CSS content, but they can be overwritten if the CSS

developer wants to modify a default behavior.

List of CSS Selector Contributed by Oxygen XML Editor

@namespace oxy "http://www.oxygenxml.com/extensions/author";

@namespace xi "http://www.w3.org/2001/XInclude";

@namespace xlink "http://www.w3.org/1999/xlink";

@namespace svg "http://www.w3.org/2000/svg";

@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {

 display:block !important;

}

oxy|cdata {

 display:-oxy-morph !important;

 white-space:pre-wrap !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|processing-instruction {

 display:-oxy-morph !important;

 color: rgb(139, 38, 201) !important;

 white-space:pre-wrap !important;

 border-width:0px !important;

 margin:0px !important;

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2445

 padding: 0px !important;

}

/*EXM-33415 Avoid showing other editors PIs in content, not

useful when editing in Oxygen*/

oxy|processing-instruction[Pub],

oxy|processing-instruction[PubTbl],

oxy|processing-instruction[xm-replace_text],

oxy|processing-instruction[xm-deletion_mark],

oxy|processing-instruction[xm-insertion_mark_start],

oxy|processing-instruction[xm-insertion_mark_end],

oxy|processing-instruction[xml-model],

oxy|processing-instruction[xml-stylesheet],

oxy|processing-instruction[fontoxml-text-placeholder]

{

 display:none !important;

}

oxy|comment {

 display:-oxy-morph !important;

 background-color:#f7f7f7;

 color: #707070 !important;

 white-space:pre-wrap !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|reference:before,

oxy|entity[href]:before{

 -oxy-link: attr(href) !important;

 text-decoration: underline !important;

 color: navy !important;

 margin: 2px !important;

 padding: 0px !important;

 margin-right:0px !important;

 padding-right:2px !important;

}

oxy|reference:before {

 display: -oxy-morph !important;

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2446

 content: url(../images/EditContent16.png) !important;

}

oxy|entity[href]:before{

 display: -oxy-morph !important;

 content: url(../images/EditContent16.png) !important;

}

oxy|reference,

oxy|entity {

 -oxy-editable:false !important;

 background-color: rgb(240, 240, 240) !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|reference[editable='true'] {

 -oxy-editable:true !important;

}

oxy|reference {

 display:-oxy-morph !important;

 /*EXM-28674 No need to present tags for these artificial references.*/

 -oxy-display-tags: none;

}

/*EXM-16109 Support for expand references on demand*/

*:-oxy-lazy-expand-ref:not(:-oxy-ref-expanded):before(2000) {

 content: oxy_button(transparent, true, enableInReadOnlyContext, true, action, oxy_action(

 name, '${i18n(Expand_reference)}',

 icon, url('/images/ExpandRef.png'),

 operation, 'SetPseudoClassOperation',

 arg-name, '-oxy-ref-expanded'

));

}

*:-oxy-lazy-expand-ref:not(:-oxy-ref-expanded) {

 -oxy-foldable:false;

 -oxy-placeholder-content:"";

}

oxy|entity {

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2447

 display:-oxy-morph !important;

}

oxy|entity[name='amp'],

oxy|entity[name='lt'],

oxy|entity[name='gt'],

oxy|entity[name='quot'],

oxy|entity[name='apos']{

 /*EXM-32236, EXM-37026 Do not present tags for simple character entity references.*/

 -oxy-display-tags: none;

}

oxy|entity[href] {

 border: 1px solid rgb(175, 175, 175) !important;

 padding: 0.2em !important;

}

/*Wraps multiple fallback elements*/

oxy|include-wrapper {

 display:-oxy-morph !important;

}

xi|include {

 display:-oxy-morph !important;

 margin-bottom: 0.5em !important;

 padding: 2px !important;

}

xi|include:before,

xi|include:after{

 display:inline !important;

 background-color:inherit !important;

 color:#444444 !important;

 font-weight:bold !important;

}

xi|include:before {

 content:url(../images/link.png) attr(href) !important;

 -oxy-link: attr(href) !important;

}

xi|include[parse="text"]:before {

 content:url(../images/link.png) !important;

}

xi|include[xpointer]:before {

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2448

 content:url(../images/link.png) attr(href) " " attr(xpointer) !important;

 -oxy-link: oxy_concat(attr(href), "#", attr(xpointer)) !important;

}

xi|fallback {

 display:-oxy-morph !important;

 margin: 2px !important;

 border: 1px solid #CB0039 !important;

}

xi|fallback:before {

 display:-oxy-morph !important;

 content:"XInclude fallback: " !important;

 color:#CB0039 !important;

}

oxy|doctype {

 display:block !important;

 background-color: transparent !important;

 color:blue !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 2px !important;

}

@media oxygen-high-contrast-black, oxygen-dark-theme{

 oxy|doctype {

 color:#D0E2F4 !important;

 }

}

oxy|error {

 display:-oxy-morph !important;

 -oxy-editable:false !important;

 white-space:pre !important;

 font-weight:bold !important;

 color: rgb(178, 0, 0) !important;

 -oxy-display-tags: none;

}

oxy|error:before {

 content:url(../images/ReferenceError12.png) "[" !important;

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2449

 color: rgb(178, 0, 0) !important;

}

oxy|error[level='warn']:before {

 content:url(../images/ReferenceWarn12.png) "[" !important;

 color: rgb(200, 185, 0) !important;

}

oxy|error[level='warn'] {

 color: rgb(200, 185, 0) !important;

}

oxy|error:after {

 content:"]" !important;

}

*[xlink|href]:before {

 content:url(../images/link.png);

 -oxy-link: attr(xlink|href) !important;

}

/*No direct display of the MathML and SVG images.*/

svg|svg{

 display:inline !important;

 white-space: -oxy-trim-when-ws-only !important;

}

/*EXM-28827 SVG can contain more than one namespace in it*/

svg|svg * {

 display:none !important;

 white-space:normal !important;

}

mml|math{

 display:inline !important;

 white-space: -oxy-trim-when-ws-only !important;

}

mml|math mml|*{

 display:none !important;

 white-space: normal !important;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2450

/*Text direction attributes*/

*[dir='rtl'] { direction:rtl; unicode-bidi:embed; }

*[dir='rlo'] { direction:rtl; unicode-bidi:bidi-override; }

*[dir='ltr'] { direction:ltr; unicode-bidi:embed; }

*[dir='lro'] { direction:ltr; unicode-bidi:bidi-override; }

@media oxygen-high-contrast-black, oxygen-dark-theme{

 xi|include:before,

 xi|include:after{

 color:#808080 !important;

 }

}

/*

 * EXM-40349

 *

 * In DIFF these place holder PIs are not handled so we treat them as normal PIs with a bit of styling.

 *

 */

oxy|processing-instruction[oxy-placeholder] {

 visibility:-oxy-collapse-text;

 -oxy-display-tags:none;

}

oxy|processing-instruction[oxy-placeholder]:before {

 background-color: rgba(192, 192, 192, 0.2) !important;

 color: rgba(0, 0, 0, 0.6) !important;

 font-weight:bold;

 /* When there isn't an associated CSS the NO_CSS rules hide the PIs. @see AuthorViewport.CSS_ERROR_END */

 display:-oxy-morph;

 content: attr(content) !important;

}

@media oxygen-high-contrast-black, oxygen-dark-theme{

 oxy|processing-instruction[oxy-placeholder]:before {

 background-color: rgba(0, 0, 0, 0.15) !important;

 color: rgb(156, 156, 156) !important;

 }

 /* ====================================

 *

 * built-in oXygen elements

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2451

 *

 */

 oxy|comment {

 color: #a2a2a2 !important;

 background-color: transparent !important;

 }

 oxy|reference,

 oxy|entity {

 background-color: rgb(100, 100, 100) !important;

 }

}

Example:

To show all entities in the Author mode as transparent, without a gray background, first define in your CSS

after all imports the namespace:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

and then add the following selector:

oxy|entity {

 background-color: inherit !important;

}

Additional CSS Selectors

Oxygen XML Editor provides support for selecting additional types of nodes. These custom selectors apply

to: document, doctype, processing-instruction, comment, CDATA sections, entities, and reference sections.

Processing-instructions are not displayed by default. To display them, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Editor > Author, and select Show processing instructions.

Note:

The custom selectors are presented in the default CSS for Author mode and all of their properties are

marked with the !important flag. For this reason, you have to set the !important flag on each property

of the custom selectors from your CSS to be applicable.

For the custom selectors to work in your CSS stylesheets, declare the Author mode extensions namespace at

the beginning of the stylesheet documents:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2452

• oxy|document - The oxy|document selector matches the entire document:

oxy|document {

 display:block !important;

}

• oxy|doctype - The following example changes the rendering of doctype sections:

oxy|doctype {

 display:block !important;

 color:blue !important;

 background-color:transparent !important;

}

• oxy|processing-instruction - To match the processing instructions, you can use the oxy|processing-

instruction selector:

oxy|processing-instruction {

 display:block !important;

 color:purple !important;

 background-color:transparent !important;

}

A processing instruction usually has a target and one or more pseudo attributes:

<?target_name data="b"?>

You can match a processing instruction with a particular target from the CSS using the following

construct:

oxy|processing-instruction[target_name]

You can also match the processing instructions having a certain target and pseudo attribute value,

such as:

oxy|processing-instruction[target_name][data="b"]

• oxy|comment - The XML comments displayed in Author mode can be changed using the oxy|comment

selector:

oxy|comment {

 display:block !important;

 color:green !important;

 background-color:transparent !important;

}

• oxy|cdata - The oxy|cdata selector matches CDATA sections:

oxy|cdata{

 display:block !important;

 color:gray !important;

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2453

 background-color:transparent !important;

}

• oxy|entity - The oxy|entity selector matches the entity content:

oxy|entity {

 display:morph !important;

 editable:false !important;

 color:orange !important;

 background-color:transparent !important;

}

To match particular entities, use the oxy|entity selector in expressions such as:

oxy|entity[name='amp'],

oxy|entity[name='lt'],

oxy|entity[name='gt'],

oxy|entity[name='quot'],

oxy|entity[name='apos'],

oxy|entity[name^='#']{

 -oxy-display-tags: none;

}

• oxy|reference - The references to entities, XInclude, and DITA @conref and @conkeyref attributes are

expanded by default in Author mode and the referenced content is displayed. The referenced resources

are displayed inside the element or entity that references them.

You can use the reference property to customize the way these references are rendered in Author

mode:

oxy|reference {

 border:1px solid gray !important;

}

In the Author mode, content is highlighted when text contains comments (on page 656) and changes

(if Track Changes (on page 656) was active when the content was modified).

If this content is referenced, the Author mode does not display the highlighted areas in the new

context. If you want to mark the existence of the comments and changes, you can use the oxy|

reference[comments], oxy|reference[changeTracking], and oxy|reference[changeTracking][comments]

selectors.

Note:

Two artificial attributes (comments and changeTracking) are set on the reference node,

containing information about the number of comments and tracked changes in the content.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2454

◦ The following example represents the customization of the reference fragments that contain

comments:

oxy|reference[comments]:before {

 content: "Comments: " attr(comments) !important;

}

◦ To match reference fragments based on the fact that they contain tracked changes inside, use

the oxy|reference[changeTracking] selector:

oxy|reference[changeTracking]:before {

 content: "Change tracking: " attr(changeTracking) !important;

}

◦ Here is an example of how you can set a custom color for the reference containing both tracked

changes and comments:

oxy|reference[changeTracking][comments]:before {

 content: "Change tracking: " attr(changeTracking)

 " and comments: " attr(comments) !important;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2455

Figure 614. Example: A Document Rendered Using these Rules

Additional CSS Properties

Oxygen XML Editor provides various additional CSS properties to extend the standard CSS properties.

Append Content Properties: -oxy-append-content / -oxy-prepend-content
Used to append specified content.

-oxy-append-content Property

This property appends the specified content to the content generated by other matching CSS rules of lesser

specificity. Unlike the content property, where only the value from the rule with the greatest specificity is taken

into account, the -oxy-append-content property adds content to that generated by the lesser specificity rules

into a new compound content.

Example:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2456

element:before{

 content: "Hello";

}

element:before{

 -oxy-append-content: " World!";

}

The content shown before the element will be Hello World!.

-oxy-prepend-content Property

Prepends the specified content to the content generated by other matching CSS rules of lesser specificity.

Unlike the content property, where only the value from the rule with the greatest specificity is taken into

account, the -oxy-prepend-content prepends content to that generated by the lesser specificity rules into a

new compound content.

Example:

element:before{

 content: "Hello!";

}

element:before{

 -oxy-prepend-content: "said: ";

}

element:before{

 -oxy-prepend-content: "I ";

}

The content shown before the element will be I said: Hello!.

Collapse Text: -oxy-collapse-text Property Value
Used to collapse the content of an element.

Oxygen XML Editor allows you to set the value of the visibility property to -oxy-collapse-text, meaning that

the content of that element is not rendered. If an element is marked as -oxy-collapse-text you are not able

to position the cursor inside it and edit it. The purpose of -oxy-collapse-text is to make the text value of an

element editable only through a form control.

Example: visibility Property

The text value of an XML element will be edited using a text field form control. In this case, the text content is

not directly present in the Author visual editing mode:

title{

 content: oxy_textfield(edit, '#text', columns, 40);

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2457

 visibility:-oxy-collapse-text;

}

Cyrillic Counters: -oxy-lower-cyrillic Property Values
Used to style lists with Cyrillic counters.

Oxygen XML Editor allows you to set the value of the list-style-type property to Cyrillic counters. For

example, -oxy-lower-cyrillic-ru, -oxy-lower-cyrillic-uk, -oxy-upper-cyrillic-ru or -oxy-upper-cyrillic-

uk, meaning that you can have Russian and Ukrainian counters.

Example: Cyrillic Counters

Counting list items with Cyrillic symbols:

li{

 display:list-item;

 list-style-type:-oxy-lower-cyrillic-ru;

}

Display Tag Markers: -oxy-display-tags Property
Used to specify whether or not tag markers are displayed.

Oxygen XML Editor allows you to choose whether tag markers of an element should never be presented

or the current display mode should be respected. This is especially useful when working with :before and

:after pseudo-elements, in which case the element range is already visually defined so the tag markers are

redundant.

The property is named -oxy-display-tags, with the following possible values:

• none - Tags markers will not be presented regardless of the current display mode (on page 607).

• default - The tag markers will be created depending on the current display mode (on page 607).

• inherit - The value of the property is inherited from an ancestor element.

-oxy-display-tags

 Value: none | default | inherit

 Initial: default

 Applies to: all nodes(comments, elements, CDATA, etc.)

 Inherited: false

 Media: all

Example: -oxy-display-tags Property

In this example, the para element from DocBook uses a :before and :after element and its tag markers will

not be visible.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2458

para:before{

 content: "{";

}

para:after{

 content: "}";

}

para{

 -oxy-display-tags: none;

 display:block;

 margin: 0.5em 0;

}

Editable: -oxy-editable Property
Used to inhibit editing the content of a particular element.

If you want to inhibit the editing of the content of a certain element, you can set the -oxy-editable CSS

property to false (the deprecated editable property is also supported).

Floating Toolbar: -oxy-floating-toolbar Property
Used to display a configured floating toolbar in Author mode.

The -oxy-floating-toolbar property is used to configure and display a floating toolbar in Author mode. It

accepts a space-separated list of the following functions:

• oxy_button

• oxy_buttonGroup

• oxy_textfield

• oxy_combobox

• oxy_label

Note:

The "|" text value can be used to add a separator between elements of the toolbar.

It must be used in conjunction with the -oxy-selected and -oxy-selection-inside pseudo-classes. The -oxy-

selected pseudo-class is automatically set on an element that is fully selected and the -oxy-selection-inside

pseudo-class is automatically set on an element that has a selection inside.

Example 1:

p:-oxy-selection-inside {

 -oxy-floating-toolbar:

 oxy_button(actionID, 'bold')

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2459

 oxy_button(actionID, 'italic')

 oxy_button(actionID, 'underline')

}

This results in a floating toolbar that contains bold, italic, and underline actions presented in Author mode

every time text inside a paragraph element is selected.

Example 2:

p:-oxy-selected {

 -oxy-floating-toolbar:

 oxy_label(text, "Platform: ")

 oxy_combobox(

 edit, '@platform',

 editable, false,

 values, 'windows, mac, linux',

 labels, 'Windows, MacOS, Linux'

)

}

This results in a floating toolbar that contains a Platform: label and a drop-down menu used to change the

value of the @platform profiling attribute. This is presented in Author mode every time a paragraph element is

fully selected.

Example 3:

[conref]:-oxy-selected, [conkeyref]:-oxy-selected {

 -oxy-floating-toolbar:

 oxy_button(actionID, 'add_edit_content_reference')

 oxy_button(actionID, 'remove_content_reference')

 "|"

 oxy_button(actionID, 'conref.replace')

}

This results in a floating toolbar that contains Edit Content Reference, Remove Content Reference, and

Replace Reference with Content actions presented in Author mode every time an element with a @conref or

@conkeyref attribute is fully selected.

Folding Elements: -oxy-foldable / -oxy-folded / -oxy-not-foldable-child
Used to configure whether or not the content of an element can be expanded or collapsed.

Oxygen XML Editor allows you to declare some elements to be foldable (on page 3297). This is especially

useful when working with large documents organized in logical blocks, editing a large DocBook article or book,

for instance. Oxygen XML Editor marks the foldable content with a small blue triangle. When you hover with

your mouse pointer over this marker, a dotted line borders the collapsible content. The following actions are

available in the Folding submenu of the contextual menu:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2460

Toggle Fold

Toggles the state of the current fold.

Collapse Other Folds

Folds all the elements except the current element.

Collapse Child Folds

Folds the elements indented with one level inside the current element.

Expand Child Folds

Unfolds all child elements of the currently selected element.

Expand All

Unfolds all elements in the current document.

-oxy-foldable Property

This property defines whether or not the content for an element can be folded by the user. To define that an

element's content can be folded, use the -oxy-foldable:true property.

-oxy-folded Property

This property is used in conjunction with the -oxy-foldable property and it defines the elements that are

folded by default. To define an element to be folded by default, use the -oxy-folded:true property.

Note:

Since the -oxy-folded property works in conjunction with the -oxy-foldable property, the -oxy-folded

property is ignored if the -oxy-foldable property is not set on the same element.

-oxy-not-foldable-child Property

When collapsing an element, it is useful to keep some of its content visible (for example, a short description

of the collapsed region). The -oxy-not-foldable-child property is used to identify the child element that is

kept visible. As its value, it accepts an element name or a list of comma-separated element names. The first

occurrence of each child element specified in the list of element names will be identified as the not-foldable

child and displayed. If the element is marked as foldable (-oxy-foldable:true;) but it does not have the -oxy-

not-foldable-child property or none of the specified non-foldable children exist, then the element is still

foldable. In this case, the element kept visible when folded will be the before pseudo-element.

Example: Folding DocBook Elements

All the elements below can have a <title> child element and are considered to be logical sections. You mark

them as being foldable leaving the <title> element visible.

set,

book,

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2461

part,

reference,

chapter,

preface,

article,

sect1,

sect2,

sect3,

sect4,

section,

appendix,

figure,

example,

table {

 -oxy-foldable:true;

 -oxy-not-foldable-child: title;

}

Note:

The foldable, folded, and not-foldable-child properties are deprecated and the equivalent with the

-oxy prefix should be used instead.

Links: -oxy-link Property
Used to specify that a particular element should be considered a link.

Oxygen XML Editor allows you to declare some elements to be links. This is especially useful when working

with many documents that reference each other. The links allow for an easy way to get from one document to

another. Clicking the link marker will open the referenced resource in an editor.

To define the element that should be considered a link, you must use the -oxy-link property on the :before or

:after pseudo-element. The value of the property indicates the location of the linked resource. Since links are

usually indicated by the value of an attribute in most cases it will have a value similar to attr(href)

Example: DocBook Link Elements

The following elements are defined to be links on the :before pseudo-element and their values are defined by

the value of an attribute.

*[href]:before{

 -oxy-link:attr(href);

 content: "Click " attr(href) " for opening" ;

}

ulink[url]:before{

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2462

 -oxy-link:attr(url);

 content: "Click to open: " attr(url);

}

olink[targetdoc]:before{

 -oxy-link: attr(targetdoc);

 content: "Click to open: " attr(targetdoc);

}

Link Navigation: -oxy-link-activation-trigger Property
Used to specify how hyperlinks are handled in Author mode.

The -oxy-link-activation-trigger property is used to specify when hyperlinks are clickable in Author mode.

This is helpful for those who are used to the hyperlink activation procedure in other applications (for example,

apps that use Ctrl+Click (Command+Click on macOS) to activate hyperlinks.

The possible values are:

• click - Hyperlinks are opened when a user mouse-clicks the link icon or text.

• modifier-click - Hyperlinks are opened when a user holds down Ctrl (Command on macOS) and mouse-

clicks the link icon or text.

• auto - The hyperlink strategy is determined automatically, depending on the context.

• inherit - The value is inherited from the parent element.

Morph Elements: -oxy-morph Property Value
Used to specify that an element should be displayed inline.

Oxygen XML Editor allows you to specify that an element has an -oxy-morph display type (deprecated morph

property is also supported), meaning that the element is inline (on page 3297) if all its children are inline.

Example: -oxy-morph Property Value

Suppose you have a wrapper XML element that allows users to set a number of attributes on all sub-elements.

This element should have an inline (on page 3297) or block (on page 3294) behavior, depending on the

behavior of its child elements:

wrapper{

 display:-oxy-morph;

}

Placeholders for Empty Elements: -oxy-placeholder-content Property
Used to configure placeholders for empty elements.

Oxygen XML Editor displays the element name as pseudo-content for empty elements if the Show

placeholders for empty elements option (on page 185) is selected in the Author preferences page and there

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2463

is no before or after content set in the CSS for this type of element. There are two CSS properties that can be

used to control the placeholders (-oxy-placeholder-content and -oxy-show-placeholder).

-oxy-placeholder-content CSS Property

To control the displayed pseudo-content for empty elements, you can use the -oxy-placeholder-content CSS

property.

The following example would change the <keyword> element to be displayed as key:

keyword{

 -oxy-placeholder-content:"key";

}

Note:

This CSS property accepts the ${i18n(key)} (on page 341) localization editor variable, as in the

following example:

-oxy-placeholder-content:"${i18n(id)}";

-oxy-show-placeholder CSS Property

The -oxy-show-placeholder property allows you to decide whether or not the placeholder will be shown. The

possible values are:

• always - Always display placeholders.

• default - Always display placeholders if before or after content is not set in the CSS.

• inherit - The placeholders are displayed according to the Show placeholders for empty elements option

(on page 185) (if before and after content is not declared).

• no - Never display placeholders.

Note:

Deprecated properties show-placeholder and placeholder-content are also supported.

Related information

Using Placeholders in Document Templates (on page 388)

Style Elements: -oxy-style Property
Used to configure the style of particular elements.

Oxygen XML Editor allows you to specify the style for an XML element. This is helpful if you want to embed

CSS styling to XML elements directly in the XML file you are editing without having to edit the CSS files that

are normally attached to the XML files. The property should have an XPath function for the value.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2464

Example: -oxy-style Property

The following code snippet should be added in the CSS file that renders the files for your framework

customization:

*{

 -oxy-style:attr(style);

}

Suppose you want to display the <title> elements in your XML document in the color red. You could add the

following snippet directly in the XML document:

<title style="color:red;">My Memoirs</title>

Tip:

The @style attribute is supported by default in HTML5 documents.

Tags Color: -oxy-tags-color Property
Used to configure the background or foreground colors of tags.

By default, Oxygen XML Editor does not display element tags. You can use the Partial Tags button from the

Author toolbar to control the amount of displayed markup (on page 607).

To configure the default background and foreground colors of the tags, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Editor > Edit modes > Author, and set the desired colors in the

Tags background color (on page 187) and Tags foreground color (on page 187) options.

If you want to be more specific and configure the colors using a CSS, the -oxy-tags-background-color and

-oxy-tags-color properties allow you to control the background and foreground colors for any particular XML

element.

Example:

para {

 -oxy-tags-color:white;

 -oxy-tags-background-color:green;

}

title {

 -oxy-tags-color:yellow;

 -oxy-tags-background-color:black;

}

Custom CSS Functions

Oxygen XML Editor provides a wide range of custom CSS extension functions that can be used to customize

the visual Author editing mode.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2465

Arithmetic Functions
Arithmetic Functions that are supported.

You can use any of the arithmetic functions implemented in the java.lang.Math class (https://

docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Math.html).

In addition, the following functions are available:

Syntax Details

oxy_add (param1, ... , paramN, 'returnType') Adds the values of all parameters from param1 to

paramN.

oxy_subtract (param1, param2, ... , paramN,

'returnType')

Subtracts the values of parameters param2 to paramN

from param1.

oxy_multiply (param1, ... , paramN, 'return

Type')

Multiplies the values of parameters from param1 to

paramN.

oxy_divide (param1, param2, 'returnType') Performs the division of param1 to param2.

oxy_modulo (param1, param2, 'returnType') Returns the reminder of the division of param1 to param2.

Note:

The returnType can be 'integer', 'number', or any of the supported CSS measuring types.

Example: oxy_multiply Function

If you have an image with width and height specified on it, this will compute the number of pixels on it:

image:before{

 content: "Number of pixels: " oxy_multiply(attr(width), attr(height), "px");

}

Actions: oxy_action() Function
This function allows you to define actions directly in the CSS, rather than referencing them from the

associated framework.

The oxy_action() function is frequently used from the oxy_button() function (on page 2490) that provides

a graphical button for invoking a custom action. The action is normally defined in the associated Document

Type (framework configuration) but the oxy_action() function allows you to define it directly in the CSS instead

of the framework configuration.

The arguments received by the oxy_action() function are a list of properties that define an action. The

following properties are supported:

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Math.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Math.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2466

• name - The name of the action. It will be displayed as the label for the button or menu item.

• description (optional) - A short description with details about the result of the action.

• icon (optional) - A path relative to the CSS pointing to an image (the icon for the action). The path can

point to resources that are packed in Oxygen XML Editor (oxygen.jar) by starting its value with / (for

example, /images/Remove16.png). It can also be expressed using an editor variable (on page 333).

• operation - The name of the Java class implementing the ro.sync.ecss.extensions.api.AuthorOperation

interface. There is also a variety of predefined operations (on page 2261) that can be used.

Note:

If the name of the operation specified in the CSS is not qualified (has no Java package name),

then it is considered to be one of the built-in Oxygen XML Editor operations (on page 2261). If

the class is not found in this package, then it will be loaded using the specified name.

• arg-<string> - All arguments with the arg- prefix are passed to the operation (the string that follows the

arg- prefix is passed). The argument value supports editor variables (on page 333).

• ID - (optional) - The ID of the action from the framework. If this is specified, all others parameters are

disregarded.

Example: oxy_action function inside an oxy_button form control (on page 2490):

oxy_button(

 action, oxy_action(

 name, 'Insert',

 description, 'Insert an element after the current one',

 icon, url('insert.png'),

 operation,

 'InsertFragmentOperation',

 arg-fragment, '<element>${caret}</element>',

 arg-insertLocation, '.',

 arg-insertPosition, 'After'),

 showIcon, true)

Example: oxy_action Function

You can also create a button form control directly from an oxy_action function:

oxy_action(

 name, 'Insert',

 description, 'Insert an element after the current one',

 operation, 'InsertFragmentOperation',

 arg-fragment, '<element>${caret}</element>',

 arg-insertLocation, '.',

 arg-insertPosition, 'After')

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2467

Tip:

A code template is available to make it easy to add the oxy_action function with the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_action code

template.

Related information

Button Form Control (on page 2490)

Action Lists: oxy_action_list() Function
This function allows you to define a sequential list of actions directly in the CSS, rather than referencing them

from the associated framework.

The oxy_action_list() function is used from the oxy_buttonGroup() function (on page 2493) that provides a

graphical group of buttons with multiple custom actions. These actions are normally defined in the associated

Document Type (framework configuration) but the oxy_action_list() function allows you to define the actions

directly in the CSS instead of the framework configuration.

The arguments received by the oxy_action_list() function are a list of actions (executed sequentially) that

are defined with the oxy_action() function (on page 2465). The following properties are supported in the

oxy_action() function:

• name - The name of the action. The name of the first defined action will be displayed as the label for

the button or menu item.

• description (optional) - A short description with details about the result of the action. The description of

the first defined action will be displayed in a tooltip.

• icon (optional) - A path relative to the CSS pointing to an image (the icon for the action). The path can

point to resources that are packed in Oxygen XML Editor (oxygen.jar) by starting its value with / (for

example, /images/Remove16.png). It can also be expressed using an editor variable (on page 333).

• operation - The name of the Java class implementing the ro.sync.ecss.extensions.api.AuthorOperation

interface. There is also a variety of predefined operations (on page 2261) that can be used.

Note:

If the name of the operation specified in the CSS is not qualified (has no Java package name),

then it is considered to be one of the built-in Oxygen XML Editor operations (on page 2261). If

the class is not found in this package, then it will be loaded using the specified name.

• arg-<string> - All arguments with the arg- prefix are passed to the operation (the string that follows the

arg- prefix is passed). The argument value supports editor variables (on page 333).

• ID - (optional) - The ID of the action from the framework. If this is specified, all others parameters are

disregarded.

Example: oxy_action_list Function

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2468

p:after {

 content: oxy_buttonGroup(

 label, 'A group of actions',

 icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),

 actions,

 oxy_action_list(

 oxy_action(

 name, 'Insert a new paragraph',

 description, 'Insert an element after the current one',

 operation, 'InsertFragmentOperation',

 arg-fragment, '<p></p>',

 arg-insertLocation, '.',

 arg-insertPosition, 'After'

),

 oxy_action(

 name, 'Delete',

 description, 'Deletes the current element',

 operation, 'DeleteElementOperation'

)

)

)

}

Tip:

A code template is available to make it easy to add the oxy_action_list function with the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_action_list

code template.

Related information

Actions: oxy_action() Function (on page 2465)

Button Group Form Control (on page 2493)

Attributes Concatenation: oxy_attributes() Function
This function concatenates the attributes for an element and returns the serialization.

Syntax:

oxy_attributes ()

Example: oxy_attributes Function

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2469

element{

 content:oxy_attributes();

}

For instance, if you have the following XML fragment: <element att1="x" xmlns:a="2"

x="""/>, the CSS function will display:

att1="x" xmlns:a="2" x="""

Base URL: oxy_base-uri() Function
This function evaluates the base URL in the context of the current node.

It does not have any arguments and takes into account the xml:base context of the current node. See the XML

Base specification for more details.

Example: oxy_base-uri Function

Suppose you have some image references but you want to see other thumbnail images that reside in the same

folder (in Author mode):

image[href]{

 content:oxy_url(oxy_base-uri(), oxy_replace(attr(href),

 '.jpeg', 'Thumbnail.jpeg'));

}

Capitalization: oxy_capitalize() Function
This function capitalizes the first letter of the text received as argument.

Syntax:

oxy_capitalize (text)

text

The text in which the first letter will be capitalized.

Example: oxy_capitalize Function

*:before{

 content: oxy_capitalize(oxy_name()) ": ";

}

This would insert the capitalized qualified name as static text content before the element.

Compound Actions: oxy_compound_action() Function
This function allows you to define multiple actions that will be executed sequentially.

http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2470

The oxy_compound_action() function is used from the oxy_button() form control function (on page 2490) or

the oxy_buttonGroup() form control function (on page 2493).

The arguments received by the oxy_compound_action() function are a list of actions (executed sequentially)

that are defined with the oxy_action() function (on page 2465).

You can use three optional properties (name, description, icon) in the oxy_compound_action() function to

provide labels for the compound action. If you do not specify these three properties, those same properties

defined in the first oxy_action function will be used for the labels.

• name - The name of the action. It will be displayed as the label for the action. If you want to reuse the

name of an action already defined in your framework, you can use the oxy_getActionName function.

• description - A short description with details about the result of the action. It will be displayed in a

tooltip when hovering over the button linked to this action. If you want to reuse the description of an

action already defined in your framework, you can use the oxy_getActionDescription function.

• icon - A path relative to the CSS pointing to an image (the icon for the action). The path can point

to resources that are packed in Oxygen XML Editor (oxygen.jar) by starting its value with / (for

example, /images/Remove16.png). It can also be expressed as an editor variable (on page

333). If you want to reuse the icon of an action already defined in your framework, you can use the

oxy_getActionIcon function.

The oxy_getActionName, oxy_getActionDescription, and oxy_getActionIcon functions accept the following 2

parameters:

• framework.defined.action.id (required) - The ID of an action defined in the current framework that gets

the name, description, or icon for that action.

• fallback (optional) - A fallback value in case the ID value provided in the framework.defined.action.id

parameter is not found.

Example: oxy_compound_action Function

oxy_button(

 action,

 oxy_compound_action(

 name, oxy_getActionName('framework.id', 'Fallback'),

 description, 'Inserts a paragraph and uses form controls to edit its @audience attribute',

 icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),

 oxy_action(

 name, 'Insert',

 description, 'Insert an element after the current one',

 operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',

 icon, url('insert.png'),

 arg-fragment, "<p audience=''></p>",

 arg-insertLocation, '.',

 arg-insertPosition, 'After'

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2471

),

 oxy_action(

 name, 'Activate edit mode',

 description, 'Sets a pseudo class that will activate a CSS rule that will present a text field form control for

 the @audience attribute',

 operation, 'SetPseudoClassOperation',

 arg-name, 'edit-mode-on',

 arg-elementLocation, '.'

)

)

, showIcon, true)

Tip:

A code template is available to make it easy to add the oxy_compound_action function with the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_action_list

code template.

Related information

Actions: oxy_action() Function (on page 2465)

Button Form Control (on page 2490)

Concatenation: oxy_concat() Function
This function concatenates the received string arguments.

Syntax:

oxy_concat (str_1 , str_2)

str_1 … str_n

The string arguments to be concatenated.

Example: oxy_concat Function

If an XML element has a @padding-left attribute:

 <p padding-left="20">...

and you want to add a padding before it with that specific amount specified in the attribute

value:

*[padding-left]{

 padding-left:oxy_concat(attr(padding-left), "px");

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2472

Get Text: oxy_getSomeText(text, length) Function
This function allows you to truncate a long string and to set a maximum number of displayed characters.

Syntax:

oxy_getSomeText (text , length , endsWithPoints)

text

Displays the actual text.

length

Sets the maximum number of characters that are displayed.

endsWithPoints

Specifies if the truncated text ends with ellipsis.

Example: oxy_getSomeText Function

If an attribute value is very large, you can trim its content before it is displayed as static content:

*[longdesc]:before{

 content: oxy_getSomeText(attr(longdesc), 200);

}

Indexing: oxy_indexof() Function
This function is used to define searches.

The oxy_indexof() function has two signatures:

Syntax 1:

oxy_indexof (text , toFind)

Returns the index within text string of the first occurrence of the toFind substring.

text

Text to search in.

toFind

The searched substring.

Syntax 2:

oxy_indexof (text , toFind , fromOffset)

Returns the index within text string of the first occurrence of the toFind substring. The search

starts from fromOffset index.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2473

text

Text to search in.

toFind

The searched substring.

fromOffset

The index to start the search from.

Example: oxy_indexof Function

oxy_indexof('abcd', 'bc') returns 1.

oxy_indexof('abcdbc', 'bc', 2) returns 4.

If you only want to display part of an attribute value, for instance the part that comes before an Appendix

string:

image[longdesc]{

 content: oxy_substring(attr(longdesc), 0,

 oxy_indexof(attr(longdesc), "Appendix"));

}

Label: oxy_label() Function
This function can be used in conjunction with the CSS content property to change the style of generated text.

The arguments of the function are property name - property value pairs. The following properties are

supported:

• text - This property specifies the built-in form control you are using.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• background-color - Specifies the background color of the form control. If the value of the background-

color property is inherit, the form control has the same color as the element that was used to insert it.

• styles - Specifies styles for the form control. The values of this property are a set of CSS properties:

◦ font-weight, font-size, font-style, font

◦ text-align, text-decoration

◦ width

◦ color, background-color

◦ link - For more information about this property, see the link property section (on page 2461).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2474

element{

 content: oxy_label(text, "Label Text", styles,

 "font-size:2em;color:red;link:attr(href);");

}

Instead of using the values of the styles property individually, you can define them in a CSS file as in

the following example:

* {

 width: 40%;

 text-align:center;

}

Then refer that file with an @import directive, as follows:

elem {

 content: oxy_label(text, 'my_label', styles, "@import 'labels.css';")

}

CAUTION:

Extensive use of the styles property may lead to performance issues.

If the text from an oxy_label() function contains new lines, for example oxy_label(text, 'LINE1\A LINE2',

width, 100px), the text is split in two. Each of the two new lines has the specified width of 100 pixels.

Note:

The text is split after \A, which represents a new line character.

You can use the oxy_label() function together with a built-in form control (on page 2484) function to create a

form control based layouts.

Example: oxy_label Function

An example of a use case is if you have multiple attributes on a single element and you want use form

controls on separate lines and style them differently. Consider the following CSS rule:

person:before {

 content: "Name:*" oxy_textfield(edit, '@name', columns, 20)

 "\A Address:" oxy_textfield(edit, '@address', columns, 20)

}

Suppose you only want the Name label to be set to bold, while you want both labels aligned to look like a table

(the first column with labels and the second with a text field). To achieve this, you can use the oxy_label() to

style each label differently.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2475

person:before {

 content: oxy_label(text, "Name:*", styles, "font-weight:bold;width:200px")

 oxy_textfield(edit, '@name', columns, 20) "\A "

 oxy_label(text, "Address:", styles, "width:200px")

 oxy_textfield(edit, '@address', columns, 20)

}

Tip:

A code template is available to make it easy to add the oxy_label function with the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_label code

template.

Last Occurrence: oxy_lastindexof() Function
This function is used to define last occurrence searches.

The oxy_lastindexof() function has two signatures:

Syntax 1:

oxy_lastindexof (text , toFind)

Returns the index within text string of the rightmost occurrence of the toFind substring.

text

Text to search in.

toFind

The searched substring.

Syntax 2:

oxy_lastindexof (text , toFind , fromOffset)

The search starts from fromOffset index. Returns the index within text string of the last

occurrence of the toFind substring, searching backwards starting from the fromOffset index.

text

Text to search in.

toFind

The searched substring.

fromOffset

The index to start the search backwards from.

Example: oxy_lastindexof Function

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2476

oxy_lastindexof('abcdbc', 'bc') returns 4.

oxy_lastindexof('abcdbccdbc', 'bc', 2) returns 1.

If you only want to display part of an attribute value, for instance the part that comes before an Appendix

string:

image[longdesc]{

 content: oxy_substring(attr(longdesc), 0,

 oxy_lastindexof(attr(longdesc), "Appendix"));

}

Link Text: oxy_link-text() Function
You can use this function on the CSS content property to obtain a text description from the source of a

reference.

By default, the oxy_link-text() function resolves DITA and DocBook references. For further details about how

you can also extend this functionality to other frameworks (on page 3297), go to Configuring an Extensions

Bundle (on page 2343).

DITA Support

For DITA, the oxy_link-text() function resolves the <xref> element and the elements that have a @keyref

attribute. The text description is the same as the one presented in the final output for those elements. If you

use this function for a <topicref> element that has the @navtitle and @locktitle attributes set, the function

returns the value of the @navtitle attribute.

DocBook Support

For DocBook, the oxy_link-text() function resolves the <xref> element that defines a link in the same

document. The text description is the same as the one presented in the final output for those elements.

Example: oxy_link-text Function

For the following XML and associated CSS fragments the oxy_link-text() function is resolved to the value of

the @xreflabel attribute.

<para><code id="para.id" xreflabel="The reference label">my code</code>

 </para>

<para><xref linkend="para.id"/></para>

xref {

 content: oxy_link-text();

}

If the text from the target cannot be extracted (for instance, if the @href is not valid), you can use an optional

argument to display fallback text.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2477

*[class~="map/topicref"]:before{

 content: oxy_link-text("Cannot find the topic reference");

 link:attr(href);

}

Local Name: oxy_local-name() Function
This function evaluates the local name of the current node.

It does not have any arguments.

Example: oxy_local-name Function

To insert the local name as static text content before the element, use this CSS selector:

*:before{

 content: oxy_local-name() ": ";

}

Lowercase: oxy_lowercase() Function
This function transforms the text received as argument to lower case.

Syntax:

oxy_lowercase (text)

text

The text to be lower cased.

Example: oxy_lowercase Function

To insert a lower-cased qualified name as static text content before the element, use this CSS

selector:

*:before{

 content: oxy_lowercase(oxy_name()) ": ";

}

Name: oxy_name() Function
This function evaluates the qualified name of the current node.

It does not have any arguments.

Example: oxy_name Function

To insert a qualified name as static text content before the element, use this CSS selector:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2478

*:before{

 content: oxy_name() ": ";

}

Parent URL: oxy_parent-url() Function
This function evaluates the parent URL of a URL received as string.

Syntax:

oxy_parent-url (URL)

URL

The URL as string.

Replace: oxy_replace() Function
This function is used to replace a string of text.

The oxy_replace() function has two signatures:

Syntax 1:

oxy_replace (text , target , replacement)

This function replaces each substring of the text that matches the literal target string with the

specified literal replacement string.

text

The text in which the replace will occur.

target

The target string to be replaced.

replacement

The string replacement.

Example: Suppose that you have image references but you want to see other thumbnail images

that reside in the same folder in the visual Author editing mode:

image[href]{

 content:oxy_url(oxy_base-uri(), oxy_replace(attr(href),

 '.jpeg', 'Thumbnail.jpeg'));

}

Syntax 2:

oxy_replace (text , target , replacement , isRegExp)

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2479

This function replaces each substring of the text that matches the target string with the

specified replacement string.

text

The text in which the replace will occur.

target

The target string to be replaced.

replacement

The string replacement.

isRegExp

If true the target and replacement arguments are considered regular expressions, if

false they are considered literal strings.

Example: Suppose that you want to use a regular expression to replace all space sequences with

an underscore:

image[title]{

 content:oxy_replace(attr(title), "\\s+", "_", true)

}

Substring of Text: oxy_substring() Function
This function is used to return a string of text.

The oxy_substring() function has two signatures:

Syntax 1:

oxy_substring (text , startOffset)

Returns a new string that is a substring of the original text string. It begins with the character at

the specified index and extends to the end of text string.

text

The original string.

startOffset

The beginning index, inclusive

Syntax 2:

substring (text , startOffset , endOffset)

Returns a new string that is a substring of the original text string. The substring begins at the

specified startOffset and extends to the character at index endOffset - 1.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2480

text

The original string.

startOffset

The beginning index, inclusive.

endOffset

The ending index, exclusive.

Example: oxy_substring Function

oxy_substring('abcd', 1) returns the string 'bcd'.

oxy_substring('abcd', 4) returns an empty string.

oxy_substring('abcd', 1, 3) returns the string 'bc'.

If you only want to display part of an attribute value, for instance the part that comes before an Appendix

string:

image[longdesc]{

 content: oxy_substring(attr(longdesc), 0,

 oxy_indexof(attr(longdesc), "Appendix"));

}

Unescape URL Value: oxy_unescapeURLValue(string) Function
This function returns the unescaped value of a URL-like string given as a parameter.

For example, if the value contains %20 it will be converted to a simple space character.

Example: oxy_unescapeURLValue Function

oxy_unescapeURLValue("http://www.example.com/a%20simple%20example.html") returns the following value:

http://www.example.com/a simple example.html

Unparsed Entity URI: oxy_unparsed-entity-uri() Function
This function returns the URI value of an unparsed entity name.

Syntax:

oxy_unparsed-entity-uri (unparsedEntityName)

unparsedEntityName

The name of an unparsed entity defined in the DTD.

This function can be useful to display images that are referenced with unparsed entity names.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2481

Example: oxy_unparsed-entity-uri Function

CSS for displaying the image in Author for an imagedata with entityref to an unparsed entity:

imagedata[entityref]{

content: oxy_url(oxy_unparsed-entity-uri(attr(entityref)));

}

Uppercase: oxy_uppercase() Function
This function transforms the text received as argument to upper case.

Syntax:

oxy_uppercase (text)

text

The text to be capitalized.

Example: oxy_uppercase Function

To insert the upper-cased qualified name as static text content before the element, use this CSS

selector:

*:before{

 content: oxy_uppercase(oxy_name()) ": ";

}

URL: oxy_url() Function
This function extends the standard CSS url() function by allowing you to specify additional relative path

components (parameters loc_1 to loc_n).

Oxygen XML Editor uses all these parameters to construct an absolute location. Note that any of the

parameters that are passed to the function can be either relative or absolute locations. These locations can be

expressed as String objects, functions, or editor variables (on page 333) (built-in or custom).

Syntax:

oxy_url (base_location , loc_1 , loc_2)

base_location

String representing the base location. If not absolute, will be solved relative to the

CSS file URL.

loc_1 ... loc_n (optional)

Strings representing relative location path components.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2482

Examples: oxy_url Function

The following function receives String objects as input parameters:

oxy_url('http://www.oxygenxml.com/css/test.css', '../dir1/',

 'dir2/dir3/', '../../dir4/dir5/test.xml')

and returns:

'http://www.oxygenxml.com/dir1/dir4/dir5/test.xml'

The following function receives the result of the evaluation of two other functions as parameters

(for instance, this is useful if you have image references and you want to see thumbnail images

stored in the same folder):

image[href]{

 content:oxy_url(oxy_base-uri(), oxy_replace(attr(href),

 '.jpeg', 'Thumbnail.jpeg'));

}

The following function uses an editor variable (on page 333) as the first parameter to point to

the Oxygen XML Editor installation location:

image[href] {

 content: oxy_url('${oxygenHome}', 'logo.png');

}

Related information

Editor Variables (on page 333)

XPath: oxy_xpath() Function
This function is used to evaluate XPath expressions.

Syntax:

oxy_xpath (XPathExpression [, processChangeMarkers , value] [, evaluate , value])

It evaluates the given XPath 3.1 expression using the latest Saxon XSLT processor bundled with

the application and returns the result. XPath expressions that depend on the cursor location can

be successfully evaluated only when the cursor is located in the actual XML content.

The parameters of the function are as follows:

• A required expression parameter, which is the XPath expression to be evaluated.

• An optional processChangeMarkers parameter, followed by its value, which can be either

true or false (default value). When you set the parameter to true, the function returns

the resulting text with all the change markers accepted (delete changes are removed and

insert changes are preserved).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2483

• An optional evaluate parameter, followed by its value, which can be one of the following:

◦ dynamic - Evaluates the XPath each time there is a change in the document. This is

the default evaluation value.

Important:

If the edited XML document is large, using dynamic XPath evaluation may

induce performance issues while editing the content.

◦ dynamic-once - Separately evaluates the XPath for each node that matches the

CSS selector. It will not re-evaluate the expression when changes are made to other

nodes in the document. This will lead to improved performance, but the displayed

content may not be updated to reflect the actual document content.

◦ static - If the same XPath is evaluated on several nodes, the result for the first

evaluation will be used for all other matches. Use this only if the XPath does not

contain a relationship with the node on which the CSS property is evaluated. This

will lead to improved performance, but the static displayed content may not be

updated to reflect the actual document content.

When XPath expressions are evaluated, the entities and <xi:include> elements are replaced with the actual

content that is referenced. For example, consider the following code snippet:

<article>

 <xi:include href="section1.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>

</article>

where section1.xml contains the following content:

<section>

 <p>Referenced content</p>

</section>

The XPath expression will be executed over the actual content in the section1.xml file.

Example: oxy_xpath Function

The following example counts the number of words from a paragraph (including tracked changes (on page

3301)) and displays the result in front of it:

para:before{

 content:

 concat("|Number of words:",

 oxy_xpath(

 "count(tokenize(normalize-space(string-join(text(), '')), ' '))",

 processChangeMarkers,

 true),

 "| ");

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2484

The oxy_xpath() function supports editor variables (on page 333), as in the following example:

* {

 content:

 oxy_concat("Result: ",

 oxy_xpath('count(collection("${cfdu}/?select=*.xml"))')

);

}

You can split the XPath expression on multiple lines by adding a backslash before each new line:

* {

 content: oxy_xpath('count(\

 collection(\

 "${cfdu}/?select=*.xml"))')

}

Form Controls

Oxygen XML Editor provides a variety of built-in form controls that allow users to interact with documents with

familiar user interface objects. These form controls are defined in CSS stylesheets that are used to render

Author mode. For customization purposes, Oxygen XML Editor also supports custom form controls in Java

(on page 2516).

How to Add a Built-in Form Control in Author Mode

Form controls can be added by defining them in the CSS associated with the XML document.

1. Create a custom CSS file.

2. Define the form control in the CSS using its dedicated CSS function. For example, to add a date picker

form control (on page 2501), its dedicated function is oxy_datePicker.

3. Associate the CSS file with the XML document in one of the following ways:

◦ If you have a framework (document type) already created for this XML vocabulary, create a CSS

in the framework directory and associate the CSS with the framework (on page 2254). This

approach is recommended if you intend on sharing the customization with others.

◦ If you do not have a framework, you can associate the CSS to the XML document through a

Processing Instruction (on page 2417).

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2485

Related Information:

Custom CSS Functions (on page 2464)

Label: oxy_label() Function (on page 2473)

Dynamically Add Form Controls Using a Styles Filter (on page 2608)

Editing Processing Instructions Using Form Controls (on page 2518)

Audio File Player Form Control
The oxy_audio built-in form control is used for providing a mechanism to play audio clips.

The oxy_audio form control supports the following properties:

• href - The absolute or relative location of a resource. This property is mandatory. Relative values are

resolved relative to the CSS. If you have media resources relative to the XML document, you can specify

their paths like this:

oxy_audio(href, oxy_url(oxy_base-uri(), 'ex.mp3')), width, 400px)

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units.

Example: oxy_audio Form Control

object {

 content:

 oxy_audio(

 href, 'resources/audio.mp3',

 width, 200px),

}

Tip:

To insert a sample of the oxy_audio form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_audio code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2486

Related information

Custom CSS Functions (on page 2464)

URL: oxy_url() Function (on page 2481)

Browser Form Control
The oxy_browser built-in form control is used for providing a mechanism to integrate HTML frames or interact

with SVG documents directly in the Author mode editor. It can also be used to load HTML that executes

JavaScript and from that JavaScript you can access the Oxygen XML Editor workspace.

The oxy_browser form control supports the following properties:

• href - The absolute or relative location of a resource. This property is mandatory. Relative values are

resolved relative to the CSS. If you have media resources relative to the XML document, you can specify

their paths like this:

oxy_browser(href, oxy_url(oxy_base-uri(), 'ex.svg')), width, 50%, height, 50%)

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units.

• height - Specifies the height of the form control area using relative (em, ex), absolute (in, cm, mm, pt, pc,

px), and percentage (followed by the % character) length units.

Example: oxy_browser Form Control

object {

 content:

 oxy_browser(

 href, 'http://example.page',

 width, 600px,

 height, 400px);

}

Tip:

To insert a sample of the oxy_browser form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_browser code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Interacting with the Oxygen XML Editor Workspace

The oxy_browser form control also provides the possibility of creating custom form control without having to

use the Java-based API. You can use the oxy_browser form control to load HTML that executes JavaScript. In

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2487

the JavaScript, you can use some predefined global variables that provide a gateway between the JavaScript

and the Oxygen XML Editor Java API. This allows you to perform changes in the document, open resources,

and more, solely from the JavaScript.

Important:

This will only work if the loaded HTML is located inside a framework or plugin directory (on page 148),

such as: [OXYGEN_INSTALL_DIR]/frameworks/ or [OXYGEN_INSTALL_DIR]/plugins/.

The following global variables can be used:

• authorAccess - This object is an instance of ro.sync.ecss.extensions.api.AuthorAccess.

• contextElement - An instance of ro.sync.ecss.extensions.api.node.AuthorNode. The form control is

added over this node.

• pluginWorkspace - An instance of

ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace.

• fcArguments - A java.util.Map implementation with the properties (name and value pairs) passed on

the form control function.

• apiHelper - A helper object for creating Java objects. It allows you to create Java objects from within

the JavaScript code. These objects can then be passed to the Java methods as in the following

example:

var newAttrValue = apiHelper.newInstance(

 "ro.sync.ecss.extensions.api.node.AttrValue",

 ["normalizedValue", "rawValue", true]);

authorAccess.getDocumentController().setAttribute(

 "counter", newAttrValue, contextElement);

...

You can also specify the constructor signature:

var newAttrValue = apiHelper.newInstance(

 "ro.sync.ecss.extensions.api.node.AttrValue

 (java.lang.String, java.lang.String, boolean)",

 ["normalizedValue", "rawValue", true]);

authorAccess.getDocumentController().setAttribute(

 "counter", newAttrValue, contextElement);

...

For more information, open the form-controls.xml file in the [OXYGEN_INSTALL_DIR]/samples/form-

controls directory and go to section 11.1 - Interacting with the Oxygen Workspace.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2488

Warning:

On macOS, you need to use asynchronous calls to the API, due to the following JDK bug: https://

bugs.openjdk.java.net/browse/JDK-8087465. By default, the API is called synchronously, but you can

change this behavior for each API object by calling two methods: sync() and async().

// By default, the methods are invoke synchronously.

var ctrl = authorAccess.getDocumentController();

try {

 // On Mac, methods that change the document must be executed asynchronously.

 ctrl.async();

 ctrl.setAttribute("counter", newAttrValue, contextElement);

} finally {

 ctrl.sync();

}

Listening for Changes in the Document

If the form control presents some information from the document (for example, the value of an attribute), then

it needs to be notified on changes in the document so that it can update that information. To do this, follow

these steps:

1. In the JavaScript, the bridgeReady() method is invoked as soon as the form control is loaded and the

API bridge is installed. This is where you can add a listener:

function bridgeReady () {

 // We declare a member function for each method of the

 // ro.sync.ecss.extensions.api.AuthorListener interface (same function signature)

 var handler = {

 attributeChanged : function(event) {

 var node = event.getOwnerAuthorNode();

 var attrName = event.getAttributeName();

 if (node.equals(contextElement) && attrName === "counter") {

 init();

 }

 },

 contentDeleted : function(event) {},

 contentInserted : function(event) {}

 };

 // We create a proxy over an ro.sync.ecss.extensions.api.AuthorListener that will

 // delegate its methods to the JS object's functions.

 // We assign the listener to a global variable so that we can remove it later on,

https://bugs.openjdk.java.net/browse/JDK-8087465
https://bugs.openjdk.java.net/browse/JDK-8087465

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2489

 // on the dispose() method.

 authorDocumentListener = apiHelper.createProxyListener(

 "ro.sync.ecss.extensions.api.AuthorListener", handler);

 var ctrl = authorAccess.getDocumentController();

 // Add the proxy listener.

 ctrl.addAuthorListener(authorDocumentListener);

}

2. Since a listener was added on the document, it is important to remove it once the form control is not

used anymore. When a form control is discarded, the dispose() JavaScript function is invoked, so if

you have any cleanup to do, make sure you define a function with this name and remove any previously

created listeners in it.

/**

 * The form control will not be used anymore. Clean up.

 */

function dispose() {

 // Dispose all added listeners.

 var ctrl = authorAccess.getDocumentController();

 ctrl.removeAuthorListener(authorDocumentListener);

}

Debugging JavaScript Used for Custom Form Controls

If you encounter unexpected results when using the method described above (on page 2486), you can debug

the script by using the following guidelines:

• Calls to alert("message.to.present") or console.log("message.to.present") will be presented in the

Results panel (on page 560).

• You can install the Firebug extension by executing the following script:

{code:javascript}

function installFB() {

 if (!document.getElementById('FirebugLite')) {

 E = document['createElement' + 'NS'] && document.documentElement.namespaceURI;

 E = E ? document['createElement' + 'NS'](E, 'script')

 : document['createElement']('script');

 E['setAttribute']('id', 'FirebugLite');

 E['setAttribute']('src',

 'https://getfirebug.com/' + 'firebug-lite.js' + '#startOpened');

 E['setAttribute']('FirebugLite', '4');

 (document['getElementsByTagName']('head')[0]

 || document['getElementsByTagName']('body')[0]).appendChild(E);

http://getfirebug.com/
http://getfirebug.com/

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2490

 E = new Image;

 E['setAttribute']('src', 'https://getfirebug.com/' + '#startOpened');

 }

}

{code}

Note:

To force the Browser Form Control to reload after making changes to the JavaScript file, you need to

use the Reload page action from the form control's contextual menu.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

URL: oxy_url() Function (on page 2481)

Button Form Control
The oxy_button built-in form control is used for graphical user interface objects that invoke a custom Author

mode action (defined in the associated Document Type) referencing it by its ID, or directly in the CSS.

The oxy_button form control supports the following properties:

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• transparent - Flattens the aspect of the button form control, removing its border and background. The

values of this property can be true or false (default value).

• showText - Specifies if the action text should be displayed on the button form control. If this property is

missing then the button displays the icon only if it is available, or the text if the icon is not available. The

values of this property can be true or false.

element {

 content: oxy_button(actionID, 'remove.attribute', showText, true);

}

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2491

• showIcon - Specifies if the action icon should be displayed on the button form control. If this property is

missing then the button displays the icon only if it is available, or the text if the icon is not available. The

values of this property can be true or false.

element {

 content: oxy_button(actionID, 'remove.attribute', showIcon, true);

}

• enableInReadOnlyContext - To enable button form controls (on page 2490) or groups of buttons form

controls (on page 2493), this property needs to be set to true. This property can be used to specify

areas as read-only (by setting the -oxy-editable property to false). This is useful when you want to use

an action that does not modify the context.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_button(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

• actionContext - Specifies the context that the action associated with the form control is executed. Its

possible values are element (default value) and caret. If you select the element value, the context is the

element that holds the form control. If you select the caret value, the action is invoked at the cursor

location. If the cursor is not inside the element that holds the form control, the element value is selected

automatically.

• actionID - The ID of the action, specified in the document type association (on page 156), that is

invoked when you click the button.

Note:

The element that contains the form control represents the context where the action is invoked.

• action - Defines an action directly, rather than using the actionID parameter to reference an action from

the document type association (on page 156). This property is defined using the oxy_action function

(on page 2465).

Tip:

You can also create a button form control directly from an oxy_action function (on page 2466).

oxy_button(action, oxy_action(

 name, 'Insert',

 description, 'Insert an element after the current one',

 icon, url('insert.png'),

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2492

 operation, 'InsertFragmentOperation',

 arg-fragment, '<element>${caret}</element>',

 arg-insertLocation, '.',

 arg-insertPosition, 'After'

))

Tip:

To execute multiple actions sequentially, you can use the oxy_compound_action function (on

page 2469).

Example: oxy_button Form Control

button:before {

 content: "Label:"

 oxy_button(

 /* This action is declared in the document type

 associated with the XML document. */

 actionID, "insert.popupWithMultipleSelection");

}

Tip:

To insert a sample of the oxy_button form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_button

code template. Also, an oxy_button_in_place_action code template is available that inserts an

oxy_button function that includes an action parameter.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Actions: oxy_action() Function (on page 2465)

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2493

Button Group Form Control
The oxy_buttonGroup built-in form control is used for a graphical user interface group of buttons that invokes

one of several custom Author mode actions (defined in the associated Document Type) referencing it by its ID,

or directly in the CSS.

The oxy_buttonGroup form control supports the following properties:

• label - Specifies the label to be displayed on the button. This label can be translated using the ${i18n()}

editor variable (on page 341).

• icon - The path to the icon to be displayed on the button.

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• tooltip - Specifies a tooltip to be displayed when you hover over the form control.

• transparent - Makes the button transparent without any borders or background colors. The values of

this property can be true or false.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

• enableInReadOnlyContext - To enable button form controls (on page 2490) or groups of buttons form

controls (on page 2493), this property needs to be set to true. This property can be used to specify

areas as read-only (by setting the -oxy-editable property to false). This is useful when you want to use

an action that does not modify the context.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_buttonGroup(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

• actionIDs - The IDs of the actions that will be presented in the group of buttons.

• actionID - The ID of the action, specified in the document type association (on page 156), that is

invoked when you click the button.

Note:

The element that contains the form control represents the context where the action is invoked.

• actions - Defines a sequential list of actions directly, rather than using the actionID parameter to

reference actions from the document type association (on page 156). This property is defined using the

oxy_action_list function (on page 2467).

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2494

oxy_buttonGroup(

 label, 'A group of actions',

 icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),

 actions,

 oxy_action_list(

 oxy_action(

 name, 'Insert',

 description, 'Insert an element after the current one',

 operation, 'InsertFragmentOperation',

 arg-fragment, '<element></element>',

 arg-insertLocation, '.',

 arg-insertPosition, 'After'

),

 oxy_action(

 name, 'Delete',

 description, 'Deletes the current element',

 operation, 'DeleteElementOperation'

)

)

)

Tip:

To execute multiple actions sequentially, you can use the oxy_compound_action function (on

page 2469) in the oxy_action_list function (on page 2467).

p:before {

content:

 oxy_buttonGroup(

 label, 'A group of actions',

 icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),

 actions,

 oxy_action_list(

 oxy_compound_action(

 name, oxy_getActionName('framework.id', 'Fallback'),

 description, 'Inserts a paragraph and uses form controls to edit its @audience attribute',

 icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),

 oxy_action(

 name, 'Insert',

 description, 'Insert an element after the current one',

 operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',

 icon, url('insert.png'),

 arg-fragment, "<p audience=''></p>",

 arg-insertLocation, '.',

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2495

 arg-insertPosition, 'After'

),

 oxy_action(

 name, 'Activate edit mode',

 description, 'Sets a pseudo class that will activate a CSS rule that will present a text

 field form control for the @audience attribute',

 operation, 'SetPseudoClassOperation',

 arg-name, 'edit-mode-on',

 arg-elementLocation , '.'

)

),

 oxy_action(

 name, 'Delete',

 description, 'Deletes the current element',

 operation, 'DeleteElementOperation'

)

)

)

}

• actionContext - Specifies the context that the action associated with the form control is executed. Its

possible values are element (default value) and caret. If you select the element value, the context is the

element that holds the form control. If you select the caret value, the action is invoked at the cursor

location. If the cursor is not inside the element that holds the form control, the element value is selected

automatically.

• actionStyle - Specifies what to display for an action in the form control. The values of this property can

be text (default value), icon, or both.

Example: oxy_buttonGroup Form Control

buttongroup:before {

 content:

 oxy_label(text, "Button Group:", width, 150px, text-align, left)

 oxy_buttonGroup(

 label, 'A group of actions',

 /* The action IDs are declared in the document type

 associated with the XML document. */

 actionIDs,

 "insert.popupWithMultipleSelection,insert.popupWithSingleSelection",

 actionStyle, "both");

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2496

Tip:

To insert a sample of the oxy_buttonGroup form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_buttonGroup

code template. Also, an oxy_buttonGroup_in_place_action code template is available that inserts an

oxy_buttonGroup function that includes an oxy_action_list function.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Actions: oxy_action() Function (on page 2465)

Action Lists: oxy_action_list() Function (on page 2467)

Compound Actions: oxy_compound_action() Function (on page 2469)

Label: oxy_label() Function (on page 2473)

Checkbox Form Control
The oxy_checkbox built-in form control is used for a graphical user interface box that you can click to enable or

disable an option. A single checkbox or multiple checkboxes can be used to present and edit the value on an

attribute or element.

The oxy_checkbox form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2497

• resultSeparator - If multiple check-boxes are used, the separator is used to compose the final result. If

not specified, the space character is used.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of

tooltip messages separated by commas. If you want the tooltip to display a comma, use the ${comma}

variable (on page 340).

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• values - Specifies the values that are committed when the check-boxes are selected. If these values are

not specified in the CSS, they are collected from the associated XML Schema.

Note:

Typically, when you use a comma in the values of a form control, the content that follows a

comma is considered a new value. If you want to include a comma in the values, precede the

comma with two backslashes. For example, (values, '1\\, 2\\, 3, 4') will display a form

control that has 1, 2, 3 for the first value and 4 for the second value.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true..

• uncheckedValues - Specifies the values that are committed when check-boxes are not selected.

• labels - This property must have the same number of items as the values property. Each item provides

a literal description of the items listed in the values property. These labels can be translated using the

${i18n()} editor variable (on page 341).. If this property is not specified, the values property is used as

the label.

• columns - Controls the layout of the form control. The check boxes will be grouped in a number of

columns equal to the given value.

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_checkbox(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

Example: Single oxy_checkbox Form Control

checkBox[attribute]:before {

 content: "A check box editor that edits a two valued attribute (On/Off)

 The values are specified in the CSS:"

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2498

 oxy_checkbox(

 edit, "@attribute",

 values, "On",

 uncheckedValues, "Off",

 labels, "On/Off");

}

Example: Multiple oxy_checkbox Form Controls

multipleCheckBox[attribute]:before {

 content: "Multiple checkboxes editor that edits an attribute value.

 Depending whether the check-box is selected,

 a different value is committed:"

 oxy_checkbox(

 edit, "@attribute",

 values, "true, yes, on",

 uncheckedValues, "false, no, off",

 resultSeparator, ","

 labels, "Present, Working, Started");

}

Tip:

To insert a sample of the oxy_checkbox form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_checkbox code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2499

Combo Box Form Control
The oxy_combobox built-in form control is used for providing a graphical user interface object that is a drop-

down menu of proposed values. This form control can also be used for a combination of a drop-down menu

and an editable single-line text field.

The oxy_combobox form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• editable - This property accepts the true and false values. In addition to a drop-down menu, the true

value also generates an editable text field box that allows you to insert other values than the proposed

ones. The false value generates a drop-down menu that only accepts the proposed values.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of

tooltip messages separated by commas. If you want the tooltip to display a comma, use the ${comma}

variable (on page 340).

• values - Specifies the values that populate the list of proposals. If these values are not specified in the

CSS, they are collected from the associated XML Schema..

Note:

Typically, when you use a comma in the values of a form control, the content that follows a

comma is considered a new value. If you want to include a comma in the values, precede the

comma with two backslashes. For example, (values, '1\\, 2\\, 3, 4') will display a form

control that has 1, 2, 3 for the first value and 4 for the second value.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2500

• labels - This property must have the same number of items as the values property. Each item provides

a literal description of the items listed in the values property. These labels can be translated using the

${i18n()} editor variable (on page 341).

Note:

This property is only available for read-only combo boxes (the editable property is set to

false).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_combobox(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

• canRemoveValue - If the value is set to true and the combo box is not editable, then a new <Empty>

value is added in that combo box. This clears or removes the value being edited, depending on if it edits

an element or attribute.

• onChange - Can be used to invoke an action when the value of the combo box changes. The action

can be created in the CSS using the oxy_action() function (on page 2465) or referenced from the

framework (on page 3297) by its ID. After the action is executed, the cursor remains in the combo box.

Note that this property does not support actions defined by JavaScript code.

• spell-check - Set to true to enable automatic spell checking for text inside the component. The

automatic spell checking also needs to be enabled in the application. The general configured spell

checker language is used if an @xml:lang attribute is not specified explicitly on an ancestor element.

Example: oxy_combobox Form Control

This example uses a combo box form control to edit an attribute value. Each time the value changes, it

triggers an action that inserts an element into the attribute's parent element.

comboBox:before {

 content: "A combo box that edits an attribute value.

 The possible values are provided from CSS:"

 oxy_combobox(

 edit, "@attribute",

 editable, false,

 values, "value1, value2, value3",

 labels, "Value no1, Value no2, Value no3",

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2501

 onChange, oxy_action(

 name, 'Insert',

 operation, 'XQueryUpdateOperation',

 arg-script, 'insert node <product>{xs:string(@attribute)}</product>

 as last into .'));

}

Tip:

To insert a sample of the oxy_combobox form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_combobox code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Actions: oxy_action() Function (on page 2465)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

Date Picker Form Control
The oxy_datePicker built-in form control is used for offering a text field with a calendar browser that allows the

user to choose a certain date in a specified format.

The oxy_datePicker form control supports the following properties:

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2502

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

• format - This property specifies the format of the inserted date, if a specific format is not detected from

the associated document schema. The pattern value must be a valid Java date (or date-time) format. If

this property is missing, the format of the date is determined from the associated schema.

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• validateInput - Specifies if the form control is validated. If you introduce a date that does not respect

the format, the datePicker form control is rendered with a red foreground. By default, the input is

validated. To disable the validation, set this property to false.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_datePicker(edit, "@attribute", hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

Example: oxy_datePicker Form Control

date {

 content:

 oxy_label(text, "Date time attribute with

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2503

 format defined in CSS: ", width, 300px)

 oxy_datePicker(

 columns, 16,

 edit, "@attribute",

 format, "yyyy-MM-dd");

}

Tip:

To insert a sample of the oxy_datePicker form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_datePicker code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Label: oxy_label() Function (on page 2473)

HTML Content Form Control
The oxy_htmlContent built-in form control is used for rendering HTML content. This HTML content is displayed

as a graphical element shaped as a box. The shape of the box is determined by a given width and the height is

computed based upon the length of the text.

The oxy_htmlContent form control supports the following properties:

• href - The absolute or relative location of a resource. The resource needs to be a well-formed HTML file.

• id - The unique identifier of an item. This is a <div> element that has a unique @id and is a child of the

<body> element. The <div> element is the container of the HTML content to be rendered by the form

control.

• content - An alternative to the @href and @id pair of elements. It provides the HTML content that will be

displayed in the form control.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2504

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_htmlContent(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

You can customize the style of the content using CSS that is either referenced by the file identified by the

href property or is defined inline. If you change the HTML content or CSS and you want your changes to be

reflected in the XML that renders the form control, then you need to refresh the XML file. If the HTML does not

have an associated style, then a default text and background color will be applied.

Example: oxy_htmlContent Form Control

In the following example, the form control collects the content from the p_description <div> element found in

the descriptions.html file. The box is 400 pixels wide and is displayed before a paragraph identified by

the @intro_id attribute value.

p#intro_id:before {

 content:

 oxy_htmlContent(

 href, "descriptions.html",

 id, "p_description",

 width, 400px);

}

An alternative example, using the content property:

p#intro_id:before {

 content:

 oxy_htmlContent(

 content, "<div style='font-weight:bold;'>My content</div>",

 width, 400px);

}

Tip:

To insert a sample of the oxy_htmlContent form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_htmlContent

code template.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2505

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Pop-up Form Control
The oxy_popup built-in form control is used to offer a contextual menu that provides quick access to various

actions. A pop-up form control can display single or multiple selections.

The oxy_popup form control supports the following properties:

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

Note:

This property is used for rendering in the Author mode.

• columns - Controls the width of the form control. The unit size is the width of the w character. This

property is used for the visual representation of the form control.

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

• editorSort - Specifies the sorting of the values displayed after clicking the popup control (for example,

clicking a drop-down arrow button). The possible values of this property are ascending and descending.

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2506

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_popup(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

• labels - Specifies the label associated with each entry used for presentation. If this property is not

specified, the values property is used instead.

• rendererSeparator - Defines a separator used when multiple values are rendered. If not specified, the

value of the resultSeparator property is used.

• rendererSort - Specifies the sorting of the values (labels) displayed on the form control before clicking

the popup control. The possible values of this property are ascending and descending.

• resultSeparator - If multiple check-boxes are used, the separator is used to compose the final result. If

not specified, the space character is used.

Note:

The value of the resultSeparator property cannot exceed one character.

• rows - This property specifies the number of rows that the form control presents.

Note:

If the value of the rows property is not specified, the default value of 12 is used.

• selectionMode - Specifies whether the form control allows the selection of a single value or multiple

values. The predefined values of this property are single (default value) and multiple.

• sort - Specifies the default sorting of the form control values (the values displayed before and after

clicking the popup control). However, the editorSort and rendererSort properties have a higher priority.

The possible values of this property are ascending and descending.

• tooltip - Specifies a tooltip to be displayed when you hover over the form control.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of

tooltip messages separated by commas. If you want the tooltip to display a comma, use the ${comma}

variable (on page 340).

Example:

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2507

link:before{

 content: oxy_popup(

 edit, '@href',

 values, "Spring, Summer, Autumn, Winter",

 tooltips, "Iris${comma}Snowdrop, Gardenia${comma}Liliac,

 Chrysanthemum${comma}Salvia, Gerbera",

 selectionMode, single);

}

• values - Specifies the values that populate the list of proposals. If these values are not specified in the

CSS, they are collected from the associated XML Schema.

Note:

Typically, when you use a comma in the values of a form control, the content that follows a

comma is considered a new value. If you want to include a comma in the values, precede the

comma with two backslashes. For example, (values, '1\\, 2\\, 3, 4') will display a form

control that has 1, 2, 3 for the first value and 4 for the second value.

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

Example: oxy_popup Form Control

popupWithMultipleSelection:before {

 content: " This editor edits an attribute value.

 The possible values are specified

 inside the CSS: "

 oxy_popup(

 edit, "@attribute",

 values, "value1, value2, value3, value4, value5",

 labels, "Value no1, Value no2, Value no3, Value no4, Value no5",

 resultSeparator, "|",

 columns, 10,

 selectionMode, "multiple",

 color, "blue",

 fontInherit, true);

 font-size:30px;

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2508

Tip:

To insert a sample of the oxy_popup form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_popup code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

Text Area Form Control
The oxy_textArea built-in form control is used for entering multiple lines of text in a graphical user interface

box. A text area may include optional syntax highlight capabilities to present the form control.

The oxy_textArea form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

◦ #content - This parameter is useful when an element has mixed or element-only content and you

want to edit its content inside a text area form control.

For example, if you have the following XML content:

<codeblock outputclass="language-xml">START_TEXT<ph>phase</ph>

 <apiname><text>API</text></apiname></codeblock>

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2509

and your CSS includes the following snippet:

codeblock:before{

content:

 oxy_textArea(

 edit, '#content',

 contentType, 'text/xml');

}

then the text area form control will edit the following fragment:

START_TEXT<ph>phase</ph><apiname><text>API</text></apiname>

Note:

When the value of the edit property is #content, the text area form control will also offer

content completion proposals

• columns - Controls the width of the form control. The unit size is the width of the w character.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• rows - This property specifies the number of rows that the form control presents. If the form control has

more lines, you can scroll and see them all.

• contentType - Specifies the type of content that the form control will format with syntax highlighting.

The following values are supported: text/batch; text/c; text/cc; text/css; text/dtd; text/html;

text/java; text/javascript; text/json; text/markdown; text/nvdl; text/perl; text/plain; text/

php; text/properties; text/python; text/rnc; text/rng; text/sch; text/shell; text/sql; text/

wsdl; text/xml; text/xpath; text/xproc; text/xquery; text/xsd; text/xsl; text/yaml.

• indentOnTab - Specifies the behavior of the Tab key. If the value of this property is set to true (default

value), the Tab key inserts characters. If it is set to false, Tab is used for navigation, jumping to the next

editable position in the document.

• white-space - CSS property that influences the value that you edit, as well as the form control size:

◦ pre - The whitespaces and new lines of the value are preserved and edited. If the rows and

columns properties are not specifies, the form control calculates its size on its own so that all the

text is visible.

◦ pre-wrap - The long lines are wrapped to avoid horizontal scrolling.

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2510

Note:

The rows and columns properties must be specified. If these are not specified, the form

control considers the value to be pre.

◦ normal - The white spaces and new lines are normalized.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_textArea(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

• spell-check - Set to true to enable automatic spell checking for text inside the component. The

automatic spell checking also needs to be enabled in the application. The general configured spell

checker language is used if an @xml:lang attribute is not specified explicitly on an ancestor element.

Example: oxy_textArea Form Control

The following example presents a text area with CSS syntax highlighting that calculates its own dimension,

and a second one with XML syntax highlighting with defined dimension.

textArea {

 visibility: -oxy-collapse-text;

 white-space: pre;

}

textArea[language="CSS"]:before {

 content: oxy_textArea(

 edit, '#text',

 contentType, 'text/css');

}

textArea[language="XML"]:before {

 content: oxy_textArea(

 edit, '#text',

 contentType, 'text/xml',

 rows, 10,

 columns, 30);

}

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2511

Tip:

To insert a sample of the oxy_textArea form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_textArea code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

Text Field Form Control
The oxy_textfield built-in form control is used for entering a single line of text in a graphical user interface

box. A text field may include optional content completion capabilities, used to present and edit the value of an

attribute or an element.

The oxy_textfield form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2512

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• values - Specifies the values that populate the list of proposals. If these values are not specified in the

CSS, they are collected from the associated XML Schema.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of

tooltip messages separated by commas. If you want the tooltip to display a comma, use the ${comma}

variable (on page 340).

• tooltip - Specifies a tooltip to be displayed when you hover over the form control.

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• hasMultipleValues - Specifies if the text field allows multiple values separated by spaces or just a

single value.

Note:

If the value is false, the Content Completion Assistant (on page 3295) considers the entire text

as the prefix for its proposals. If the value is true (the default value), the space is the delimiter

for the values and thus it is not included in the prefix (the prefix will be whatever comes after

the space).

For example, suppose the possible values for your text field are: value a, value b, and other

values. If the hasMultipleValues property is set to true and the user enters "value " (notice the

space character after 'value') in the text field, the Content Completion Assistant will suggest all

three values because the prefix is whatever comes after the space, and in this case the user

did not enter anything after the space. If the hasMultipleValues property was set to false, the

Content Completion Assistant would only suggest value a and value b because the space is

considered part of the prefix.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_textfield(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

• spell-check - Set to true to enable automatic spell checking for text inside the component. The

automatic spell checking also needs to be enabled in the application. The general configured spell

checker language is used if an @xml:lang attribute is not specified explicitly on an ancestor element.

Example: oxy_textfield Form Control

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2513

element {

 content: "Label: "

 oxy_textfield(

 edit, "@my_attr",

 values, "value1, value2",

 color, "red",

 columns, 40);

}

Tip:

To insert a sample of the oxy_textfield form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_textfield code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

URL Chooser Form Control
The oxy_urlChooser built-in form control is used for a dialog box that allows you to select the location of local

or remote resources. The inserted reference is made relative to the URL of the currently open editor.

The oxy_urlChooser editor supports the following properties:

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2514

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions

(PI). This property can have the following values:

◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a

namespace, the value of the property must be a QName (on page 3300) and the CSS must have

a namespace declaration for the prefix.

◦ #text - Specifies that the presented/edited value is the simple text value of an element.

Note:

You can set the value of the visibility property to -oxy-collapse-text (on page 2456)

to render the text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the

columns property (if the two are used together).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit,

the form control has the same color as the element that was used to insert it.

• visible - Specifies whether or not the form control is visible. The possible values of this property are

true (default value) and false.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent

element. The values of this property can be true or false (default value). To make the form control

inherit its font from its parent element, set the fontInherit property to true.

• fileFilter - string value that holds comma-separated file extensions. The URL chooser uses these

extensions to filter the displayed files. A value such as "jpg,png,gif" is mapped to a single filter that

will display all jpg, png, and gif files.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a

form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the

specified pseudo-class will be set on the element that contains the form control.

p:before {

 content: oxy_urlChooser(hoverPseudoclassName, 'showBorder')

}

p:showBorder {

 border: 1px solid red;

}

Example: oxy_urlChooser Form Control

urlChooser[file]:before {

 content: "A URL chooser editor that allows browsing for a URL.

 The selected URL is made relative to the currently edited file:"

 oxy_urlChooser(

 edit, "@file",

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2515

 columns 25);

}

Tip:

To insert a sample of the oxy_urlChooser form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_urlChooser code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

Video Player Form Control
The oxy_video built-in form control is used for providing a mechanism to play videos.

The oxy_video form control supports the following properties:

• href - The absolute or relative location of a resource. This property is mandatory. Relative values are

resolved relative to the CSS. If you have media resources relative to the XML document, you can specify

their paths like this:

oxy_video(href, oxy_url(oxy_base-uri(), 'ex.mp4')), width, 400px, height, 300px)

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units.

• height - Specifies the height of the form control area using relative (em, ex), absolute (in, cm, mm, pt, pc,

px), and percentage (followed by the % character) length units.

Example: oxy_video Form Control

object {

 content:

 oxy_video(

 href, 'resources/video.mp4',

 width, 400px,

https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2516

 height, 300px),

}

Tip:

To insert a sample of the oxy_video form control in a CSS file (or LESS file), invoke the Content

Completion Assistant (on page 3295) by pressing Ctrl + Space and select the oxy_video code

template.

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related information

Custom CSS Functions (on page 2464)

URL: oxy_url() Function (on page 2481)

Implementing Custom Form Controls
If the built-in form controls are not sufficient for your needs, you can implement custom form controls in Java.

Custom Form Controls Implementation

You can specify custom form controls using the following properties:

• rendererClassName - The name of the class that draws the edited value. It must be an implementation

of ro.sync.ecss.extensions.api.editor.InplaceRenderer. The renderer has to be a SWING implementation

and can be used both in the standalone and Eclipse distributions.

• swingEditorClassName - You can use this property for the standalone (Swing-based)

distribution to specify the name of the class used for editing. It is a Swing implementation of

ro.sync.ecss.extensions.api.editor.InplaceEditor.

• swtEditorClassName - You can use this property for the Eclipse plugin distribution

to specify the name of the class used for editing. It is a SWT implementation of the

ro.sync.ecss.extensions.api.editor.InplaceEditor.

Note:

If the custom form control is intended to work in the Oxygen XML Editor standalone

distribution, the declaration of swtEditorClassName is not required. The renderer (the class

https://www.youtube.com/embed/-WY3wzkMSLM
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceRenderer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceEditor.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceEditor.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2517

that draws the value) has different properties from the editor (the class that edits the value)

because you can present a value in one way and edit it in another.

• classpath - You can use this property to specify the location of the classes used for a custom form

control. The value of the classpath property is an enumeration of URLs separated by comma.

• edit - If your form control edits the value of an attribute or the text value of an element, you can use the

@attribute_name and #text predefined values and Oxygen XML Editor will perform the commit logic by

itself. You can use the custom value to perform the commit logic yourself.

• saHeavyFormControlClassName - This type of form control is effectively present at all times at its

allocated bounds. This is useful if you need a form control that renders dynamic or interactive SVG

documents (for example, if you have an SVG document that displays tooltips when hovering over

certain areas). It is also helpful if you want to use JavaFX, since JavaFX-based form controls are not

compatible with the classic form control architecture.

The value of this property is a class name that must implement the

ro.sync.ecss.extensions.api.editor.InplaceHeavyEditor method. The JAR (on page 3297) that contains

this implementation can either be added in the Classpath tab in the Document Type Configuration

dialog box (on page 153) for your particular framework (on page 3297) or specified with the classpath

property (on page 2517).

Example: Java Code

The SDK contains a sample of a SimpleURLChooserEditor form control implementation.

The custom form controls can use any of the predefined properties of the built-in form controls (on page

2484), as well as specified custom properties.

Example: CSS

The following is an example of how to specify a custom form control in the CSS:

myElement {

 content: oxy_editor(

 rendererClassName, "com.custom.editors.CustomRenderer",

 swingEditorClassName, "com.custom.editors.SwingCustomEditor",

 swtEditorClassName, "com.custom.editors.SwtCustomEditor",

 edit, "@my_attr",

 customProperty1, "customValue1",

 customProperty2, "customValue2"

)

}

How to Implement Custom Form Controls

To implement a custom form control, follow these steps:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceHeavyEditor.html
https://www.oxygenxml.com/oxygen_sdk/download.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2518

1. Download the Oxygen XML Editor SDK at: https://www.oxygenxml.com/oxygen_sdk.html.

2. Implement the custom form control by extending

ro.sync.ecss.extensions.api.editor.InplaceEditorRendererAdapter. You could also use

ro.sync.ecss.extensions.api.editor.AbstractInplaceEditor, which offers some default implementations

and listeners management.

3. Pack the previous implementation in a Java JAR (on page 3297) library.

4. Copy the JAR library to the [OXYGEN_INSTALL_DIR]/frameworks/[FRAMEWORK_DIR] directory.

5. In Oxygen XML Editor, open the Preferences dialog box (Options > Preferences) (on page 132), go to

Document Type Association, edit the appropriate framework, and add the JAR library in the Classpath

tab.

6. Specify the custom form control in your CSS, as described above.

Tip:

To see more detailed examples and more information about how form controls work in Oxygen XML

Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-

controls.

Resources

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Editing Processing Instructions Using a Form Control
Oxygen XML Editor allows you to edit processing instructions, comments, and CDATA by using CSS

extensions.

Note:

You can edit both the content and the attribute value from a processing instruction.

Example: Editing an Attribute from a Processing Instruction

PI content:

<?pi_target attr="val"?>

CSS:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

oxy|processing-instruction:before {

 display:inline;

 content:

 "EDIT attribute: " oxy_textfield(edit, '@attr', columns, 15);

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceEditorRendererAdapter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/AbstractInplaceEditor.html
https://www.youtube.com/embed/-WY3wzkMSLM

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2519

 visibility:visible;

}

oxy|processing-instruction{

 visibility:-oxy-collapse-text;

}

Related information

Text Field Form Control (on page 2511)

Collapse Text: -oxy-collapse-text Property Value (on page 2456)

Displaying Processing Instructions from Other XML Editors (on page 2420)

Custom CSS Pseudo-classes

You can set your custom CSS pseudo-classes on the nodes from the AuthorDocument model. These are

similar to the normal XML attributes, with the important difference that they are not serialized, and by

changing them, the document does not create undo and redo edits (the document is considered unmodified).

You can use custom pseudo-classes for changing the style of an element (and its children) without altering

the document.

In Oxygen XML Editor they are used to hide/show the colspec elements from CALS tables. To take a look at

the implementation, see:

1. [OXYGEN_INSTALL_DIR]/frameworks/docbook/css/cals_table.css (Search for -oxy-

visible-colspecs)

2. The definition of action table.toggle.colspec from the DocBook framework (on page 3297) makes use

of the pre-defined TogglePseudoClassOperation Author mode operation.

Here are some examples:

Example: Controlling the visibility of a section using a pseudo-class

You can use a non standard (custom) pseudo-class to impose a style change on a specific element. For

instance, you can have CSS styles matching the custom pseudo-class access-control-user, like the one

below:

section {

 display:none;

}

section:access-control-user {

 display:block;

}

By setting the pseudo-class access-control-user, the element section will become visible by matching the

second CSS selector.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocument.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/TogglePseudoClassOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2520

Example: Coloring the elements at the current cursor location

You could create an AuthorCaretListener that sets the caret-visited pseudo-class to the element at the

cursor location. The effect will be that all the elements traversed by the cursor become red.

*:caret-visited {

 color:red;

}

The API that you can use from the CaretListener:

ro.sync.ecss.extensions.api.AuthorDocumentController#setPseudoClass(java.lang.String,

ro.sync.ecss.extensions.api.node.AuthorElement)

ro.sync.ecss.extensions.api.AuthorDocumentController#removePseudoClass(java.lang.String,

ro.sync.ecss.extensions.api.node.AuthorElement)

Predefined Pseudo-Class Author Mode Operations

Pre-defined Author mode operations can be used directly in your framework to work with custom pseudo-

classes:

1. TogglePseudoClassOperation

2. SetPseudoClassOperation

3. RemovePseudoClassOperation

Using the :before(n) and :after(n) CSS Pseudo-Elements

Although not standard, this extension may be useful if you want to style sections by adding multiple levels

of static content. To add static content to an element, you would normally use a :before or :after pseudo-

element.

This example adds static text before the title ("Chapter 1", "Chapter 2", etc.):

h1:before {

 content: "Chapter " counter(chapter) ".";

 color: blue;

}

All of this is styled with the same color (blue in this example). Using standard CSS, it is impossible to style

specific aspects of it (for example, just the chapter number with a larger font and with red). However, you can

do it using multiple before(n) or after(n) pseudo-elements:

h1:before(3) {

 content: "Chapter ";

 color: blue;

}

h1:before(2) {

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorPseudoClassController.html#setPseudoClass(java.lang.String,ro.sync.ecss.extensions.api.node.AuthorElement)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorPseudoClassController.html#setPseudoClass(java.lang.String,ro.sync.ecss.extensions.api.node.AuthorElement)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorPseudoClassController.html#removePseudoClass(java.lang.String,ro.sync.ecss.extensions.api.node.AuthorElement)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorPseudoClassController.html#removePseudoClass(java.lang.String,ro.sync.ecss.extensions.api.node.AuthorElement)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/TogglePseudoClassOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/SetPseudoClassOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/RemovePseudoClassOperation.html

Oxygen XML Editor 27.1 | 17 - Framework and Author Mode Customization | 2521

 content: counter(chapter);

 color: red;

 font-size: large;

}

h1:before(1) {

 content: ".";

 color: blue;

}

Notes:

• The bigger the level, the more distant the pseudo-element is.

• Level 1 corresponds to normal :before or :after pseudo-elements.

Debugging CSS Stylesheets

To assist you with debugging and customizing CSS stylesheets the Author mode includes a CSS Inspector

view (on page 654) to examine the CSS rules that match the currently selected element.

This tool is similar to the Inspect Element development tool that is found in most browsers. The CSS

Inspector view allows you to see how the CSS rules are applied and the properties defined. Each rule that

is displayed in this view includes a link to the line in the CSS file that defines the styles for the element that

matches the rule. You can use the link to open the appropriate CSS file and edit the style rules. Once you have

found the rule you want to edit, you can click the link in the top-right corner of that rule to open the CSS file in

the editor.

Figure 615. CSS Inspector View

There are two ways to open the CSS Inspector view:

1. Select CSS Inspector from the Window > Show View menu.

2. Select the Inspect Styles action from the contextual menu in Author mode.

Related Information:

CSS Inspector View (on page 654)

18.
Extending Oxygen With the SDK
Oxygen XML Editor has an SDK that can be used as a base to develop frameworks (on page 3297) and plugins

(on page 3299). It can be also used to create projects that use the Oxygen XML Author Component or Oxygen

XML Web Author. The SDK is a Java library available under the Oxygen XML SDK licensing terms and is

delivered with a set of examples that demonstrate how to extend Oxygen XML functionality through API calls.

The SDK is available at https://www.oxygenxml.com/oxygen_sdk.html.

Important:

From a legal standpoint, you can freely develop and share extensions using the Oxygen SDK ONLY if

you have a legal, active license to use Oxygen XML Editor and ONLY if such extensions are used from

inside Oxygen XML Editor. To use such extensions outside of Oxygen XML Editor (for example, a 3rd-

party application that has Oxygen XML Editor built in to it), an additional license must be purchased to

use the SDK according the Oxygen XML SDK Licensing Policy .

Extending Oxygen XML Editor with Plugins
A plugin (on page 3299) is a software component that adds extra functionality to the standalone version of

the application using a series of application-provided extension points.

This chapter explains how to write and install a plugin for the standalone version of Oxygen XML Editor. The

Plugins Development Kit contains sample plugins (source and compiled Java code) and the Javadoc API

necessary for developing custom plugins.

If you want to customize the Oxygen XML Editor Eclipse plugin you can look at the Eclipse IDE Integration

Sample Project to see how an Eclipse plugin can interact with the Oxygen XML Editor APIs.

General Configuration of an Oxygen XML Editor Plugin

The Oxygen XML Editor functionality can be extended with plugins (on page 3299) that implement a clearly

specified API. On the Oxygen XML Editor website, there is an SDK with sample plugins (source and compiled

Java code) and the Javadoc API necessary for developing custom plugins.

The minimal implementation of a plugin must provide:

• A Java class that extends the ro.sync.exml.plugin.Plugin class.

• A Java class that implements the ro.sync.exml.plugin.PluginExtension interface.

• A plugin descriptor file called plugin.xml.

https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/oxygen_sdk/licensing.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_standalone_plugins.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_eclipse_integration.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_eclipse_integration.html
https://www.oxygenxml.com/oxygen_sdk.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2523

A ro.sync.exml.plugin.PluginDescriptor object is passed to the constructor of the subclass of the

ro.sync.exml.plugin.Plugin class. It contains the following data items about the plugin:

• basedir (File object) - The base directory of the plugin.

• description (String object) - The description of the plugin.

• name (String object) - The name of the plugin.

• vendor (String object) - The vendor name of the plugin.

• version (String object) - The plugin version. The allowed format is: MAJOR.MINOR.PATCH (for example,

1.0.2).

• id (String object) - A unique identifier.

• classLoaderType - You can choose between preferOxygenResources (default value) and

preferReferencedResources. When choosing preferOxygenResources, the libraries that are referenced in

the Oxygen XML Editor lib directory will have precedence over those referenced in the plugin.xml

configuration file, if they have the same package names. When choosing preferReferencedResources,

the libraries that are referenced in the plugin.xml configuration file will have precedence over those

found in the Oxygen XML Editor lib directory, if they have the same package names.

The plugin descriptor is an XML file that defines how the plugin is integrated in Oxygen XML Editor and what

libraries are loaded. The structure of the plugin descriptor file is fully described in a DTD grammar located

in [OXYGEN_INSTALL_DIR]/plugins/plugin.dtd. Here is a sample plugin descriptor used by the

Capitalize Lines sample plugin:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin

 name="Capitalize Lines"

 description="Capitalize the first character on each line"

 version="1.0.0"

 vendor="SyncRO"

 class="ro.sync.sample.plugin.caplines.CapLinesPlugin">

 <runtime>

 <library name="lib/caplines.jar"/>

 </runtime>

 <extension type="selectionProcessor"

 class="ro.sync.sample.plugin.caplines.CapLinesPluginExtension"

 keyboardShortcut="ctrl shift EQUALS"/>

</plugin>

If your plugin is of the Selection, Document or General types, and thus contributes an action either to the

contextual menu or to the main menu of the Text editing mode, then you can assign a keyboard shortcut for it.

You can use the @keyboardShortcut attribute for each <extension> element to specify the desired shortcut.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2524

Tip:

To compose string representations of the desired shortcut keys you can go to Options > Menu

Shortcut Keys, select an action, and click Edit. Then choose the desired key sequence and use the

representation that appears in the resulting dialog box.

Referencing Libraries

To reference libraries, use either of the following elements:

• <library name="path/libraryName"> - To point to specific libraries. Notice that the value of library name

includes the path (relative or absolute) to the library.

Note:

You can use the ${oxygenInstallDir} editor variable (on page 341) as part of the value of the

@name attribute. You can also use a system variable (${system(var.name)}) or environment

variable (${env(VAR_NAME)}).

• <librariesFolder name="path/libraryFolderPath"> - To point to multiple libraries located in the specified

folder. Notice that the value of libraryFolder name includes the path (relative or absolute) to the library

folder.

Both elements support the @scope attribute that defines the loading priority. It can have one of the following

two values:

• local - The library is loaded in the plugin's own class loader. This is the default behavior.

• global - The library is loaded in the main application class loader as the last library in the list (as if it

would be present in the application lib directory).

Dependency Injection for Plugins

If you want to share a single instance of a certain class between plugin extensions and custom operations (to

prevent instances from being repeated), you can declare a <context> element in your plugin.xml file:

<context class="my.package.ContextClass"/>

Important:

The my.package.ContextClass class should have a no-arguments constructor that will be called when

the class is instantiated.

This will result in an instance being automatically generated. You can access this instance in an extension

class by defining a field of that type and annotated with the ro.sync.exml.plugin.PluginContext annotation:

@PluginContext

ContextClass contextInstance;

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2525

The defined field is automatically populated with the single instance.

Tip:

By default, an instance of the PluginDescriptor class is also injectable.

Installing an Oxygen XML Editor Plugin

Choose one of the following methods to install a plugin (on page 3299) in Oxygen XML Editor:

Manual Method

To manually install a plugin in Oxygen XML Editor, follow these steps:

1. Go to the Oxygen XML Editor installation directory and locate the plugins directory.

Note:

The plugins directory contains all the plugins available to Oxygen XML Editor.

2. In the plugins directory, create a subfolder to store the plugin files (for example,

[OXYGEN_INSTALL_DIR]/plugins/myPlugin).

3. In the new folder, place the plugin descriptor file (plugin.xml), the Java classes of the plugin, and the

other files that are referenced in the descriptor file.

4. Restart Oxygen XML Editor.

Automatic Method

To install an add-on that is hosted on a remote update site, follow these steps:

1. Go to Help > Install new add-ons.

2. In the displayed dialog box, enter or paste the update site that hosts the add-on in the Show add-

ons from field (or select it from the drop-down menu, if applicable). The default add-ons are hosted

on https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml. If you want to see a list

of all the default and sample add-ons that are available on the Oxygen remote update sites, choose

ALL AVAILABLE SITES from the drop-down menu. The add-ons list contains the name, status, update

version, Oxygen XML Editor version, and the type of the add-on (either framework, or plugin). A short

description of each add-on is presented under the add-ons list.

Note:

To see all the versions of the add-ons, deselect Show only compatible add-ons and Show only

the latest version of the add-ons. Incompatible add-ons are shown only to acknowledge their

presence on the remote update site, but you cannot install an incompatible add-on.

3. Choose the add-ons you want to install, click the Next button, then follow the on-screen instructions.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2526

Note:

Accepting the license agreement of the add-on is a mandatory step in the installation process.

DANGER:

Installing from update sites other than the official Oxygen sites may cause security risks.

Please verify that all your installed third-party add-ons come from companies or individuals

that you have verified and that you implicitly trust. As a way to help with identifying possible

add-on security problems, Oxygen XML Editor issues warnings for unsigned plugins.

Note:

All add-ons are installed in the extensions directory inside the Oxygen XML Editor

preferences directory (on page 133).

Tip:

As an alternate approach, you can add an Install button to a web page that links to a URL that has the

syntax https://host/path/to/updateSite.xml?oxygenAddonId=addOnIDValue and drop the button into

the application's main editing area.

Types of Plugin Extensions Available with the SDK

A plugin (on page 3299) can have one or more defined plugin extensions that provide functionality to the

application. This section presents the plugin extensions that are available.

Workspace Access Plugin Extension
This type of plugin (on page 3299) allows you to contribute actions to the main menu and toolbars, create

custom views, interact with the application workspace, make modifications to opened documents, and add

listeners for various events.

Many complex integrations (such as integrations with Content Management Systems) usually requires access

to some workspace resources such as toolbars, menus, views, and editors. This type of plugin is also useful

because it allows you to make modifications to the XML content of an open editor.

The plugin must implement the WorkspaceAccessPluginExtension interface. The callback method

applicationStarted of this interface allows access to a parameter of the StandalonePluginWorkspace type

(allows for API access to the application workspace).

Important:

For security reasons, if a plugin's applicationStarted callback delays the startup of the entire

application by more than 15 seconds, it will continue to be loaded on a separate thread and may no

longer properly contribute UI customizations.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/workspace/WorkspaceAccessPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2527

The StandalonePluginWorkspace interface has three methods that can be called to customize toolbars,

menus, and views:

addToolbarComponentsCustomizer

Contributes to or modifies existing toolbars. You can specify additional toolbar IDs in the

associated plugin.xml descriptor file using the following construct:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin name="CustomWorkspaceAccess">

 <runtime>

 </runtime>

 <extension type="WorkspaceAccess"/>

 <toolbar id="SampleID" initialSide="NORTH" initialRow="1"/>

</plugin>

The <toolbar> element adds a toolbar in the Oxygen XML Editor interface and allows you to

contribute your own plugin-specific actions. The following attributes are supported:

• id - Unique identifier for the toolbar.

• initialSide - Specifies the place where the toolbar is initially displayed. The allowed values

are NORTH and SOUTH.

• initialRow - Specifies the initial row on the specified side where the toolbar is displayed.

For example, the first toolbar has an initial row of 0 and the next toolbar has an initial row

of 1.

The ro.sync.exml.workspace.api.standalone.ToolbarInfo toolbar component information with

the specified ID will be provided to you by the customizer interface. Therefore, you will be able to

provide Swing components that will appear on the toolbar when the application starts.

addViewComponentCustomizer

Contributes to or modifies existing views, or contributes to the reserved custom view. You

can specify additional view IDs in the associated plugin.xml descriptor using the following

construct:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin name="CustomWorkspaceAccess">

 <runtime>

 </runtime>

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/ToolbarInfo.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2528

 <extension type="WorkspaceAccess"/>

 <view id="SampleID" initialSide="WEST" initialRow="0"/>

</plugin>

The <view> element adds a view in the Oxygen XML Editor interface and allows you to contribute

your own plugin-specific UI components. The following attributes are supported:

• id - Unique identifier of the view component.

• initialSide - Specifies the place where the view is initially displayed. The allowed values

are: NORTH, SOUTH, EAST, and WEST.

• initialRow - Specifies the initial row on the specified side where the view is displayed. For

example, in Oxygen XML Editor, the Project view (on page 414) has an initial row of 0 and

the Outline view (on page 551) has an initial row of 1. Both views are in the WEST part of

the workbench.

• initialState - Specifies the initial state of the view. The allows values are: hidden, docked,

autohide, and floating. By default, the view is visible and docked.

The <view> element also supports an optional <perspective> child element so that you can show

or hide a certain view for a specified perspective. The <perspective> element supports the

following attributes:

• id (required) - Unique identifier for the perspective. The possible values are: editor, dita,

xslt_debugger, xquery_debugger, and database.

• initState (optional) - Specifies the initial state of the perspective. The allows values are:

hidden, docked, autohide, and floating. By default, the view is visible and docked.

The ro.sync.exml.workspace.api.standalone.ViewInfo view component information with the

specified ID will be provided to you by the customizer interface. Therefore, you will be able to

provide Swing components that will appear on the view when the application starts.

addMenuBarCustomizer

Contributes to or modifies existing menu components.

Access to the open editors can be done by first getting access to all URLs opened in the workspace using

the StandalonePluginWorkspace.getAllEditorLocations(int editingArea) API method. There are two available

editing areas: the DITA Maps Manager editing area and the main editing area. Using the URL of an open

resource, you can gain access to it using the StandalonePluginWorkspace.getEditorAccess(URL location, int

editingArea) API method. A ro.sync.exml.workspace.api.editor.WSEditor then allows access to the current

editing page.

A special editing API is supported for the Text mode

(ro.sync.exml.workspace.api.editor.page.text.WSTextEditorPage) and the Author mode

(ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPage).

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/text/WSTextEditorPage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/author/WSAuthorEditorPage.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2529

To be notified when editors are opened, selected, and closed, you can use the

StandalonePluginWorkspace.addEditorChangeListener API method to add a listener.

Examples:

• A simple Maven-based sample of a workspace access plugin is available here: https://github.com/

oxygenxml/sample-plugin-workspace-access.

• A more complex sample of a workspace access plugin mimicking a CMS integration is available in the

Author SDK: https://www.oxygenxml.com/oxygen_sdk.html.

Example: Adding a Custom View in Oxygen XML Editor

To add a custom view in Oxygen XML Editor, follow this procedure:

1. Locate the plugin.xml descriptor file for your plugin (should be located inside the plugins folder, for

example, [OXYGEN_INSTALL_DIR]/plugins/myPlugin). Define the ID of the view you want to add

and specify the location where it will be placed:

<view id="SampleWorkspaceAccessID" initialSide="WEST" initialRow="0"/>

2. In your Workspace Access Plugin Extension (on page 2526) implementation, where the

applicationStarted callback is received, add a view component customizer like this:

pluginWorkspaceAccess.addViewComponentCustomizer(new ViewComponentCustomizer() {

 public void customizeView(ViewInfo viewInfo) {

 if(

 //The view ID defined in the "plugin.xml"

 "SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {

 cmsMessagesArea = new JTextArea("CMS Session History:");

 viewInfo.setComponent(new JScrollPane(cmsMessagesArea));

 viewInfo.setTitle("CMS Messages");

 viewInfo.setIcon(Icons.getIcon(Icons.CMS_MESSAGES_CUSTOM_VIEW_STRING));

 }

 }

});

3. Define the cmsMessagesArea as a static field (if you can access the messages area from anywhere in

your code).

Related Information:

https://www.oxygenxml.com/oxygen_sdk/oxygen_standalone_plugins.html

Workspace Access Plugin Extension (JavaScript-Based)
This is a JavaScript-based plugin (on page 3299) extension that allows you to contribute actions to the main

menu and toolbars, create custom views, interact with the application workspace, make modifications to

opened documents, and add listeners for various events.

https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/sample-plugin-workspace-access
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_standalone_plugins.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2530

This extension can use the same API as the Workspace Access plugin extension (on page 2526), but the

implementation is JavaScript-based and uses the bundled Rhino library to create and work with Java API from

the JavaScript code.

First, you need to create a custom plugin folder inside the plugins folder (for example,

[OXYGEN_INSTALL_DIR]/plugins/myPlugin). This folder will contain your custom plugin descriptor file

(plugin.xml) and all other resources for the plugin.

The plugin descriptor file (named plugin.xml) needs to reference a JavaScript file, as in the following

example:

<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">

<plugin

 id="unique.id.value"

 name="Add Action To DITA Maps Manager popup-menu"

 description="Plugin adds action to DITA Maps Manager contextual menu."

 version="1.0"

 vendor="Syncro Soft"

 class="ro.sync.exml.plugin.Plugin"

 classLoaderType="preferReferencedResources">

 <extension type="WorkspaceAccessJS" href="wsAccess.js"/>

</plugin>

In the example above, the JavaScript file wsAccess.js (located in your custom plugin folder (on page

2530)) will be called. This JavaScript file needs to have two JavaScript methods defined inside. Methods that

will be called when the application starts and when it ends:

function applicationStarted(pluginWorkspaceAccess) {

..........

}

function applicationClosing(pluginWorkspaceAccess) {

..........

}

With regard to the applicationStarted callback, besides using the StandalonePluginWorkspace API with the

pluginWorkspaceAccess parameter, you can also use a globally defined field called jsDirURL that points to the

folder where the JavaScript file is located.

Important:

For security reasons, if a plugin's applicationStarted callback delays the startup of the entire

application by more than 15 seconds, it will continue to be loaded on a separate thread and may no

longer properly contribute UI customizations.

https://github.com/mozilla/rhino
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2531

Below is a much larger example with a JavaScript Workspace Access plugin extension implementation that

adds a new action in the contextual menu of the DITA Maps Manager view (on page 2950). The action starts

the notepad.exe application and passes the reference to the currently selected <topicref> to it.

function applicationStarted(pluginWorkspaceAccess) {

 Packages.java.lang.System.err.println("Application started "

 + pluginWorkspaceAccess);

 edChangedListener = {

 /*Called when a DITA Map is opened*/

 editorOpened: function (editorLocation) {

 Packages.java.lang.System.err.println("\nrunning " + editorLocation);

 /*Get the opened DITA Map*/

 editor = pluginWorkspaceAccess.getEditorAccess(editorLocation,

 Packages.ro.sync.exml.workspace.api.PluginWorkspace.DITA_MAPS_EDITING_AREA);

 ditaMapPage = editor.getCurrentPage();

 /*Add listener called when right-click is done in the DITA Maps manager*/

 customizerObj = {

 customizePopUpMenu: function (popUp, ditaMapDocumentController) {

 Packages.java.lang.System.err.println("RIGHT CLICK" + popUp);

 tree = ditaMapPage.getDITAMapTreeComponent();

 /*Selected tree path*/

 sel = tree.getSelectionPath();

 if (sel != null) {

 selectedElement = sel.getLastPathComponent();

 /*Reference attribute*/

 href = selectedElement.getAttribute("href");

 if (href != null) {

 try {

 /*Create absolute reference*/

 absoluteRef = new Packages.java.net.URL(selectedElement.getXMLBaseURL(),

 href.getValue());

 Packages.java.lang.System.err.println("Computed absolute reference "

 + absoluteRef);

 mi = new Packages.javax.swing.JMenuItem("Run notepad");

 popUp.add(mi);

 actionPerfObj = {

 actionPerformed: function (e) {

 try {

 Packages.java.lang.Runtime.getRuntime().exec("notepad.exe "

 + pluginWorkspaceAccess.getUtilAccess().locateFile(absoluteRef));

 }

 catch (e1) {

 e1.printStackTrace();

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2532

 }

 }

 }

 mi.addActionListener(new JavaAdapter(Packages.java.awt.event.ActionListener,

 actionPerfObj));

 }

 catch (e1) {

 Packages.java.lang.System.err.println(e1);

 }

 }

 }

 }

 }

 ditaMapPage.setPopUpMenuCustomizer(new Packages.ro.sync.exml.workspace.api.

editor.page.ditamap.DITAMapPopupMenuCustomizer(customizerObj));

 }

 }

 edChangedListener = new JavaAdapter(Packages.ro.sync.exml.workspace.api.

listeners.WSEditorChangeListener, edChangedListener);

 pluginWorkspaceAccess.addEditorChangeListener(

 edChangedListener,

 Packages.ro.sync.exml.workspace.api.PluginWorkspace.DITA_MAPS_EDITING_AREA);

}

 function applicationClosing(pluginWorkspaceAccess) {

 Packages.java.lang.System.err.println("Application closing "

 + pluginWorkspaceAccess);

}

Declaring Multiple Modules

JavaScript-based plugins can include multiple modules of JavaScript files in the plugin. In those files, you

can declare functions that can be used in the main WorkspaceAccessJS JavaScript file. Thus, you can use

those external script files as a library of functions. The modules must be declared in the plugin descriptor file

(plugin.xml).

For example:

<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">

<plugin

 id="unique.id.value"

 name="Add Action To DITA Maps Manager popup-menu"

 description="Plugin adds action to DITA Maps Manager contextual menu."

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2533

 version="1.0"

 vendor="Syncro Soft"

 class="ro.sync.exml.plugin.Plugin"

 classLoaderType="preferReferencedResources">

 <extension type="WorkspaceAccessJS" href="wsAccess.js"/>

 <extension type="WorkspaceAccessJSModule" href="wsAccessModule1.js"/>

 <extension type="WorkspaceAccessJSModule" href="wsAccessModule2.js"/>

</plugin>

For more information and some samples, see GitHub Project with Multiple Workspace Access JavaScript-

Based Plugin Samples.

Trusted Hosts Plugin Extension
This type of plugin (on page 3299) can be used by developers to automatically allow or reject remote

connections that Oxygen XML Editor would normally ask the user for confirmation.

The name of the plugin extension is TrustedHosts. For security reasons, Oxygen XML Editor intercepts all

connections to remote hosts and displays a dialog box that asks the user for confirmation. By implementing

this plugin extension, the application will automatically allow or deny connections from websites you consider

and configure as trusted or untrusted.

To develop an integration project, follow this steps:

• Copy the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.

• Implement the ro.sync.exml.plugin.workspace.security.TrustedHostsProviderExtension extension point.

• In the plugin descriptor file, define the <extension> element that points to the implementation of your

classes:

<extension type="TrustedHosts" class="my.trusted.hosts.provider.class.qualified.name"/>

Detailed information regarding the accepted or rejected connections from plugins are logged in the

Information view (on page 524).

Example implementation:

 import ro.sync.exml.plugin.workspace.security.Response;

 import ro.sync.exml.plugin.workspace.security.TrustedHostsProviderExtension;

 public class DummyTrustedHostsProviderImpl implements

 TrustedHostsProviderExtension {

 @Override

 public Response isTrusted(String hostName) {

 // Connections from this website will always be

 // considered safe and always accepted.

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2534

 if ("trusted.website:80".equals(hostName)) {

 return TRUSTED;

 } else if("malicious.website:80".equals(hostName)) {

 // Always reject connections from malicious website

 return UNTRUSTED;

 }

 // All other connections are unknown, so a dialog will

 // appear and ask user's confirmation

 // to allow or deny the connection to this website.

 return UNKNOWN;

 }

}

Author Stylesheet Plugin Extension
This type of plugin (on page 3299) allows you to add a stylesheet (CSS or LESS) that renders elements in

Author mode.

To specify additional stylesheets, edit the plugin descriptor and add <extension> elements that point to them,

as in the following example:

<extension type="AuthorStylesheet" href="showTables.css"/>

<extension type="AuthorStylesheet" href="hideButtons.css"/>

Using this mechanism, you can add one or more CSS stylesheets to merge with the existing ones. Whenever

you add a new stylesheet using this plugin, it will have priority over all other stylesheets applied on the file

edited in Author mode.

If your implementation requires more flexibility (such as a dynamic change of the stylesheet), you should

consider using the StylesFilter plugin extension (on page 2542).

Additional Framework Plugin Extension
This type of plugin (on page 3299) allows you to add a new framework straight from the plugin.

To specify additional frameworks, edit the plugin descriptor and add <extension> elements that point to them,

as in the following example:

<extension type="AdditionalFrameworks" path="framework_directory"/>

The path attribute should be a sub-directory of the plugin. If the plugin is installed as an add-on (on page 126),

the new framework will be set as read-only and editing it will only be possible if you duplicate it (on page 147).

If the plugin is installed in the [OXYGEN_INSTALL_DIR]/plugins directory, the new frameworks will be

editable.

Additional XProc Engine Plugin Extension
This type of plugin (on page 3299) contributes a folder that contains an external XProc engine.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2535

The name of the plugin extension is AdditionalXprocEngine and it makes it easier to integrate an external

XProc engine (on page 1594). After the plugin is installed, when you run an XProc transformation scenario,

your external XProc engine can be selected from the Processor drop-down menu in the XProc tab.

An example of the plugin.xml file looks like this:

<plugin

 id="morgana.xproc.addon"

 name="Contribute Morgana XProc"

 description="Contribute Morgana XProc"

 version="1.0"

 vendor="Syncro Soft"

 class="ro.sync.exml.plugin.Plugin"

 classLoaderType="preferReferencedResources">

 <extension type="AdditionalXProcEngine" path="MorganaXProcEngine/"></extension>

</plugin>

The @path attribute points to the XProc engine folder that contains the engine.xml and all the libraries

necessary to run it.

Components Validation Plugin Extension
This type of plugin (on page 3299) allows you to customize the menus, toolbars, and other components by

enabling or filtering them from the user interface.

This plugin provides the following API:

ComponentsValidatorPluginExtension interface

There is one method that must be implemented:

getComponentsValidator()

Returns a ro.sync.exml.ComponentsValidator implementation class used for

validating the menus, toolbars, and their actions.

ComponentsValidator interface

Provides methods to filter various features from being added to the GUI of Oxygen XML Editor:

validateMenuOrTaggedAction(String[] menuOrActionPath)

Checks if a menu or a tag action from a menu is allowed and returns a boolean

value. A tag is used to uniquely identifying an action. The String[] argument is the

tag of the menu / action and the tags of its parent menus if any.

validateToolbarTaggedAction(String[] toolbarOrAction)

Checks if an action from a toolbar is allowed and returns a boolean value. The

String[] argument is the tag of the action from a toolbar and the tag of its parent

toolbar if any.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/ComponentsValidator.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2536

validateComponent(String key)

Checks if the given component is allowed and returns a boolean value. The String

argument is the tag identifying the component. You can remove toolbars entirely

using this callback.

validateAccelAction(String category, String tag)

Checks if the given accelerator action is allowed to appear in the GUI and returns a

boolean value. An accelerator action can be uniquely identified so it will be removed

both from toolbars or menus. The first argument represents the action category,

the second is the tag of the action.

validateContentType(String contentType)

Checks if the given content type is allowed and returns a boolean value. The String

argument represents the content type. You can instruct Oxygen XML Editor to

ignore content types such as text / xsl or text / xquery.

validateOptionPane(String optionPaneKey)

Checks if the given options page can be added in the preferences option tree and

returns a boolean value. The String argument is the option pane key.

validateOption(String optionKey)

Checks if the given option can be added in the option page and returns a boolean

value. The String argument is the option key. This method is mostly used for

internal use and it is not called for each option in a preferences page.

validateLibrary(String library)

Checks if the given library is allowed to appear listed in the About dialog box and

returns a boolean value. The String argument is the library. This method is mostly

for internal use.

validateNewEditorTemplate(EditorTemplate editorTemplate)

Checks if the given template for a new editor is allowed and returns a boolean

value. The EditorTemplate argument is the editor template. An EditorTemplate is

used to create an editor for a given extension. You can thus filter what appears in

the list of the New dialog box.

isDebuggerperspectiveAllowed()

Checks if the debugger perspective (on page 3299) is allowed and returns a

boolean value.

validateSHMarker(String marker)

Checks if the given marker is allowed and returns a boolean value. The String

argument represents the syntax highlight marker to be checked. If you decide to

filter certain content types, you can also filter the syntax highlight options so that

the content type is no longer present in the Preferences options tree.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2537

validateToolbarComposite(String toolbarCompositeTag)

Checks if the toolbar composite is available. A toolbar composite is a toolbar

component such as a drop-down menu.

Tip:

The best way to decide what to filter is to observe the values that Oxygen XML Editor passes when

these callbacks are called. You have to create an implementation for this interface that lists in the

console all values received by each function. Then you can decide on the values to filter and act

accordingly.

Contribute Additional Languages Plugin Extension
This type of plugin (on page 3299) allows you to contribute new translation languages to the Oxygen XML

Editor UI.

The AdditionalUITranslation plugin extension provides the ability to contribute new translation languages to

the interface in Oxygen XML Editor.

A sample plugin.xml file looks like this:

<plugin

 id="romanian.i18n.provider"

 name="Add Romanian as an user interface language"

 description="Add Romanian as an user interface language"

 version="1.0"

 vendor="Syncro Soft"

 class="ro.sync.exml.plugin.Plugin">

 <extension type="AdditionalUITranslation" href="translation.xml"/>

</plugin>

where the translation.xml has a structure like this:

<translation>

 <languageList>

 <language description="Romanian" lang="ro_RO" localeDescription="Romana"/>

 </languageList>

 <key value="Error">

 <val lang="ro_RO">Eroare</val>

 </key>

...........................

</translation>

If all error keys are not translated in the custom translation.xml contributed by the plugin, the fallback is

the default English translation. Once this plugin is installed, the Languages drop-down menu in the Options >

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2538

Preferences > Global (on page 134) will be updated to include the newly added languages. The end-user will

still need to select that language in the drop-down menu to use it.

Contribute External DITA-OT Distribution Plugin Extension
This type of plugin (on page 3299) allows you to contribute an external DITA-OT distribution to Oxygen XML

Editor.

Oxygen XML Editor comes bundled with DITA-OT version 4.2.3. If you want to use a different DITA-OT version,

the AdditionalDITAOT plugin extension provides the ability to contribute an external distribution of the DITA

Open Toolkit to Oxygen XML Editor.

Example

For instance, if you wanted to use a DITA-OT version 1.8, your plugin.xml file might look like this:

<plugin

 id="dita-ot-18"

 name="Contribute DITA-OT 1.8"

 description="Contributes DITA-OT 1.8"

 version="1.0"

 vendor="Syncro Soft"

 class="ro.sync.exml.plugin.Plugin">

 <extension type="AdditionalDITAOT" path="DITA-OT1.8.5" description="DITA-OT 1.8"/>

</plugin>

The @path attribute points to a folder located relative to the plugin.xml file and this folder is where the

additional distribution of DITA-OT would be located.

When Oxygen XML Editor is started with this plugin enabled, that addition DITA-OT version can now be

selected in the DITA Open Toolkit option in the DITA preferences page (on page 278).

Custom Protocol Plugin Extension
This type of plugin (on page 3299) allows you to work with a custom designed protocol for retrieving and

storing files.

It provides the following API:

URLStreamHandlerPluginExtension interface

There is one method that must be implemented:

getURLStreamHandler(String protocol)

It takes as an argument the name of the protocol and returns a URLStreamHandler

object, or null if there is no URL handler for the specified protocol.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2539

This type of plugin extension can be usually combined with a Workspace Access plugin extension (on page

2526) that can add a custom toolbar with custom actions for opening documents from a certain source.

As an alternative, two older plugin extensions can also be used to add a toolbar action for showing a custom

URL chooser:

URLChooserPluginExtension2 interface

Makes it possible to create your own dialog box that works with the custom protocol. This

interface provides two methods:

chooseURLs(StandalonePluginWorkspace workspaceAccess)

Returns a URL[] object that contains the URLs the user decided to open with the

custom protocol. You can invoke your own URL chooser dialog box here and then

return the chosen URLs having your own custom protocol. You have access to the

workspace of Oxygen XML Editor.

getMenuName()

Returns a String object that is the name of the entry added in the File menu.

URLChooserToolbarExtension interface

Makes it possible to provide a toolbar entry that is used for launching the custom URLs chooser

from the URLChooserPluginExtension implementation. This interface provides two methods:

getToolbarIcon()

Returns the javax.swing.Icon image used on the toolbar.

getToolbarTooltip()

Returns a String that is the tooltip used on the toolbar button.

Lock Handler Plugin Extension
This type of plugin extension (on page 3299) is used for locking resources from a specific protocol.

It provides the following API:

LockHandlerFactoryPluginExtension interface

You need to implement the following two methods:

LockHandler getLockHandler()

Gets the lock handler for the current handled protocol. Might be null if not

supported.

boolean isLockingSupported(String protocol)

Checks if a lock handler can be provided for a specific protocol.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2540

To use this type of extension in your plugin, create an extension of

LockHandlerFactory type in your plugin.xml file and specify the class

implementing LockHandlerFactoryPluginExtension:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin name="CustomLockHandler">

 <runtime>

 </runtime>

 <extension type="LockHandlerFactory"

 class="LockHandlerFactoryPluginExtensionImpl"/>

</plugin>

Open Redirect Plugin Extension
This type of plugin (on page 3299) is useful for opening multiple files with only one open action.

For example, when a zip archive or an ODF file or an OOXML file is open in the Archive Browser view (on page

2118) a plugin of this type can decide to open a file also from the archive in an XML editor panel. This file can

be the document.xml main file from an OOXML file archive or a specific XML file from a zip archive.

The plugin must implement the interface OpenRedirectExtension. It only has one callback: redirect(URL) that

receives the URL of the file opened by the Oxygen XML Editor user. If the plugin decides to open also other

files it must return an array of information objects (OpenRedirectInformation[]) that correspond to these files.

Such an information object must contain the URL that is opened in a new editor panel and the content type

(for example, text/xml). The content type is used for determining the type of editor panel. A null content type

allows auto-detection of the file type.

Option Page Plugin Extension
This type of plugin extension (on page 3299) allows you to add custom Preferences pages.

The extension must implement the ro.sync.exml.plugin.option.OptionPagePluginExtension class. The

provided callbacks allows you to create a custom Swing component that will be added to the page and to

react to various calls to persistently save the page settings using the OptionsStorage API.

All preferences pages that are contributed by a plugin are listed in the Preferences dialog box in the Plugins

category. As long as the added preferences page has the same name as its plugin, it will be promoted to the

first level of the hierarchy within the Plugins category.

The plugin.xml configuration file can specify one or more such extensions using constructs like this:

<extension type="OptionPage" class="my.pack.CustomOptionPagePluginExtension"/>

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2541

Sharing Options Through Project Files

To share options that are configured in certain plugin preferences pages, you can store them in a project file

(.xpr file extension) that can easily be shared with others. To do this, perform these steps:

1. Override ro.sync.exml.plugin.option.OptionPagePluginExtension.getProjectLevelOptionKeys() and

return a set of options that need to be saved inside the project.

2. Install the plugin in an Oxygen XML Editor instance (on page 2525).

3. In the Project view (on page 414), create a project or open an existing one.

4. Open the Preferences dialog box (Options > Preferences) (on page 132).

5. Configure the options in each preferences page that you want to be included in the project file and

switch the storage preference to Project Options (on page 3300) in each page.

Note:

Some pages do not have the Project Options button, since the options they host might contain

sensitive data (such as passwords, for example) that is unsuitable for sharing with other users.

6. Click OK and close the Preferences dialog box.

All explicitly set values are now saved in the project file. You can then share the project file so that your

team will have the same option configuration that you stored in the project file.

Note:

The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice:

When a project is opened for the first time, a confirmation dialog box will be displayed that

asks you to confirm that the project came from a trusted source. This is meant to help prevent

potential security issues.

Option Page Group Plugin Extension
This type of plugin extension (on page 3299) allows you to add a group of custom Preferences pages from a

plugin.

The extension must implement the ro.sync.exml.plugin.OptionsPageGroupPluginExtension class. The base

method OptionsPageGroupPluginExtension.addOptionPagePluginExtension(...) allows adding multiple

implementations of the OptionPagePluginExtension (on page 2540) base class.

All preferences pages that are contributed by this extension are listed as descendents of the plugin specific

preferences page in the Preferences dialog box in the Plugins category.

The plugin.xml configuration file can specify one or more such extensions using constructs like this:

<extension type="OptionPageGroup" class="my.pack.CustomOptionPageGroupPluginExtension"/>

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2542

Resource Locking Custom Protocol Plugin Extension
This type of plugin (on page 3299) allows you to work with a custom designed protocol for retrieving and

storing files and it can lock a resource when opening it in Oxygen XML Editor.

This type of plugin extends the custom protocol plugin type with resource locking support and provides the

following API:

URLStreamHandlerWithLockPluginExtension interface

The plugin receives callbacks following the simple protocol for resource locking and unlocking

imposed by Oxygen XML Editor.

There are two additional methods that must be implemented:

getLockHandler()

Returns a LockHandler implementation class with the implementation of the lock

specific methods from the plugin.

isLockingSupported(String protocol)

Returns a boolean that is true if the plugin accepts to manage locking for a certain

URL protocol scheme (such as sftp, http, https, or customName).

Styles Filter Plugin Extension
This type of plugin (on page 3299) allows you to dynamically modify the CSS styles used to render elements

in the Author mode.

The plugin must extend the ro.sync.exml.plugin.author.css.filter.GeneralStylesFilterExtension class. This class

has a callback on which you can alter the styles for an Author mode element.

This extension point is similar with the Styles Filter that you set at the framework (on page 3297) level.

The only difference is that the plugin filters styles are used for any open XML document, regardless of the

document type. The changes made by this plugin are prioritized over the changes made by the framework-level

filter.

Note:

Alternatively, you can use the AuthorStylesheet plugin extension (on page 2534), which does not

require any additional Java development and is compatible with Oxygen XML Web Author.

Related Information:

Customizing the CSS Styles Filter (on page 2373)

Targeted URL Stream Handler Plugin Extension
This type of plugin (on page 3299) can be used when it is necessary to impose custom URL stream handlers

for specific URLs.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/author/css/filter/GeneralStylesFilterExtension.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2543

This plugin extension can handle the following protocols: http, https, or sftp. Oxygen XML Editor usually

provides specific fixed URL stream handlers. If it is set to handle connections for a specific protocol, this

extension prompts for the URL stream handler for each open connection of a URL that has that protocol.

To use this type of plugin, you have to implement the

ro.sync.exml.plugin.urlstreamhandler.TargetedURLStreamHandlerPluginExtension interface that provides the

following methods:

boolean canHandleProtocol(String protocol)

This method checks if the plugin can handle a specific protocol. If this method returns true

for a specific protocol, the getURLStreamHandler(URL) method will be called for each open

connection of a URL having this protocol.

URLStreamHandler getURLStreamHandler(URL url)

This method provides the URL handler for the specified URL and it is called for each open

connection of a URL with a protocol that has the canHandleProtocol(String) method return true.

If this method returns null, the default Oxygen XML Editor URLStreamHandler is used.

To use this type of extension in your plugin, create an extension of TargetedURLHandler type in your

plugin.xml file and specify the class that implements TargetedURLStreamHandlerPluginExtension:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin name="CustomTargetedURLStreamHandlerPlugin">

 <runtime>

 </runtime>

 <extension type="TargetedURLHandler"

 class="CustomTargetedURLStreamHandlerPluginExtension"/>

</plugin>

This extension can be useful in situations when connections opened from a specific host must be handled

in a particular way. For example, the Oxygen XML Editor HTTP URLStreamHandler may not be compatible

for sending and receiving SOAP using the SUN Web Services implementation. In this case, you can override

the stream handler (set by Oxygen XML Editor) to use the default SUN URLStreamHandler, since it is more

compatible with sending and receiving SOAP requests.

public class CustomTargetedURLStreamHandlerPluginExtension

 implements TargetedURLStreamHandlerPluginExtension {

 @Override

 public boolean canHandleProtocol(String protocol) {

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2544

 boolean handleProtocol = false;

 if ("http".equals(protocol) || "https".equals(protocol)) {

 // This extension handles both HTTP and HTTPS protocols

 handleProtocol = true;

 }

 return handleProtocol;

 }

 @Override

 public URLStreamHandler getURLStreamHandler(URL url) {

 // This method is called only for the URLs with a protocol

 // where canHandleProtocol(String) method returns true (HTTP and HTTPS)

 URLStreamHandler handler = null;

 String host = url.getHost();

 String protocol = url.getProtocol();

 if ("some_host".equals(host)) {

 // When there are connections opened from some_host, the SUN HTTP(S)

 // handlers are used

 if ("http".equals(protocol)) {

 handler = (URLStreamHandler) Class.forName("sun.net.www.protocol.http.Handler")

.getConstructor(new Class[0]).newInstance(new Object[0]);

 } else {

 handler = (URLStreamHandler) Class.forName("sun.net.www.protocol.https.Handler")

.getConstructor(new Class[0]).newInstance(new Object[0]);

 }

 }

 return handler;

 }

}

XML Refactoring Operations Plugin Extension
This type of plugin (on page 3299) allows you to specify one or more directories where the XML Refactoring

operation resources are loaded.

The RefactoringOperationsProvider extension can be used to specify the location where custom XML

Refactoring operation resources (XQuery Update script or XSLT stylesheet and Operation Descriptor files)

are stored. Oxygen XML Editor will scan the specified locations to load the custom operations when the XML

Refactoring tool is opened, and allows you to share your custom refactoring operations.

Example: XML Refactoring Operations Plugin Extension

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2545

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">

<plugin

 id="refactoring.operations"

 name="Refactoring operations plugin"

 description="Contains operation descriptors and related scripts"

 version="1.0">

 <extension type="RefactoringOperationsProvider">

 <folder path="customDir/"/>

 <folder path="customDir2"/>

 </extension>

</plugin>

XSLT Transformer Plugin Extension
This type of plugin (on page 3299) allows you to add an external XSLT transformer plugin.

The name of the plugin is Transformer and it makes it easier to contribute your own implementation of the

XSLT Processor. After the plugin is installed, you can create a new XML transformation with XSLT scenario

(on page 1504) and select your external XSLT engine from Transformer drop-down menu in the XSLT tab.

To create an XSLT integration project, follow these steps:

• Copy the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.

• Copy the jars of your transformer to the lib folder of your project.

• Implement the ro.sync.exml.plugin.transform.XSLTTransformerPluginExtension interface.

• In the plugin descriptor file, define the <extension> element that points to the implementation of your

classes:

<extension type="Transformer" class="my.xslt.plugin.extension"/>

Validator Plugin Extension
This type of plugin (on page 3299) allows you to add an external validation engine from a plugin.

The name of the plugin extension is DocumentValidator and it makes it possible to contribute your own

implementation of a validation engine. After the plugin is installed, if you create a new validation scenario

or edit an existing validation scenario to add a validation stage, you will find the name of the new engine

contributed by the plugin in the Validation Engine combo box.

To create a plugin that implements the validator extension:

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2546

1. Implement the ro.sync.exml.plugin.validator.ValidatorPluginExtension interface in your plugin's libraries.

2. In the plugin descriptor file, define the <extension> element that points to the implementation of your

classes:

<extension type="DocumentValidator" class="my.validator.plugin.extension"/>

Saxon XSLT Transformer Plugin Extension
This type of plugin (on page 3299) allows you to add an external Saxon XSLT transformer plugin.

The name of the plugin is Transformer and it makes it easier to contribute your own implementation of the

Saxon XSLT Processor. After the plugin is installed, you can create a new XML transformation with XSLT

scenario (on page 1504) and select your external Saxon engine from Transformer drop-down menu in the

XSLT tab.

To create an XSLT integration project, follow these steps:

• Copy the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.

• Copy the Saxon jars to the lib folder of your project.

• Implement the ro.sync.exml.plugin.transform.SaxonXSLTTransformerPluginExtension interface.

• In the plugin descriptor file, define the <extension> element that points to the implementation of your

classes, following example:

<extension type="Transformer" class="my.saxon.xslt.plugin.extension"/>

An add-on that implements the Saxon XSLT transformer can be found here: Saxon Transformer Add-on. For

more information, see the Oxygen XML SDK Add-on Repositories web page.

XQuery Transformer Plugin Extension
This type of plugin (on page 3299) allows you to add an external XQuery transformer plugin.

The name of the plugin is XQueryTransformer and it makes it easier to contribute your own implementation

of the XQuery Processor. After the plugin is installed, you can create a new XQuery transformation scenario

(on page 1596) and select your external XQuery engine from Transformer drop-down menu in the XQuery tab.

To create an XQuery integration project, follow these steps:

• Copy the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.

• Copy the jars of your transformer to the lib folder of your project.

• Implement the ro.sync.exml.plugin.transform.XQueryTransformerPluginExtension interface.

• In the plugin descriptor file, define the <extension> element that points to the implementation of your

classes:

<extension type="XQueryTransformer" class="my.xquery.plugin.extension"/>

Saxon XQuery Transformer Plugin Extension
This type of plugin (on page 3299) allows you to add the Saxon external XQuery transformer plugin.

https://www.oxygenxml.com/doc/ug-addons/topics/saxon-transformer-addon.html
https://www.oxygenxml.com/oxygen_sdk/community.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2547

The name of the plugin is XQueryTransformer and it makes it easier to contribute your own implementation

of the Saxon XQuery Processor. After the plugin is installed, you can create a new XQuery transformation

scenario (on page 1596) and select your Saxon external XQuery engine from Transformer drop-down menu in

the XQuery tab.

To create an XQuery integration project, follow these steps:

• Copy the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.

• Copy the Saxon jars to the lib folder of your project.

• Implement the ro.sync.exml.plugin.transform.SaxonXQueryTransformerPluginExtension interface.

• In the plugin descriptor file, define the <extension> element that points to the implementation of your

classes:

<extension type="XQueryTransformer" class="my.saxon.xquery.plugin.extension"/>

An add-on that implements the Saxon XQuery transformer can be found here: Saxon Transformer add-on. For

more information, see the Oxygen XML SDK Add-on Repositories web page.

Plugin Extensions Designed to Work only in the Text Editing Mode

These plugin (on page 3299) extensions operate only when editing documents in the Text mode. They are

mounted automatically by the application on the contextual menu in the Plugins submenu.

The Workspace Access Plugin Extension (on page 2526) offers an API that can be used to implement similar

functionality for both Text and Author mode.

General Plugin Extension
This type of plugin (on page 3299) allows you to invoke custom code to interact with the workspace in Text

mode.

This plugin is the most general plugin type and provides a limited API:

GeneralPluginExtension interface

Intended for general-purpose plugins, kind of external tools but triggered from the Plugins menu.

The implementing classes must provide the method process(GeneralPluginContext), which

must provide the plugin processing. This method takes as a parameter a GeneralPluginContext

object.

GeneralPluginContext class

Represents the context in which the general plugin extension does its processing. The

getPluginWorkspace() method allows you access to the workspace of Oxygen XML Editor.

Selection Plugin Extension
This type of plugin (on page 3299) allows you to manage selections of text.

https://www.oxygenxml.com/doc/ug-addons/topics/saxon-transformer-addon.html
https://www.oxygenxml.com/oxygen_sdk/community.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2548

A selection plugin can be applied to both XML and non-XML documents. The plugin is started by making

a selection in the editor, then selecting the corresponding menu item from the Plugins submenu in the

contextual menu of Text mode.

This plugin type provides the following API:

SelectionPluginExtension interface

The context containing the selected text is passed to the extension and the processed result is

going to replace the initial selection. The process(GeneralPluginContext) method must return

a SelectionPluginResult object that contains the result of the processing. The String value

returned by the SelectionPluginResult object can include editor variables (on page 333) such as

${caret} and ${selection}.

SelectionPluginContext object

Represents the context and provides four methods:

• getSelection() - Returns a String that is the current selection of text.

• getFrame() - Returns a Frame that is the editing frame.

• getPluginWorkspace() - Returns access to the workspace of Oxygen XML Editor.

• getDocumentURL() - Returns the URL of the currently edited document.

Related information

Editor Variables (on page 333)

Example - Uppercase Plugin

The following plugin (on page 3299) is called UppercasePlugin and is an example of a Selection plugin.

(on page 2547). It is used in Oxygen XML Editor for capitalizing the characters in the current selection. This

example consists of two Java classes and the plugin descriptor file (plugin.xml):

• UppercasePlugin.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.Plugin;

import ro.sync.exml.plugin.PluginDescriptor;

public class UppercasePlugin extends Plugin {

 /**

 * Plugin instance.

 */

 private static UppercasePlugin instance = null;

 /**

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2549

 * UppercasePlugin constructor.

 *

 * @param descriptor Plugin descriptor object.

 */

 public UppercasePlugin(PluginDescriptor descriptor) {

 super(descriptor);

 if (instance != null) {

 throw new IllegalStateException("Already instantiated !");

 }

 instance = this;

 }

 /**

 * Get the plugin instance.

 *

 * @return the shared plugin instance.

 */

 public static UppercasePlugin getInstance() {

 return instance;

 }

}

• UppercasePluginExtension.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.selection.SelectionPluginContext;

import ro.sync.exml.plugin.selection.SelectionPluginExtension;

import ro.sync.exml.plugin.selection.SelectionPluginResult;

import ro.sync.exml.plugin.selection.SelectionPluginResultImpl;

public class UppercasePluginExtension implements SelectionPluginExtension {

 /**

 * Convert the text to uppercase.

 *

 *@param context Selection context.

 *@return Uppercase plugin result.

 */

 public SelectionPluginResult process(SelectionPluginContext context) {

 return new SelectionPluginResultImpl(

 context.getSelection().toUpperCase());

 }

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2550

}

• plugin.xml:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin

 name="UpperCase"

 description="Convert the selection to uppercase"

 version="1.0.0"

 vendor="SyncRO"

 class="ro.sync.sample.plugin.uppercase.UppercasePlugin">

 <runtime>

 <library name="lib/uppercase.jar"/>

 </runtime>

 <extension type="selectionProcessor"

 class="ro.sync.sample.plugin.uppercase.UppercasePluginExtension"/>

</plugin>

Document Plugin Extension
This type of plugin (on page 3299) allows you to manage the current document.

The document plugin type can only be applied to an XML document. It can modify the current document that

is received as a callback parameter.

The plugin is started by selecting the corresponding menu item from the Plugins submenu in the contextual

menu of Text mode. It provides the following API:

DocumentPluginExtension interface

Receives the context object containing the current document. The

process(GeneralPluginContext) method can return a DocumentPluginResult object containing a

new document.

DocumentPluginContext object

Represents the context and provides three methods:

• getDocument() - Returns a javax.swing.text.Document object that represents the current

document.

• getFrame() - Returns a java.awt.Frame object that represents the editing frame.

• getPluginWorkspace() - Returns access to the workspace of Oxygen XML Editor.

How to Write a CMS Integration Plugin

To have a complete integration between Oxygen XML Editor and a CMS, you usually have to write a plugin (on

page 3299) that combines the following two available plugin extensions:

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2551

• Workspace Access (on page 2526)

• Custom protocol (on page 2555)

The usual set of requirements for an integration between Oxygen XML Editor and the CMS are as follows:

1. Contribute to the Oxygen XML Editor toolbars and main menu with your custom Check Out and Check

In actions:

◦ Check Out triggers your custom dialog boxes that allow you to browse the remote CMS and

choose the resources you want to open.

◦ Check In allows you to send the modified content back to the server.

You can use the Workspace Access plugin extension (and provided sample Java code) for all

these operations.

2. When Check Out is called, use the Oxygen XML Editor API to open your custom URLs (URLs created

using your custom protocol). It is important to implement and use a Custom Protocol extension to

be notified when the files are opened and saved and to be able to provide the content for the relative

references the files may contain to Oxygen XML Editor. Your custom java.net.URLStreamHandler

implementation checks out the resource content from the server, stores it locally and provides its

content. Sample Check Out implementation:

 /**

 * Sample implementation for the "Check Out" method.

 *

 * @param pluginWorkspaceAccess (Workspace Access plugin).

 * @throws MalformedURLException

 */

 private void checkOut(StandalonePluginWorkspace pluginWorkspaceAccess)

throws MalformedURLException {

 //TODO Show the user a custom dialog box for browsing the CMS

 //TODO after user selected the resource create a URL with a custom protocol

 //which will uniquely map to the resource on the CMS using the URLHandler

 //something like:

 URL customURL = new URL("mycms://host/path/to/file.xml");

 //Ask Oxygen to open the URL

 pluginWorkspaceAccess.open(customURL);

 //Oxygen will then your custom protocol handler to provide the contents for

 //the resource "mycms://host/path/to/file.xml"

 //Your custom protocol handler will check out the file in a temporary

 //directory, for example, and provide the content from it.

 //Oxygen will also pass through your URLHandler if you have any relative

 //references which need to be opened/obtained.

 }

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2552

Figure 616. Check Out Process Diagram

The phases are:

◦ 1 - Browse CMS repository

◦ 2 - User chooses a resource

◦ 3 - Use API to open custom URL: mycms://path/to/file.xml

◦ 4 - Get content of URL: mycms://path/to/file.xml

◦ 5 - Get content of resource

◦ 6 - Store on disk for faster access

◦ 7 - Retrieve content from disk if already checked out

◦ 8 - Retrieved content

3. Contribute a special Browse CMS action to every dialog box in Oxygen XML Editor where a URL can be

chosen to perform a special action (such as the Reuse Content or Insert Image action). Sample code:

 //Add an additional browse action to all dialog boxes/places

 //where Oxygen allows selecting a URL.

 pluginWorkspaceAccess.addInputURLChooserCustomizer

(new InputURLChooserCustomizer() {

 public void customizeBrowseActions

(List<Action> existingBrowseActions, final InputURLChooser chooser) {

 //IMPORTANT, you also need to set a custom icon on the action

 //for situations when its text is not used for display.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2553

 Action browseCMS = new AbstractAction("CMS") {

 public void actionPerformed(ActionEvent e) {

 URL chosenResource = browseCMSAndChooseResource();

 if (chosenResource != null) {

 try {

 //Set the chosen resource in the combo box chooser.

 chooser.urlChosen(chosenResource);

 } catch (MalformedURLException e1) {

 //

 }

 }

 }

 };

 existingBrowseActions.add(browseCMS);

 }

 });

...

When inserting references to other resources using the actions already implemented in Oxygen XML

Editor, the reference to the resource is made by default relative to the absolute location of the edited

XML file. You can gain control over the way that the reference is made relative for a specific protocol

like this:

 //Add a custom relative reference resolver for your custom protocol.

 //Usually when inserting references from one URL to another Oxygen

 //makes the inserted path relative.

 //If your custom protocol needs special relativization techniques then

 //it should set up a custom relative

 //references resolver to be notified when resolving needs to be done.

 pluginWorkspaceAccess.addRelativeReferencesResolver(

 //Your custom URL protocol that you already have a

 //custom URLStreamHandlerPluginExtension set up.

 "mycms",

 //The relative references resolver

 new RelativeReferenceResolver() {

 public String makeRelative(URL baseURL, URL childURL) {

 //Return the referenced path as absolute for example.

 //return childURL.toString();

 //Or return null for the default behavior.

 return null;

 }

 });

...

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2554

4. Write the plugin.xml descriptor file. Your plugin combines the two extensions using a single set of

libraries. The descriptor would look like this:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">

<plugin

 name="CustomCMSAccess"

 description="Test"

 version="1.0.0"

 vendor="ACME"

 class="custom.cms.CMSAccessPlugin">

 <runtime>

 <library name="lib/cmsaccess.jar"/>

 </runtime>

 <!--Access to add actions to the main menu and toolbars or to add custom views.-->

 <!--See the "CustomWorkspaceAccessPluginExtension" Java sample for more details-->

 <extension type="WorkspaceAccess"

 class="custom.cms.CustomWorkspaceAccessPluginExtension"/>

 <!--The custom URL handler that will communicate with the CMS implementation-->

 <!--See the "CustomProtocolURLHandlerExtension" Java sample for more details-->

 <extension type="URLHandler"

 class="custom.cms.CustomProtocolURLHandlerExtension"/>

</plugin>

5. Create a cmsaccess.jar JAR (on page 3297) archive containing your implementation classes.

6. Copy your new plugin directory in the plugins subfolder of the Oxygen XML Editor install folder (for

example, [OXYGEN_INSTALL_DIR]/plugins/myPlugin) and start Oxygen XML Editor.

Related Information:

https://github.com/oxygenxml/oxygen-cmis-plugin

https://github.com/axxepta/project-argon

Class Loading Issues

It is possible that the Java libraries you have specified in the plugin libraries list conflict with the

ones already loaded by Oxygen XML Editor. To instruct the plugin to prefer its libraries over the

ones used by Oxygen XML Editor, you can add the following attribute on the <plugin> root element:

classLoaderType="preferReferencedResources" from the plugin.xml descriptor file.

A Late Delegation Class Loader (the main class loader in Oxygen XML Editor) is a java.net.URLClassLoader

extension that prefers to search classes in its own libraries list and only if a class is not found there to

delegate to the parent class loader.

The main Oxygen XML Editor Class Loader uses as libraries all JARS specified in the

[OXYGEN_INSTALL_DIR]\lib directory. Its parent class loader is the default JVM Class loader. For each

plugin instance, a separate class loader is created having as parent the Oxygen XML Editor Class Loader.

https://github.com/oxygenxml/oxygen-cmis-plugin
https://github.com/axxepta/project-argon

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2555

The plugin class loader can be either a standard java.net.URLClassLoader or a LateDelegationClassLoader

(depending on the attribute classLoaderType in the plugin.xml). Its parent class loader is always the Oxygen

XML Editor LateDelegationClassLoader.

If you experience additional problems, such as:

java.lang.LinkageError: ClassCastException:

attempting to cast

jar:file:/C:/jdk1.6.0_06/jre/lib/rt.jar!/

javax/xml/ws/spi/Provider.class

tojar:file:/D:/Program

 Files/Oxygen XML Editor

 12/plugins/wspcaccess/../../xdocs/lib/jaxws/

jaxws-api.jar!/javax/xml/ws/spi/Provider.class

 at javax.xml.ws.spi.Provider.provider(

Provider.java:94) at

 javax.xml.ws.Service.<init>(Service.java:56)

...

The cause could be the fact that some classes are instantiated using the context class loader of the current

thread. The most straightforward fix is to write your code in a try/finally statement:

ClassLoader oldClassLoader =

 Thread.currentThread().getContextClassLoader();

try {

 //This is the implementation of the

 //WorkspaceAccessPluginExtension plugin interface.

 Thread.currentThread().setContextClassLoader(

 CustomWorkspaceAccessPluginExtension.

 this.getClass().getClassLoader());

 //WRITE YOUR CODE HERE

} finally {

 Thread.currentThread().

 setContextClassLoader(oldClassLoader);

}

How to Write A Custom Protocol Plugin

To create a custom protocol plugin (on page 3299), follow these steps:

1. Write the handler class for your protocol that implements the java.net.URLStreamHandler interface.

Be careful to provide ways to encode and decode the URLs of your files.

2. Write the plugin class by extending ro.sync.exml.plugin.Plugin.

3. Write the plugin extension class that implements the

ro.sync.exml.plugin.urlstreamhandler.URLStreamHandlerPluginExtension interface.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/Plugin.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLStreamHandlerPluginExtension.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2556

It is necessary that the plugin extension for the custom protocol implements the

URLStreamHandlerPluginExtension interface. Without it, you cannot use your plugin, because Oxygen

XML Editor is not able to find the protocol handler.

You can choose also to implement the URLChooserPluginExtension interface. It allows you to write

and display your own customized dialog box for selecting resources that are loaded with the custom

protocol.

An implementation of the extension URLHandlerReadOnlyCheckerExtension allows you to:

◦ Mark a resource as read-only when it is opened.

◦ Switch between marking the resource as read-only and read-write while it is edited.

It is useful when opening and editing CMS resources.

4. Write the plugin.xml descriptor file.

Remember to set the name of the plugin class to the one from the second step and the plugin extension

class name with the one you have chosen at step 3.

5. Create a JAR (on page 3297) archive with all these files.

6. Create a custom plugin folder inside the plugins folder (for example,

[OXYGEN_INSTALL_DIR]/plugins/myPlugin) that contains your new plugin.

How to Share a Class Loader Between a Framework and Plugin

In some cases you may need to extend the functionality of Oxygen XML Editor both through a framework

(on page 3297) and through a plugin (on page 3299). Normally, a framework and a plugin both run in

their own private classloader. If the framework and the plugin use the same JAVA extensions/classes, it is

recommended that they share the same classloader. This way, the common classes are loaded by only one

Class Loader and they will both use the same static objects and have the ability to cast objects between one

another.

To do this, open the Preferences dialog box (Options > Preferences) (on page 132), go to Document Type

Association, select the document type, go to the Classpath tab, and in the Use parent classloader from plugin

with ID fields introduce the ID of the plugin. This ID is declared in the configuration file of the plugin (on page

2523).

If you have created the framework using a Framework Extension Script, then edit the script and specify the

plugin ID on the classpath (on page 2245).

Important:

The shared classes must be specified only in the configuration files of the plugin, and not in the

configuration file and the document type class path at the same time.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLChooserPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLHandlerReadOnlyCheckerExtension.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2557

Packing and Deploying Plugins as Add-ons

In Oxygen XML Editor, a plugin can be packed and deployed as an add-on to provide additional functionality to

the application.

Packing a Plugin as an Add-on

This procedure is suitable for developers who want a better control over the add-on (on page 3299) package

or those who want to automate some of the steps:

1. Pack the plugin (on page 3299) as a ZIP file or a Java Archive (on page 3297). Note that you should

pack the entire root directory not just its contents.

2. [Optional] If you created a Java Archive at the previous step, digitally sign the package. You will need a

certificate signed by a trusted authority. To sign the JAR, you can either use the jarsigner command-line

tool inside Oracle's Java Development Kit ([JDK_DIR]/bin/jarsigner.exe) or if you are working

with Apache Ant (on page 3294), you can use the signjar task (a front for the jarsigner command-line

tool). The benefit of having a signed add-on is that you can verify the integrity of the add-on issuer.

If you do not have such a certificate, you can generate one yourself using the keytool command-line

utility.

Note:

This approach is recommended for tests since anyone can create a self-signed certificate.

3. Create a descriptor file. You can use a template that Oxygen XML Editor provides by going to File > New

and selecting the Oxygen add-ons update site template. The products the add-on is compatible with

can be specified in the template. Once deployed, this descriptor file is referenced as update site.

Deploying an Add-on

To deploy an add-on, copy the ZIP or Java Archive (on page 3297) file and the descriptor file to an HTTP

server. The URL to this location serves as the Update Site URL.

Related Information:

Packing and Deploying Frameworks as Add-ons (on page 2400)

Oxygen XML Add-on Repositories

Testing Plugins and Java Extensions

In the various procedures for creating a plugin (on page 3299), you are usually instructed to copy your plugin

folder to the [OXYGEN_INSTALL_DIR]/plugins/ directory. If you want to test the code in your plugin

without copying it to that folder, follow this procedure:

1. Close the Oxygen XML Editor application if it is running.

2. Create in the folder [OXYGEN_INSTALL_DIR]/plugins/ a subfolder named for example myPlugin

(but it can have any other name).

https://www.oxygenxml.com/oxygen_sdk/community.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2558

3. In the myPlugin subfolder create a new text file named plugin.redirect that contains the full file

path references to your project (for example, C:\Users\john_doe\Documents\sample-plugin-

folder).

Step Result: Oxygen XML Editor will automatically load the plugin from your project location when it

starts.

4. Now you can modify the Java code, the IDE will automatically compile it, and if the plugin.xml file has

a classpath reference to the compiled classes folder, you can restart Oxygen XML Editor and test your

changes.

Creating and Running Automated Tests

If you have developed complex custom plugins (on page 3299) or frameworks (on page 3297) (document

types), the best way to test your implementation and ensure that further changes will not interfere with the

current behavior is to make automated tests for your customization.

An Oxygen XML Editor standalone installation includes a main oxygen.jar library located in the

[OXYGEN_INSTALL_DIR]. That JAR (on page 3297) library contains a base class for testing developer

customizations named: ro.sync.exml.workspace.api.PluginWorkspaceTCBase.

To develop JUnit tests for your customizations using the Eclipse workbench, follow these steps:

1. Create a new Eclipse Java project and copy the entire contents of the [OXYGEN_INSTALL_DIR] folder

to the new project under the oxygen sub-directory.

2. Add all JAR libraries present in the ./oxygen/lib directory to the Java Build Path->Libraries tab.

Make sure that the main JAR library oxygen.jar or oxygenAuthor.jar is the first one in the Java

classpath by moving it up in the Order and Export tab.

3. Click Add Library and add the JUnit and JFCUnit libraries.

4. Create a new Java class that extends ro.sync.exml.workspace.api.PluginWorkspaceTCBase.

5. Pass the following parameters to the constructor of the super class:

◦ File installationFolder - The file path to the main application installation directory. If not

specified, it defaults to the folder where the test is started. According to step 1, it should be

oxygen.

◦ File frameworksFolder - The file path to the frameworks directory. It can point to a custom

framework directory where it resides. According to step 1, it should be oxygen/frameworks.

◦ File pluginsFolder - The file path to the plugins directory. It can point to a custom plugin

directory where it resides. According to step 1, it should be oxygen/plugins.

◦ File optionsFolder - The folder that contains the application options. If not specified, the

application will auto-detect the location based on the started product ID.

◦ String licenseKey - The license key used to license the test class.

◦ int productID - The ID of the product and should be one of the following:

PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT, PluginWorkspaceTCBase.XML_EDITOR_PRODUCT, or

PluginWorkspaceTCBase.XML_DEVELOPER_PRODUCT.

https://github.com/junit-team/junit/wiki/Download-and-Install
https://sourceforge.net/projects/jfcunit/

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2559

6. Create test methods that use the API in the base class to open XML files and perform various actions

on them. Your test class could look something like this:

public class MyTestClass extends PluginWorkspaceTCBase {

/**

 * Constructor.

 */

public MyTestClass() throws Exception {

 super(null, new File("frameworks"), new File("plugins"), null,

"------START-LICENSE-KEY------\n" +

 "\n" +

 "Registration_Name=Developer\n" +

 "\n" +

 "Company=\n" +

 "\n" +

 "Category=Enterprise\n" +

 "\n" +

 "Component=XML-Editor, XSLT-Debugger, Saxon-SA\n" +

 "\n" +

 "Version=14\n" +

 "\n" +

 "Number_of_Licenses=1\n" +

 "\n" +

 "Date=09-04-2012\n" +

 "\n" +

 "Trial=31\n" +

 "\n" +

 "SGN=MCwCFGNoEGJSeiC3XCYIyalvjzHhGhhqAhRNRDpEu8RIWb8icCJO7HqfVP4++A\\=\\=\n" +

 "\n" +

"-------END-LICENSE-KEY-------",

 PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT);

}

/**

 * <p>Description: TC for opening a file and using a bold operation</p>

 * <p>Bug ID: EXM-20417</p>

 *

 * @author radu_coravu

 *

 * @throws Exception

 */

public void testOpenFileAndBoldEXM_20417() throws Exception {

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2560

 WSEditor ed = open(new File

("D:/projects/eXml/test/authorExtensions/dita/sampleSmall.xml").toURL());

 //Move caret

 moveCaretRelativeTo("Context", 1, false);

 //Insert

 invokeAuthorExtensionActionForID("bold");

 assertEquals("<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" +

 "<!DOCTYPE task PUBLIC \"-//OASIS//DTD DITA Task//EN\" \"task.dtd\">\n" +

 "<task id=\"taskId\">\n" +

 " <title>Task title</title>\n" +

 " <prolog/>\n" +

 " <taskbody>\n" +

 " <context>\n" +

 " <p>Context for the current task</p>\n" +

 " </context>\n" +

 " <steps>\n" +

 " <step>\n" +

 " <cmd>Task step.</cmd>\n" +

 " </step>\n" +

 " </steps>\n" +

 " </taskbody>\n" +

 "</task>\n" +

 "", getCurrentEditorXMLContent());

 }

}

Debugging a Plugin Using IntelliJ IDEA

To use IntelliJ IDEA to debug problems in the code of a plugin (on page 3299) without having to re-bundle the

plugin's Java classes in a JAR (on page 3297) library, follow these steps:

1. Download and install Oxygen XML Editor.

2. Set up the Oxygen SDK following this set of instructions.

3. Create a Java Project (for example, MyPluginProject) from one of the sample plugins (for example,

the Workspace Access plugin).

4. In the MyPluginProject folder, create a folder called myPlugin. In this new folder, copy the

plugin.xml file from the sample plugin. Modify the added plugin.xml to add a library reference to

the directory where IntelliJ IDEA copies the compiled output. To find out where this directory is located,

go to File > Project Structure. Then select the Modules category and inspect the value of the Output

path text box from the Path tab.

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html
https://www.oxygenxml.com/oxygen_sdk/download.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2561

Example: If the output path is C:/Users/myUser/Documents/MyPluginProject/target/

classes, then in the plugin.xml, you need to add the following library reference in the runtime

element:

<library name="../target/classes"/>

5. Copy the plugin.dtd from the [OXYGEN_INSTALL_DIR]/plugins folder in the root

MyPluginProject folder.

6. In the MyPluginProject dependences (File > Project Structure > Modules > Dependences), add

external JAR references to all the JAR libraries in the [OXYGEN_INSTALL_DIR]/lib folder. Now your

MyPluginProject should compile successfully.

7. In IntelliJ IDEA, create a new Java Application configuration for debugging (Run > Edit Configurations...

> + > Application). Set the Main class box to ro.sync.exml.Oxygen and add the following code snippet in

the VM options input box, making sure that the path to the plugins directory is the correct one:

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor

-Dcom.oxygenxml.editor.plugins.dir=D:\projects\MyPluginProject

8. Add a breakpoint (on page 2233) in the source of one of your Java classes.

9. Debug the created configuration. When the code reaches your breakpoint (on page 2232), the IntelliJ

IDEA debugging view should take over.

Debugging a Plugin Using the Eclipse Workbench

To use the Eclipse workbench to debug problems in the code of a plugin (on page 3299) without having to re-

bundle the plugin's Java classes in a JAR (on page 3297) library, follow these steps:

1. Download and install Oxygen XML Editor.

2. Set up the Oxygen SDK following this set of instructions.

3. Create an Eclipse Java Project (for example, MyPluginProject) from one of the sample plugins (for

example, the Workspace Access plugin).

4. In the MyPluginProject folder, create a folder called myPlugin. In this new folder, copy the

plugin.xml file from the sample plugin. Modify the added plugin.xml to add a library reference

to the directory where Eclipse copies the compiled output. To find out where this directory is located,

invoke the contextual menu of the project (in the Project view (on page 414)), and go to Build Path >

Configure Build Path. Then inspect the value of the Default output folder text box.

Example: If the compiled output folder is classes, then in the plugin.xml, you need to add the

following library reference:

<library name="../classes"/>

5. Copy the plugin.dtd from the [OXYGEN_INSTALL_DIR]/plugins folder in the root

MyPluginProject folder.

6. In the MyPluginProject build path, add external JAR references to all the JAR libraries in the

[OXYGEN_INSTALL_DIR]/lib folder. Now your MyPluginProject should compile successfully.

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html
https://www.oxygenxml.com/oxygen_sdk/download.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2562

7. In the Eclipse IDE, create a new Java Application configuration for debugging. Set the Main class box to

ro.sync.exml.Oxygen. Click the Arguments tab and add the following code snippet in the VM arguments

input box, making sure that the path to the plugins directory is the correct one:

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor

-Dcom.oxygenxml.editor.plugins.dir=D:\projects\MyPluginProject

In the Dependencies tab, you should only add dependencies to two JAR libraries:

[OXYGEN_INSTALL_DIR]/lib/oxygen.jar and [OXYGEN_INSTALL_DIR]/lib/oxygen-

basic-utilities.jar.

8. Add a breakpoint (on page 2233) in the source of one of your Java classes.

9. Debug the created configuration. When the code reaches your breakpoint (on page 2232), the Eclipse

IDE debugging perspective should take over.

Debugging an Oxygen SDK Extension Using the Eclipse Workbench

To use the Eclipse workbench to debug problems in the code of an extension (on page 3299) without having

to bundle its Java classes in a JAR (on page 3297) library, perform the following steps:

1. Download and install Oxygen XML Editor.

2. Create an Eclipse Java Project (for example, MySDKProject) with the corresponding Java sources (for

example, a custom implementation of the ro.sync.ecss.extensions.api.StylesFilter interface).

3. In the Project build path, add external JAR references to all the JAR libraries in the

[OXYGEN_INSTALL_DIR]/lib folder. In the build path Order and Export panel, make sure that the

oxygen.jar entry is before all other libraries. Now your Project should compile successfully.

4. Start the standalone version of Oxygen XML Editor from the [OXYGEN_INSTALL_DIR] and in the

Document Type Association preferences page (on page 146), edit the document type (for example,

DITA) to open the Document Type configuration dialog box (on page 148). In the Classpath tab, add a

reference to your Project's classes directory and in the Extensions tab, select your custom StylesFilter

extension as a value for the CSS styles filter property. Close the application to save your changes.

5. Create a new Java Application configuration for debugging. The Main Class should be

ro.sync.exml.Oxygen. The given VM Arguments should be:

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor

6. Add a breakpoint (on page 2233) in one of the source Java classes.

7. Debug the created configuration. When the code reaches your breakpoint (on page 2232), the Eclipse

IDE debugging perspective should take over.

Disabling a Plugin

To disable a plugin (on page 3299), use one of the following two methods:

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2563

• Open the Preferences dialog box (Options > Preferences) (on page 132), go to Plugins, and deselect

the plugin that you want to disable.

• Create an empty file called plugin.disable next to the plugin configuration file (plugin.xml). The

plugin will be disabled and will no longer be loaded by the application on startup.

Note:

This is useful if you want to temporarily stop work on a plugin and use the application without

it.

Oxygen XML Author Component
The Oxygen XML Author Component was designed as a subset of Oxygen XML Editor that can be integrated

into another application under the terms of the Oxygen XML Editor SDK agreement to provide functionality

for editing and authoring XML documents. The component can be embedded in a third-party standalone Java

application to provide WYSIWYG-like XML editing directly in your application.

More information about the setup for the Oxygen XML Author Component can be found on the Oxygen SDK

page.

Licensing

The licensing terms and conditions for the Oxygen XML Author Component are defined in the Oxygen SDK

License Agreement. To obtain the licensing terms and conditions and other licensing information as well,

you can also contact the support team at support@oxygenxml.com. You may also obtain a free of charge

evaluation license key for development purposes, subject to registration. Any deployment of an application

developed using the Oxygen XML Author Component is also subject to the terms of the SDK agreement.

There are two main categories of Oxygen XML Author Component integrations:

• Integration for internal use:

You develop an application that embeds the Author Component to be used internally (in your company

or by you). You can buy and use previously purchased Oxygen XML Editor floating licenses to enable

the runtime usage of the Oxygen XML Author Component as it was integrated into the application.

• Integration for external use:

Using the Oxygen XML Author Component, you create an application that you distribute to other users

outside your company (with a CMS for example). In this case, you should apply for a Value Added

Reseller (VAR) partnership by contacting the Oxygen Sales Team (https://www.oxygenxml.com/

sales_support.html).

From a technical point of view, the Oxygen XML Author Component provides the Java API to:

https://www.oxygenxml.com/oxygen_sdk.html#oXygen_component
https://www.oxygenxml.com/oxygen_sdk.html#oXygen_component
https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/sales_support.html
https://www.oxygenxml.com/sales_support.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2564

• Inject floating license server details in the Java code:

The following link provides details about how to configure an HTTP floating license server: https://

www.oxygenxml.com/license_server.html#floating_license_servlet.

AuthorComponentFactory.getInstance().init(frameworkZips,

 optionsZipURL, codeBase, appID,

 //The servlet URL

 "http://www.host.com/servlet",

 //The HTTP credentials user name

 "userName",

 //The HTTP credentials password

 "password");

...

Related Information:

https://www.oxygenxml.com/sdk_agreement.html

Installation Requirements

Running the Oxygen XML Author Component embedded in a third-party Java/Swing application requires:

• Oracle Java version 11 or 17.

• At least 100 MB disk space and 100MB free memory.

Customization

For a special type of XML, you can create a custom framework (on page 3297) (which also works in a

standalone version of Oxygen XML Editor). Oxygen XML Editor already has frameworks for editing DocBook,

DITA, TEI, and so on. Their sources are available in the Oxygen SDK. This custom framework is then packed in

a zip archive and used to deploy the component.

https://www.oxygenxml.com/license_server.html#floating_license_servlet
https://www.oxygenxml.com/license_server.html#floating_license_servlet
https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2565

Figure 617. Components of a Custom Framework

Multiple frameworks can coexist in the same component and can be used at the same time for editing XML

documents.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2566

Figure 618. Multiple Frameworks

You can add on your custom toolbar all actions available in the standalone Oxygen XML Editor application for

editing in the Author mode. You can also add custom actions defined in the framework customized for each

XML type.

The Oxygen XML Author Component can also provide the Outline (on page 551), Model (on page 557),

Elements (on page 646), and Attributes (on page 641) views, which can be added to your own developed

containers.

The main entry point for the Oxygen XML Author Component Java API is the AuthorComponentFactory class.

Related Information:

Creating and Configuring Custom Frameworks (on page 2240)

Oxygen XML Author Component (on page 2563)

AuthorComponentFactory API

Example - Customizing the DITA Framework

If you look inside the bundle-frameworks\oxygen-frameworks folder distributed with the Oxygen

XML Author Component sample project, it contains a frameworks folder. Customizations that affect the

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentFactory.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentFactory.html
https://www.oxygenxml.com/oxygen_sdk.html#oXygen_standalone_applet_integration
https://www.oxygenxml.com/oxygen_sdk.html#oXygen_standalone_applet_integration
https://www.oxygenxml.com/oxygen_sdk.html#oXygen_standalone_applet_integration

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2567

framework configuration for the component should first be done in a standalone installation of Oxygen XML

Editor.

The Oxygen XML Editor installation also includes a frameworks folder that contains the dita framework

located in [OXYGEN_INSTALL_DIR]\frameworks\dita. The dita framework contains a bundled DITA-

OT distribution that contains the DTDs used for DITA editing. If your DTD specialization is a DITA-OT plugin, it

should be installed (on page 2525) in the DITA-OT-DIR\plugins folder.

To make changes to the DITA framework configuration, open the Preferences dialog box (Options >

Preferences) (on page 132), go to Document Type Association, and edit or extend the framework. These

changes will affect the [OXYGEN_INSTALL_DIR]\frameworks\dita\dita.framework configuration

file.

After you do this, you can re-pack the Oxygen XML Author Component following the instructions from the

README.html file located in the Oxygen XML Author Component sample project. The Author Component

sample project and the Oxygen XML Editor standalone installation should be of the same version.

Related Information:

Framework and Author Mode Customization (on page 2240)

Packing a Fixed Set of Options

The Oxygen XML Author Component shares a common internal architecture with the standalone application,

although it does not have Preferences dialog boxes. However, the Author Component can be configured to use

a fixed set of user options on startup.

The sample project contains a module called bundle-options. The module contains a file called

options.xml in the oxygen-options folder. Such an XML file can be obtained by exporting the options to

an XML format from an installation of Oxygen XML Editor.

To create an options file in the Oxygen XML Editor:

• Make sure the options that you want to set are not stored at project level (on page 321).

• Set the values you want to impose as defaults in the Preferences pages (on page 132).

• Select Options > Export Global Options.

Adding MathML support in the Oxygen XML Author Component

By default, the Oxygen XML Author Component does not come with the libraries necessary for viewing and

editing MathML equations in the Author mode. You can view and edit MathML equations either by adding

support for JEuclid (on page 2567) or by adding support for MathFlow (on page 2568).

Adding MathML Support Using JEuclid

By default, the JEuclid library is excluded from the Oxygen SDK artifact dependencies. To enable it, comment

the following lines in the pom.xml file:

https://www.oxygenxml.com/oxygen_sdk.html#oXygen_standalone_applet_integration
https://www.oxygenxml.com/oxygen_sdk.html#oXygen_standalone_applet_integration

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2568

<exclusion>

 <artifactId>jeuclid-core</artifactId>

 <groupId>net.sourceforge.jeuclid</groupId>

</exclusion>

To edit specialized DITA Composite documents with MathML content, include the entire MathML2 framework

directory (for example, the default location is: [OXYGEN_INSTALL_DIR]/frameworks/mathml2) in the

frameworks (on page 3297) bundled with the component in the bundle-frameworks module. This directory

is used to solve references to MathML DTDs.

Adding MathML Support Using MathFlow (Deprecated)

Note:

The MathFlow editor integration has been marked as deprecated and in future versions, it will be

replaced with a new MathType integration developed by Wiris.

In the pom.xml file, add dependencies to the following additional libraries used by the MathFlow library to

parse MathML equations:

1. MFComposer.jar

2. MFExtraSymFonts.jar

3. MFSimpleEditor.jar

4. MFStructureEditor.jar

5. MFStyleEditor.jar

Note:

For MathFlow 2.1, all of these JAR (on page 3297) files are packaged into one file called

MathFlow.jar.

You can reference these additional libraries from the MathFlow SDK as in the example below:

<dependency>

 <groupId>com.dessci</groupId>

 <artifactId>MFComposer</artifactId>

 <version>1.0.0</version>

 <scope>system</scope>

 <systemPath>${MathFlowSDKDir}/lib/MFComposer.jar</systemPath>

</dependency>

In addition, you must obtain fixed MathFlow license keys for editing and composing MathML equations and

register them using these API methods: AuthorComponentFactory.setMathFlowFixedLicenseKeyForEditor and

AuthorComponentFactory.setMathFlowFixedLicenseKeyForComposer.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2569

To edit specialized DITA Composite with MathML content, include the entire

[OXYGEN_INSTALL_DIR]/frameworks/mathml2 Mathml2 framework directory in the frameworks (on

page 3297) bundled with the component in the bundle-frameworks module. This directory is used to solve

references to MathML DTDs.

More documentation is available on the Wiris MathFlow website.

Adding Support to Insert References from a WebDAV Connection

Predefined actions that insert references, such as the Insert Image action, includes a URL chooser field with a

drop-down menu that allows you to select a Browse Data Source Explorer action. This action opens the Data

Source Explorer (on page 2125) that allows you to view a WebDAV connection.

To use a WebDAV connection in the Oxygen XML Author Component, follow these steps:

1. Open a standalone Oxygen XML Editor 27.1 and configure a WebDAV connection (on page 2171).

2. Pack the fixed set of options (on page 2567) from the standalone application to use them with the

Oxygen XML Author Component project.

3. In the Oxygen XML Author Component, the defined connection still does not work when expanded

because the additional JAR libraries used to browse the WebDAV repository are missing. By default, the

httpclient dependency of the Oxygen SDK artifact is excluded. You can enable it by commenting the

following lines:

<exclusion>

 <artifactId>httpclient</artifactId>

 <groupId>org.apache.httpcomponents</groupId>

</exclusion>

If you want to have multiple WebDAV connection URLs, user names, and passwords (depending on the

user who started the component), you can use a more flexible approach by using the following API:

 //DBConnectionInfo(String id, String driverName, String url, String user,

String passwd, String host, String port)

 DBConnectionInfo info = new DBConnectionInfo("WEBDAV", "WebDAV FTP",

"http://host/webdav-user-root", "userName", "password", null, null);

 AuthorComponentFactory.getInstance().setObjectProperty

("database.stored.sessions1", new DBConnectionInfo[] {info});

Using Plugins with the Oxygen XML Author Component

To bundle Workspace Access plugins (on page 3299) that are developed for the standalone application with

the Oxygen XML Author Component, follow these steps:

http://www.wiris.com/mathflow

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2570

• The bundle-plugins module must contain the additional plugin directories in the dropins

subdirectory. The content must also contain a plugin.dtd file. Copy the plugin.dtd file from an

[OXYGEN_INSTALL_DIR]\plugins folder.

• In the class that instantiates the AuthorComponentFactory (for example

the ro.sync.ecss.samples.AuthorComponentSample class), call the

methods AuthorComponentFactory.getPluginToolbarCustomizers(),

AuthorComponentFactory.getPluginViewCustomizers(), and

AuthorComponentFactory.getMenubarCustomizers(), obtain the customizers that have been added

by the plugins and call them to obtain the custom swing components that they contribute. There is a

commented-out example for this in the AuthorComponentSample.reconfigureActionsToolbar() method

for adding the toolbar from the Acrolinx plugin.

Important:

As the Oxygen XML Author Component is just a subset of the entire application, there is no guarantee

that all the functionality of the plugin will work.

Frequently Asked Questions

Installation and Licensing

1. Are there any client requirements beyond the Java VM?

Oracle Java version 11 or 17. At least 200 MB disk space and 200MB free memory is necessary for the

Oxygen XML Author Component.

2. Does the Oxygen XML Author Component support multiple documents being open simultaneously?

What are the licensing ramifications?

A single AuthorComponentFactory instance can create multiple EditorComponentProvider editors

that can then be added and managed by the developer who customizes the component in a Swing

JTabbedPane. A single license (floating or user-based) is enough for this.

If you need to run multiple distinct Java processes using the Oxygen XML Author Component, the

current floating license model allows for only two concurrent components from the same computer

when using the HTTP floating license server. An additional started component will take an extra license

seat.

Functionality

1. What graphic formats can be directly rendered in the Oxygen XML Author Component?

GIF, JPEG, PNG, BMP and SVG.

2. Can links be embedded to retrieve (from the server) and "play" other types of digital assets, such as

audio or video files?

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2571

You could add listeners to intercept clicks and open the clicked links. This would require a good

knowledge of the Oxygen SDK. The Oxygen XML Author Component can only render static images (no

GIF animations).

3. Does the Oxygen XML Author Component provide methods for uploading ancillary files (new graphics,

for instance) to the hosting server?

No.

4. Does the Oxygen XML Author Component provide any type of autosave functionality?

By default no, but you could customize it to save its content periodically to a file on disk.

5. Assuming multiple documents can be edited simultaneously, can content be copied, cut, and pasted

from one Oxygen XML Author Component "instance" to another?

Yes.

6. Does the Oxygen XML Author Component support pasting content from external sources (such as a

web page or a Microsoft Word document and, if so, to what extent?

If no customizations are available, the content is pasted as simple text. Customizations are provided

for the major frameworks (DITA, DocBook, TEI, etc.) that use a conversion XSLT stylesheet to convert

HTML content from clipboard to the target XML.

7. Can UTF-8 characters (such as Greeks, mathematical symbols, etc.) be inserted and rendered?

Any UTF-8 character can be inserted and rendered, provided that the font used for editing supports

rendering the characters. The font can be changed by developers but not by the users. When using a

logical font (by default, Serif for the Oxygen XML Author Component), the JVM will know how to map all

characters to glyphs. There is no character map available but you could implement one.

Customization

1. Describe, in general terms, the menus, toolbars, contextual menu options, helper panes, and so on, that

are available for the Oxygen XML Author Component out-of-the box.

You can mount all actions available in the standalone Oxygen XML Editor application on your custom

toolbar. This includes custom actions defined in the framework customized for each XML type.

The Oxygen XML Author Component also can provide the Outline (on page 551), Model (on page 557),

Elements (on page 646), and Attributes (on page 641) views that can be added to your own panels.

2. Describe, in general terms, the actions, project resources (for example, DTD/Schema for validation

purposes, CSS/XSL for styling, etc.) and typical level of effort that would be required to deploy a Oxygen

XML Author Component solution for a customer with a proprietary DTD.

The Author mode internal engine uses CSS to render XML.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2572

For a special type of XML, you can create a custom framework (which also works in an Oxygen XML

Editor standalone version) that would also contain default schemas and custom actions. A simple

framework would probably need 2-3 weeks development time. For a complex framework with many

custom actions, it could take a long time. Oxygen XML Editor has built-in frameworks for editing

(DocBook, DITA, TEI, etc.) and sources for them are available in the Oxygen SDK.

Multiple frameworks can co-exist in the same Oxygen XML Editor instance and can be used at the same

time for editing XML documents.

3. Many customers desire a very simplistic interface for contributors (with little or no XML expertise)

but a more robust XML editing environment for editors (or other users with more advanced XML

expertise). How well does the Oxygen XML Author Component support varying degrees of user

interface complexity and capability?

◦ Showing/hiding menus, toolbars, helpers, etc.

You assemble all the UI parts from the Oxygen XML Author Component. For example, you could

provide two implementations: one for advanced users and one for content authors.

◦ Forcing behaviors (for example, ensuring change tracking (on page 3301) is on and preventing

it from being shut down).

You could avoid placing the change tracking toolbar actions in the UI. You could also use the API

to turn change tracking ON when the content has been loaded.

◦ Preventing access to "privileged" editor processes (for example, accept/reject changes).

You can remove the change tracking actions completely in a custom implementation, including

the ones from the contextual menu.

◦ Presenting and/or describing XML constructs (for example, tags) in "plain-English".

Using our API, you can customize what the Outline view or Breadcrumb displays for each XML

tag. You can also customize the in-place content completion list.

◦ Presenting a small subset of the overall XML tag set (rather than the full tag set) for use by

contributors (for example, allowing an author to only insert Heading, Para, and inline emphasis).

The API allows for a content completion filter that also affects the Elements view.

4. Does the Oxygen XML Author Component API provide access to the XML document, for manipulation

purposes, using common XML syntax (such as DOM, XPath, etc.)?

Yes, using the Oxygen XML Author Component API.

5. Can custom dialog boxes be developed and launched to collect information in a "form" (with scripting

behind to tag the collection information and embed it in the XML document)?

https://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2573

Yes.

6. Can project resources and customizations be readily shared between the desktop and component

versions of your Oxygen XML Author Component product line?

A framework developed for the standalone version of the Oxygen XML Editor application can then be

bundled with the Oxygen XML Author Component. For example, you could use the same framework that

you use in the Oxygen XML Editor standalone distribution.

A custom editing solution can deploy one or more frameworks that can be used at the same time.

Print Document Within the Oxygen XML Author Component

Question

Can a document be printed within the Oxygen XML Author Component?

Answer

You can use the following API method to either print the document content to the printer or to show the Print

Preview dialog box, depending on the preview parameter value:

AuthorComponentProvider.print(boolean preview)

Here is the online Javadoc for this method: https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/

ro/sync/ecss/extensions/api/component/AbstractComponentProvider.html#print(boolean)

Oxygen XML Web Author Component
The Oxygen SDK provides the ability to integrate the Oxygen XML Web Author into your existing content

ecosystem and it allows anyone in your organization to access your content from anywhere they have an

internet connection. Oxygen XML Web Author is highly versatile and can be customized to work with any XML

vocabulary, most file repository systems, and virtually any type of workflow.

Web Author Component Integration

For information about integrating Oxygen XML Web Author into your environment, see Web Author Integration.

Web Author Customization

For detailed information about customizing Web Author, see the Oxygen XML Web Author Customization

Guide.

Using Web Author

For information about using the Web Author product, see the Oxygen XML Web Author User Manual.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AbstractComponentProvider.html#print(boolean)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AbstractComponentProvider.html#print(boolean)
https://www.oxygenxml.com/oxygen_sdk.html#oxygen_webapp_integration
https://www.oxygenxml.com/oxygen_sdk/oxygen_webapp_component.html
https://www.oxygenxml.com/doc/ug-waCustom/
https://www.oxygenxml.com/doc/ug-waCustom/
https://www.oxygenxml.com/doc/ug-webauthor/

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2574

Web Author vs. Web Author Component

The purpose of this topic is to help you choose which distribution of Oxygen XML Web Author is appropriate

for your particular use-case.

Oxygen XML Web Author has two distributions:

1. Oxygen XML Web Author (product) - This version can be downloaded from the Oxygen website and is

licensed according to the Web Author License Agreement.

2. Web Author Component - Provided as a Maven artifact (according to the SDK Agreement) that is used

in the Web Author Component integration project. This project can be used as a starting point for your

integration.

Note:

The formal definition for Web Author Component inside the SDK agreement is:

"“Web Author Component” is a subset of Software composed of a server component operating

as a service application and a client component deployed to a web browser, such as an

HTML5 based application, where the client component is not installed on the client machine

but is in use by the client machine while the browser is connected to the server component."

For End-Users

For end-users, the recommended distribution is Oxygen XML Web Author (product).

For Plugin and Framework Developers

If you develop frameworks or plugins that provides enhanced functionality for Oxygen XML Web Author, it is

recommended to distribute the plugin or framework separately from Web Author. They will work with both

types of distributions and the end-users can choose:

• To install your plugin or framework in Web Author.

• To use a solution based on Web Author that has the plugin or framework installed by default.

• To use a solution based on Web Author and install the plugin or framework themselves.

Example of such plugins/frameworks:

• Integration with a terminology database.

• Adding support to edit embedded SVG snippets.

• Providing support for a specific XML language.

For Integration Developers

If you want to integrate Oxygen XML Web Author into another application (for example, a CMS), that

you distribute to your end-users, there are several aspects to consider when choosing between the two

distributions:

https://www.oxygenxml.com/xml_web_author/download_oxygenxml_web_author.html
https://www.oxygenxml.com/eula_webauthor.html
https://www.oxygenxml.com/sdk_agreement.html
https://github.com/oxygenxml/web-author-component-integration

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2575

Functionality

There are some features that are available in the installable Oxygen XML Web Author product requires an

additional plugin to be available in the Web Author Component. For example, the File Comparison Tool is

available by default in the Oxygen XML Web Author product, but requires an additional plugin to be installed

for it to be available in the Web Author Component version.

Legal

If you want to use the Web Author Component, you must have your own application that is not called Oxygen

XML Web Author, but will contain Web Author as a software component provided by Syncro Soft. Hence,

Syncro Soft does not have a direct legal link with your users, you will handle the licensing of your application to

your end-users.

For the official details, you can consult the license agreements for both distributions:

1. Oxygen XML Web Author (product): https://www.oxygenxml.com/eula_webauthor.html

2. Web Author Component: https://www.oxygenxml.com/sdk_agreement.html

Financial

The prices for Oxygen XML Web Author (product) are listed on the Oxygen website: https://

www.oxygenxml.com/xml_web_author/buy_oxygen_xml_web_author.html.

If you choose to use the Web Author product to distribute as a plugin or framework, then you act as a channel

reseller, basically reselling Oxygen XML Web Author to your end-users and you must pay Syncro Soft the

corresponding cost of the license.

The Web Author Component has more flexible pricing alternatives for resellers that are negotiated for each

contract and include:

• Subscription packages similar to the ones used for the Web Author product, but you may get a discount

depending on the partnership level (Gold, Silver, Bronze).

• Solution OEM license.

If you choose to integrate the Web Author Component into your application, the cost is based on royalties,

rather than a cost for the license. That means you do not need to pay for the ability to include the component

in your application, but when you distribute your application you must pay a royalty to Syncro Soft.

Customization

It is strongly recommended to implement any customization as a combination of plugins, frameworks,

and options. If you are using Web Author Component, you can also alter the Web Author files, but this is

discouraged since those files are not considered API and may change in a future version.

https://www.oxygenxml.com/eula_webauthor.html
https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/xml_web_author/buy_oxygen_xml_web_author.html
https://www.oxygenxml.com/xml_web_author/buy_oxygen_xml_web_author.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2576

Deployment

If you want to use Oxygen XML Web Author (product), you can install it using the installation kits, then

configure the plugins, frameworks, and options using a browser-based UI. Alternatively, you can configure

Oxygen XML Web Author to load the configuration from a custom directory (Oxygen Data Directory) along

with desired plugins, frameworks, and options.

If you want to use Web Author Component, you can use the Web Author Component integration project to

build a custom WAR file with plugins, frameworks, and options bundled. This WAR file can be deployed in any

Servlet container (for example, Tomcat).

Distribution

If you want to use Oxygen XML Web Author (product), your users must download Oxygen XML Web Author

from the Oxygen website, while you will distribute your plugins/frameworks to your users. You should provide

instructions on how to deploy and use Oxygen XML Web Author. Alternatively, you can install and configure it

for them.

If you want to use Web Author Component, you will distribute the customized WAR file.

Developer Quick Start Guide
Oxygen XML Editor allows you to develop add-ons to customize the editing experience. Such customizations

can be achieved through a plugin or a framework configuration. This section is meant to provide guidance to

developers who are getting started with these types of customizations and to offer links to various resources

to help with customizations.

• A plugin can be used to customize the behavior of the entire application no matter what XML

document is currently being edited. Once created, a plugin can be deployed and installed as an add-on

(on page 2557). For more information, see the The Oxygen SDK (Part 1: Plugins) blog post.

• A framework configuration provides validation, content completion, and editing support for a specific

XML vocabulary. See: https://blog.oxygenxml.com/topics/oxygenFrameworks.html. Once created, a

framework can be deployed and installed as an add-on. See: https://www.oxygenxml.com/doc/ug-

editor/topics/packing-and-deploying-addons.html.

From a legal point of view, you can freely develop and share such extensions as long as they are only used

from inside Oxygen XML Editor. For details, see: https://www.oxygenxml.com/sdk_agreement.html .

Plugins

A plugin can be used to customize the behavior of the entire application no matter what XML document is

currently being edited. Since Oxygen XML Editor is a Java-based application, most of the allowed plugin types

are Java-based but some JavaScript-based plugin types are also supported.

There are lots of plugin types (on page 2526) but the Workspace Access plugin type (on page 2526) is the

most versatile of them. This type of plugin allows you to contribute actions to the main menu and toolbars,

https://github.com/oxygenxml/web-author-component-integration
https://www.oxygenxml.com/xml_web_author/download_oxygenxml_web_author.html
https://blog.oxygenxml.com/topics/the_oxygen_sdk_part_1_plugins.html
https://blog.oxygenxml.com/topics/the_oxygen_sdk_part_1_plugins.html
https://blog.oxygenxml.com/topics/oxygenFrameworks.html
https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html
https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html
https://www.oxygenxml.com/sdk_agreement.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2577

create custom views, interact with the application workspace, make modifications to open documents, and

add listeners for various events. A Workspace Access plugin can also contribute frameworks (on page 2534).

The Maven-based Oxygen XML SDK comes with sample plugins and it provides the ability to compile Java

extensions for your plugins and frameworks. Also, as a quick start for a Workspace Access plugin, you can

use this project: https://github.com/oxygenxml/sample-plugin-workspace-access.

The Workspace Access plugin API can also be used with a JavaScript-based plugin (on page 2529). Small

plugin samples can be found here: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins.

You can create automated tests (on page) for your plugins and debug them using the Eclipse IDE (on

page 2561).

A plugin can either be installed manually or packed as an add-on and installed using Help->Install new add-

ons (on page 2525).

Sample Plugins

A sample Maven-based Workspace Access plugin can be found here: https://github.com/oxygenxml/sample-

plugin-workspace-access.

There is also a sample project which contains various JavaScript-based plugins: https://github.com/

oxygenxml/wsaccess-javascript-sample-plugins.

The Oxygen GitHub site contains lots of open-source plugins (https://github.com/topics/oxygen-standalone-

plugin). Most of these plugins are of the Workspace Access type.

You can also find a variety of other publicly-hosted Oxygen plugins in the Public Hosted Oxygen Plugin and

Framework Projects blog post.

Workspace Access Plugin Extension

This type of plugin extension allows you to contribute actions to the main menu and toolbars, create custom

views, interact with the application workspace, make modifications to open documents, and add listeners for

various events. It is the most useful and most commonly used plugin extension.

A Workspace Access plugin extension (on page 2526) can also provide frameworks, allowing you to have

a single add-on that provides both workspace-level extensions (independent of any given framework) and

document type-specific frameworks. If the frameworks involve Java extensions (for example, custom dialog

boxes or link text resolvers), they use the Java code for the Workspace Access plugin.

You can include frameworks with a Workspace Access plugin by declaring an "additional frameworks"

extension in the plugin.xml file (on page 2534).

https://www.oxygenxml.com/oxygen_sdk.html
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
unique_1876
unique_1876
unique_1876
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/topics/oxygen-standalone-plugin
https://github.com/topics/oxygen-standalone-plugin
https://blog.oxygenxml.com/topics/Oxygen%20plugins%20and%20frameworks.html
https://blog.oxygenxml.com/topics/Oxygen%20plugins%20and%20frameworks.html
https://blog.oxygenxml.com/topics/Oxygen%20plugins%20and%20frameworks.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2578

Java or JavaScript?

Oxygen XML Editor is a Java-based application and all of its APIs are Java-based. The entire user interface

(buttons, views, dialog boxes) is built on top of the Java Swing architecture. The entire Javadoc API

documentation is available here: https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/.

A Workspace Access plugin can be implemented either in Java or in JavaScript. Sample Java-based

Workspace Access plugins can be found on the Oxygen XML GitHub page.

Sample JavaScript-based implementations can be found in this sample project: https://github.com/

oxygenxml/wsaccess-javascript-sample-plugins. The Rhino library is used to convert the JavaScript method

calls to Java API calls: https://github.com/mozilla/rhino.

Related Information:

• Workspace Access Plugin Extension (on page 2526)

• Workspace Access Plugin Extension (JavaScript-Based) (on page 2529)

API Overview

The Workspace Access plugin extension is called when the application starts and when it closes.

The StandalonePluginWorkspace API can be used in numerous ways:

• Customize the toolbars, contextual menu, and main menus. See: Adding Toolbar and Menu Actions (on

page 2579).

• Import or set global settings in Oxygen XML Editor. See: https://www.oxygenxml.com/InstData/Editor/

SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html.

• Access the API for the Project view. See: https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/

ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#getProjectManager().

• Access utility methods to interact with the end-user (for example, show warning and error dialog boxes,

update the results view, or change the status bar). See: https://www.oxygenxml.com/InstData/Editor/

SDK/javadoc/ro/sync/exml/workspace/api/WorkspaceUtilities.html.

• Add a listener to be notified when a new XML document is opened, selected, or

closed either in the main editing area or in the DITA Maps Manager view. See: https://

www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/

PluginWorkspace.html#addEditorChangeListener(ro.sync.exml.workspace.api.listeners.WSEditorChangeListener,int).

• Provide access to opened XML documents via the WSEditor interface. Each opened XML document

can be manipulated using the WSEditor interface. You can obtain its content, set new content to it, or

save its content. You can also validate the editor contents or disable editing inside it. Depending on the

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/
https://github.com/topics/oxygen-standalone-plugin
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/mozilla/rhino
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/workspace/WorkspaceAccessPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/workspace/WorkspaceAccessPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#getProjectManager()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#getProjectManager()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/WorkspaceUtilities.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/WorkspaceUtilities.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#addEditorChangeListener(ro.sync.exml.workspace.api.listeners.WSEditorChangeListener,int)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#addEditorChangeListener(ro.sync.exml.workspace.api.listeners.WSEditorChangeListener,int)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#addEditorChangeListener(ro.sync.exml.workspace.api.listeners.WSEditorChangeListener,int)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2579

current editing mode (Text or Author), you can gain access to the current editing page and send it either

to the Author editing page or Text editing page. Both APIs allow you to make changes to the current

document content.

Adding Toolbar and Menu Actions

A Workspace Access plugin extension (on page 2526) can contribute custom actions to the contextual menu,

main menus, or to the general toolbars.

• Contributing a new toolbar action:

This sample Workspace Access plugin contributes a new toolbar called

SampleWorkspaceAccessToolbarID. The java code of the sample plugin will use the toolbar

components customizer API.

• Contributing an action on the main menu:

As exemplified in the sample plugin, the addMenuBarCustomizer API can be used either to add a new

menu or to customize the existing main menu.

• Contributing a contextual menu action:

The same sample plugin uses the addMenusAndToolbarsContributorCustomizer API to contribute a

contextual menu customizer. Such a customizer can be contributed either for the Text or Author editing

modes.

Once an action is added, you can define a new shortcut key for it using the ActionProvider API. The action can

use the WSEditor API to make changes to an open XML document.

The same customizer API can be used to remove actions from the main menu, toolbars, framework-specific

menus, and contextual menus.

Adding a New Side-View

A Workspace Access plugin (on page 2526) type can contribute a new side view to Oxygen

XML Editor. For example, the following plugin.xml descriptor file defines a new view ID called

SampleWorkspaceAccessToolbarID: https://github.com/oxygenxml/sample-plugin-workspace-access/blob/

master/plugin.xml.

Once the new view ID is declared, the Java code of the plugin can add content to the view using the

pluginWorkspaceAccess.addViewComponentCustomizer API.

Customizing the Project View

The API method StandalonePluginWorkspace.getProjectManager() allows access to various project-related

functionalities:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html#getCurrentPage()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html#getCurrentPage()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html#getCurrentPage()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/text/xml/WSXMLTextEditorPage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/text/xml/WSXMLTextEditorPage.html
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/sample-plugin-workspace-access/blob/master/src/main/java/com/oxygenxml/sdksamples/workspace/CustomWorkspaceAccessPluginExtension.java
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#addToolbarComponentsCustomizer(ro.sync.exml.workspace.api.standalone.ToolbarComponentsCustomizer)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#addToolbarComponentsCustomizer(ro.sync.exml.workspace.api.standalone.ToolbarComponentsCustomizer)
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/sample-plugin-workspace-access
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#getActionsProvider()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html
https://github.com/oxygenxml/sample-plugin-workspace-access/blob/master/plugin.xml
https://github.com/oxygenxml/sample-plugin-workspace-access/blob/master/plugin.xml
https://github.com/oxygenxml/sample-plugin-workspace-access/blob/master/src/main/java/com/oxygenxml/sdksamples/workspace/CustomWorkspaceAccessPluginExtension.java
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#getProjectManager()

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2580

• Add a new contextual menu action in the Project view.

• Access the set of resources currently selected in the Project view.

• Customize the icons that appear in the Project view.

A sample JavaScript-based plugin that uses this API to add a new contextual menu to the Project view

can be found here: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/

OpenInTerminalProjectContextualAction.

Customizing the DITA Maps Manager View

You can add a listener to be notified when a new DITA map is opened, selected, or closed in the DITA Maps

Manager view. Once the editorOpened() callback is received, you can obtain the opened WSEditor API, then

send its current page to the WSDitaMapEditorPage.

The API method WSDitaMapEditorPage allows you to interact with the DITA map that is open in the DITA

maps Manager view:

• Add a customizer for the icons and text presented in the tree.

• Enable or disable editing on the tree.

• Set a popup menu customizer.

• Get the selected nodes.

• Get access to the AuthorDocumentController API to make changes to the content.

Sample plugins:

• JavaScript-based plugin that customizes the icons and text presented for a DITA map that is open in

the DITA Maps Manager view: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/

tree/master/dmmCustomizeTopicTitlesAndIcons.

• JavaScript-based plugin that adds a new contextual menu action for a DITA map that is open in the

DITA Maps Manager view: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/

master/contributePopupActionDMM.

Persistent Storage

Your plugin may need to save plugin-specific information persistently between two sessions. The

PluginWorkspace,getOptionsStorage() method allows you to save and retrieve (key, value) pairs persistently

between sessions (between closing and restarting Oxygen XML Editor). You can also add listeners to be

notified when the values for a certain key are changed.

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/OpenInTerminalProjectContextualAction
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/OpenInTerminalProjectContextualAction
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#addEditorChangeListener(ro.sync.exml.workspace.api.listeners.WSEditorChangeListener,int)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/listeners/WSEditorChangeListener.html#editorOpened(java.net.URL)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#getEditorAccess(java.net.URL,int)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html#getCurrentPage()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/ditamap/WSDITAMapEditorPage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/ditamap/WSDITAMapEditorPage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/dmmCustomizeTopicTitlesAndIcons
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/dmmCustomizeTopicTitlesAndIcons
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/contributePopupActionDMM
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/contributePopupActionDMM
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#getOptionsStorage()

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2581

Contributing a Custom Preferences Page

There is a specific plugin extension type that can be used to contribute a custom preferences page (on page

2540) to the Preferences dialog box in Oxygen XML Editor. An example of how such a page is implemented

can be found in this sample plugin: https://github.com/oxygenxml/oxygen-dita-prolog-updater-addon/blob/

master/src/main/java/com/oxygenxml/prolog/updater/plugin/PrologOptionPageExtension.java.

Imposing a Fixed Set of Global Preferences

You may want to impose a fixed set of global options to be used by all end-users who install the plugin. The

GlobalOptionsStorage API provides the ability to set the following:

• Set a certain global option to a certain value: (https://www.oxygenxml.com/

InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/

GlobalOptionsStorage.html#setGlobalObjectProperty(java.lang.String,java.lang.Object)) The

APIAccessibleOptionTags interface contains a list with all keys that can be set to a custom value.

• Set global options by importing an options XML file: (https://www.oxygenxml.com/

InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/

GlobalOptionsStorage.html#importGlobalOptions(java.io.File,boolean)) Such an options XML file can

be generated by using the Options->Export Global Options action in Oxygen XML Editor. A sample

JavaScript-based WorkspaceAccess plugin implementation that imports such an options XML

document into the application can be found here: https://github.com/oxygenxml/wsaccess-javascript-

sample-plugins/tree/master/impose-options.

Other ways to share a common set of options with others are listed here: https://blog.oxygenxml.com/topics/

sharingSettings.html.

Interaction with the End-User

If you need your plugin to frequently interact with the end user, some possibilities include:

• Your plugin can create Java Swing-based components (dialog boxes, frames) that are displayed when

custom toolbar or menu actions (on page 2579) added by the plugin are called. You can also extend

the Oxygen-specific API base class OKCancelDialog to create a dialog box that already includes OK

and Cancel buttons. This specific base also automatically resizes its internal components depending

on the currently used fonts or DPI settings and also properly positions the OK and Cancel buttons

depending on the operating system (on macOS, the OK button is on the right part of the dialog box,

while on Windows and Linux, it is placed on the left part of the dialog box). There is an entire API

package that contains base implementations of Swing components and such implementations are

recommended to be used for the plugin-contributed components to look like the ones contributed by

Oxygen XML Editor.

• Your plugin can add a specific side view (on page 2579).

• The WorkspaceUtilities API allows you to:

https://github.com/oxygenxml/oxygen-dita-prolog-updater-addon/blob/master/src/main/java/com/oxygenxml/prolog/updater/plugin/PrologOptionPageExtension.java
https://github.com/oxygenxml/oxygen-dita-prolog-updater-addon/blob/master/src/main/java/com/oxygenxml/prolog/updater/plugin/PrologOptionPageExtension.java
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html#setGlobalObjectProperty(java.lang.String,java.lang.Object)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html#setGlobalObjectProperty(java.lang.String,java.lang.Object)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html#setGlobalObjectProperty(java.lang.String,java.lang.Object)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/options/APIAccessibleOptionTags.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html#importGlobalOptions(java.io.File,boolean)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html#importGlobalOptions(java.io.File,boolean)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/options/GlobalOptionsStorage.html#importGlobalOptions(java.io.File,boolean)
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/impose-options
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/impose-options
https://blog.oxygenxml.com/topics/sharingSettings.html
https://blog.oxygenxml.com/topics/sharingSettings.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/ui/OKCancelDialog.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/ui/package-summary.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/ui/package-summary.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/WorkspaceUtilities.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2582

◦ Show file and folder choosers.

◦ Show confirmation dialog boxes.

◦ Show information, warning, or error dialog boxes.

◦ Show a custom status message in the application.

• The ResultsManager API allows you to add results in the Results view. These results can point to a

specific document at a specific line/column location.

• The title of the main application frame can be modified using this API: https://

www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/

Workspace.html#setParentFrameTitle(java.lang.String).

Contributing Translations for New Labels and UI Text

You may want your plugin's interaction with the end-user (dialog boxes, pop-up messages, etc.) to be properly

translated in all user interface languages (on page 348) supported by Oxygen XML Editor. The API method

StandalonePluginWorkspace.getResourceBundle() will allow you to pass message keys that will be resolved

by the application to specific language-dependent values by looking at a file called translation.xml, which

needs to be placed in a folder called i18n in the plugin installation folder. The structure of the translation.xml

file needs to look like this: https://www.oxygenxml.com/doc/ug-editor/topics/contribute-new-languages-

extension.html.

Comparing Documents

Using a Workspace Access plugin extension, you have access to various APIs that allow the comparison of

XML documents:

• Display the Compare Files tool with a given set of URLs for two-way or three-way comparisons: https://

www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/

DiffAndMergeTools.html.

• Compare documents in-memory (for example, to generate reports): https://www.oxygenxml.com/

InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/util/CompareUtilAccess.html.

Customizing the Application Layout

There are two main ways to customize the layout of the application:

• Remove some of the toolbars, actions, menus, or views that Oxygen XML Editor shows by default when

the application starts. A sample plugin that filters the user interface based on an XML configuration file

is available here: https://github.com/oxygenxml/oxygen-components-filter-plugin.

• Export the layout of the current views and toolbars in the application using the Window->Export Layout

action, then use the WorkspaceAccess plugin API to impose a fixed value for a global option key:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#getResultsManager()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/Workspace.html#setParentFrameTitle(java.lang.String)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/Workspace.html#setParentFrameTitle(java.lang.String)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/Workspace.html#setParentFrameTitle(java.lang.String)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html#getResourceBundle()
https://www.oxygenxml.com/doc/ug-editor/topics/contribute-new-languages-extension.html
https://www.oxygenxml.com/doc/ug-editor/topics/contribute-new-languages-extension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/DiffAndMergeTools.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/DiffAndMergeTools.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/DiffAndMergeTools.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/util/CompareUtilAccess.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/util/CompareUtilAccess.html
https://github.com/oxygenxml/oxygen-components-filter-plugin
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#getOptionsStorage()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspace.html#getOptionsStorage()

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2583

File layoutFile = new File(baseDir, "application.layout");

if (layoutFile.exists()) {

 PerspectivesLayoutInfo info = new PerspectivesLayoutInfo(true, false, "",

 layoutFile.getAbsolutePath());

 pluginWorkspaceAccess.setGlobalObjectProperty("perspectives.layout.info", info);

...

Adding new User Interface Translations

There is a particular plugin extension to contribute a new language to Oxygen XML Editor: https://

www.oxygenxml.com/doc/ug-editor/topics/contribute-new-languages-extension.html.

Frameworks

A framework configuration provides validation, content completion, and visual editing functionality for a

certain XML vocabulary. Usually, a framework customization provides a schema used to validate and edit

certain type of XML documents, a CSS used to edit the XML documents in the Author visual editing mode

and various custom actions or behaviors used to enhance the editing experience. For more information about

framework customization, see: https://blog.oxygenxml.com/topics/oxygenFrameworks.html.

Oxygen XML Editor comes with a lot of framework configuration folders ([OXYGEN_INSTALL_DIR]/

frameworks) to support editing XML documents of various types (such as DocBook, DITA, XHTML, or TEI).

All of these existing framework configurations can be further customized in the Preferences->Document

Type Associations page. These framework configurations can be used as examples for building your own

customization for a certain XML vocabulary or they can be extended if you want to share a modified version of

a framework with others.

The Document Type Association configuration dialog box allows you to configure all the framework-specific

settings.

https://www.oxygenxml.com/doc/ug-editor/topics/contribute-new-languages-extension.html
https://www.oxygenxml.com/doc/ug-editor/topics/contribute-new-languages-extension.html
https://blog.oxygenxml.com/topics/oxygenFrameworks.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-devel-guide-intro.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-devel-guide-intro.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-extending.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-document-type-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-document-type-dialog.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2584

You can also find various open-source frameworks for Oxygen XML Editor online: https://

blog.oxygenxml.com/topics/Oxygen%20plugins%20and%20frameworks.html.

Once you have set up a framework configuration folder, it can be packaged as an add-on and shared with

others or it can be packaged in workspace access plugins using the "additional framework" extension point in

the plugin.xml file (on page 2534).

Customizing an Existing Framework

An existing framework that has full built-in support (for example the DITA framework) can be extended

and customized. Afterward, this customization can be shared with others. You can use such a framework

customization extension to:

• Provide custom new file templates.

• Provide a custom CSS layer to render the framework in the Author visual editing mode.

• Provide custom Schematron-based validation for the XML documents.

• Provide custom Author mode actions on the toolbar, in the contextual menu, and in the main

framework-specific menu.

Customizing the Content Completion Proposals

When editing an XML document either in the Text or Author editing modes, you can invoke the Content

Completion Assistant (Ctrl+Space in Text mode or ENTER in Author mode) to see the allowed XML elements

or attributes that can be inserted at the current location. The Elements view also presents the elements that

https://blog.oxygenxml.com/topics/Oxygen%20plugins%20and%20frameworks.html
https://blog.oxygenxml.com/topics/Oxygen%20plugins%20and%20frameworks.html
https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html
https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html
https://blog.oxygenxml.com/topics/author-document-type-extension-sharing.html
https://blog.oxygenxml.com/topics/author-document-type-extension-sharing-custom-new-file-templates.html
https://blog.oxygenxml.com/2016/10/customizing-dita-visual-editing.html
https://blog.oxygenxml.com/2016/10/customizing-dita-visual-editing.html
https://blog.oxygenxml.com/2016/10/customizing-dita-visual-editing.html
https://blog.oxygenxml.com/topics/customizeDITACSS.html
https://blog.oxygenxml.com/topics/composing-author-actions.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2585

can be inserted in the document at a certain location, while the Attributes view presents a list of allowed

attributes and their values.

The content completion proposals can be customized in various ways:

• Each framework can contain a special content completion configuration file. Such a file can:

◦ Filter out element proposals for a parent element.

◦ Configure a set of required attributes to be inserted along with a certain element.

◦ Add new attribute value proposals and for each proposal, add an annotation that will appear in

the Attributes view for each value.

◦ Call an external XSLT script to compute value proposals for a certain attribute.

◦ Customize how the element names are presented in the Outline view, Elements view, and

Content Completion Assistant.

• You can alter the schema that is associated with the XML document. For example, in the case of the

DITA vocabulary, you can create a DTD specialization plugin and integrate it into Oxygen XML Editor.

• You can use the SchemaManagerFilter API to filter the set of proposed elements and attribute values

using Java code.

Adding Custom New File Templates

The New Document Wizard (on page 378) (File->New or the New button on the toolbar) presents custom

file templates gathered from all frameworks installed in Oxygen XML Editor. A custom framework can have

one or more special folders that contain custom new file templates.

Adding Custom Validation Stages

You can distribute a framework with a series of already configured validation scenarios. Also, this provides

enhanced validation support that allows you to use multiple grammars to check the document. For example,

you can use Schematron rules to impose guidelines that are otherwise impossible to enforce using

conventional validation. See: Configuring Validation Scenarios for a Framework.

Adding Custom Transformation Scenarios

When distributing a framework to users, it is a good idea to have the transformation scenarios already

configured. This helps the content authors publish their work in various formats. By being contained in the

framework configuration, the scenarios can be distributed along with the actions, menus, toolbars, and

catalogs. See: Configuring Transformation Scenarios for a Framework.

https://www.oxygenxml.com/doc/ug-editor/topics/configuring-content-completion-proposals.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-file-templates.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-validation-scenarios.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-transformation-scenarios.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2586

Customizing the Author Visual Editing Mode

The Author visual editing mode is based on CSS. Besides supporting most of the CSS 3 specification, Oxygen

XML Editor adds some custom CSS selectors, properties, and functions. Customization possibilities include:

• Use CSS selectors to match XML comments, processing instructions, entities, and CDATA sections.

• Change the tags display mode and tag color for certain elements, mark certain XML elements as not

editable, and other customizations using additional CSS properties.

• Use custom CSS functions. For example, the oxy_xpath function allows you to run an XPath search over

the document and use that value as static text.

• In custom pseudo-classes, you can match values that can be changed via a custom action.

• There are specific @media types that can be used to mark certain CSS sections for a certain

distribution.

• Fonts can be dynamically loaded and used for rendering.

Adding Toolbar and Menu Actions

The framework customization (on page 2583) can define actions that appear on a framework-specific toolbar

when editing content in the Author visual editing mode.

You can use the Author Action dialog box (on page 156) to configure the name, description, icons, menu

shortcuts, and various XPath-enabled activation operations (on page 160).

You can use a variety of pre-defined operations in each activation mode to achieve various things:

• Insert an XML fragment in the document either at the current position or at a specified offset.

• Set an attribute with a certain value on a certain element.

• Invoke an XSLT script using the XSLTOperation to produce an XML fragment to be inserted in the

document.

• Invoke a JavaScript function that can use the Author mode APIs to modify the document. Some

samples of such operations can be found here: https://github.com/oxygenxml/javascript-sample-

operations.

• Set a CSS pseudo-class on a certain element. The pseudo-class can be matched from the CSS to style

various elements differently.

You can also create custom Author mode operations by extending the AuthorOperation Java API.

Once a custom action has been created, it can be added to the main menu, toolbar, or contextual menu.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-css-support-in-author.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-css-support-in-author.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-oXygen-css-extensions.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-additional-custom-selectors.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-css-additional-properties.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-oxygen-css-functions.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-custom-css-pseudo-classes.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-oxygen-media-type.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-font-face-media.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html
https://github.com/oxygenxml/javascript-sample-operations
https://github.com/oxygenxml/javascript-sample-operations
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2587

Embedding Form Controls

By using custom CSS functions, you can embed form controls (checkboxes, combo boxes, text fields, pop-

up boxes, buttons, etc.) in the Author visual editing mode to edit attribute values or text content for certain

elements.

All the supported form controls can be found in the Form Controls section.

Sample XML and CSS documents that use form controls can be found in the [OXYGEN_INSTALL_DIR]/

samples/form-controls folder.

Adding Inline Actions

Using the oxy_button and oxy_buttonGroup form controls, you can add inline actions in the Author

visual editing mode. To see an example, you can open a Lightweight DITA topic from the folder

[OXYGEN_INSTALL_DIR]/samples/dita/lw-dita/.

Debugging CSS-related Problems

The CSS Inspector view can be used to find out how various CSS styles are applied. For more information, see

Debugging CSS Stylesheets.

Customizing Links

If you need to have working links between your XML document instances in the Author visual editing mode,

consider the following possibilities:

• You can use the -oxy-link CSS property to specify a link target on a static icon placed before the

element.

• You can use the oxy_link-text() CSS function to take control over the text presented inside a link using a

specific Java extension.

• You can use a custom ExtensionsBundle implementation to be notified on a specific callback if the

reference needs further processing.

• You can implement a custom link target element finder if the links are not referenced directly to

elements that have an ID attribute. The link target element finder will be used to locate the target when

the end-user clicks the link.

Related information

Sample DITA (framework) extension that sets a custom ExtensionsBundle implementation for customizing

links

https://www.oxygenxml.com/doc/ug-editor/topics/form-controls.html
https://www.oxygenxml.com/doc/ug-editor/topics/button-editor.html
https://www.oxygenxml.com/doc/ug-editor/topics/button-group-editor.html
https://www.oxygenxml.com/doc/ug-editor/topics/debugging-css-stylesheets.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-link-elements.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-link-elements.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-oxy-link-text.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-oxy-link-text.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/LinkTextResolver.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html#resolveCustomHref(java.net.URL,ro.sync.ecss.extensions.api.node.AuthorNode,java.lang.String,ro.sync.ecss.extensions.api.AuthorAccess)
https://www.oxygenxml.com/doc/ug-editor/topics/dg-author-link-target-reference-finder.html
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2588

Customizing the Smart Paste Mapping

The Smart Paste feature in Oxygen XML Editor preserves certain style and structure information when copying

content and pasting it into XML documents. It is also possible to customize the mapping for the Smart Paste

mechanism.

If you want full control over this behavior, there are also Java extensions that can be customized.

Difference Between a Framework (Document Type) and a Plugin Extension

Question

What is the difference between a Framework (on page 3297) and a Plugin (on page 3299) Extension?

Answer

There are two possible ways to customize the application:

1. Implement a plugin.

A plugin serves a general purpose and influences any type of XML file that you open in Oxygen XML

Editor.

For the Oxygen XML Editor Plugins API, Javadoc, samples, and documentation, go to https://

www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

2. Create or modify the document type (on page 2240) that is associated to your specific XML vocabulary.

This document type can be used, for instance, to provide custom actions for your type of XML files and

to mount them on the toolbar, menus, and contextual menus.

For example, if the end-users are editing DITA documents, all the toolbar actions that are specific for

DITA are provided by the DITA framework. If you look in the Document Type Association preferences

page (on page 146) there is a DITA document type. If you edit that document type you will see that

it has an Author tab in the Document Type Configuration dialog box (on page 148). The subtabs in

this tab can be used to define custom DITA actions and add them to the toolbars, main menus, or

contextual menus.

For information about developing your own document types (frameworks), see the Creating and

Configuring Custom Frameworks (on page 2240) section.

If you look on disk in the [OXYGEN_INSTALL_DIR]\frameworks\dita folder, there is a file called

dita.framework. That file gets updated when you edit a document type from the Document Type

Association preferences page (on page 146). Then you can share that updated file with all users.

The same folder contains some JAR (on page 3297) libraries. These libraries contain custom Java

operations that are called when the user presses certain toolbar actions.

https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-customize-smart-paste.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-customize-smart-paste.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-customize-smart-paste.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-customize-smart-paste.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-drop-paste-handler.html
https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2589

The Oxygen SDK contains the Java sources from all the DITA Java customizations:

https://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

Important:

It is possible for a plugin to share the same classes with a framework. For further details, go to How to

Share the Classloader Between a Framework and a Plugin (on page 2556).

Related Information:

Adding a Custom Operation to an Existing Framework (on page 2288)

SDK Common Use Cases
This section contains details for specific use cases regarding customizations using the Oxygen SDK, Author

Component (on page 2563), or plugins (on page 2522).

For additional questions, contact the Oxygen support team. The preferred approach is via email because

these types of questions must be analyzed thoroughly. The Oxygen support team also provides code snippets,

if applicable.

To stay up-to-date with the latest changes, discuss issues, and ask for solutions from other developers

working with the Oxygen SDK, register on the Oxygen-SDK mailing list.

Add Custom Actions to the Contextual Menu

Use Case

You want to add your own custom actions to the contextual menu using an API.

Solution

The WSAuthorEditorPageBase.addPopUpMenuCustomizer and

WSTextEditorPage.addPopUpMenuCustomizer API methods allow you to customize the contextual menu

shown either in the Author or Text modes. The API is available both in the standalone application and in the

Eclipse plugin.

To add actions to the Author page from your Eclipse plugin extension:

1. Create a pop-up menu customizer implementation:

import org.eclipse.jface.action.ContributionManager;

import org.eclipse.ui.PlatformUI;

import org.eclipse.ui.menus.IMenuService;

import ro.sync.ecss.extensions.api.AuthorAccess;

import ro.sync.ecss.extensions.api.structure.AuthorPopupMenuCustomizer;

https://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/contact.html
https://www.oxygenxml.com/contact.html
https://www.oxygenxml.com/mailinglists.html#oxygen-sdk

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2590

/**

* This class is used to create the possibility to attach certain

* menuContributions to the {@link ContributionManager}, which is used for the

* popup menu in the Author Page of the Oxygen Editor.

* You just need to use the org.eclipse.ui.menus extension and add a

* menuContribution with the locationURI: menu:oxygen.authorpage

*/

public class OxygenAuthorPagePopupMenuCustomizer implements

 AuthorPopupMenuCustomizer {

 @Override

 public void customizePopUpMenu(Object menuManagerObj,

 AuthorAccess authoraccess) {

 if (menuManagerObj instanceof ContributionManager) {

 ContributionManager contributionManager = (ContributionManager) menuManagerObj;

 IMenuService menuService = (IMenuService) PlatformUI.getWorkbench()

 .getActiveWorkbenchWindow().getService(IMenuService.class);

 menuService.populateContributionManager(contributionManager,

 "menu:oxygen.authorpage");

 contributionManager.update(true);

 }

 }

}

2. Add a workbench listener and add the pop-up customizer when an editor is open in the Author page:

Workbench.getInstance().getActiveWorkbenchWindow().getPartService()

.addPartListener(

 new IPartListener() {

 @Override

 public void partOpened(IWorkbenchPart part) {

 if(part instanceof ro.sync.exml.workspace.api.editor.WSEditor) {

 WSEditorPage currentPage = ((WSEditor)part).getCurrentPage();

 if(currentPage instanceof WSAuthorEditorPage) {

 ((WSAuthorEditorPage)currentPage).addPopUpMenuCustomizer

(new OxygenAuthorPagePopupMenuCustomizer());

 }

 }

 }

 });

3. Implement the extension point in your plugin.xml file:

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2591

<extension

 point="org.eclipse.ui.menus">

 <menuContribution

 allPopups="false"

 locationURI="menu:oxygen.authorpage">

 <command

 commandId="eu.doccenter.kgu.client.tagging.removeTaggingFromOxygen"

 style="push">

 </command>

 </menuContribution>

</extension>

Add Custom Callouts

Use Case

You want to highlight validation errors, instead of underlining them (for example, changing the text

background color to red or yellow) and display a message directly at the error position that describes the

problem.

Solution

The Plugins API allows you to set a ValidationProblemsFilter that gets notified when automatic validation

errors are available. Then you can map each of the problems to an offset range in the Author mode using the

API WSTextBasedEditorPage.getStartEndOffsets(DocumentPositionedInfo). For each of those offsets, you

can add either persistent or non-persistent highlights. If you add persistent highlights, you can also customize

callouts to appear for each of them. The downside is that they need to be removed before the document gets

saved. The result would look something like this:

Figure 619. Custom Callouts with Persistent Highlights

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2592

Here is a working example:

/**

* Plugin extension - workspace access extension.

*/

public class CustomWorkspaceAccessPluginExtension

 implements WorkspaceAccessPluginExtension {

/**

* @see ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension

 #applicationStarted(

ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)

*/

 public void applicationStarted

(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addEditorChangeListener

(new WSEditorChangeListener() {

 /**

 * @see WSEditorChangeListener#editorOpened(java.net.URL)

 */

 @Override

 public void editorOpened(URL editorLocation) {

 final WSEditor currentEditor = pluginWorkspaceAccess.getEditorAccess

(editorLocation, StandalonePluginWorkspace.MAIN_EDITING_AREA);

 WSEditorPage currentPage = currentEditor.getCurrentPage();

 if(currentPage instanceof WSAuthorEditorPage) {

 final WSAuthorEditorPage currentAuthorPage =

(WSAuthorEditorPage)currentPage;

 currentAuthorPage.getPersistentHighlighter().setHighlightRenderer

(new PersistentHighlightRenderer() {

 @Override

 public String getTooltip(AuthorPersistentHighlight highlight) {

 return highlight.getClonedProperties().get("message");

 }

 @Override

 public HighlightPainter getHighlightPainter

(AuthorPersistentHighlight highlight) {

 //Depending on severity could have different color.

 ColorHighlightPainter painter = new ColorHighlightPainter

(Color.COLOR_RED, -1, -1);

 painter.setBgColor(Color.COLOR_RED);

 return painter;

 }

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2593

 });

 currentAuthorPage.getReviewController()

 .getAuthorCalloutsController().setCalloutsRenderingInformationProvider(

 new CalloutsRenderingInformationProvider() {

 @Override

 public boolean shouldRenderAsCallout(AuthorPersistentHighlight highlight) {

 //All custom highlights are ours

 return true;

 }

 @Override

 public AuthorCalloutRenderingInformation getCalloutRenderingInformation(

 final AuthorPersistentHighlight highlight) {

 return new AuthorCalloutRenderingInformation() {

 @Override

 public long getTimestamp() {

 //Not interesting

 return -1;

 }

 @Override

 public String getContentFromTarget(int limit) {

 return "";

 }

 @Override

 public String getComment(int limit) {

 return highlight.getClonedProperties().get("message");

 }

 @Override

 public Color getColor() {

 return Color.COLOR_RED;

 }

 @Override

 public String getCalloutType() {

 return "Problem";

 }

 @Override

 public String getAuthor() {

 return "";

 }

 @Override

 public Map<String, String> getAdditionalData() {

 return null;

 }

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2594

 };

 }

 });

 currentEditor.addValidationProblemsFilter(new ValidationProblemsFilter() {

 List<int[]> lastStartEndOffsets = new ArrayList<int[]>();

 /**

 * @see ro.sync.exml.workspace.api.editor.validation.ValidationProblemsFilter

 #filterValidationProblems

(ro.sync.exml.workspace.api.editor.validation.ValidationProblems)

 */

 @Override

 public void filterValidationProblems(ValidationProblems validationProblems) {

 List<int[]> startEndOffsets = new ArrayList<int[]>();

 List<DocumentPositionedInfo> problemsList =

validationProblems.getProblemsList();

 if(problemsList != null) {

 for (int i = 0; i < problemsList.size(); i++) {

 try {

 startEndOffsets.add(currentAuthorPage.getStartEndOffsets(problemsList.get(i)));

 } catch (BadLocationException e) {

 e.printStackTrace();

 }

 }

 }

 if(lastStartEndOffsets.size() != startEndOffsets.size()) {

 //Continue

 } else {

 boolean equal = true;

 for (int i = 0; i < startEndOffsets.size(); i++) {

 int[] o1 = startEndOffsets.get(i);

 int[] o2 = lastStartEndOffsets.get(i);

 if(o1 == null && o2 == null) {

 //Continue

 } else if(o1 != null && o2 != null

 && o1[0] == o2[0] && o1[1] == o2[1]){

 //Continue

 } else {

 equal = false;

 break;

 }

 }

 if(equal) {

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2595

 //Same list of problems already displayed.

 return;

 }

 }

 //Keep last used offsets.

 lastStartEndOffsets = startEndOffsets;

 try {

 if(! SwingUtilities.isEventDispatchThread()) {

 SwingUtilities.invokeAndWait(new Runnable() {

 @Override

 public void run() {

 //First remove all custom highlights.

 currentAuthorPage.getPersistentHighlighter().removeAllHighlights();

 }

 });

 }

 } catch (InterruptedException e1) {

 e1.printStackTrace();

 } catch (InvocationTargetException e1) {

 e1.printStackTrace();

 }

 if(problemsList != null) {

 for (int i = 0; i < problemsList.size(); i++) {

 //A reported problem (could be warning, could be error).

 DocumentPositionedInfo dpi = problemsList.get(i);

 try {

 final int[] currentOffsets = startEndOffsets.get(i);

 if(currentOffsets != null) {

 //These are offsets in the Author content.

 final LinkedHashMap<String, String> highlightProps =

new LinkedHashMap<String, String>();

 highlightProps.put("message", dpi.getMessage());

 highlightProps.put("severity", dpi.getSeverityAsString());

 if(! SwingUtilities.isEventDispatchThread()) {

 SwingUtilities.invokeAndWait(new Runnable() {

 @Override

 public void run() {

 currentAuthorPage.getPersistentHighlighter().addHighlight(

 currentOffsets[0], currentOffsets[1] - 1, highlightProps);

 }

 });

 }

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2596

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (InvocationTargetException e) {

 e.printStackTrace();

 }

 }

 }

 }

});

 currentEditor.addEditorListener(new WSEditorListener() {

 /**

 * @see WSEditorListener#editorAboutToBeSavedVeto(int)

 */

 @Override

 public boolean editorAboutToBeSavedVeto(int operationType) {

 try {

 if(! SwingUtilities.isEventDispatchThread()) {

 SwingUtilities.invokeAndWait(new Runnable() {

 @Override

 public void run() {

 //Remove all persistent highlights before saving

 currentAuthorPage.getPersistentHighlighter().removeAllHighlights();

 }

 });

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (InvocationTargetException e) {

 e.printStackTrace();

 }

 return true;

 }

 });

 }

 }

}, StandalonePluginWorkspace.MAIN_EDITING_AREA);

 }

/**

* @see WorkspaceAccessPluginExtension#applicationClosing()

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2597

 */

 public boolean applicationClosing() {

 return true;

 }

 }

Add Custom Highlights to Content

Use Case

You want to add custom highlights to the document content in Author mode.

Solution

There are two types of highlights you can add:

1. Non-Persistent Highlights - Such highlights are removed when the document is closed and then re-

opened.

You can use the following API method:

ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getHighlighter()

to obtain an AuthorHighlighter that allows you to add a highlight between certain offsets with a

specified painter.

For example, you can use this support to implement your own spell checker with a custom highlight for

the unrecognized words.

2. Persistent Highlights - Such highlights are saved in the XML content as processing instructions.

You can use the following API method:

ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getPersistentHighlighter()

to obtain an AuthorPersistentHighlighter class that allows you to add a persistent highlight between

certain offsets, set new properties for a specific highlight, and render it with a specified painter.

For example, you can use this support to implement your own way of adding review comments.

Related Information:

Adding Custom Persistent Highlights (on page 2349)

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorHighlighter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2598

Auto-Generate an ID When a Document is Opened or Created

Use Case

You want to configure how the application generates IDs (you need IDs that have a certain format for each

created topic).

Solution

This could be done implementing a plugin (on page 3299) for Oxygen XML Editor using the Plugins SDK:

There is a type of plugin called "Workspace Access" that can be used to add a listener to be notified when an

editor is opened.

The implemented plugin would intercept the open editor and editor page change events (which occur when a

new editor is created) and generate a new ID attribute value on the root element.

The Java code would look like this:

pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {

/**

* @see WSEditorChangeListener#editorOpened(java.net.URL)

*/

@Override

public void editorOpened(URL editorLocation) {

 WSEditor ed = pluginWorkspaceAccess.getEditorAccess

(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);

 generateID(ed);

}

/**

* @see WSEditorChangeListener#editorPageChanged(java.net.URL)

*/

@Override

public void editorPageChanged(URL editorLocation) {

 WSEditor ed = pluginWorkspaceAccess.getEditorAccess

(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);

 generateID(ed);

}

private void generateID(WSEditor ed) {

 if(ed.getCurrentPage() instanceof WSAuthorEditorPage) {

 WSAuthorEditorPage authorEditPage = (WSAuthorEditorPage) ed.getCurrentPage();

 AuthorDocumentController ctrl = authorEditPage.getDocumentController();

 AuthorElement root = ctrl.getAuthorDocumentNode().getRootElement();

 if(root.getAttribute("id") == null ||

!root.getAttribute("id").getValue().startsWith("generated_")) {

https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2599

 ctrl.setAttribute("id", new AttrValue("generated_" + Math.random()), root);

 }

 }

 }

 }, PluginWorkspace.MAIN_EDITING_AREA);

Change the Default Track Changes (Review) Author Name

Use Case

You want to change the default author name used for Tracked Changes (on page 3301) in the Author

Component.

Solution

The Track Changes (Review) author name is determined in the following order:

1. API - The review user name can be imposed through the following API:

ro.sync.ecss.extensions.api.AuthorReviewController.setReviewerAuthorName(String)

2. Options - If the author name was not imposed from the API, it is determined from the Author option set

in the Review preferences page (on page 192).

3. System properties - If the author name was not imposed from the API or from the application options

then the following system property is used:

System.getProperty("user.name")

So, to impose the Track Changes author, use one of the following approaches:

1. Use the API to impose the reviewer author name. Here is the online Javadoc of this method:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/

AuthorReviewerNameController.html#setReviewerAuthorName(java.lang.String)

2. Customize the default options and set a specific value for the Author name option set in the Review

preferences page (on page 192).

3. Set the value of user.name system property when the Author Component is initializing and before any

document is loaded.

Change the DOCTYPE of an Open XML Document

Use Case

You want to change the DOCTYPE of a document that is open in the Author mode.

Solution

The following API:

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewerNameController.html#setReviewerAuthorName(java.lang.String)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewerNameController.html#setReviewerAuthorName(java.lang.String)

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2600

ro.sync.ecss.extensions.api.AuthorDocumentController.getDoctype()

allows you to get the DOCTYPE of the current XML file open in the Author mode.

There is also an API method available that would allow you to set the DOCTYPE back to the XML:

ro.sync.ecss.extensions.api.AuthorDocumentController.setDoctype(AuthorDocumentType)

Here is an example of how this solution would work:

AuthorDocumentType

dt = new AuthorDocumentType("article", "testSystemID", "testPublicID",

 "<!DOCTYPE article PUBLIC \"testPublicID\" \"testSystemID\">");

docController.setDoctype(dt);

Basically, you could take the entire content from the existing DOCTYPE,

ro.sync.ecss.extensions.api.AuthorDocumentType.getContent()

modify it to your needs, and create another AuthorDocumentType object with the new content and with the same

public, system IDs.

For example, you could use this API is you want to add unparsed entities in the XML DOCTYPE.

Control XML Serialization in the Oxygen XML Author Component

Use Case

You want to force the Oxygen XML Author Component to save the XML with zero indent size and not to break

the line inside block elements (on page 3294).

Solution

Usually, in a standalone version of Oxygen XML Editor, the Editor > Format and Editor > Format > XML

preferences pages allow you to control the way the XML is saved on the disk after you edit it in the Author

mode.

Also, the APIAccessibleOptionTags interface contains a list of all accessible keys that can be read or set from

the options.

In the Oxygen XML Editor application, you can either bundle a default set of options (on page 319) or use the

PluginWorkspace.setGlobalObjectProperty(String, Object) API:

//For not breaking the line

//Long line

pluginWorkspace.setObjectProperty

 (APIAccessibleOptionTags.EDITOR_LINE_WIDTH, new Integer(100000));

//Do not break before inline elements

pluginWorkspace.setObjectProperty

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/options/APIAccessibleOptionTags.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/options/APIAccessibleOptionTags.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2601

 (APIAccessibleOptionTags.EDITOR_FORMAT_INDENT_INLINE_ELEMENTS, false);

//For forcing zero indent

//Force indent settings to be controlled by us

pluginWorkspace.setObjectProperty

 (APIAccessibleOptionTags.EDITOR_DETECT_INDENT_ON_OPEN, false);

//Zero indent size

pluginWorkspace.setObjectProperty

 (APIAccessibleOptionTags.EDITOR_INDENT_SIZE, 0);

In the Oxygen XML Author Component, you can either bundle a fixed set of options (on page 2613), or use the

Java API to set properties that overwrite the default options.

 //For not breaking the line

 //Long line

 AuthorComponentFactory.getInstance().setObjectProperty

(APIAccessibleOptionTags.EDITOR_LINE_WIDTH, new Integer(100000));

 //Do not break before inline elements

 AuthorComponentFactory.getInstance().setObjectProperty

(APIAccessibleOptionTags.EDITOR_FORMAT_INDENT_INLINE_ELEMENTS, false);

 //For forcing zero indent

 //Force indent settings to be controlled by us

 AuthorComponentFactory.getInstance().setObjectProperty

(APIAccessibleOptionTags.EDITOR_DETECT_INDENT_ON_OPEN, false);

 //Zero indent size

 AuthorComponentFactory.getInstance().setObjectProperty

(APIAccessibleOptionTags.EDITOR_INDENT_SIZE, 0);

Related Information:

API Interface Documentation: APIAccessibleOptionTags

Customize the Outline View in Text Mode

Use Case

You want to customize the Outline view (on page 551) in Text mode.

Solution

Suppose that you have the following XML document:

<doc startnumber="15">

 <sec counter="no">

 <info/>

 <title>Introduction</title>

 </sec>

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/options/APIAccessibleOptionTags.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/options/APIAccessibleOptionTags.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2602

 <sec>

 <title>Section title</title>

 <para>Content</para>

 <sec>

 <title>Section title</title>

 <para>Content</para>

 </sec>

 </sec>

 <sec>

 <title>Section title</title>

 <para>Content</para>

 </sec>

</doc>

and you want to display the XML content in a simplified Outline view like this:

doc "15"

sec Introduction

sec 15 Section title

sec 15.1 Section title

sec 16 Section title

Usually, an Outline view should have the following characteristics:

1. Double-clicking a node in the Outline view would select the corresponding XML content in the editor.

2. When the cursor moves in the open XML document, the Outline view would select the proper entry.

3. When modifications occur in the document, the Outline view would refresh.

A simple implementation using a Workspace Access plugin type could be something like this:

/**

 * Simple Outline for Text mode based on executing XPaths over the text content.

 */

 public class CustomWorkspaceAccessPluginExtension implements

WorkspaceAccessPluginExtension {

 /**

 * The custom outline list.

 */

 private JList customOutlineList;

 /**

 * Maps outline nodes to ranges in document

 */

 private WSXMLTextNodeRange[] currentOutlineRanges;

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2603

 /**

 * The current text page

 */

 private WSXMLTextEditorPage currentTextPage;

 /**

 * Disable CaretListener when we select from the CaretListener.

 */

 private boolean enableCaretListener = true;

 /**

 * @see WorkspaceAccessPluginExtension#applicationStarted

(ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)

 */

 @Override

 public void applicationStarted

(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addViewComponentCustomizer

(new ViewComponentCustomizer() {

 /**

 * @see ViewComponentCustomizer#customizeView

(ro.sync.exml.workspace.api.standalone.ViewInfo)

 */

 @Override

 public void customizeView(ViewInfo viewInfo) {

 if(

 //The view ID defined in the "plugin.xml"

 "SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {

 customOutlineList = new JList();

 //Render the content in the Outline.

 customOutlineList.setCellRenderer(new DefaultListCellRenderer() {

 /**

 * @see javax.swing.DefaultListCellRenderer#getListCellRendererComponent

(javax.swing.JList, java.lang.Object, int, boolean, boolean)

 */

 @Override

 public Component getListCellRendererComponent

(JList<?> list, Object value, int index,

 boolean isSelected, boolean cellHasFocus) {

 JLabel label = (JLabel) super.getListCellRendererComponent

(list, value, index, isSelected, cellHasFocus);

 String val = null;

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2604

 if(value instanceof Element) {

 Element element = ((Element)value);

 val = element.getNodeName();

 if(!"".equals(element.getAttribute("startnumber"))) {

 val += " " + "'" + element.getAttribute("startnumber") + "'";

 }

 NodeList titles = element.getElementsByTagName("title");

 if(titles.getLength() > 0) {

 val += " \"" + titles.item(0).getTextContent() + "\"";

 }

 }

 label.setText(val);

 return label;

 }

 });

 //When we click a node, select it in the text page.

 customOutlineList.addMouseListener(new MouseAdapter() {

 @Override

 public void mouseClicked(MouseEvent e) {

 if(SwingUtilities.isLeftMouseButton(e) && e.getClickCount() == 2) {

 int sel = customOutlineList.getSelectedIndex();

 enableCaretListener = false;

 try {

 currentTextPage.select(currentTextPage.getOffsetOfLineStart

(currentOutlineRanges[sel].getStartLine()) +

currentOutlineRanges[sel].getStartColumn() - 1,

 currentTextPage.getOffsetOfLineStart

(currentOutlineRanges[sel].getEndLine()) +

currentOutlineRanges[sel].getEndColumn());

 } catch (BadLocationException e1) {

 e1.printStackTrace();

 }

 enableCaretListener = true;

 }

 }

 });

 viewInfo.setComponent(new JScrollPane(customOutlineList));

 viewInfo.setTitle("Custom Outline");

 }

 }

});

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2605

pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {

 /**

 * @see WSEditorChangeListener#editorOpened(java.net.URL)

 */

 @Override

 public void editorOpened(URL editorLocation) {

 //An editor was opened

 WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess

(editorLocation, StandalonePluginWorkspace.MAIN_EDITING_AREA);

 if(editorAccess != null) {

 WSEditorPage currentPage = editorAccess.getCurrentPage();

 if(currentPage instanceof WSXMLTextEditorPage) {

 //User editing in Text mode an open XML document.

 final WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;

 //Reconfigure outline on each change.

 xmlTP.getDocument().addDocumentListener(new DocumentListener() {

 @Override

 public void removeUpdate(DocumentEvent e) {

 reconfigureOutline(xmlTP);

 }

 @Override

 public void insertUpdate(DocumentEvent e) {

 reconfigureOutline(xmlTP);

 }

 @Override

 public void changedUpdate(DocumentEvent e) {

 reconfigureOutline(xmlTP);

 }

 });

 JTextArea textComponent = (JTextArea) xmlTP.getTextComponent();

 textComponent.addCaretListener(new CaretListener() {

 @Override

 public void caretUpdate(CaretEvent e) {

 if(currentOutlineRanges != null && currentTextPage != null &&

enableCaretListener) {

 enableCaretListener = false;

 //Find the node to select in the outline.

 try {

 int line = xmlTP.getLineOfOffset(e.getDot());

 for (int i = currentOutlineRanges.length - 1; i >= 0; i--) {

 if(line > currentOutlineRanges[i].getStartLine() &&

line < currentOutlineRanges[i].getEndLine()) {

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2606

 customOutlineList.setSelectedIndex(i);

 break;

 }

 }

 } catch (BadLocationException e1) {

 e1.printStackTrace();

 }

 enableCaretListener = true;

 }

 }

 });

 }

 }

 }

 /**

 * @see WSEditorChangeListener#editorActivated(java.net.URL)

 */

 @Override

 public void editorActivated(URL editorLocation) {

 //An editor was selected, reconfigure the common outline

 WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess

(editorLocation, StandalonePluginWorkspace.MAIN_EDITING_AREA);

 if(editorAccess != null) {

 WSEditorPage currentPage = editorAccess.getCurrentPage();

 if(currentPage instanceof WSXMLTextEditorPage) {

 //User editing in Text mode an open XML document.

 WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;

 reconfigureOutline(xmlTP);

 }

 }

 }

 }, StandalonePluginWorkspace.MAIN_EDITING_AREA);

 }

 /**

 * Reconfigure the outline

 *

 * @param xmlTP The XML Text page.

 */

 protected void reconfigureOutline(final WSXMLTextEditorPage xmlTP) {

 try {

 //These are DOM nodes.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2607

 Object[] evaluateXPath = xmlTP.evaluateXPath("//doc | //sec");

 //These are the ranges each node takes in the document.

 currentOutlineRanges = xmlTP.findElementsByXPath("//doc | //sec");

 currentTextPage = xmlTP;

 DefaultListModel listModel = new DefaultListModel();

 if(evaluateXPath != null) {

 for (int i = 0; i < evaluateXPath.length; i++) {

 listModel.addElement(evaluateXPath[i]);

 }

 }

 customOutlineList.setModel(listModel);

 } catch(XPathException ex) {

 ex.printStackTrace();

 }

 }

 /**

 * @see WorkspaceAccessPluginExtension#applicationClosing()

 */

 @Override

 public boolean applicationClosing() {

 return true;

 }

}

Disable Context-Sensitive Menu Items for Custom Author Actions

Use Case

You want to disable menu items for custom Author mode actions depending on the cursor context.

Solution

By default, Oxygen XML Editor does not toggle the enabled/disabled states for actions based on whether or

not the activation XPath expressions for that certain Author mode action are fulfilled. This is done because

the actions can be many and evaluating XPath expression on each cursor move can lead to performance

problems. However, if you have your own ro.sync.ecss.extensions.api.ExtensionsBundle implementation you

can overwrite the method:

ro.sync.ecss.extensions.api.ExtensionsBundle.createAuthorExtensionStateListener()

and when the extension state listener gets activated, you can use the API like this:

 /**

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2608

 * @see ro.sync.ecss.extensions.api.AuthorExtensionStateListener#activated

(ro.sync.ecss.extensions.api.AuthorAccess)

 */

 public void activated(final AuthorAccess authorAccess) {

 //Add a caret listener to enable/disable extension actions:

authorAccess.getEditorAccess().addAuthorCaretListener(new AuthorCaretListener()

{

 @Override

 public void caretMoved(AuthorCaretEvent caretEvent) {

 try {

 Map<String, Object> authorExtensionActions =

authorAccess.getEditorAccess().getActionsProvider().getAuthorExtensionActions();

 //Get the action used to insert a paragraph. It's ID is "paragraph"

 AbstractAction insertParagraph = (

AbstractAction) authorExtensionActions.get("paragraph");

 //Evaluate an XPath expression in context of the current node

 Object[] evaluateXPath = authorAccess.getDocumentController().evaluateXPath

(".[ancestor-or-self::p]", false, false, false, false);

 if(evaluateXPath != null && evaluateXPath.length > 0 &&

evaluateXPath[0] != null) {

 //We are inside a paragraph, disable the action.

 insertParagraph.setEnabled(false);

 } else {

 //Enable the action

 insertParagraph.setEnabled(true);

 }

 } catch (AuthorOperationException e) {

 e.printStackTrace();

 }

 }

 });

When the extension is deactivated, you should remove the CaretListener to avoid adding multiple listeners that

perform the same functionality.

Dynamically Add Form Controls Using a Styles Filter

Use Case

You want to add form controls using an API.

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2609

Solution

Usually, a form control is added from the CSS using one of the built-in form controls (on page 2484).

However, in some cases you do not have all the information you need to properly initialize the form

control at CSS level. In these cases you can add the form controls by using the API, more specifically

ro.sync.ecss.extensions.api.StylesFilter.

For instance, if you want a combo box form control and the values to populate the combo are specified inside

a file (or they come from a database). Here is how to add the form control from the API:

public class SDFStylesFilter implements StylesFilter {

 public Styles filter(Styles styles, AuthorNode authorNode) {

 if(authorNode.getType() == AuthorNode.NODE_TYPE_PSEUDO_ELEMENT

 && "before".equals(authorNode.getName())) {

 authorNode = authorNode.getParent();

 if ("country".equals(authorNode.getName())) {

 // This is the BEFORE pseudo element of the "country" element.

 // Read the supported countries from the configuration file.

 Map<String, Object> formControlArgs = new HashMap<String, Object>();

 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDIT, "#text");

 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_TYPE,

 InplaceEditorArgumentKeys.TYPE_COMBOBOX);

 // This will be a comma separated enumeration: France, Spain, Great Britain

 String countries = readCountriesFromFile();

 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES, countries);

 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDITABLE, "false");

 // We also add a label in form of the form control.

 Map<String, Object> labelProps = new HashMap<String, Object>();

 labelProps.put("text", "Country: ");

 labelProps.put("styles", "* {width: 100px; color: gray;}");

 StaticContent[] mixedContent = new StaticContent[]

 {new LabelContent(labelProps),new EditorContent(formControlArgs)};

 styles.setProperty(Styles.KEY_MIXED_CONTENT, mixedContent);

 }

 }

 // The added form control is the only way the element can be edited.

 if ("country".equals(authorNode.getName())) {

 styles.setProperty(Styles.KEY_VISIBITY, "-oxy-collapse-text");

 }

 return styles;

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2610

 }

}

If the execution of the formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES, countries); line

consumes too much execution time (for example, if it connects to a database or if it needs to extract data

from a very large file), you can choose to delay it until the values are actually needed by the form control. This

approach is called lazy evaluation and can be implemented as follows:

formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES,

 new LazyValue<List<CIValue>>() {

 public java.util.List<CIValue> get() {

 // We avoid reading the possible values until they are actually requested.

 // This will be a List with CIValues created over countries:

 France, Spain, Great Britain

 return readCountriesFromFile();

 }

});

The lazy evaluation approach can be used for the following form controls properties:

• InplaceEditorArgumentKeys.PROPERTY_VALUES

• InplaceEditorArgumentKeys.PROPERTY_LABELS

• InplaceEditorArgumentKeys.PROPERTY_TOOLTIPS

The full source code for this example is available inside the Oxygen SDK.

Dynamically Modify the Content Inserted by the Author

Use Case

You want to insert typographic quotation marks instead of double quotes.

Solution

By using the API you can set a document filter to change the text that is inserted in the document in Author

mode. You can use this method to change the insertion of double quotes with the typographic quotes.

Here is some sample code:

 authorAccess.getDocumentController().setDocumentFilter

(new AuthorDocumentFilter() {

 /**

 * @see ro.sync.ecss.extensions.api.AuthorDocumentFilter#insertText

(ro.sync.ecss.extensions.api.AuthorDocumentFilterBypass, int, java.lang.String)

 */

 @Override

 public void insertText(AuthorDocumentFilterBypass filterBypass,

https://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2611

int offset, String toInsert) {

 if(toInsert.length() == 1 && "\"".equals(toInsert)) {

 //User typed a quote but he actually needs a smart quote.

 //So we either have to add \u201E (start smart quote)

 //Or we add \u201C (end smart quote)

 //Depending on whether there's already a start smart quote inserted

in the current paragraph.

 try {

 AuthorNode currentNode =

authorAccess.getDocumentController().getNodeAtOffset(offset);

 int startofTextInCurrentNode = currentNode.getStartOffset();

 if(offset > startofTextInCurrentNode) {

 Segment seg = new Segment();

 authorAccess.getDocumentController().getChars(startofTextInCurrentNode,

offset - startofTextInCurrentNode, seg);

 String previosTextInNode = seg.toString();

 boolean insertStartQuote = true;

 for (int i = previosTextInNode.length() - 1; i >= 0; i--) {

 char ch = previosTextInNode.charAt(i);

 if('\u201C' == ch) {

 //Found end of smart quote, so yes, we should insert a start one

 break;

 } else if('\u201E' == ch) {

 //Found start quote, so we should insert an end one.

 insertStartQuote = false;

 break;

 }

 }

 if(insertStartQuote) {

 toInsert = "\u201E";

 } else {

 toInsert = "\u201C";

 }

 }

 } catch (BadLocationException e) {

 e.printStackTrace();

 }

 }

 System.err.println("INSERT TEXT |" + toInsert + "|");

 super.insertText(filterBypass, offset, toInsert);

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2612

 }

});

You can find the online Javadoc for AuthorDocumentFilter API here: https://www.oxygenxml.com/InstData/

Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html

An alternative to using a document filtering is the use of a

ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter, which has clear callbacks indicating

the source from where the API is called (Paste, Drag and Drop, Typing).

Extend the Java Functionality of an Existing Framework (Document Type)

Use Case

You want to change the way a DocBook 4 <xref> displays in Author mode based on what element is at the

@linkend.

Solution

Follow these steps:

1. Create a Maven Java project and add a dependency on the Oxygen XML Editor classes:

<dependency>

 <groupId>com.oxygenxml</groupId>

 <artifactId>oxygen-sdk</artifactId>

 <version>${oxygen.version}</version>

</dependency>

where ${oxygen.version} is the version of Oxygen XML Editor.

Alternatively, if the project does not use Maven, all the transitive dependencies of the above Maven

artifact need to be added to the classpath of the project.

2. Also add the [OXYGEN_INSTALL_DIR]\frameworks\docbook\docbook.jar to the class path of

the project.

3. Create a class that extends ro.sync.ecss.extensions.docbook.DocBook4ExtensionsBundle and

overwrites the method: ro.sync.ecss.extensions.api.ExtensionsBundle#createLinkTextResolver().

4. For your custom resolver implementation you can start from the Java sources of the

ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver (the Java code for the entire DocBook

customization is present in a subfolder in the Oxygen SDK).

5. Pack your extension classes in a JAR (on page 3297) file. Copy the JAR to:

[OXYGEN_INSTALL_DIR]\frameworks\docbook\custom.jar.

6. Start Oxygen XML Editor.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/DocBook4ExtensionsBundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html#createLinkTextResolver()
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/link/DocbookLinkTextResolver.html
https://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2613

7. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association. Edit the DocBook 4 document type. In the Classpath list add the path to the new JAR. In

the extensions list select your custom extension instead of the regular DocBook one.

8. You can rename the document type and the docbook framework folder to something else (such as

custom_docbook) and share it with others. A document type can also be installed using the add-on

support (on page 2400).

Related information

Sample DITA (framework) extension that sets a custom ExtensionsBundle implementation for customizing

links

Impose Custom Options for Authors

Use Case

You want to force Track Changes (on page 3301) to be enabled at startup.

Solution

There are two ways to enable Track Changes for every document that you open:

1. You could customize the default options (on page 319) that are used by your authors and set the Track

Changes - Initial State option (on page 192) to Always On.

2. Use an API to toggle the Track Changes state after a document is opened in Author mode:

// Check the current state of Track Changes

boolean trackChangesOn = authorAccess.getReviewController().isTrackingChanges();

if (!trackChangesOn) {

 // Set Track Changes state to On

 authorAccess.getReviewController().toggleTrackChanges();

}

Insert an Element with all the Required Content

Use Case

You want to insert a DITA image element that points to a certain resource and has required content and you

want the required content be automatically inserted.

Solution

The API ro.sync.ecss.extensions.api.AuthorSchemaManager can propose valid elements that can be inserted

at the specific offset. Using the method AuthorSchemaManager.createAuthorDocumentFragment(CIElement),

you can convert the proposed elements to document fragments (on page 3296) (which have all the required

content filled in) that can then be inserted in the document.

https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/oxygen-dita-extensions-bundle-extension
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaManager.html

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2614

 AuthorSchemaManager schemaManager =

this.authorAccess.getDocumentController().getAuthorSchemaManager();

 WhatElementsCanGoHereContext context =

schemaManager.createWhatElementsCanGoHereContext

(this.authorAccess.getEditorAccess().getCaretOffset());

 List<CIElement> possibleElementsAtCaretPosition =

schemaManager.whatElementsCanGoHere(context);

 loop: for (int i = 0; i < possibleElementsAtCaretPosition.size(); i++) {

 CIElement possibleElement = possibleElementsAtCaretPosition.get(i);

 List<CIAttribute> attrs = possibleElement.getAttributes();

 if(attrs != null) {

 for (int j = 0; j < attrs.size(); j++) {

 CIAttribute ciAttribute = attrs.get(j);

 if (ciAttribute.getName().equals("class")) {

 if (ciAttribute.getDefaultValue() != null

 && ciAttribute.getDefaultValue().contains(" topic/image ")) {

 //Found a CIElement for image

 //Create a fragment that contains all required child elements already built.

 AuthorDocumentFragment frag =

schemaManager.createAuthorDocumentFragment(possibleElement);

 //Now set the @href to it.

 //Ask the user and obtain a value for the @href

 //Then:

 String href = "test.png";

 List<AuthorNode> nodes = frag.getContentNodes();

 if(!nodes.isEmpty()) {

 AuthorElement imageEl = (AuthorElement) nodes.get(0);

 imageEl.setAttribute("href", new AttrValue(href));

 }

 //And insert the fragment.

 this.authorAccess.getDocumentController().insertFragment

(this.authorAccess.getEditorAccess().getCaretOffset(), frag);

 break loop;

 }

 }

 }

 }

}

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2615

Related Information:

AuthorDocumentFragment Class

Modify the XML Content on Open

Use Case

You want to convert fixed paths in an attribute value to relative paths.

Solution

The Plugins SDK contains a sample plugin type called WorkspaceAccess. Such a plugin is notified when the

application starts and it can do what you want in a couple of ways:

1. Add a listener that notifies you when the user opens an XML document. Then if the XML document is

opened in the Author visual editing mode you can use the Author API to change attributes:

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {

 /**

 * @see WSEditorChangeListener#editorOpened(java.net.URL)

 */

 @Override

 public void editorOpened(URL editorLocation) {

 WSEditor openedEditor = pluginWorkspaceAccess.getCurrentEditorAccess

(StandalonePluginWorkspace.MAIN_EDITING_AREA);

 if(openedEditor.getCurrentPage() instanceof WSAuthorEditorPage) {

 WSAuthorEditorPage authPage = (WSAuthorEditorPage)

openedEditor.getCurrentPage();

 AuthorDocumentController docController =

authPage.getDocumentController();

 try {

 //All changes will be undone by pressing Undo once.

 docController.beginCompoundEdit();

 fixupImageRefs(docController,

 docController.getAuthorDocumentNode());

 } finally {

 docController.endCompoundEdit();

 }

 }

 }

 private void fixupImageRefs

(AuthorDocumentController docController, AuthorNode authorNode) {

 if(authorNode instanceof AuthorParentNode) {

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html
https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2616

 //Recurse

 List<AuthorNode> contentNodes =

((AuthorParentNode)authorNode).getContentNodes();

 if(contentNodes != null) {

 for (int i = 0; i < contentNodes.size(); i++) {

 fixupImageRefs(docController, contentNodes.get(i));

 }

 }

 }

 if(authorNode.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement elem = (AuthorElement) authorNode;

 if("image".equals(elem.getLocalName())) {

 if(elem.getAttribute("href") != null) {

 String originalHref = elem.getAttribute("href").getValue();

 URL currentLocation = docController.getAuthorDocumentNode().getXMLBaseURL();

 //TODO here you compute the new href.

 String newHref = null;

 docController.setAttribute("href", new AttrValue(newHref), elem);

 }

 }

 }

 }

 },

 StandalonePluginWorkspace.MAIN_EDITING_AREA);

2. An API to open XML documents in the application:

ro.sync.exml.workspace.api.Workspace.open(URL)

So you can create a plugin that automatically opens XML documents one at a time from a certain folder

in the application, makes modifications to them, and saves the content by calling:

ro.sync.exml.workspace.api.editor.WSEditorBase.save()

then closes the editor by calling:

ro.sync.exml.workspace.api.Workspace.close(URL)

Modify the XML Content on Save

Use Case

You the revised date on a DITA document to be updated when it is saved.

Solution

The Plugins SDK contains a sample plugin type called WorkspaceAccess.Such a plugin is notified when the

application starts.

https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2617

You can add a listener that notifies you before the user saves an XML document. Then if the XML document

is opened in the Author visual editing mode you can use the Author API to change attributes before the save

takes place:

 @Override

 public void applicationStarted

(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addEditorChangeListener

(new WSEditorChangeListener(){

 //An editor was opened

 @Override

 public void editorOpened(URL editorLocation) {

 final WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess

(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);

 if(editorAccess != null){

 editorAccess.addEditorListener

(new ro.sync.exml.workspace.api.listeners.WSEditorListener(){

 //Editor is about to be saved

 @Override

 public boolean editorAboutToBeSavedVeto(int operationType) {

 if(EditorPageConstants.PAGE_AUTHOR.equals

(editorAccess.getCurrentPageID())){

 WSAuthorEditorPage authorPage =

(WSAuthorEditorPage) editorAccess.getCurrentPage();

 AuthorDocumentController controller =

authorPage.getDocumentController();

 try {

 //Find the revised element

 AuthorNode[] nodes = controller.findNodesByXPath

("//revised", true, true, true);

 if(nodes != null && nodes.length > 0){

 AuthorElement revised = (AuthorElement) nodes[0];

 //Set the modified attribute to it...

 controller.setAttribute("modified",

new AttrValue(new Date().toString()), revised);

 }

 } catch (AuthorOperationException e) {

 e.printStackTrace();

 }

 }

 //And let the save continue..

 return true;

 }

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2618

 });

 }

 }

 }, PluginWorkspace.MAIN_EDITING_AREA);

 }

Multiple Rendering Modes for the Same Document in Author Mode

Use Case

You want to add multiple buttons, each showing a different visualization mode of the same document, in

Author mode.

Solution

In the toolbar in Author mode, there is a Styles drop-down menu that contains alternate CSS styles (on page

3294) for the same document. To add an alternate CSS stylesheet, open the Preferences dialog box (Options

> Preferences) (on page 132), go to Document Type Association, select the document type associated with

your documents and click Edit. In the Document Type configuration dialog box (on page 148) that appears, go

to the Author tab, and in the CSS subtab add references to alternate CSS stylesheets.

For example, one of the alternate CSS stylesheets offered for the DITA document type is located here (by

default):

[OXYGEN_INSTALL_DIR]/frameworks/dita/css_classed/hideColspec.css

If you open it, you will see that it imports the main CSS (on page 3298) and then adds selectors of its own.

Obtain the Currently Selected Element Using the Author API

Use Case

In Author mode, if an element is fully selected, you want to perform an action on it. If not, you want to perform

an action on the node that is located at the cursor position.

Solution

When an element is fully selected by the user the selection start and end offsets are actually outside of the

node's offset bounds. So using AuthorDocumentController.getNodeAtOffset will actually return the parent

of the selected node. A special API is available that makes it easier for you to determine this situation:

WSAuthorEditorPageBase.getFullySelectedNode().

AuthorDocumentController controller = authorPageAccess.getDocumentController();

AuthorAccess authorAccess = authorPageAccess.getAuthorAccess();

int caretOffset = authorAccess.getEditorAccess().getCaretOffset();

 AuthorElement nodeAtCaret =

(AuthorElement) authorAccess.getEditorAccess().getFullySelectedNode();

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2619

 if (nodeAtCaret == null) {

 //We have no fully selected node. We can look at the cursor offset.

 nodeAtCaret = (AuthorElement)

authorAccess.getDocumentController().getNodeAtOffset(caretOffset);

 //Or we could look at the selection start and end, see which node is

the parent of each offset and get the closest common ancestor.

}

Open a Document from Another Application

Restriction:

This feature is currently only available for macOS users.

Use Case

You want to open a document from another application in Oxygen XML Editor.

Solution

The Oxygen XML Editor installation kit for macOS comes with a special protocol handler that can be used if

you want to open remote resources in the application (for example, opening a file from a CMS). The protocol is

edit-in-oxygen and you can use it from a command line like this:

open edit-in-oxygen:protocol://host/path/file.xml

For example, if you start the following from the command line:

open edit-in-oxygen:http://www.oxygenxml.com/index.html

Oxygen XML Editor will start and open the HTML content from the URL http://www.oxygenxml.com/index.html.

Tip:

You can also use anchors on the URL to point to specific lines or elements inside the open document:

Opening a Document at a Specific Location Using a Command-Line Interface (on page 394).

Run XSLT or XQuery Transformations

Use Case

You want to run XSL 2.0 / 3.0 transformations with Saxon EE using the Oxygen SDK.

Solution

The API class ro.sync.exml.workspace.api.util.XMLUtilAccess allows you to create an XSLT Transformer that

implements the JAXP interface javax.xml.transform.Transformer. Then this type of transformer can be used to

transform XML. Here's just an example of transforming when you have an AuthorAccess API available:

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2620

 InputSource is = new org.xml.sax.InputSource

(URLUtil.correct(new File("test/personal.xsl")).toString());

 xslSrc = new SAXSource(is);

 javax.xml.transform.Transformer transformer =

authorAccess.getXMLUtilAccess().createXSLTTransformer

(xslSrc, null, AuthorXMLUtilAccess.TRANSFORMER_SAXON_ENTERPRISE_EDITION);

 transformer.transform(new StreamSource(new File("test/personal.xml")),

new StreamResult(new File("test/personal.html")));

If you want to create the transformer from the plugin side, you can use this method instead:

ro.sync.exml.workspace.api.PluginWorkspace.getXMLUtilAccess().

Save a New Document with a Predefined File Name Pattern

Use Case

You want Oxygen XML Editor to automatically generate a file name comprising a UUID plus file extension

using the SDK.

Solution

This could be done implementing a plugin (on page 3299) for Oxygen XML Editor using the Plugins SDK.

There is a type of plugin called Workspace Access that can be used to add a listener to be notified before

an opened editor is saved. The implemented plugin would intercept the save events when a newly created

document is untitled and display an alternative chooser dialog box, then save the topic with the proper name.

The Java code would look like this:

 private static class CustomEdListener extends WSEditorListener{

 private final WSEditor editor;

 private final StandalonePluginWorkspace

 pluginWorkspaceAccess;

 private boolean saving = false;

 public CustomEdListener

(StandalonePluginWorkspace pluginWorkspaceAccess, WSEditor editor) {

 this.pluginWorkspaceAccess = pluginWorkspaceAccess;

 this.editor = editor;

 }

 @Override

 public boolean editorAboutToBeSavedVeto(int operationType) {

 if(! saving &&

 editor.getEditorLocation().toString().contains("Untitled")) {

 File chosenDir = pluginWorkspaceAccess.chooseDirectory();

 if(chosenDir != null) {

 final File chosenFile =

https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2621

new File(chosenDir, UUID.randomUUID().toString() + ".dita");

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 try {

 saving = true;

 editor.saveAs(new URL(chosenFile.toURI().toASCIIString()));

 } catch (MalformedURLException e) {

 e.printStackTrace();

 } finally {

 saving = false;

 }

 }

 });

 }

 //Reject the original save request.

 return false;

 }

 return true;

 }

 }

 @Override

 public void applicationStarted

(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {

 @Override

 public void editorOpened(URL editorLocation) {

 final WSEditor editor = pluginWorkspaceAccess.getEditorAccess

(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);

 if(editor !=

null && editor.getEditorLocation().toString().contains("Untitled")) {

 //Untitled editor

 editor.addEditorListener(new CustomEdListener(pluginWorkspaceAccess, editor));

 }

 }

 },

 PluginWorkspace.MAIN_EDITING_AREA);

..

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2622

Split Paragraph on Enter (Instead of Showing Content Completion List)

Use Case

You want to split the paragraph on Enter instead of showing the content completion list.

Solution

Yes, it is possible by creating your own custom operation.

To obtain this behavior, follow this procedure:

1. Create a custom Author mode operation (on page 2288) that handles the split. You can use the

AuthorDocumentController.split API to achieve this.

2. Create a JAR library that contains its compiled version.

3. Open the Preferences dialog box (Options > Preferences) (on page 132), go to Document Types

Association, and select your framework.

4. Click Edit and in the Document Type configuration dialog box (on page 148), go to the Classpath tab

(on page 153) and add a reference to the JAR library for your custom operation.

5. Go to the Author tab, then go to the Actions subtab.

6. Click the New button and use the Action dialog box (on page 156) to create your own paragraph

split action.

7. Make sure you assign Enter as the Shortcut Key and specify your custom operation in the Operations

section.

Result: Now, when you press Enter, your Java operation will be invoked to split the paragraph instead of

opening the Content Completion Assistant.

Tip:

The Content Completion Assistant can still be invoked by using the Ctrl+Space keyboard shortcut.

Use Custom Rendering Styles for Entity References, Comments, or PIs

Use Case

You want to display entity references in the Author mode without the distinct gray background and tag

markers.

Solution

There is a built-in CSS stylesheet in the Oxygen XML Editor libraries that is used when styling content in the

Author mode, no matter what CSS you use. This CSS has the following content:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

@namespace xi "http://www.w3.org/2001/XInclude";

@namespace xlink "http://www.w3.org/1999/xlink";

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#split(ro.sync.ecss.extensions.api.node.AuthorNode,int)
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#split(ro.sync.ecss.extensions.api.node.AuthorNode,int)

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2623

@namespace svg "http://www.w3.org/2000/svg";

@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {

 display:block !important;

}

oxy|cdata {

 display:morph !important;

 white-space:pre-wrap !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|processing-instruction {

 display:block !important;

 color: rgb(139, 38, 201) !important;

 white-space:pre-wrap !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|comment {

 display:morph !important;

 color: rgb(0, 100, 0) !important;

 background-color:rgb(255, 255, 210) !important;

 white-space:pre-wrap !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|reference:before,

oxy|entity[href]:before{

 link: attr(href) !important;

 text-decoration: underline !important;

 color: navy !important;

 margin: 2px !important;

 padding: 0px !important;

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2624

}

oxy|reference:before {

 display: morph !important;

 content: url(../images/editContent.gif) !important;

}

oxy|entity[href]:before{

 display: morph !important;

 content: url(../images/editContent.gif) !important;

}

oxy|reference,

oxy|entity {

 editable:false !important;

 background-color: rgb(240, 240, 240) !important;

 margin:0px !important;

 padding: 0px !important;

}

oxy|reference {

 display:morph !important;

}

oxy|entity {

 display:morph !important;

}

oxy|entity[href] {

 border: 1px solid rgb(175, 175, 175) !important;

 padding: 0.2em !important;

}

xi|include {

 display:block !important;

 margin-bottom: 0.5em !important;

 padding: 2px !important;

}

xi|include:before,

xi|include:after{

 display:inline !important;

 background-color:inherit !important;

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2625

 color:#444444 !important;

 font-weight:bold !important;

}

xi|include:before {

 content:url(../images/link.gif) attr(href) !important;

 link: attr(href) !important;

}

xi|include[xpointer]:before {

 content:url(../images/link.gif) attr(href) " " attr(xpointer) !important;

 link: oxy_concat(attr(href), "#", attr(xpointer)) !important;

}

xi|fallback {

 display:morph !important;

 margin: 2px !important;

 border: 1px solid #CB0039 !important;

}

xi|fallback:before {

 display:morph !important;

 content:"XInclude fallback: " !important;

 color:#CB0039 !important;

}

oxy|doctype {

 display:block !important;

 background-color: transparent !important;

 color:blue !important;

 border-width:0px !important;

 margin:0px !important;

 padding: 2px !important;

}

oxy|error {

 display:morph !important;

 editable:false !important;

 white-space:pre !important;

 color: rgb(178, 0, 0) !important;

 font-weight:bold !important;

}

Oxygen XML Editor 27.1 | 18 - Extending Oxygen With the SDK | 2626

*[xlink|href]:before {

 content:url(../images/link.gif);

 link: attr(xlink|href) !important;

}

/*No direct display of the MathML and SVG images.*/

svg|svg{

 display:inline !important;

 white-space: trim-when-ws-only;

}

svg|svg svg|*{

 display:none !important;

 white-space:normal;

}

mml|math{

 display:inline !important;

 white-space: trim-when-ws-only;

}

mml|math mml|*{

 display:none !important;

 white-space: normal;

}

In the CSS used for rendering the XML in Author mode, do the following:

1. Import the special Author mode namespace.

2. Use a special selector to customize the entity node.

Example:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

oxy|entity {

 background-color: inherit !important;

 margin:0px !important;

 padding: 0px !important;

 -oxy-display-tags:none;

}

You can overwrite styles in the predefined CSS to customize style comments, processing instructions, and

CData sections. You can also customize the way <xi:include> elements are rendered.

19.
Add-ons
Oxygen XML Editor offers various default add-ons that can be installed to provide additional functionality to

Oxygen XML Editor. Some additional community submissions are also available, although community add-ons

are not officially supported or endorsed. For a full list of add-ons that are officially supported for Oxygen XML

Editor, see Oxygen XML Add-on Repositories.

Documentation and installation details for the latest versions of each default add-on.

To install one of the default add-ons, follow this procedure:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.

2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-

ons from field or select it from the drop-down menu.

3. Select the add-on you want to install and click Next.

4. Read the end-user license agreement. Then select the I accept all terms of the end-user license

agreement option and click Finish.

5. Restart the application.

https://www.oxygenxml.com/addons/marketplace.html
https://www.oxygenxml.com/doc/ug-addons/index.html

20.
Tools
Oxygen XML Editor includes a variety of helpful tools to help you accomplish XML-related tasks. This section

presents many of those tools. These tools are available in the Tools menu and some of them can be launched

through keyboard shortcuts or command-line scripts.

Refactoring XML Documents
In the life cycle of XML documents there are instances when the XML structure needs to be changed to

accommodate various needs. For example, when an associated schema is updated, an attribute may have

been removed, or a new element added to the structure.

These types of situations cannot be resolved with a traditional Find/Replace tool, even if the tool accepts

regular expressions. The problem becomes even more complicated if an XML document is computed or

referenced from multiple modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Editor includes a specialized XML

Refactoring tool that helps you manage the structure of your XML documents.

XML Refactoring Tool

The XML Refactoring tool is presented in the form of an easy to use wizard that is designed to reduce the time

and effort required to perform various structure management tasks. For example, you can insert, delete, or

rename an attribute in all instances of a particular element that is found in all documents within your project.

To access the tool, select the XML Refactoring action from one of the following locations:

• The Tools menu.

• The Refactoring submenu from the contextual menu in the Project view (on page 414).

• The Refactoring submenu from the contextual menu in the DITA Maps Manager view (on page 2950).

Note:

The built-in refactoring operations are also available from the Refactoring submenu in the contextual

menu of Author or Text mode. This is useful because by selecting the operations from the contextual

menu, Oxygen XML Editor considers the editing context to skip directly to the wizard page of the

appropriate operation and to help you by preconfiguring some of the parameter values. For your

convenience, the last 5 operations that were finished (on page 2631) or previewed (on page 2631)

also appear in the Refactoring submenu of the contextual menu in the Project view and the DITA

Maps Manager.

Oxygen XML Editor 27.1 | 20 - Tools | 2629

XML Refactoring Wizard

The XML Refactoring tool includes the following wizard pages:

Refactoring operations

The first wizard page presents the available operations, grouped by category. To search for an

operation, you can use the filter text box at the top of the page.

Figure 620. XML Refactoring Wizard

Configure Operation Parameters

The next wizard page allows you to specify the parameters for the refactoring operation.

The parameters are specific to the type of refactoring operation that is being performed. For

example, to delete an attribute you need to specify the parent element and the qualified name of

the attribute to be removed.

Oxygen XML Editor 27.1 | 20 - Tools | 2630

Figure 621. XML Refactoring 2nd Wizard Page (Delete Attribute Operation)

Scope and Filters

The last wizard page allows you to select the set of files that represent the input of the

operation.

Figure 622. XML Refactoring - Scope and Filters Wizard Page

Scope section

You can specify the scope for the operation by selecting from predefined resource

sets or you can define your own set of resources by creating a working set (on

page 3302) (select Working sets and click the Choose button to the right). If you

select Project, all files attached to the current project will be used for the scope

of the operation. If you select Current DITA Map hierarchy, the current DITA map

Oxygen XML Editor 27.1 | 20 - Tools | 2631

that is open in the DITA Maps Manager along with all of its referenced topics and

submaps (and topics referenced in those submaps) are used for the scope.

Filters

The Filters section includes the following options:

• Include files - Allows you to filter the selected resources by using a file

pattern. For example, to restrict the operation to only analyze build files you

could use build*.xml for the file pattern.

• Restrict only to known XML file types - When selected, only resources with

a known XML file type will be affected by the operation.

• Look inside archives - When selected, the resources inside archives will also

be affected.

Preview

You can use the Preview button to open a comparison panel where you can review

all the changes that will be made by the refactoring operation before applying the

changes.

Finish

After clicking the Finish button, the operation will be processed and Oxygen XML

Editor provides no automatic means for reverting the operations. Any Undo action

will only revert changes on the current document.

Troubleshooting:

If an operation fails, a notification will be displayed in the Results panel with some information about

the error. For example, if the operation was invoked on a read-only resource, the error will indicate that

a read-only file cannot be converted.

Tip:

If an operation takes longer than expected you can use the Stop button in the progress bar to

cancel the operation.

Restriction:

XML refactoring operations cannot preserve CDATA sections. If your document contains XML CDATA

sections, the refactoring operations will convert them to plain text nodes.

Built-in Refactoring Operations

The XML Refactoring tool includes a variety of built-in operations that can be used for common refactoring

tasks. They are grouped by category in the Refactoring operations wizard page. You can also access the

operations from the Refactoring submenu in the contextual menu of Author or Text mode. The operations

Oxygen XML Editor 27.1 | 20 - Tools | 2632

are also grouped by category in this submenu. When selecting the operations from the contextual menu,

Oxygen XML Editor considers the editing context to get the names and namespaces of the current element or

attribute, and uses this information to preconfigure some of the parameter values for the selected refactoring

operation.

Tip:

Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-XQuery /

XPath preferences page where you can configure XPath options and declare namespace prefixes.

The following built-in operations are available:

Refactoring Operations for Attributes

Add/Change attribute

Use this operation to change the value of an attribute or insert a new one. This operation allows

you to specify the following parameters:

Parent element section

Element

The parent element of the attribute to be changed, in the form of a

local name from any namespace, a local name with a namespace

prefix, or an XPath expression.

Attribute section

Local name

The local name of the affected attribute.

Namespace

The namespace of the affected attribute.

Value

The value for the affected attribute.

Options section

You can choose between one of the following options for the Operation mode:

Add the attribute in the parent elements where it is missing

Adds the attribute to all instances of the specified parent element.

Change the value in the parent elements where the attribute already exists

Replaces the value of the already existing attribute in all instance of

the specified parent element.

Both

Oxygen XML Editor 27.1 | 20 - Tools | 2633

Adds the attributes to the instances where it is missing and replaces

the value in instances where the attribute already exists.

Convert attribute to element

Use this operation to convert a specified attribute to an element. This operation allows you to

specify the following parameters:

Parent element section

Element

The parent element of the attribute to be converted, in the form of

a local name from any namespace, a local name with a namespace

prefix, or an XPath expression.

Attribute section

Local name

The local name of the affected attribute.

Namespace

The namespace of the affected attribute.

New element section

Local name

The local name of the new element.

Namespace

The namespace of the new element.

Delete attribute

Use this operation to remove one or more attributes. This operation requires you to specify the

following parameters:

Element

The parent element of the attribute to be deleted, in the form of a local name from

any namespace, a local name with a namespace prefix, or an XPath expression.

Attribute

The name of the attribute to be deleted.

Rename attribute

Use this operation to rename an attribute. This operation requires you to specify the following

parameters:

Element

Oxygen XML Editor 27.1 | 20 - Tools | 2634

The parent element of the attribute to be renamed, in the form of a local name from

any namespace, a local name with a namespace prefix, or an XPath expression.

Attribute

The name of the attribute to be renamed.

New local name

The new local name of the attribute.

Replace in attribute value

Use this operation to search for a text fragment inside an attribute value and change the

fragment to a new value. This operation allows you to specify the following parameters:

Target attribute section

Element

The parent element of the attribute to be modified, in the form of a

local name from any namespace, a local name with a namespace

prefix, or an XPath expression.

Attribute

The name of the attribute to be modified.

Find / Replace section

Find

The text fragments to find. You can use Perl-like regular expressions.

Replace with

The text fragment to replace the target with. This parameter can

bind regular expression capturing groups ($1, $2, etc.) from the find

pattern.

Refactoring Operations for Comments

Delete comments

Use this operation to delete comments from one or more elements. This operation requires you

specify the following parameter:

Element

The target element (or elements) that will have comments deleted, in the form of

a local name from any namespace, a local name with a namespace prefix, or an

XPath expression.

Oxygen XML Editor 27.1 | 20 - Tools | 2635

Note:

Comments that are outside the root element will not be deleted because the serializer

preserves the content before and after the root.

Refactoring Operations for DITA Topics

Change topic ID to file name

Use this operation to change the ID of a topic to be the same as its file name.

Convert CALS tables to simple tables

Use this operation to convert DITA CALS tables to simple tables.

Convert DITA 1.3 Maps and Topics to DITA 2.0

Use this operation to convert topics and maps that adhere to the DITA 1.3 standard to the DITA

2.0 standard.

• Changes DOCTYPE declarations and XML Schema/Relax NG schema references.

• DITA Map changes:

◦ Removes the @lockmeta attribute.

◦ Removes the <topicset> and <topicsetref> elements.

◦ Removes the <anchor> and <anchorref> elements and the @anchorref attribute.

◦ Migrates the @navtitle attribute as a <navtitle> element.

◦ Migrates the @title attribute as a <title> element.

◦ Converts the @copy-to attribute to a <resourceid> element.

◦ Replaces the @print attribute with an @deliveryTarget attribute.

◦ Convert topicmeta <linktext> to <linktitle>.

◦ Removed <hasInstance>, <hasKind>, <hasNarrower>, <hasPart>, <hasRelated>, and

<relatedSubjects> from subject scheme relationship tables in subject scheme,

including <subjectRelTable>, <subjectRelHeader>, <subjectRel>, and <subjectRole>.

• DITA task changes:

◦ Converts the <substep> element to a <step> element.

◦ Converts the <substeps> element to a <steps> element.

• DITA topic changes:

◦ Removes the @type attribute with the value fastpath.

◦ Converts the @alt attribute to an <alt> element.

◦ Replaces the <index-sort-as> element with a <sort-as> element.

◦ Removes the <itemgroup> element.

◦ Moves the contents of the <titlealts> element inside the <prolog>.

◦ Removes the @domains attribute.

◦ Renames <sectiondiv> to <div>.

◦ Remove @query attribute from <link> element.

Oxygen XML Editor 27.1 | 20 - Tools | 2636

◦ Remove @specentry attribute from <stentry> element.

Remove the @spectitle attribute.

Convert conrefs to conkeyrefs

Use this operation to convert @conref attributes to @conkeyref attributes. For more information and

instructions for using this operation, see Converting Conrefs to Conkeyrefs (on page 3099).

Convert Nested Topics to New Topics (Available from the contextual menu of editable maps/nodes in

the DITA Maps Manager (on page 2950))

Use this operation on topics that contain nested <topic> elements to convert each nested topic

to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics

of the original topic.

Convert Sections to New Topics (Available from the contextual menu of editable maps/nodes in the

DITA Maps Manager (on page 2950))

Use this operation on topics that contain multiple sections to convert each section to a new

topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the

original topic.

Convert simple tables to CALS tables

Use this operation to convert DITA simple tables to CALS tables.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for

example, Topic to Concept). For more information, see Converting DITA Topics to Another Type

(on page 3024).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for

example, Task to General Task). For more information, see Converting DITA Topics to Another

Type (on page 3024).

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for

example, Topic to Reference). For more information, see Converting DITA Topics to Another Type

(on page 3024).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example,

Topic to Task). For more information, see Converting DITA Topics to Another Type (on page

3024).

Convert to Topic

Oxygen XML Editor 27.1 | 20 - Tools | 2637

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to

Topic). For more information, see Converting DITA Topics to Another Type (on page 3024).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type

(for example, Topic to Troubleshooting). For more information, see Converting DITA Topics to

Another Type (on page 3024).

Rename Key

Use this operation to rename a key. It also updates all references to it.

Note:

It does not work on DITA 1.3 key scopes.

Generate IDs

Use this operation to automatically generate unique IDs for elements.

Scope and Filters:

All of the DITA refactoring actions allow you to choose a scope for the operation and some filters:

Scope

Select from a variety of options to define the scope that will have resources affected by the

operation. For example, you can choose to affect all resources in the Project, All opened files,

Current DITA map hierarchy, or just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by

separating them with commas and the patterns can include wildcards (such as * or

?).

Restrict to known XML file types only

Excludes non-XML file types from the operation.

Look inside archives

If this option is selected, the scope of the operation will include files inside

archives.

Refactoring Operations for DITA Maps

Convert DITA Bookmap to Map

Convert a DITA bookmap to a DITA map.

Convert DITA Map to Bookmap

Oxygen XML Editor 27.1 | 20 - Tools | 2638

Convert a DITA map to a DITA bookmap.

Change or remove profiling attribute value

Change or remove a value from a DITA profiling attribute. A profiling attribute can have multiple

values, separated by spaces (e.g. for platform="windows redhat", you can change the current

redhat value to linux). Select the name of the profiling attribute, the current value to replace,

and the new value. If the new value is left empty, the current value is removed from the profiling

attribute. The new value is modified and reflected in DITA maps, DITA topics, and DITAVAL files.

Define keys for all topic references

This refactoring action is useful for converting links inside a DITA project from direct to indirect

key-based addressing. When applied on DITA resources from your project (DITA maps and

topics), this refactoring action defines keys for all of a DITA map's topic references based on the

referenced file name and converts each direct reference to a key reference in each DITA topic. If

a topic references already has keys defined, the action does not define new ones. Inside the DITA

topics, whenever there is a link element (<xref> or <link>) with a direct reference to another DITA

topic or an element with a @conref, the action attempts to convert them to indirect key-based

addressing. The refactoring action may introduce linking errors or create duplicate keys so it is

advised to run the Validate and check for completeness action from the DITA Maps Manager

toolbar to manually fix those problems. You can enable the Report duplicate keys checkbox to

also report any keys that are defined more than once.

Scope and Filters:

All of the DITA refactoring actions allow you to choose a scope for the operation and some filters:

Scope

Select from a variety of options to define the scope that will have resources affected by the

operation. For example, you can choose to affect all resources in the Project, All opened files,

Current DITA map hierarchy, or just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by

separating them with commas and the patterns can include wildcards (such as * or

?).

Restrict to known XML file types only

Excludes non-XML file types from the operation.

Look inside archives

If this option is selected, the scope of the operation will include files inside

archives.

Oxygen XML Editor 27.1 | 20 - Tools | 2639

Refactoring Operations for Elements

Delete element

Use this operation to delete elements. This operation requires you to specify the following

parameter:

Element

The target element to be deleted, in the form of a local name from any namespace,

a local name with a namespace prefix, or an XPath expression.

Delete element content

Use this operation to delete the content of elements. This operation requires you to specify the

following parameter:

Element

The target element whose content is to be deleted, in the form of a local name

from any namespace, a local name with a namespace prefix, or an XPath

expression.

Insert element

Use this operation to insert new elements. This operation allows you to specify the following

parameters:

Element section

Local name

The local name of the element to be inserted.

Namespace

The namespace of the element to be inserted.

Location section

XPath

An XPath expression that identifies an existing element to which

the new element is relative, in the form of a local name from any

namespace, a local name with a namespace prefix, or other XPath

expressions.

Position

The position where the new element will be inserted, in relation to the

specified existing element. The possible selections in the drop-down

menu are: After, Before, First child, or Last child.

Rename element

Oxygen XML Editor 27.1 | 20 - Tools | 2640

Use this operation to rename elements. This operation requires you to specify the following

parameters:

Target elements (XPath)

The target elements to be renamed, in the form of a local name from any

namespace, a local name with a namespace prefix, or other XPath expressions.

New local name

The new local name of the element.

Unwrap element

Use this operation to remove the surrounding tags of elements, while keeping the content

unchanged. This operation requires you to specify the following parameter:

Target elements (XPath)

The target elements whose surrounding tags will be removed, in the form of a local

name from any namespace, a local name with a namespace prefix, or other XPath

expressions.

Wrap element

Use this operation to surround elements with element tags. This operation allows you to specify

the following parameters:

Target elements (XPath)

The target elements to be surrounded with tags, in the form of a local name

from any namespace, a local name with a namespace prefix, or other XPath

expressions.

Wrapper element section

Local name

The local name of the Wrapper element.

Namespace

The namespace of the Wrapper element.

Wrap element content

Use this operation to surround the content of elements with element tags. This operation allows

you to specify the following parameters:

Target elements (XPath)

The target elements whose content will be surrounded with tags, in the form of a

local name from any namespace, a local name with a namespace prefix, or other

XPath expressions.

Wrapper element section

Oxygen XML Editor 27.1 | 20 - Tools | 2641

Local name

The local name of the Wrapper element that will surround the content

of the target.

Namespace

The namespace of the Wrapper element that will surround the

content of the target.

Refactoring Operations for Fragments

Insert XML fragment

Use this operation to insert an XML fragment. This operation allows you to specify the following:

XML Fragment

The XML fragment to be inserted.

Location section

XPath

An XPath expression that identifies an existing element to which the

inserted fragment is relative, in the form of a local name from any

namespace, a local name with a namespace prefix, or other XPath

expressions.

Position

The position where the fragment will be inserted, in relation to the

specified existing element. The possible selections in the drop-down

menu are: After, Before, First child, or Last child.

Replace element content with XML fragment

Use this operation to replace the content of elements with an XML fragment. This operation

allows you to specify the following parameters:

Target elements (XPath)

The target elements whose content will be replaced, in the form of a local name

from any namespace, a local name with a namespace prefix, or other XPath

expressions.

XML Fragment

The XML fragment with which to replace the content of the target element.

Replace element with XML fragment

Use this operation to replace elements with an XML fragment. This operation allows you to

specify the following parameters:

Oxygen XML Editor 27.1 | 20 - Tools | 2642

Target elements (XPath)

The target elements to be replaced, in the form of a local name from any

namespace, a local name with a namespace prefix, or other XPath expressions.

XML Fragment

The XML fragment with which to replace the target element.

Refactoring Operations for JATSKit

Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0

Use this operation to add an NLM 'BITS' 2.0 DOCTYPE declaration.

Add Blue DOCTYPE - NISO JATS Publishing 1.1

Use this operation to add a JATS 'Blue' 1.1 DOCTYPE declaration.

Normalize IDs

Use this operation to normalize assigned IDs and assigned IDs to elements that are missing

them.

All of these JATSKit refactoring actions allow you to choose a scope for the operation and some filters:

Scope

Select from a variety of options to define the scope for the resources that will be affected by the

operation. For example, you can choose to affect all resources in the Project, All opened files, or

just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by

separating them with commas and the patterns can include wildcards (such as * or

?).

Restrict to known XML file types only

Excludes non-XML file types from the operation.

Look inside archives

If this option is selected, the scope of the operation will include files inside

archives.

Refactoring Operations for Processing Instructions

Accept all tracked changes, remove all Oxygen-specific comments and highlights

Use this operation to accept all application-specific tracked changes (from elements and

attributes) or remove all application-specific comments or highlights. There are several options

to choose from:

Oxygen XML Editor 27.1 | 20 - Tools | 2643

Accept all tracked changes

Accepts all application-specific tracked changes (from elements and attributes).

Remove comments

Removes all application-specific comments.

Remove highlights

Removes all application-specific highlights.

Delete processing instructions

Use this operation to delete all processing instructions that have a certain target name from the

processed documents. This operation requires you to specify the following parameter:

Processing instruction target

The target name of the processing instructions to delete.

Note:

Processing instructions that are outside the root element are not deleted because the

serializer preserves the content before and after the root.

Refactoring Operations for Publishing Template

These operations are for those who use Oxygen Publishing Templates for WebHelp Responsive output

customization.

Migrate HTML Page Layout Files to v21

Use this operation to convert custom HTML page layout files (on page 1692) that are included

in a custom Publishing Template that was created in Oxygen XML Editor version 20.0 or 20.1 so

that they will be compatible with Oxygen XML Editor version 21.0.

Migrate HTML Page Layout Files to v22

Use this operation to convert custom HTML page layout files (on page 1692) that are included

in a custom Publishing Template that was created in Oxygen XML Editor versions 20.0 - 21.1 so

that they will be compatible with Oxygen XML Editor version 22.0.

Update HTML Pages

Attention:

This operation is only used by Oxygen XML Editor and should not be used manually.

Oxygen XML Editor 27.1 | 20 - Tools | 2644

Additional Notes:

• There are some operations that allow <ANY> for the local name and namespace parameters.

This value can be used to select an element or attribute regardless of its local name or

namespace. Also, the <NO_NAMESPACE> value can be used to select nodes that do not belong to a

namespace.

• Some operations have parameters that accept XPath expressions to match elements or

attributes. In these XPath expressions you can only use the prefixes declared in the Options >

Preferences > XML > XSLT-XQUERY > XPath (on page 268) page. This preferences page can be

easily opened by clicking the link in the note (Each prefix used in an XPath expression must be

declared in the Default prefix-namespace mappings section) at the bottom of the Configure

Operation Parameters wizard page.

Custom Refactoring Operations

While Oxygen XML Editor includes a variety of built-in XML refactoring operations to help you accomplish

particular tasks, you can also create custom operations according to your specific needs. For example, you

could create a custom refactoring operation to convert an attribute to an element and insert the element as

the first child of the parent element.

An XML Refactoring operation is defined as a pair of resources:

• An XQuery Update script or XSLT stylesheet that Oxygen XML Editor will run to refactor the XML files.

• An XML Operation Descriptor file that contains information about the operation (such as the name,

description, and parameters).

Oxygen XML Editor 27.1 | 20 - Tools | 2645

Figure 623. Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring

Operations wizard page (on page 857), along with the built-in operations.

After the user chooses an operation and specifies its parameters, Oxygen XML Editor processes an XQuery

Update or XSLT transformation over the input file. This transformation is executed in a safe mode, which

implies the following:

• When loading the document:

◦ The XInclude mechanism is disabled. This means that the resources included by using XInclude

will not be visible in the transformation.

◦ The DTD entities will be processed without being expanded.

◦ The associated DTD will be not loaded, so the default attributes declared in the DTD will not be

visible in the transformation.

• When saving the updated XML document:

◦ The DOCTYPE will be preserved.

Note:

This can be changed using Saxon extension functions in XSLT (on page 890).

◦ The DTD entities will be preserved as they are in the original document when the document is

saved.

Oxygen XML Editor 27.1 | 20 - Tools | 2646

◦ The attribute values will be kept in their original form without being normalized.

◦ The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML

serialization since they are not considered important.

The result of this transformation overrides the initial input file.

Note:

To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes

that are interpreted internally. The attributes belong to the http://www.oxygenxml.com/

ns/xmlRefactoring/additional_attributes namespace. These attributes should not be

taken into account when processing the input XML document since they are discarded when the

transformed document is serialized.

Restriction:

Comments or processing instructions that are in any node before or after the root element cannot be

modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be

applied on the root element and the nodes inside it. However, as a work around to this limitation, you

can use Saxon extension functions and the XSLT stylesheet method (on page 890) to implement the

new custom XML refactoring operation.

Creating a Custom Refactoring Operation

To create a custom refactoring operation, follow these steps:

1. Create an XQuery Update script (on page 880) or XSLT stylesheet file (on page 885).

2. Create an XML refactoring operation descriptor file, that references the above script, as explained

in these sections: Example descriptor file for an XQuery Update script (on page 883) or Example

descriptor file for an XSLT stylesheet (on page 888).

3. Store both files in one of the locations that Oxygen XML Editor (on page 892) scans when loading the

custom operations.

Result: Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring

Operations wizard page (on page 857).

Related information

Storing and Sharing Refactoring Operations (on page 892)

Custom Refactoring Script

The first step in creating a custom refactoring operation is to create an XQuery Update script (on page 880) or

XSLT stylesheet (on page 885) that is needed to process the refactoring operations. The easiest way to create

Oxygen XML Editor 27.1 | 20 - Tools | 2647

this script file is to use the New document wizard to create a new XQuery or XSLT file and you can use the

XQuery method example (on page 880) or XSLT method example (on page 885) to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script (on page 880) or XSLT stylesheet

(on page 885). For instance, if you want to rename an element, you may want to declare an external

parameter associated with the name of the element to be renamed. To allow you to specify the value for these

parameters, they need to be declared in the refactoring operation descriptor file that is associated with this

operation.

Note:

The XQuery Update processing is disabled by default in Oxygen XML Editor. Thus, if you want to

create or edit an XQuery Update script you have to enable this mechanism by creating an XQuery

transformation scenario (on page 1596) and choose Saxon EE as the transformation engine. Also,

you need to make sure the Enable XQuery update option is selected in the Saxon processor advanced

options (on page 1525).

Note:

If you are using an XSLT file, XPath expressions that are passed as parameters will automatically

be rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-

XQuery / XPath preferences page (on page 268).

The next step in creating a custom refactoring operation is to create an XML Refactoring Operation Descriptor

file contains the path to the XQuery Update script (on page 883) or XSLT stylesheet (on page 888).

Related Information:

XQuery Update Script for Creating a Custom Operation (on page 880)

XSLT Stylesheet for Creating a Custom Operation (on page 885)

Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The

easiest way to do this is to use the New document wizard and choose the XML Refactoring Operation

Descriptor template.

Introduction to the Descriptor File

This descriptor file root element specifies required attributes to define the operation @name, @description, and

@id which are necessarily when loading an XML Refactoring operation. It also contains the path to the XQuery

Update script (on page 880) or XSLT stylesheet (on page 885) that is associated with the particular operation

through the <script> element.

The optional @filesFilter attribute can be specified to filter the resources by using a file pattern or list of

file patterns separated by a comma (for example: filesFilter="*.dita, *.xml"). When set, its value is

Oxygen XML Editor 27.1 | 20 - Tools | 2648

automatically populated in the Include files field within the Scope and Filters wizard page (on page 859) as a

default value.

You can specify a category for your custom operations to logically group certain operations. The <category>

element is optional and if it is not included in the descriptor file, the default name of the category for the

custom operations is Other operations.

The descriptor file is edited and validated against the following schema: frameworks/xml_refactoring/

operation_descriptor.xsd.

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters

section of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed

in the XML Refactoring tool within the Configure Operation Parameters wizard page (on page 858) for that

particular operation.

The value of the first <description> element in the <parameters> section will be displayed at the top of the

Configure Operation Parameters wizard page (on page 858).

To declare a parameter, specify the following information:

• label - This value is displayed in the user interface for the parameter.

• name - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the

same as the one declared in the script.

• type - Defines the type of the parameter and how it will be rendered. There are several types available:

◦ TEXT - Generic type used to specify a simple text fragment.

◦ XPATH - Type of parameter whose value is an XPATH expression. For this type of parameter,

Oxygen XML Editor will use a text input with corresponding content completion and syntax

highlighting.

Note:

The value of this parameter is transferred as plain text to the XQuery Update or XSLT

transformation without being evaluated. You should evaluate the XPath expression

inside the XQuery Update script or XSLT stylesheet. For example, you could use the

saxon:evaluate Saxon extension function.

Note:

A relative XPath expression is converted to an absolute XPath expression by adding //

before it (//XPathExp). This conversion is done before transferring the XPath expression

to the XML refactoring engine.

Oxygen XML Editor 27.1 | 20 - Tools | 2649

Note:

When writing XPath expressions, you can only use prefixes declared in the Options >

Preferences > XML > XSLT-XQuery > XPath (on page 268) options page.

◦ NAMESPACE - Used for editing namespace values.

◦ REG_EXP_FIND - Used when you want to match a certain text by using Perl-like regular

expressions.

◦ REG_EXP_REPLACE - Used along with REG_EXP_FIND to specify the replacement string.

◦ XML_FRAGMENT - This type is used when you want to specify an XML fragment. For this type,

Oxygen XML Editor will display a text area specialized for inserting XML documents.

◦ NC_NAME - The parameter for NC_NAME values. It is useful when you want to specify the local part

of a QName (on page 3300) for an element or attribute.

◦ BOOLEAN - Used to edit boolean parameters.

◦ TEXT_CHOICE - It is useful for parameters whose value should be from a list of possible values.

Oxygen XML Editor renders each possible value as a radio button option.

• optional - Specifies whether the parameter is optional or required. For optional parameters, the end user

is not required to fill in a value in the XML refactoring wizard.

• description - The description of the parameter. It is used by the application to display a tooltip when you

hover over the parameter.

• possibleValues - Contains the list with possible values for the parameter and you can specify the

default value, as in the following example:

<possibleValues onlyPossibleValuesAllowed="true">

 <value name="before">Before</value>

 <value name="after" default="true">After</value>

 <value name="firstChild">First child</value>

 <value name="lastChild">Last child</value>

</possibleValues>

On a <value>, you can specify the @default attribute with the value true to mark it as the default

presented value in the XML refactoring wizard. The text specified inside the <value> element is

displayed as placeholder default text in the text entry box. If the dialog box is accepted with the

placeholder text in place, the @name attribute value is passed to the refactoring script. Example:

<value name="my-actual-default-value" default="true">[default displayed]</value>

Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen

XML Editor will propose all declared elements or attributes based on the schema associated with the currently

edited file. The following specialized parameters are supported:

elementLocation

Oxygen XML Editor 27.1 | 20 - Tools | 2650

This parameter is used to match elements. For this type of parameter, the application displays a

text field where you can enter the element name or an XPath expression. The text from the @label

attribute is displayed in the application as the label of the text field. The @name attribute is used

to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. If the

value of the @useCurrentContext attribute is set to true, the element name from the cursor position

is used as proposed values for this parameter.

Example of an <elementLocation>:

<elementLocation name="elem_loc" useCurrentContext="false">

 <element label="Element location">

 <description>Element location description.</description>

 </element>

</elementLocation>

attributeLocation

This parameter is used to match attributes. For this type of parameter, the application displays

two text fields where you can enter the parent element name and the attribute name (both

text fields accept XPath expressions for a finer match). The text from the @label attributes is

displayed in the application as the label of the associated text fields. The @name attribute is used

to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. The

value of this parameter is an XPath expression that is computed by using the values of the

expression from the element and attribute text fields. For example, if section is entered for the

element and a title is entered for the attribute, the XPath expression would be computed as

//section/@title. If the value of the useCurrentContext attribute is set to true, the element

and attribute name from the cursor position is used as proposed values for the operation

parameters.

Example of an <attributeLocation>:

<attributeLocation name="attr_xpath" useCurrentContext="true">

 <element label="Element path">

 <description>Element path description.</description>

 </element>

 <attribute label="Attribute" >

 <description>Attribute path description.</description>

 </attribute>

</attributeLocation>

elementParameter

This parameter is used to specify elements by local name and namespace. For this type of

parameter, the application displays two combo boxes with elements and namespaces collected

from the associated schema of the currently edited file. The text from the @label attribute is

displayed in the application as label of the associated combo. The @name attribute is used to

specify the name of the parameter from the XQuery Update script or XSLT stylesheet. If you

Oxygen XML Editor 27.1 | 20 - Tools | 2651

specify the @allowsAny attribute, the application will propose <ANY> as a possible value for the

Name and Namespace combo boxes. You can also use the @useCurrentContext attribute and if

its value is set to true, the element name and namespace from the cursor position is used as

proposed values for the operation parameters.

Example of an <elementParameter>:

<elementParameter id="elemID" useCurrentContext="true">

 <localName label="Name" name="element_localName" allowsAny="true">

 <description>Local name of the parent element.</description>

 </localName>

 <namespace label="Namespace" name="element_namespace" allowsAny="true">

 <description>Local name of the parent element</description>

 </namespace>

</elementParameter>

attributeParameter

This parameter is used to specify attributes by local name and namespace. For this type of

parameter, the application displays two combo boxes with attributes and their namespaces

collected from the associated schema of the currently edited file. The text from the @label

attribute is displayed in the application as the label of the associated combo box. You can

also use the @useCurrentContext attribute and if its value is set to true, the attribute name and

namespace from the cursor position is used as proposed values for the operation parameters.

Note:

An <attributeParameter> is dependant upon an <elementParameter>. The list of attributes

and namespaces are computed based on the selection in the elementParameter combo

boxes.

Example of an <attributeParameter>:

<attributeParameter dependsOn="elemID" useCurrentContext="true">

 <localName label="Name" name="attribute_localName">

 <description>The name of the attribute to be converted.</description>

 </localName>

 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">

 <description>Namespace of the attribute to be converted.</description>

 </namespace>

</attributeParameter>

Grouping Parameters in the Descriptor File

You can use <section> elements to group related parameters in the descriptor file:

Oxygen XML Editor 27.1 | 20 - Tools | 2652

<section label="Parent element">

 <elementParameter id="elemID">

 <localName label="Name" name="element_localName" allowsAny="true">

 <description>Local name of the parent element.</description>

 </localName>

 <namespace label="Namespace" name="element_namespace" allowsAny="true">

 <description>Local name of the parent element</description>

 </namespace>

 </elementParameter>

</section>

Note:

All built-in operations are loaded from the [OXYGEN_INSTALL_DIR]/refactoring folder.

Related information

Example of an Operation Descriptor File with an XSLT Stylesheet (on page 888)

Example of an Operation Descriptor File with an XQuery Update script (on page 883)

XSLT Stylesheet for Creating a Custom Operation

To demonstrate creating a custom operation, suppose that you have a task where you need to convert an

attribute into an element and insert it inside another element. A specific example would be if you have a

project with a variety of <image> elements where a deprecated @alt attribute was used for the description and

you want to convert all instances of that attribute into an element with the same name and insert it as the first

child of the <image> element.

Thus, the task is to convert this attribute into an element with the same name and insert it as the first child of

the image element.

Oxygen XML Editor 27.1 | 20 - Tools | 2653

Figure 624. Example: Custom XML Refactoring Operation

An XSLT stylesheet can be used to implement the new custom XML refactoring operation. The second

requirement is an XML Refactoring operation descriptor file (on page 2655) that contains the path to the XSLT

stylesheet.

Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an
Element

The XSLT stylesheet does the following:

• Iterates over all elements from the document that have the specified local name and namespace.

• Finds the attribute that will be converted to an element.

• Adds the new element as the first child of the parent element.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"

 version="2.0">

 <xsl:import

href="http://www.oxygenxml.com/ns/xmlRefactoring/resources/commons.xsl"/>

 <xsl:param name="element_localName" as="xs:string" required="yes"/>

 <xsl:param name="element_namespace" as="xs:string" required="yes"/>

 <xsl:param name="attribute_localName" as="xs:string" required="yes"/>

 <xsl:param name="attribute_namespace" as="xs:string" required="yes"/>

 <xsl:param name="new_element_localName" as="xs:string" required="yes"/>

Oxygen XML Editor 27.1 | 20 - Tools | 2654

 <xsl:param name="new_element_namespace" as="xs:string" required="yes"/>

 <xsl:template match="node() | @*">

 <xsl:copy>

 <xsl:apply-templates select="node() | @*"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="//*[xr:check-local-name($element_localName, ., true())

 and

 xr:check-namespace-uri($element_namespace, .)]">

 <xsl:variable name="attributeToConvert"

 select="@*[xr:check-local-name($attribute_localName, ., true())

 and

 xr:check-namespace-uri($attribute_namespace, .)]"/>

 <xsl:choose>

 <xsl:when test="empty($attributeToConvert)">

 <xsl:copy>

 <xsl:apply-templates select="node() | @*"/>

 </xsl:copy>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy>

 <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]">

 <xsl:copy-of select="."/>

 </xsl:for-each>

 <!-- The new element namespace -->

 <xsl:variable name="nsURI" as="xs:string">

 <xsl:choose>

 <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">

 <xsl:value-of select="''"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$new_element_namespace"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:element name="{$new_element_localName}" namespace="{$nsURI}">

 <xsl:value-of select="$attributeToConvert"/>

 </xsl:element>

 <xsl:apply-templates select="node()"/>

Oxygen XML Editor 27.1 | 20 - Tools | 2655

 </xsl:copy>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

Note:

The XSLT stylesheet imports a module library that contains utility functions and variables. The

location of this module is resolved via an XML Catalog (on page 3302) set in the XML Refactoring

framework (on page 3297).

Example of an Operation Descriptor File That References the XSLT Stylesheet for Creating a
Custom Operation to Convert an Attribute to an Element

After you have developed the XSLT stylesheet (for example, named convert-attribute-to-

element.xsl), you have to create an XML Refactoring operation descriptor (for example, named convert-

attribute-to-element.xml) that references the stylesheet and provides descriptions and possible

values for its parameters. This descriptor is used by the application to load the operation details such as

name, description, or parameters.

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"

 id="convert-attribute-to-element"

 name="Convert attribute to element">

 <description>Converts the specified attribute to an element.

 The new element will be inserted as first child of the attribute's

 parent element.</description>

 <script type="XSLT" href="convert-attribute-to-element.xsl"/>

 <parameters>

 <description>Specify the attribute to be converted to element.</description>

 <section label="Parent element">

 <elementParameter id="elemID">

 <localName label="Name" name="element_localName" allowsAny="true">

 <description>Local name of the parent element.</description>

 </localName>

 <namespace label="Namespace" name="element_namespace" allowsAny="true">

 <description>Local name of the parent element</description>

 </namespace>

 </elementParameter>

 </section>

Oxygen XML Editor 27.1 | 20 - Tools | 2656

 <section label="Attribute">

 <attributeParameter dependsOn="elemID">

 <localName label="Name" name="attribute_localName">

 <description>Name of the attribute to be converted.</description>

 </localName>

 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">

 <description>Namespace of the attribute to be converted.</description>

 </namespace>

 </attributeParameter>

 </section>

 <section label="New element">

 <elementParameter>

 <localName label="Name" name="new_element_localName">

 <description>The name of the new element.</description>

 </localName>

 <namespace label="Namespace" name="new_element_namespace">

 <description>The namespace of the new element.</description>

 </namespace>

 </elementParameter>

 </section>

 </parameters>

</refactoringOperationDescriptor>

Note:

If you are using an XSLT file, the line with the <script> element would look like this:

 <script type="XSLT" href="convert-attribute-to-element.xsl"/>

The code exemplified above and other refactoring examples can be found on the DITA Refactoring

GitHub sample project.

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Editor when it loads the

custom operation (on page 892). When the XML Refactoring tool is started again, you will see the created

operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks.

The following image shows the parameters that can be specified in the example of the custom operation to

convert an attribute to an element:

https://github.com/oxygenxml/dita-refactoring-examples/
https://github.com/oxygenxml/dita-refactoring-examples/

Oxygen XML Editor 27.1 | 20 - Tools | 2657

Figure 625. Example: XML Refactoring Wizard for a Custom Operation

Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and
Modify Content Outside the Root Node

One advantage to using an XSLT stylesheet is that there is limitation when using an XQuery Update script (on

page 880) in that refactoring operations can only be performed on comments or processing instructions that

are inside the root element. Thus, using the XQuery method, comments or processing instructions that are in

any node before or after the root element cannot be modified by an XML Refactoring operation.

The XSLT stylesheet method offers a work-around to this limitation through the use of some Saxon extension

functions.

To illustrate the use of these functions, consider the following sample XML file:

<?xml version="1.0" encoding="UTF-8"?>

<!-- comment before root -->

<?pi before root ?>

<root>

 <child></child>

</root>

<!-- comment after root -->

<?pi after root ?>

The following Saxon extension functions can be used to read and modify content outside the root node:

Note:

They belong to the http://www.oxygenxml.com/ns/xmlRefactoring/functions namespace.

Oxygen XML Editor 27.1 | 20 - Tools | 2658

• get-content-after-root() - Returns the content after root as xs:string.

For the XML above, the call of this function will return the following string value:

<!-- comment after root -->

<?pi after root ?>

• set-content-after-root(xs:string) - Updates the content that will be serialized in the refactored

document after the root node.

The function call set-content-after-root('<!-- Inserted comment -->') will result in replacing the

nodes after the root element with the comment passed as string argument. The XML document will be

modified as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!-- comment before root -->

<?pi before root ?>

<root>

 <child></child>

</root><!-- Inserted comment -->

• get-content-before-root() - Returns the content before root as xs:string.

For the XML above, the call of this function will return the following string value:

<?xml version="1.0" encoding="UTF-8"?>

<!-- comment before root -->

<?pi before root ?>

• set-content-before-root(xs:string) - Updates the content that will be serialized in the refactored

document after the root node.

The function call set-content-before-root('<!-- Inserted comment -->') will result in replacing the

nodes before the root element with the comment passed as string argument. The XML document will

be modified as follows:

<!-- Inserted comment --><root>

 <child></child>

</root>

<!-- comment after root -->

<?pi after root ?>

XSLT Example:

To process content after the root node, the XSLT would look like this:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs"

Oxygen XML Editor 27.1 | 20 - Tools | 2659

 xmlns:xrf="http://www.oxygenxml.com/ns/xmlRefactoring/functions" version="3.0">

 <xsl:template match="/">

 <!-- The comment content that will be inserted after the root element -->

 <xsl:variable name="commentAsText"><!-- COMMENT ADDED FROM XR OPERATION-->

 </xsl:variable>

 <!-- Retrieve the content after the root element as is -->

 <xsl:variable name="after-root-content" as="xs:string"

 select="xrf:get-content-after-root()"/>

 <xsl:variable name="processedContent"

 select="concat($after-root-content, $commentAsText)"/>

 <!-- Update the content after the root element -->

 <xsl:value-of select="xrf:set-content-after-root($processedContent)"/>

 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="node() | @*">

 <xsl:copy>

 <xsl:apply-templates select="node() | @*"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

Note:

The above XSLT retrieves the nodes after the root element as string, appends a new comment, and

then sets back the updated content into the XML document.

Storing and Sharing Refactoring Operations

Oxygen XML Editor scans the following locations when looking for XML Refactoring operations to provide

flexibility:

• A folder named refactoring, created inside the folder of the framework you are customizing. In

the Classpath tab of the Document type configuration dialog box (on page 153), you need to add a

reference to the refactoring folder specific for the framework.

• A folder that you specify in the Load additional refactoring operations from text box (on page 278) in

the XML Refactoring preferences page (on page 278).

Oxygen XML Editor 27.1 | 20 - Tools | 2660

Note:

If you share a project with your team, you can also share the custom operation by doing the

following:

1. Save the custom operation in a folder that is part of your project.

2. Switch the XML Refactoring option page to project level (on page 3300):

a. Open the Preferences dialog box (Options > Preferences) (on page 132) and go

to XML > XML Refactoring (on page 278).

b. Select Project Options (on page 3300) at the bottom of the dialog box.

3. In the Load additional refactoring operations from text box (on page 278), use the ${pd}

editor variable (on page 341) so that the folder path is declared relative to the project.

• A folder specified by the XML Refactoring Operations Plugin Extension (on page 2544).

• The refactoring folder from the Oxygen XML Editor installation directory

([OXYGEN_INSTALL_DIR]/refactoring/).

Sharing Custom Refactoring Operations

The purpose of Oxygen XML Editor scanning multiple locations for the XML Refactoring operations is to

provide more flexibility for developers who want to share the refactoring operations with the other team

members. Depending on your particular use case, you can attach the custom refactoring operations to other

resources, such as framework (on page 3297) or projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations

Oxygen XML Editor includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in

[OXYGEN_INSTALL_DIR]/refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be

translated:

• The operation name, description, and category.

• The <description> of the <parameters> element.

• The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

${i18n(translation_key)}

Oxygen XML Editor scans the following locations to find the translation.xml files that are used to load the

translation keys:

Oxygen XML Editor 27.1 | 20 - Tools | 2661

• A refactoring/i18n folder, created inside a directory that is associated to a customized framework.

• A i18n folder, created inside a directory that is associated to a customized framework.

• An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box

(Options > Preferences) (on page 132), go to XML > XML Refactoring, and specify the folder in the

Load additional refactoring operations from text box.

• An i18n folder located in directories specified through the XML Refactoring Operations Plugin

Extension (on page 2544).

• The refactoring/i18n folder from the Oxygen XML Editor installation directory

([OXYGEN_INSTALL_DIR]/refactoring/i18n).

Example: Refactoring Operation Descriptor File with i18n Support

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor

 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove_text_content"

 name="${i18n(Remove_text_content)}">

 <description>${i18n(Remove_text_content_description)}</description>

 <script type="XQUERY_UPDATE" href="remove_text_content.xq"/>

 <parameters>

 <description>${i18n(parameters_description)}</description>

 <parameter label="${i18n(Element_name)}" name="element_localName"

 type="NC_NAME">

 <description>${i18n(Element_name_descriptor)}</description>

 <possibleValues>

 <value default="true" name="value1">${i18n(value_1)}</value>

 <value name="value2">${i18n(value_2)}</value>

 </possibleValues>

 </parameter>

 </parameters>

</refactoringOperationDescriptor>

Generating Sample XML Files
Oxygen XML Editor offers support to generate sample XML files both from XML schema 1.0 and XML schema

1.1, depending on the XML schema version set in XML Schema preferences page (on page 248).

To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the

Tools menu. This action is also available in the contextual menu of the schema Design mode (on page 971).

The action opens the Generate Sample XML Files dialog box that allows you to configure a variety of options

for generating the files.

Oxygen XML Editor 27.1 | 20 - Tools | 2662

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default

values for these options can be set in the Sample XML Files Generator preferences page (on page 252). You

can also run the tool from the command line using exported options.

Schema Tab

The first set of options for the Generate Sample XML Files tool are found in the Schema tab.

Figure 626. Generate Sample XML Files Dialog Box (Schema Tab)

This tab includes the following options:

URL

Specifies the URL of the Schema location. You can specify the path by using the text field, the

history drop-down menu, or the browsing actions in the Browse drop-down list.

Namespace

Displays the namespace of the selected schema.

Root Element

After the schema is selected, this drop-down menu is populated with all root candidates

gathered from the schema. Choose the root of the output XML documents.

Output folder

Path to the folder where the generated XML instances will be saved.

Oxygen XML Editor 27.1 | 20 - Tools | 2663

Filename prefix and Extension

You can specify the prefix and extension for the file name that will be generated. Generated file

names have the following format: prefixN.extension, where N represents an incremental number

from 0 up to the specified Number of instances.

Number of instances

The number of XML files to be generated.

Open first instance in editor

When selected, the first generated XML file is opened in the editor.

Namespaces section

You can specify the Default Namespace, as well as the prefixes for the namespaces.

Export settings

Use this button to save the current settings for future use.

Import settings

Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Options Tab

The Options tab allows you to set specific options for namespaces and elements.

Oxygen XML Editor 27.1 | 20 - Tools | 2664

Figure 627. Generate Sample XML Files Dialog Box (Options Tab)

This tab includes the following options:

Namespace / Element table

Allows you to set a namespace for each element name that appears in an XML document

instance. The following prefix-to-namespace associations are available:

• All elements from all namespaces (<ANY> - <ANY>). This is the default setting.

• All elements from a specific namespace.

• A specific element from a specific namespace.

Settings subtab

Namespace

Displays the namespace specified in the table at the top of the dialog box.

Element

Displays the element specified in the table at the top of the dialog box.

Oxygen XML Editor 27.1 | 20 - Tools | 2665

Generate optional elements

When selected, all elements are generated, including the optional ones (having the

minOccurs attribute set to 0 in the schema).

Generate optional attributes

When selected, all attributes are generated, including the optional ones (having the

use attribute set to optional in the schema).

Values of elements and attributes

Controls the content of generated attribute and element values. The following

choices are available:

• None - No content is inserted.

• Default - Inserts a default value depending on the data type descriptor of

the particular element or attribute. The default value can be either the data

type name or an incremental name of the attribute or element (according

to the global option from the Sample XML Files Generator preferences

page). Note that type restrictions are ignored when this option is selected.

For example, if an element is of a type that restricts an xs:string with the

xs:maxLength facet to allow strings with a maximum length of 3, the XML

instance generator tool may generate string element values longer than 3

characters.

• Random - Inserts a random value depending on the data type descriptor of

the particular element or attribute.

Important:

If all of the following are true, the Generate Sample XML Files tool

outputs invalid values:

◦ At least one of the restrictions is a regexp.

◦ The value generated after applying the regexp does not

match the restrictions imposed by one of the facets.

Preferred number of repetitions

Allows you to set the preferred number of repeating elements related to minOccurs

and maxOccurs facets defined in the XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value is

used.

• If the value set here is less than minOccurs, then the minOccurs value is used.

• If the value set here is greater than maxOccurs, then maxOccurs is used.

Maximum recursion level

Oxygen XML Editor 27.1 | 20 - Tools | 2666

If a recursion is found, this option controls the maximum allowed depth of the

same element.

Type alternative strategy

Used for the <xs:alternative> element from XML Schema 1.1. The possible

strategies are:

• First - The first valid alternative type is always used.

• Random - A random alternative type is used.

Choice strategy

Used for <xs:choice> or <substitutionGroup> elements. The possible strategies are:

• First - The first branch of <xs:choice> or the head element of

<substitutionGroup> is always used.

• Random - A random branch of <xs:choice> or a substitute element or the

head element of a <substitutionGroup> is used.

Generate the other options as comments

If selected, generates the other possible choices or substitutions (for <xs:choice>

and <substitutionGroup>). These alternatives are generated inside comments

groups so you can uncomment and use them later. Use this option with care (for

example, on a restricted namespace and element) as it may generate large result

files.

Element values subtab

Allows you to add values that are used to generate the content of elements. If there are multiple

values, then the values are used in a random order.

Attribute values subtab

Allows you to add values that are used to generate the content of attributes. If there are multiple

values, then the values are used in a random order.

Export settings

Use this button to save the current settings for future use.

Import settings

Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Advanced Tab

The Advanced tab allows you to set some options regarding output values and performance.

Oxygen XML Editor 27.1 | 20 - Tools | 2667

Figure 628. Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:

Use incremental attribute / element names as default

If selected, the value of an element or attribute starts with the name of that element or attribute.

For example, for an <a> element the generated values are: a1, a2, a3, and so on. If not selected, the

value is the name of the type of that element / attribute (for example: string, decimal, etc.)

Maximum length

The maximum length of string values generated for elements and attributes.

Discard optional elements after nested level

The optional elements that exceed the specified nested level are discarded. This option is

useful for limiting deeply nested element definitions that can quickly result in very large XML

documents.

Export settings

Use this button to save the current settings for future use.

Import settings

Use this button to load previously exported settings.

Tip:

This function can be executed from an automated command-line script, for more details, see Scripting

Oxygen (on page 3260).

Applying All Default Quick Fix Proposals
The Apply all default quick fix proposals tool can be used to apply quick fix proposals for all reported

validation errors in one or more documents when one or more quick fix proposals have been detected for

reported validation errors. If multiple quick fixes are available for the same validation error, the default quick fix

defined in the Schematron validation schema using the sqf:default-fix attribute is automatically selected to

be applied. If no default quick fix is explicitly specified, the first quick fix proposal in the list is considered. All

quick fix proposals are then automatically executed in bulk, one after the other.

Oxygen XML Editor 27.1 | 20 - Tools | 2668

Important Notes to Consider:

• To maintain the accuracy of the initially calculated error validation ranges, the quick fix

proposals are applied in the reverse order of their selection.

• If two or more quick fixes act on the same "area" within the document, only one is applied (no

changes can be made to changes already made).

• Quick fixes that involve "user-entered values" that normally present a dialog box to facilitate

data entry will not be executed (the automatic process of applying all selected quick fixes

cannot be interrupted by the presence of the respective dialog boxes).

The Apply all default quick fix proposals tool can be accessed from the following interface locations:

• [Single Document] The contextual menu when you right-click anywhere in Text mode (on page 579) or

Author mode (on page 774) when there is a detected quick fix proposal in the current document.

• [One or More Documents] The Tools menu.

• [One or More Documents] The Refactoring submenu when you right-click one or more files in the

Project view (on page 414).

• [One or More Documents] The Refactoring submenu when you right-click one or more files in the DITA

Maps Manager view (on page 2950).

Invoking the tool opens the Apply all default quick fix proposals dialog box where you can choose the scope

for the operation and optionally specify a filter to narrow the scope.

Figure 629. Apply All Default Quick Fix Proposals Dialog Box

The Scope section allows you to choose from the following scopes:

Oxygen XML Editor 27.1 | 20 - Tools | 2669

• Current File - The quick fix proposals are applied on the current file only.

• Project - The quick fix proposals are applied on the current project.

• Selected project resources - The quick fix proposals are applied on the selected files from the current

project.

• All opened files - The quick fix proposals are applied on all opened files.

• Current DITA map hierarchy (for DITA documents) - The quick fix proposals are applied on current DITA

map along with all of its referenced topics and submaps (and topics referenced in those submaps).

• Working sets - The quick fix proposals are applied on a user-defined set of resources, referred to as a

working set (on page 3302).

The Include files option in the Filters section can be used to narrow the scope of the operation by filtering the

selected resources using a file pattern. For example, to restrict the operation to only parse and update XML

documents from the selected files, you could use {*}.xml for the file pattern.

You can click the Preview button to see a comparison preview that provides an overview of the content

changes that will be made, according to the quick fixes that will be applied. You can preview the changes in

Text or Author mode. The comparison panel also informs you of any problems encountered. While previewing

the changes, you can also choose to exclude certain files from having the quick fixes be applied if you do not

agree with the changes for the particular files. If you agree with the changes presented, click Apply to trigger

the quick fixes and update the content.

Troubleshooting:

If a quick fix did not apply, a notification with some information about the error will be displayed in the

Results view at the bottom of the application.

Tip:

If the operation takes longer than expected, you can use the Stop button in the progress bar to cancel

the operation.

Resources

For more information about the Apply all default quick fix proposals tool, see our video: Introducing the Apply

All Default Quick Fix Proposals Tool.

Converting Schema to Another Schema Language
The Generate/Convert Schema tool allows you to convert a DTD or Relax NG (full or compact syntax)

schema or a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax)

schema. Where perfect equivalence is not possible due to limitations of the target language, Oxygen XML

Editor generates an approximation of the source schema. Oxygen XML Editor uses the Trang multiple format

converter to perform the actual schema conversions.

https://www.oxygenxml.com/demo/apply_qf.html
https://www.oxygenxml.com/demo/apply_qf.html
https://relaxng.org/
https://relaxng.org/

Oxygen XML Editor 27.1 | 20 - Tools | 2670

To use this tool, select the Generate/Convert Schema (Alt + Shift + C (Command + Option + C on macOS))

action from the Tools menu or from the Open with submenu when invoking the contextual menu in the Project

view (on page 414). This action opens the Generate/Convert Schema dialog box that allows you to configure

various options for conversion.

Figure 630. Generate/Convert Schema Dialog Box

The Generate/Convert Schema dialog box includes the following options:

Input section

Allows you to select the language of the source schema. If the conversion is based on a set of

XML files, rather than just a single XML file, select the XML Documents option and use the file

selector to add the XML files involved in the conversion.

Output section

Allows you to select the language of the target schema.

Options

You can choose the Encoding, the maximum Line width, and the Indent size (in

number of spaces) for one level of indentation.

Output file

Specifies the path for the output file that will be generated.

Close dialog when finished

Oxygen XML Editor 27.1 | 20 - Tools | 2671

If you deselect this option, the dialog box will remain open after the conversion so that you can

easily continue to convert more files.

Advanced options

If you select XML 1.0 DTD for the input, you can click this button to access more advance

options to further fine-tune the conversion. The following advanced options are available:

XML 1.0 DTD Input section

These options apply to the source DTD:

• xmlns - Specifies the default namespace, that is the namespace used for

unqualified element names.

• attlist-define - Specifies how to construct the name of the definition

representing an attribute list declaration from the name of the element. The

specified value must contain exactly one percent character. This percent

character is replaced by the name of element (after colon replacement) and

the result is used as the name of the definition.

• colon-replacement - Replaces colons in element names with the specified

chars when constructing the names of definitions used to represent the

element declarations and attribute list declarations in the DTD.

• any-name - Specifies the name of the definition generated for the content of

elements declared in the DTD as having a content model of ANY.

• element-define - Specifies how to construct the name of the definition

representing an element declaration from the name of the element. The

specified value must contain exactly one percent character. This percent

character is replaced by the name of element (after colon replacement) and

the result is used as the name of the definition.

• annotation-prefix - Default values are represented using a

@prefix:defaultValue annotation attribute where prefix is the specified value

and is bound to http://relaxng.org/ns/compatibility/annotations/1.0 as

defined by the RELAX NG DTD Compatibility Committee Specification. By

default, the conversion engine will use a for prefix unless that conflicts with

a prefix used in the DTD.

• inline-attlist - Instructs the application not to generate definitions for

attribute list declarations, but instead move attributes declared in attribute

list declarations into the definitions generated for element declarations. This

is the default behavior when the output language is XSD.

• strict-any - Preserves the exact semantics of ANY content models by using

an explicit choice of references to all declared elements. By default, the

conversion engine uses a wildcard that allows any element

• generate-start - Specifies whether or not the conversion engine should

generate a start element. DTD's do not indicate what elements are allowed

Oxygen XML Editor 27.1 | 20 - Tools | 2672

as document elements. The conversion engine assumes that all elements

that are defined but never referenced are allowed as document elements.

• xmlns mappings table - Each row specifies the prefix used for a namespace

in the input schema.

W3C XML Schema Output section

This section is available if you select W3C XML Schema for the output.

• disable-abstract-elements - Disables the use of abstract elements and

substitution groups in the generated XML Schema. This can also be

controlled using an annotation attribute.

• any-process-contents - One of the values: strict, lax, skip. Specifies the

value for the @processContents attribute of any elements. The default is skip

(corresponding to RELAX NG semantics) unless the input format is DTD, in

which case the default is strict (corresponding to DTD semantics).

• any-attribute-process-contents - Specifies the value for the @processContents

attribute of <anyAttribute> elements. The default is skip (corresponding to

RELAX NG semantics).

Converting Database to XML Schema
Oxygen XML Editor includes a tool that allows you to create an XML Schema from the structure of a database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the Convert DB Structure to XML Schema action from the Tools menu.

Result: The Convert DB Structure to XML Schema dialog box is opened and your current database

connections are displayed in the Connections section.

2. If the database source is not listed, click the Configure Database Sources button to open the Data

Sources preferences page (on page 286) where you can configure data sources and connections.

3. In the Format for generated schema section, select one of the following formats:

◦ Flat schema - A flat structure that resembles a tree-like view of the database without references

to elements.

◦ Hierarchical schema - Display the table dependencies visually, in a type of tree view where

dependent tables are shown as indented child elements in the content model. Select this option

if you want to configure the database columns of the tables to be converted.

4. Click Connect.

Result: The database structure is listed in the Select database tables section according to the format

you chose.

5. Select the database tables that you want to be included in the XML Schema.

6. If you selected Hierarchical schema for the format, you can configure the database columns.

Oxygen XML Editor 27.1 | 20 - Tools | 2673

a. Select the database column you want to configure.

b. In the Criterion section you can choose to convert the selected database column as an Element,

Attribute, or to be Skipped in the resulting XML Schema.

c. You can also change the name of the selected database column by changing it in the Name text

field.

7. Click Generate XML Schema.

Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

Flatten an XML Schema
You can organize an XML schema linked by <xs:include> and <xs:import> statements on several levels. In some

cases, working on such a schema as if it were a single file is more convenient than working on multiple files

separately. The Flatten Schema operation allows you to flatten an entire hierarchy of XML schemas. Starting

with the main XML schema, Oxygen XML Editor calculates its hierarchy by processing the <xs:include> and

<xs:import> statements.

The Flatten Schema action is available from the Tools menu or the contextual menu in Text mode. This action

opens the Flatten Schema dialog box that allows you to configure the operation.

Figure 631. Flatten Schema Dialog Box

Oxygen XML Editor 27.1 | 20 - Tools | 2674

For the main schema file and for each imported schema, a new flattened schema is generated in the specified

output folder. These schemas have the same name as the original ones.

Note:

If necessary, the operation renames the resulted schemas to avoid duplicated file names.

A flattened XML schema is obtained by recursively adding the components of the included schemas into the

main one. This means Oxygen XML Editor replaces the <xs:include>, <xs:redefine>, and <xs:override> elements

with the ones coming from the included files.

Options in the Flatten Schema Dialog Box

The following options are available in the Flatten Schema dialog box:

File name

The name of the output file.

Output directory

The path of the output directory where the flattened schema file will be saved.

Open the flattened XML Schema file in editor

Opens the main flattened schema in the editing area after the operation completes.

Use the XML Catalogs when collecting the referenced XML Schemas

Enables the imported and included schemas to be resolved through the available XML Catalogs

(on page 3302).

Note:

Changing this option triggers the recalculation of the dependencies graph for the main

schema.

Process the imported XML Schemas resolved through the XML Catalogs

Specifies whether or not the imported schemas that were resolved through an XML Catalog (on

page 3302) are also processed.

Flatten the imported XML Schema(s)

Specifies whether or not the imported schemas are flattened.

Note:

For the schemas skipped by the flatten operation, no files are created in the output

folder and the corresponding import statements remain unchanged.

Oxygen XML Editor 27.1 | 20 - Tools | 2675

Tip:

This function can be executed from an automated command-line script, for more details, see Scripting

Oxygen (on page 3260).

Generating Java Classes from XML Schema
Oxygen XML Editor includes a tool for generating Java classes from an XML Schema (XSD) file. The Generate

Java classes from XML Schema (XSD) action for invoking the tool can be found in the Tools menu. It requires

an additional add-on to be installed, so the first time you invoke the action, Oxygen XML Editor will present a

dialog box asking if you want to install it. Once installed, you need to restart Oxygen XML Editor and the action

will invoke the Java class generator tool.

Add-on documentation and installation details.

Compiling an XSL Stylesheet for Saxon
As of Saxon 12.5, it is possible to export a compiled form of a stylesheet as a JSON or XML file (called a

stylesheet export file or SEF). Oxygen XML Editor includes a simple tool called Compile XSL Stylesheet for

Saxon (found in the Tools menu) that does this for you.

Use-Cases for a Stylesheet Export File (SEF)

• Use Saxon-JS to run transformations in a browser - A stylesheet export file (SEF) is needed if you want

to use the Saxon-JS product to run transformations in a browser, as in the following example:

<script type="text/javascript" src="SaxonJS/SaxonJS.min.js"></script>

<script>

 window.onload = function() {

 SaxonJS.transform({

 stylesheetLocation: "books.sef",

 sourceLocation: "books.xml"

 });

 }

</script>

• Use SEF to run transformations in Oxygen XML Editor - You can also use a stylesheet export file (SEF)

in Oxygen XML Editor to apply an XSLT transformation over an XML file. This requires Saxon-EE or

Saxon-PE versions of the Saxon product and you must select one of those two versions for the Target

when you configure the SEF file (on page 2676). When configuring the XSLT transformation, you will

specify the SEF file in the XSL URL field (on page 1505).

Compiling an SEF File

The Compile XSL Stylesheet for Saxon tool can be found in the Tools menu and it compiles a specified

stylesheet as a JSON or an XML file (stylesheet export file).

https://www.oxygenxml.com/doc/ug-addons/topics/generate-java-classes.html
http://www.saxonica.com/saxon-js/documentation/index.html

Oxygen XML Editor 27.1 | 20 - Tools | 2676

If you choose Saxon-JS as the Target (the type of Saxon product that the export file will be used with), then

the compiled stylesheet will be a JSON file with a file extension of .sef by default.

If you choose Saxon-EE, Saxon-PE, or Saxon-HE for the Target, then the compiled stylesheet will be an XML

file with a file extension of .xsef by default.

Selecting this tool opens the Compile XSL Stylesheet for Saxon dialog box that allows you to configure some

options for conversion.

Figure 632. Compile XSLT Stylesheet for Saxon Dialog Box

This dialog box includes the following options:

XSL URL

Allows you to select URL of the source XSL stylesheet. You can specify the URL by using the text

field, the history drop-down, or the browsing actions in the Browse drop-down list.

Output file

You can specify the path where the output file will be saved by entering it in the text field, using

the Insert Editor Variables button, or using the browsing actions in the Browse drop-

down list.

Open in Editor

Select this option to open the resulting stylesheet export file in the main Oxygen

XML Editor editing pane.

Target

Allows you to select the type of Saxon product that the export file will be used with. You can

choose Saxon-JS, Saxon-EE, Saxon-PE, or Saxon-HE.

Oxygen XML Editor 27.1 | 20 - Tools | 2677

Relocatable

Can be used to control the Saxon -relocate parameter. You can select this option to produce a

relocatable export package (SEF) that can be deployed to a different location, with a different

base URI.

Set the default namespace for unprefixed element names ("-ns")

Can be used to control the -ns:(uri|##any|##html5) Saxon parameter that defines the handling

of unprefixed element names that appear as name tests in path expressions and match patterns

in the stylesheet:

• The ##any value declares that unprefixed names are treated as a test on the local name

of the element only. They will match regardless of namespace.

• The ##html5 value declares that an unprefixed element name will match either a name in

the XHTML namespace or a name in no namespace. This option is primarily intended for

use when generating stylesheets to run under Saxon-JS in the browser since the resulting

behavior is close to that defined by the special rules in the HTML5 specification for XSLT

and XPath running against an HTML5 DOM.

• You can also specify a valid URI by editing the value in the combo box. Specifying a URI

sets the default namespace for elements and types (effectively a default value for xpath-

default-namespace). Note that an explicit value for this attribute takes precedence.

Use a configuration file ("-config")

Select this option if you want to use a Saxon 12.5 configuration file that will be executed for the

XSLT transformation and validation processes. You can specify the path to the configuration

file by entering it in the URL field, or by using the Insert Editor Variables button, or using the

browsing actions in the Browse drop-down list.

Attention:

Oxygen XML Editor does not support the ALLOWED_PROTOCOLS Saxon property (http://

saxon.sf.net/feature/allowedProtocols). This feature is specific to Saxon and controls

access by Saxon (but not by underlying software, such as the XML parser). For

more information, see https://www.saxonica.com/documentation12/index.html#!

configuration/config-features.

Compile

Use this button to generate the stylesheet export file according the options selected in this

dialog box.

JSON Tools
Oxygen XML Editor includes some useful tools for converting between JSON, XML and YAML, converting XSD

to JSON Schema, generating JSON instances or a JSON Schema, and OpenAPI (JSON and YAML) testing.

https://www.saxonica.com/documentation12/index.html#!configuration/config-features
https://www.saxonica.com/documentation12/index.html#!configuration/config-features

Oxygen XML Editor 27.1 | 20 - Tools | 2678

Generating Sample JSON Files from a JSON Schema

Oxygen XML Editor includes a tool for generating sample JSON files. To generate sample JSON files from a

JSON Schema, select Generate Sample JSON Files from the Tools > JSON Tools menu. The action opens a

dialog box where you can configure a variety of options for generating the files.

Figure 633. Generate Sample JSON Files Dialog Box

The Generate Sample JSON Files dialog box includes the following fields and options:

Schema URL

The URL of the Schema location. You can specify the path by using the text field, the history

drop-down menu, or the browsing actions in the Browse drop-down list. The tool supports

schemas with versions Draft 04, 06, 07, 2019-09, and 2020-12.

Associate schema in the document

If enabled, the specified schema will be associated with the generated files.

Output folder

Path to the folder where the generated JSON instances will be saved.

File name

The name of the instance(s) that will be generated. By default, instance.json is used.

Number of instances

The desired number of JSON instances to be generated. When more than one instance is

generated, the index of the instance will be added to its file name.

Property value

Oxygen XML Editor 27.1 | 20 - Tools | 2679

You can specify the way the values of the properties are generated. The following options are

available:

• None - Assigns empty values for properties (a template file will be generated). This is the

default value.

• Default - Assigns the name of the property as the value (for strings) or assigns the

specified minimum value (for numbers).

• Random - Assigns random values according to schema restrictions.

Generate optional properties

If selected, the JSON instance will be generated with optional properties that are defined in the

JSON schema. Otherwise, only the required properties will be generated.

Generate additional content

If selected, the JSON instance will be generated with additional properties that are defined in the

JSON schema as additionalProperties and additional items that are defined as additionalItems

(in the case of an Array).

Choice strategy

You can specify the way an instance will be generated from a schema that contains a

CombinedSchema (with either oneOf or anyOf). The following options are available:

• First - The first defined schema in oneOf or anyOf will be used.

• Random - A random schema defined in oneOf or anyOf will be used.

Recursion level

This option controls the maximum allowed depth (must be a number), in case the selected

schema contains recursive calls of $ref schemas referencing one another. By default, it is set to

1, meaning that the generation for the recursive calls will stop after the first iteration.

Open first instance in editor

If selected, the first generated instance is opened in the editor.

You can click OK at any point to generate the sample JSON files.

Generating JSON Schema from a JSON File

Oxygen XML Editor includes a tool for generating a sample JSON Schema from a JSON file. To generate a

sample JSON Schema, select Generate JSON Schema from the Tools > JSON Tools menu. The action opens a

dialog box where you can configure some options for generating the JSON Schema.

Oxygen XML Editor 27.1 | 20 - Tools | 2680

Figure 634. Generate JSON Schema Dialog Box

The Generate JSON Schema dialog box includes the following fields and options:

JSON Document URL

The URL of the JSON file. You can specify the path by using the text field, the history drop-down

menu, or the browsing actions in the Browse drop-down list.

Output JSON Schema

The path to the folder where the generated JSON Schema will be saved.

Open in Editor

If selected, the generated JSON Schema is opened in the editor.

JSON Schema version

The version of the resulting JSON schema. The possible choices are: Draft 4, Draft 6, Draft 7,

2019-09, and 2020-12.

Extract matching format for strings

If selected, the generator will attempt to find a format that matches the string values from the

JSON Document.

Restrict additional content

If selected, additionalProperties (for objects) and additionalItems (for arrays) will be set to false

in the resulting schema. By default, these keys are not in the schema, meaning that providing

additional content (according to the schema) is allowed.

Add default values for simple types

If selected, the default values (0 for number, "" for string, false for boolean) and examples for

strings will be added.

Oxygen XML Editor 27.1 | 20 - Tools | 2681

Make all properties required

If selected, the generator will mark all the properties as required in the resulting schema.

You can click Generate at any point to generate the JSON Schema.

JSON to YAML Converter

Converting JSON to YAML in Oxygen

Oxygen XML Editor includes a useful and simple tool for converting JSON files to YAML. The JSON to YAML

action for invoking the tool can be found in the Tools > JSON Tools menu.

To convert a JSON document to YAML, follow these steps:

1. Select the JSON to YAML action from the Tools > JSON Tools menu.

The JSON to YAML dialog box is displayed:

Figure 635. JSON to YAML Dialog Box

2. Choose or enter the JSON URL for the document you want to convert.

3. Choose the path of the Output file that will contain the resulting YAML document.

4. [Optional] Select the Open in Editor option to open the resulting YAML document in the main editing

pane.

5. Click the Convert button.

Result: The original JSON document is now converted to a YAML document.

Related Information:

YAML to JSON Converter (on page 1159)

YAML to JSON Converter

Converting YAML to JSON in Oxygen

Oxygen XML Editor includes a useful and simple tool for converting YAML files to JSON. It even works on files

that consist of multiple YAML documents, each separated by three dashes (---), in which case the conversion

creates multiple JSON files with a number in the name.

Oxygen XML Editor 27.1 | 20 - Tools | 2682

The YAML to JSON action for invoking the tool can be found in the Tools > JSON Tools menu.

To convert a YAML document to JSON, follow these steps:

1. Select the YAML to JSON action from the Tools > JSON Tools menu.

The YAML to JSON dialog box is displayed:

Figure 636. YAML to JSON Dialog Box

2. Choose or enter the YAML URL for the document you want to convert.

3. Choose the path of the Output file that will contain the resulting JSON document.

4. [Optional] Select the Open in Editor option to open the resulting JSON document in the main editing

pane.

5. Click the Convert button.

Result: The original YAML document is now converted to a JSON document.

Related Information:

JSON to YAML Converter (on page 1158)

JSON to XML Converter

Discover the Oxygen JSON Editor!
Tailored for Working with JSON and JSON Schema Documents

Online JSON to XML Converter

Attention:

For a simple ONLINE tool for converting a single JSON file to XML, or vice versa, go to: https://

www.oxygenxml.com/xml_json_converter.html.

https://www.oxygenxml.com/oxygen_json_editor.html
https://www.oxygenxml.com/oxygen_json_editor.html
https://www.oxygenxml.com/xml_json_converter.html
https://www.oxygenxml.com/xml_json_converter.html

Oxygen XML Editor 27.1 | 20 - Tools | 2683

Converting JSON to XML in Oxygen

Oxygen XML Editor includes a useful and simple tool for converting JSON files to XML. The JSON to XML

action for invoking the tool can be found in the Tools > JSON Tools menu.

To convert a JSON document to XML, follow these steps:

1. Select the JSON to XML action from the Tools > JSON Tools menu.

The JSON to XML dialog box is displayed:

Figure 637. JSON to XML Dialog Box

2. Choose or enter the Input URL of the JSON document.

3. Choose the path of the Output file that will contain the resulting XML document.

4. Select the Open in Editor option to open the resulting XML document in the main editing pane.

5. Click the Convert button.

Result: The original JSON document is now converted to an XML document.

Oxygen XML Editor 27.1 | 20 - Tools | 2684

Figure 638. Example: XML to JSON Operation Result

Conversion Details

• If the JSON document has more than one property on the first level, the converted XML document will

have an additional root element called <JSON>.

For example, the following JSON document:

{

 "personnel": {

 "person": [

 {"name": "Boss"},

 {"name": "Worker"}

]

 },

 "id":"personnel-id"

}

it is converted to:

<?xml version="1.0" encoding="UTF-8"?>

<JSON>

 <personnel>

 <person>

 <name>Boss</name>

Oxygen XML Editor 27.1 | 20 - Tools | 2685

 </person>

 <person>

 <name>Worker</name>

 </person>

 </personnel>

 <id>personnel-id</id>

</JSON>

• If the JSON document is an array, the converted XML document will have a root element called <array>

and for each item within the array, another <array> is created.

[

 {"name": "Boss"},

 {"name": "Worker"}

]

it is converted to:

<?xml version="1.0" encoding="UTF-8"?>

<array>

 <array>

 <name>Boss</name>

 </array>

 <array>

 <name>Worker</name>

 </array>

</array>

• If the name of a JSON property contains characters that are not valid in XML element names (for

example, $), then the invalid characters will be escaped as its hexadecimal equivalent in the converted

XML.

{"$id": "personnel-id"}

is converted to:

<_X24_id>personnel-id</_X24_id>

Related Information:

XML to JSON Converter (on page 1155)

XML to JSON Converter

Discover the Oxygen JSON Editor!
Tailored for Working with JSON and JSON Schema Documents

https://www.oxygenxml.com/oxygen_json_editor.html
https://www.oxygenxml.com/oxygen_json_editor.html

Oxygen XML Editor 27.1 | 20 - Tools | 2686

Online XML to JSON Converter

Attention:

For a simple ONLINE tool for converting a single XML file to JSON, or vice versa, go to: https://

www.oxygenxml.com/xml_json_converter.html.

Converting XML to JSON in Oxygen

Oxygen XML Editor includes a useful and simple tool for converting XML files to JSON. The XML to JSON

action for invoking the tool can be found in the Tools > JSON Tools menu.

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the Tools > JSON Tools menu.

Step Result: The XML to JSON dialog box is displayed:

Figure 639. XML to JSON Dialog Box

2. Choose or enter the Input URL of the XML document.

3. Choose the path of the Output file that will contain the resulting JSON document.

4. Select how you want empty elements to be converted (default is object).

5. Select the Open in Editor option to open the resulting JSON document in the main editing pane.

6. Click the Convert button.

Result: The original XML document is now converted to a JSON document.

https://www.oxygenxml.com/xml_json_converter.html
https://www.oxygenxml.com/xml_json_converter.html

Oxygen XML Editor 27.1 | 20 - Tools | 2687

Figure 640. Example: XML to JSON Operation Result

Conversion Details

• Some XML components are ignored (e.g. comments and processing instructions).

• If any elements contain attributes in the XML document, the attributes are converted to properties in

the converted JSON document. If the XML document contains more than one element with the same

name, they will be converted into an array of object in the converted JSON document.

For example, the following XML document:

<personnel>

 <person id="person.one">

 <name>Boss</name>

 </person>

 <person id="person.two">

 <name>Worker</name>

 </person>

</personnel>

it is converted to:

{

 "personnel": {

 "person": [

 {

Oxygen XML Editor 27.1 | 20 - Tools | 2688

 "id": "person.one",

 "name": "Boss"

 },

 {

 "id": "person.two",

 "name": "Worker"

 }

]

 }

}

• If the XML document contains elements with mixed content (text plus elements), the converted JSON

document will contain a #text property with its value set as the text content. If there are multiple text

nodes, the subsequent #text properties will contain a number (e.g. #text1, #text2). If there are multiple

elements with the same name, the first property will have the element name and the subsequent

properties will contain a number (e.g. b, b#1, b#2).

<p>This is an example!</p>

is converted to:

{

 "p": {

 "#text": "This ",

 "b": "is",

 "#text1": " an ",

 "b#1": "example",

 "#text2": "!"

 }

}

• If the XML document contains element names that contains hexadecimal codes (for example, if they

were escaped during a JSON to XML conversion (on page 1152)), it will be converted to the normal

character value in the converted JSON document.

<_X24_id>personnel-id</_X24_id>

is converted to:

{"$id": "personnel-id"}

Related Information:

JSON to XML Converter (on page 1152)

Oxygen XML Editor 27.1 | 20 - Tools | 2689

XSD to JSON Schema Converter

Oxygen XML Editor includes a tool for converting an XML Schema file (XSD) to a JSON Schema file. The XSD

to JSON Schema action for invoking the tool can be found in the Tools > JSON Tools menu. It requires an

additional add-on to be installed, so the first time you invoke the action, Oxygen XML Editor will present a

dialog box asking if you want to install it. Once installed, you need to restart Oxygen XML Editor and the XSD

to JSON Schema action will invoke the tool.

Addon documentation and installation details.

JSON Schema Converter

Oxygen XML Editor includes a tool for converting an older version of a JSON schema (Draft 4, 6, or 7) to the

latest versions (2019-09 or 2020-12).

To convert a JSON schema, select Convert JSON Schema from the Tools > JSON Tools menu. The action

opens a dialog box where you can configure some options for converting the JSON Schema.

Figure 641. Convert JSON Schema Dialog Box

The Convert JSON Schema dialog box includes the following fields and options:

JSON Schema URL

The URL of the JSON schema file. You can specify the path by using the text field, the history

drop-down menu, or the browsing actions in the Browse drop-down list.

Output JSON Schema

The path to the folder where the converted JSON schema will be saved.

Open in Editor

If selected, the converted JSON schema is opened in the editor.

JSON Schema version

The version of the resulting JSON schema. The possible choices are: Draft 2019-09 or 2020-12.

You can click Convert at any point to generate the JSON Schema.

https://www.oxygenxml.com/doc/ug-addons/topics/xsd-to-json-schema-converter.html

Oxygen XML Editor 27.1 | 20 - Tools | 2690

Conversion Notes

• The $schema declaration is changed according to the selected JSON schema version.

• The definitions keyword is converted to $defs and all the references are updated.

• The dependencies keyword is split into dependentRequired and dependentSchemas.

• The items keyword (tuple array) is converted to prefixItems (2020-12).

• The additionalItems keyword is converted to items (2020-12, only if prefixItems is present).

• The exclusiveMinimum and exclusiveMaximum keywords with boolean values (Draft 4) are removed.

• The id keyword (Draft 4) is converted to $id.

• The $ref keyword wrapped into 1-item allOf is unwrapped because the latest versions allow

processing $ref along with other keywords.

OpenAPI Tester

Oxygen XML Editor includes a testing tool for OpenAPI files. The tool provides the ability to inspect OpenAPI

request responses and to ensure that they work as expected. It can be used for OpenAPI 3.x in JSON or YAML

format.

To use the tool, select OpenAPI Tester from the Tools > JSON Tools menu. This opens a dialog box where you

can specify the location of the OpenAPI file that you want to test.

This tool requires an additional add-on to be installed, so the first time you invoke the action, Oxygen XML

Editor presents a dialog box asking if you want to install it. Once installed, you need to restart Oxygen XML

Editor and the OpenAPI Tester action will invoke the tool.

Run OpenAPI Test Scenarios

Oxygen XML Editor includes a testing tool for running OpenAPI test scenarios. The Run OpenAPI Test

Scenario tool provides the ability to run a test suite for an OpenAPI document in JSON format. It performs the

requests based on the specified OpenAPI document and the data entered in the test file, and then checks if the

server responses are as expected.

Attention:

This tool requires the OpenAPI Tester add-on (on page 2690) (version 1.2.0 or newer) to be installed

before it becomes available in the JSON Tools menu.

To use the tool, select Run OpenAPI Test Scenario from the Tools > JSON Tools menu. This opens a dialog

box where you can specify the location of the test scenario file that you want to run.

https://spec.openapis.org/oas/v3.1.0
https://www.oxygenxml.com/doc/ug-addons/topics/openapi-tester.html

Oxygen XML Editor 27.1 | 20 - Tools | 2691

Figure 642. Run OpenAPI Test Scenario Dialog Box

The scenario file must be valid according to the schema from here: frameworks/json/schemas/

openapi/scenario/openAPIScenario.jschema. There is a default scenario file template available

when creating new documents from templates (on page 378) and it can be found in the Framework

Templates > OpenAPI Test Scenario. The template will automatically be validated against the schema.

For the scenario file, you have to specify the path of the OpenAPI document and the server where the

requests are made. Then, for each test, you need to enter valid data for the required fields "path", "operation",

"expectedResponse", and the optional fields "description", "parameters", "authorization", or "body".

After successfully running the test scenario, the results are displayed in a new JSON file.

Tip:

Oxygen XML Editor includes a specialized framework for editing and working with OpenAPI test

scenario files (on page 1467).

Resources

For more information about OpenAPI editing, testing, and documenting, watch our webinar:

https://www.youtube.com/embed/gKdabeh49Qk

Format and Indent (Pretty-Print) Multiple Files
Oxygen XML Editor provides support for formatting and indenting (pretty-print (on page 3299)) multiple files

at once. This action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and

JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the

contextual menu of the Project view (on page 414) or from the Tools menu. This opens the Format and Indent

Files dialog box that allows you to configure options for the action.

https://www.youtube.com/embed/gKdabeh49Qk

Oxygen XML Editor 27.1 | 20 - Tools | 2692

Figure 643. Format and Indent Files Dialog Box

The Scope section allows you to choose from the following scopes:

• All opened files - The pretty-print (on page 3299) is performed in all opened files.

• Directory of the current file - All the files in the folder of the currently edited file.

• Project files - All files from the current project.

• Selected project files - The selected files from the current project.

• Specified path - the pretty-print (on page 3299) is performed in the files located at a specified path.

The Options section includes the following options:

• File filter - Allow you to filter the files from the selected scope.

• Recurse subdirectories - When selected, the pretty-print (on page 3299) is performed recursively for

the specified scope. The one exception is that this option is ignored if the scope is set to All opened

files.

• Include hidden files - When selected, the pretty-print (on page 3299) is also performed in the hidden

files.

• Make backup files with extension - When selected, Oxygen XML Editor makes backup files of the

modified files. The default extension is .bak, but you can change the extension as you prefer.

Generate Documentation
Oxygen XML Editor includes a tool for generating documentation for XSLT, XML Schema, XQuery, WSDL, JSON

schema, and OpenAPI documents.

Oxygen XML Editor 27.1 | 20 - Tools | 2693

Generating Documentation for an XML Schema

Oxygen XML Editor can generate detailed documentation for the components of an XML Schema in

HTML, PDF, DocBook, or other custom formats. You can select the components and the level of detail. The

components are hyperlinked in both HTML and DocBook documents.

Note:

You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select XML Schema Documentation from the

Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu

of the Project view (on page 414). You can also open the tool by using the Generate Documentation

toolbar button.

Figure 644. XML Schema Documentation Dialog Box

The Schema URL field of the dialog box must contain the full path to the XML Schema (XSD) file that will

have documentation generated. The schema may be a local or a remote file. You can specify the path to the

Oxygen XML Editor 27.1 | 20 - Tools | 2694

schema by entering it in the text field, or by using the Insert Editor Variables button or the options in the

Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

◦ HTML - The documentation is generated in HTML output format (on page 1036).

◦ PDF - The documentation is generated in PDF output format (on page 1039).

◦ DocBook - The documentation is generated in DocBook output format (on page 1039).

◦ DITA - The documentation is generated in DITA output format (on page 1039).

◦ Custom - The documentation is generated in a custom output format (on page 1039), allowing

you to control the output. Click the Options button to open a Custom format options dialog box

where you can specify a custom stylesheet for creating the output. There is also an option to

Copy additional resources to the output folder and you can select the path to the additional

Resources that you want to copy. You can also choose to keep the intermediate XML files

created during the documentation process by deselecting the Delete intermediate XML file

option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the

Insert Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. You can

choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the

output file type. For DITA and DocBook documents, this option appears as Open in Editor and the result

will be opened in Oxygen XML Editor (in the current editor).

Note:

To set the browser or system application that will be used, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Global, and set it in the Default Internet browser

field. This will take precedence over the default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations

with the @xml:lang attribute set to the selected language. If you choose a primary language code (for

example, en for English), this includes all its possible variations (en-us, en-uk, etc.).

Settings Tab

When you generate documentation for an XML schema you can choose what components to include in the

output and the details to be included in the documentation.

Oxygen XML Editor 27.1 | 20 - Tools | 2695

Figure 645. Settings Tab of the XML Schema Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Global elements,

Global attributes, Local elements, Local attributes, Simple Types, Complex Types, Groups, Attribute Groups,

Redefines, Referenced schemas, Include notations.

You can choose whether or not to include the following other details:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG,

GIF, SVG) to use for the diagram section. The generated diagrams are dependent on the options from

the Schema Design Properties (on page 207) page.

• Diagram annotations - This option controls whether or not the annotations of the components

presented in the diagram sections are included.

• Namespace - Displays the namespace for each component.

• Location - Displays the schema location for each component.

• Type - Displays the component type if it is not an anonymous one.

• Type hierarchy - Displays the types hierarchy.

• Model - Displays the model (sequence, choice, all) presented in BNF form. The separator characters

that are used depend upon the information item used:

Oxygen XML Editor 27.1 | 20 - Tools | 2696

◦ xs:all - Its children will be separated by space characters.

◦ xs:sequence - Its children will be separated by comma characters.

◦ xs:choice - Its children will be separated by | characters.

• Children - Displays the list of component's children.

• Instance - Displays an XML instance generated based on each schema element.

• Used by - Displays the list of all the components that reference the current one. The list is sorted by

component type and name.

• Properties - Displays some of the component's properties.

• Facets - Displays the facets for each simple type.

• Identity constraints - Displays the identity constraints for each element. For each constraint there are

presented the name, type (unique, key, keyref), reference attribute, selector and field(s).

• Attributes - Displays the attributes for the component. For each attribute there are presented the name,

type, fixed or default value, usage and annotation.

• Asserts - Displays the assert elements defined in a complex type. The test, XPath default namespace,

and annotation are presented for each assert.

• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the

XML tags are present in the annotations.

• Source - Displays the text schema source for each component.

• Generate index - Displays an index with the components included in the documentation.

◦ Include local elements and attributes - If selected, local elements and attributes are included in

the documentation index.

◦ Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema

documentation is generated. It is deselected by default.

Export settings - Save the current settings in a settings file for further use (for example, if you need the

exported settings file for generating the documentation from the command-line interface).

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XML Schema documentation.

Tip:

This function can be executed from an automated command-line script, for more details, see Scripting

Oxygen (on page 3260).

Related Information:

Customizing PDF or DocBook Output of Generated XML Schema Documentation (on page 1040)

Generating Documentation for an XSLT Stylesheet

You can use Oxygen XML Editor to generate detailed documentation in HTML format for the elements (top-

level elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT

elements to include in the generated documentation and also the level of details to present for each of them.

https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 20 - Tools | 2697

The elements are hyperlinked. To generate documentation in a custom output format (on page 950), you can

edit the XSLT stylesheet used to generate the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the

Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu

of the Project view (on page 414). You can also open the tool by using the Generate Documentation

toolbar button.

Figure 646. XSLT Stylesheet Documentation Dialog Box

The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to

generate documentation for. The stylesheet may be a local or a remote file. You can specify the path to the

stylesheet by entering it in the text field, or by using the Insert Editor Variables button or the options in the

Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

◦ HTML - The documentation is generated in HTML output format (on page 947).

◦ Custom - The documentation is generated in a custom output format (on page 950), allowing

you to control the output. Click the Options button to open a Custom format options dialog box

(on page 951) where you can specify a custom stylesheet for creating the output. There is also

an option to Copy additional resources to the output folder and you can select the path to the

Oxygen XML Editor 27.1 | 20 - Tools | 2698

additional Resources that you want to copy. You can also choose to keep the intermediate XML

files created during the documentation process by deselecting the Delete intermediate XML file

option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the

Insert Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large

XSLT stylesheets, choosing another split criterion may generate smaller output files, providing faster

documentation browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the

output file type.

Note:

To set the browser or system application that will be used, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Global, and set it in the Default Internet browser

field. This will take precedence over the default system application settings.

Settings Tab

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include

in the output (templates, functions, global parameters, global variables, attribute sets, character maps, keys,

decimal formats, output formats, XSLT elements from referenced stylesheets) and the details to include in the

documentation.

Figure 647. Settings Tab of the XSLT Stylesheet Documentation Dialog Box

Oxygen XML Editor 27.1 | 20 - Tools | 2699

The Settings tab allows you to choose whether or not to include the following components: Templates,

Functions, Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats,

Output formats, Referenced stylesheets.

You can choose whether or not to include the following other details:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined

data elements that are recognized and transformed in documentation blocks of the XSLT elements they

precede, are the ones from the following schemas:

◦ Oxygen XML Editor built-in XSLT documentation schema.

◦ A subset of DocBook 5 elements. The recognized elements are: section, sect1 to sect5,

emphasis, title, ulink, programlisting, para, orderedlist, itemizedlist.

◦ A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i,

ul, ol, pre, sl, sli, step, steps, li, title, xref.

◦ Full XHTML 1.0 support.

◦ XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own

user-defined data elements. The supported DocBook and DITA elements are the ones mentioned

above.

◦ DOXSL documentation framework (on page 3297). Supported elements are: codefrag,

description, para, docContent, documentation, parameter, function, docSchema, link, list, listitem,

module, parameter, template, attribute-set.

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML

pre element. You can change this behavior by using a custom format (on page 950) instead of

the built-in HTML format (on page 947) and providing your own XSLT stylesheets.

• Use comments - Controls whether or not the comments that precede an XSLT element is treated as

documentation for the element they precede. Comments that precede or succeed the xsl:stylesheet

element, are treated as documentation for the whole stylesheet. Note that comments that precede an

import or include directive are not collected as documentation for the imported/included module. Also,

comments from within the body of the XSLT elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.

• Location - Shows the stylesheet location for each XSLT element.

• Parameters - Shows parameters of templates and functions.

• References - Shows the named XSLT elements that are referenced from within an element.

• Used by - Shows the list of all the XSLT elements that reference the current named element.

• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.

• Overriding - Shows the list of all the XSLT elements that override the current element.

• Return type - Shows the return type of the function.

• Source - Shows the text stylesheet source for each XSLT element.

• Import precedence - Shows the computed import precedence as declared in the XSL transformation

specifications.

• Generate index - Creates an index with all the XSLT elements included in the documentation.

Oxygen XML Editor 27.1 | 20 - Tools | 2700

Export settings - Save the current settings in a settings file for further use (for example, if you need the

exported settings file for generating the documentation from the command-line interface).

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XSLT documentation.

Tip:

This function can be executed from an automated command-line script, for more details, see Scripting

Oxygen (on page 3260).

Related Information:

XSLT Stylesheet Component Documentation Support (on page 931)

Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is

opened with the XQuery Documentation action that is available from the Tools > Generate Documentation

menu or from the Generate Documentation submenu in the contextual menu of the Project view (on page

414). You can also open the tool by using the Generate Documentation toolbar button.

The dialog box allows you to configure a set of parameters for the process of generating the HTML

documentation.

https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 20 - Tools | 2701

Figure 648. XQuery Documentation Dialog Box

The following options are available:

• Input - The full path to the XQuery file must be specified in one of the two fields in this section:

◦ URLFile - The URL of the file to be used for generating the documentation.

◦ Folder - The directory that contains the files to be used for generating the documentation. You

can also specify the XQuery file extensions to be searched for in the specified directory.

• Default function namespace - Optional URI for the default namespace for the submitted XQuery.

• Predefined function namespaces - Optional, engine-dependent, predefined namespaces that the

submitted XQuery refers to. They allow the conversion to generate annotation information to support

the presentation component hypertext linking (only if the predefined modules have been loaded into the

local xqDoc XML repository).

• Open in Browser/System Application - Select this option if you want the result to be opened in the

system application associated with that file type.

Note:

To set the browser or system application that will be used, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Global, and set it in the Default Internet browser

field. This will take precedence over the default system application settings.

• Output - Allows you to specify where the generated documentation is saved on disk.

Oxygen XML Editor 27.1 | 20 - Tools | 2702

Generating Documentation for WSDL Documents (Deprecated)

You can use Oxygen XML Editor to generate detailed documentation for the components of a WSDL document

in HTML format. You can select the WSDL components to include in your output and the level of details to

present for each of them. Also, the components are hyperlinked. You can also generate the documentation in

a custom output format (on page 1090) by using a custom stylesheet.

Note:

The WSDL documentation includes the XML Schema components that belong to the internal or

imported XML schemas.

To generate documentation for a WSDL document, select WSDL Documentation from the Tools > Generate

Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project

view (on page 414). You can also open the tool by using the Generate Documentation toolbar button.

Figure 649. WSDL Documentation Dialog Box

The Input URL field of the dialog box must contain the full path to the WSDL document that you want to

generate documentation for. The WSDL document may be a local or a remote file. You can specify the path to

the WSDL file by entering it in the text field, or by using the Insert Editor Variables button or the options in

the Browse drop-down menu.

Oxygen XML Editor 27.1 | 20 - Tools | 2703

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

◦ HTML - The documentation is generated in HTML output format (on page 1089).

◦ Custom - The documentation is generated in a custom output format (on page 1090), allowing

you to control the output. Click the Options button to open a Custom format options dialog box

where you can specify a custom stylesheet for creating the output. There is also an option to

Copy additional resources to the output folder and you can select the path to the additional

Resources that you want to copy. You can also choose to keep the intermediate XML files

created during the documentation process by deselecting the Delete intermediate XML file

option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the

Insert Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large

WSDL documents, choosing a different split criterion may generate smaller output files providing a

faster documentation browsing. You can choose to split them by namespace, location, or component

name.

• Open in Browser/System Application - Opens the result in the system application associated with the

output file type.

Note:

To set the browser or system application that will be used, open the Preferences dialog box

(Options > Preferences) (on page 132), go to Global, and set it in the Default Internet browser

field. This will take precedence over the default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations

with the @xml:lang attribute set to the selected language. If you choose a primary language code (for

example, en for English), this includes all its possible variations (en-us, en-uk, etc.).

Setting Tab

When you generate documentation for a WSDL document, you can choose what components to include in the

output and the details to be included in the documentation.

Oxygen XML Editor 27.1 | 20 - Tools | 2704

Figure 650. Settings Tab of the WSDL Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following:

• Components

◦ Services - Specifies whether or not the generated documentation includes the WSDL services.

◦ Bindings - Specifies whether or not the generated documentation includes the WSDL bindings.

◦ Port Types - Specifies whether or not the generated documentation includes the WSDL port

types.

◦ Messages - Specifies whether or not the generated documentation includes the WSDL

messages.

◦ XML Schema Components - Specifies whether or not the generated documentation includes the

XML Schema components.

◦ Only global elements and types - Specifies whether or not the generated documentation

includes only global elements and types.

• Component Details

◦ Namespace - Presents the namespace information for WSDL or XML Schema components.

◦ Location - Presents the location information for each WSDL or XML Schema component.

◦ Used by - Presents the list of components that reference the current one.

◦ Documentation - Presents the component documentation. If you choose Escape XML Content,

the XML tags are presented in the documentation.

◦ Source - Presents the XML fragment that defines the current component.

◦ Instance - Generates a sample XML instance for the current component.

Oxygen XML Editor 27.1 | 20 - Tools | 2705

Note:

This option applies to the XML Schema components only.

◦ XML Schema Diagram - Displays the diagram for each XML Schema component. You can

choose the image format (JPEG, PNG, GIF, SVG) to use for the diagram section.

◦ Diagram annotations - Specifies whether or not the annotations of the components presented in

the diagram sections are included.

• Generate index - Displays an index with the components included in the documentation.

◦ Include local elements and attributes - If selected, local elements and attributes are included in

the documentation index.

◦ Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema

documentation is generated. It is deselected by default.

Export settings - Save the current settings in a settings file for further use (for example, if you need the

exported settings file for generating the documentation from the command-line interface).

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the WSDL documentation.

Tip:

This function can be executed from an automated command-line script, for more details, see Scripting

Oxygen (on page 3260).

Generating JSON Schema Documentation

Oxygen XML Editor includes a tool for generating documentation for a JSON Schema file in HTML format.

To generate JSON Schema documentation, select JSON Schema Documentation from the Tools > Generate

Documentation menu. You can also open the tool by using the Generate Documentation toolbar button.

This opens a dialog box where you can specify the location of the JSON Schema file and HTML output file.

This tool requires an additional add-on to be installed, so the first time you invoke the action, Oxygen XML

Editor presents a dialog box asking if you want to install it. Once installed, you need to restart Oxygen XML

Editor and the JSON Schema Documentation action will invoke the tool.

Add-on documentation and installation details.

Generating OpenAPI Documentation

Oxygen XML Editor includes a tool for generating documentation for OpenAPI 3.0, or 3.1 documents in either

JSON or YAML format, including annotations and cross references. The documentation displays information

about the servers, paths, components and tags defined in the OpenAPI documents and you can choose

whether the output is presented in HTML (with various sections, hyperlinks, and filtering options), DITA, or PDF.

https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/doc/ug-addons/topics/json-schema-documentation-generator-addon.html

Oxygen XML Editor 27.1 | 20 - Tools | 2706

Addon documentation and installation details.

Canonicalizing Files
You can select the canonicalization (on page 3295) algorithm to be used for a document from the dialog box

that is displayed by using the Canonicalize action that is available from the Source submenu when invoking

the contextual menu in Text mode or from the Tools menu.

Figure 651. Canonicalization Settings Dialog Box

The Canonicalize dialog box allows you to set the following options:

• Input URL - Available if the Canonicalize action was selected from the Tools menu. It allows you to

specify the location of the input file.

• Exclusive - If selected, the exclusive (uncommented) canonicalization (on page 3295) method is used.

Note:

Exclusive Canonicalization just copies the namespaces you are actually using (the ones that

are a part of the XML syntax). It does not look into attribute values or element content, so the

namespace declarations required to process these are not copied. This is useful if you have

a signed XML document that you want to insert into other XML documents (or you need self-

signed structures that support placement within various XML contexts), as it will ensure the

signature is verified correctly each time.

https://www.oxygenxml.com/doc/ug-addons/topics/openapi-documentation-generator.html

Oxygen XML Editor 27.1 | 20 - Tools | 2707

• Exclusive with comments - If selected, the exclusive with comments canonicalization (on page 3295)

method is used.

• Inclusive - If selected, the inclusive (uncommented) canonicalization (on page 3295) method is used.

Note:

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the

scope of the signature, and all the declarations you might use will be unambiguously specified.

Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted

in other XML document and it is the safer method from the security standpoint because it

requires no knowledge of the data that are to be secured to safely sign them. A problem may

occur if the signed document is moved into another XML document that has other declarations

because the Inclusive Canonicalization will copy them and the signature will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization (on page 3295)

method is used.

• XPath - The XPath expression provides the fragments of the XML document to be signed.

• Output - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify

the output file path where the signed XML document will be saved.

• Open in editor - If selected, the output file will be opened in the editor.

Related Information:

Digital Signatures Overview (on page 896)

Signing Files
You can select the type of signature to be used for documents from a signature settings dialog box. To open

this dialog box, select the Sign action from the Source submenu when invoking the contextual menu in Text

mode or from the Tools menu.

Oxygen XML Editor 27.1 | 20 - Tools | 2708

Figure 652. Signature Settings Dialog Box

The following options are available:

Note:

If Oxygen XML Editor could not find a valid certificate, a link is provided at the top of the dialog box

that opens the XML Signing Certificates preferences page (on page 277) where you can configure a

valid certificate.

• Input - Available if the Sign action was selected from the Tools menu. Specifies the location of the input

URL.

• Transformation Options - See the Digital Signature Overview (on page 896) section for more

information about these options.

Oxygen XML Editor 27.1 | 20 - Tools | 2709

◦ None - If selected, no canonicalization (on page 3295) algorithm is used.

◦ Exclusive - If selected, the exclusive (uncommented) canonicalization (on page 3295) method is

used.

Note:

Exclusive Canonicalization just copies the namespaces you are actually using (the

ones that are a part of the XML syntax). It does not look into attribute values or element

content, so the namespace declarations required to process these are not copied. This

is useful if you have a signed XML document that you want to insert into other XML

documents (or you need self-signed structures that support placement within various

XML contexts), as it will ensure the signature is verified correctly each time.

◦ Exclusive with comments - If selected, the exclusive with comments canonicalization (on page

3295) method is used.

◦ Inclusive - If selected, the inclusive (uncommented) canonicalization (on page 3295) method is

used.

Note:

Inclusive Canonicalization copies all the declarations, even if they are defined outside of

the scope of the signature, and all the declarations you might use will be unambiguously

specified. Inclusive Canonicalization is useful when it is less likely that the signed data

will be inserted in other XML document and it is the safer method from the security

standpoint because it requires no knowledge of the data that are to be secured to safely

sign them. A problem may occur if the signed document is moved into another XML

document that has other declarations because the Inclusive Canonicalization will copy

them and the signature will be invalid.

◦ Inclusive with comments - If selected, the inclusive with comments canonicalization (on page

3295) method is used.

• XPath - The XPath expression provides the fragments of the XML document to be signed.

• ID - Provides ID of the XML element to be signed.

• Envelope - If selected, the enveloped signature is used. See the Digital Signature Overview (on page

896) for more information.

• Detached - If selected, the detached signature is used. See the Digital Signature Overview (on page

896) for more information.

• Append KeyInfo - If this option is selected, the <ds:KeyInfo> element will be added in the signed

document.

• Signature algorithm - The algorithm used for signing the document. The following options are

available: RSA with SHA1, RSA with SHA256, RSA with SHA384, RSA with SHA512, ECDSA with SHA1,

ECDSA with SHA256, ECDSA with SHA384, and ECDSA with SHA512.

Oxygen XML Editor 27.1 | 20 - Tools | 2710

• Output - Available if the Sign action was selected from the Tools menu. Specifies the path of the output

file where the signed XML document will be saved.

• Open in editor - If selected, the output file will be opened in Oxygen XML Editor.

Related Information:

Digital Signatures Overview (on page 896)

Verifying Signature (on page 904)

Example of How to Digitally Sign XML Files or Content (on page 904)

Verifying Signature
You can verify the signature of a file by selecting the Verify Signature action from the Source submenu when

invoking the contextual menu in Text mode or from the Tools menu. The Verify Signature dialog box then

allows you to specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about

the problem.

Related Information:

Digital Signatures Overview (on page 896)

Signing Files (on page 901)

Example of How to Digitally Sign XML Files or Content (on page 904)

WSDL SOAP Analyzer Tool (Deprecated)
WSDL SOAP Analyzer is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL)

are accepted by a Web Services server.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and

SOAP, it is easy to check if the defined SOAP messages are accepted by the remote Web Services server by

using the integrated WSDL SOAP Analyzer tool (available from the toolbar or Tools menu).

Oxygen XML Editor provides two ways of testing, one for the currently edited WSDL document and another for

the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for

the currently edited WSDL document do one of the following:

• Click the WSDL SOAP Analyzer toolbar button.

• Use the WSDL SOAP Analyzer action from the Tools menu.

• Go to Open with > WSDL SOAP Analyzer in the contextual menu of the Project (on page 414) view.

Oxygen XML Editor 27.1 | 20 - Tools | 2711

Figure 653. WSDL SOAP Analyzer Dialog Box

This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer

fields are as follows:

• Services - The list of services defined by the WSDL file.

• Ports - The ports for the selected service.

• Operations - The list of available operations for the selected service.

• Action URL - The script that serves the operation.

• SOAP Action - Identifies the action performed by the script.

• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the

selected port.

Oxygen XML Editor 27.1 | 20 - Tools | 2712

• Request Editor - It allows you to compose the web service request. When an action is selected,

Oxygen XML Editor tries to generate as much content as possible for the SOAP request. The envelope

of the SOAP request has the correct namespace for the selected SOAP version, that is http://

schemas.xmlsoap.org/soap/envelope/ for SOAP 1.1 or http://www.w3.org/2003/05/soap-envelope

for SOAP 1.2. Usually you just have to change a few values for the request to be valid. The Content

Completion Assistant (on page 3295) is available for this editor and is driven by the schema that

defines the type of the current message. While selecting various operations, Oxygen XML Editor

remembers the modified request for each one. You can click the Regenerate button to overwrite your

modifications for the current request with the initial generated content.

• Attachments List - You can define a list of file URLs to be attached to the request.

• Response Area - Initially it displays an auto generated server sample response so you can have an

idea about how the response looks like. After pressing the Send button, it presents the message

received from the server in response to the Web Service request. It may show also error messages. If

the response message contains attachments, Oxygen XML Editor prompts you to save them, then tries

to open them with the associated system application.

• Errors List - There may be situations where the WSDL file is respecting the WSDL XML Schema, but

it fails to be valid (for example, in the case of a message that is defined by means of an element that

is not found in the types section of the WSDL). In such a case, the errors are listed here. This list is

presented only when there are errors.

• Send Button - Executes the request. A status dialog box is displayed when Oxygen XML Editor is

connecting to the server.

The testing of a WSDL file is straight-forward. Click the WSDL analysis button, then select the service, the port,

and the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually

attach files to it and send it to the server. Watch the server response in the response area. You can find more

details in the Testing Remote WSDL Files (on page 1093) section.

Note:

SOAP requests and responses are automatically validated in the WSDL SOAP Analyzer using the XML

Schemas specified in the WSDL file.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a

Web Service SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and

parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to Tools > WSDL SOAP Analyzer .

2. On the WSDL File tab enter the URL of the remote WSDL file.

Oxygen XML Editor 27.1 | 20 - Tools | 2713

3. Click the OK button.

This will open the WSDL SOAP Analyzer tool (on page 1090). In the Saved SOAP Request tab you can

open directly a previously saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

XML Schema Regular Expressions Builder Tool
The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as

they are applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions

Builder from the Tools menu.

Figure 654. XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:

Regular expressions editor

Allows you to edit the regular expression to be tested and used. Content completion is available

and presents a list with all the predefined expressions. It is triggered by pressing Ctrl + Space.

Error display area

If the edited regular expression is incorrect, an error message will be displayed here. The

message contains the description and the exact location of the error. Also, clicking the quick

navigation button () highlights the error inside the regular expression.

Oxygen XML Editor 27.1 | 20 - Tools | 2714

Category

You can choose from several categories of predefined expressions. The selected category

influences the displayed expressions in the Available expressions table.

Available expressions

This table includes the available regular expressions and a short description for each of them.

The set of expressions depends on the category selected in the previous Category combo box.

You can add an expression in the Regular expressions editor by double-clicking the expression

row in the table. You will notice that in the case of Character categories and Block names, the

expressions are also listed in complementary format.

Evaluate expression on

You can choose between two options:

• Evaluate expression on each line - The edited expression will be applied on each line in

the Test area.

• Evaluate expression on all text - The edited expression will be applied on the whole text.

Test

A text editor that allows you to enter a text sample that will have the regular expression applied.

All matches of the edited regular expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button

will become active when an editor is opened in the background and there is an expression in the Regular

expressions editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode (on page 364)

or schema Design mode (on page 365). Accordingly, the Insert button will be not available if the current

document is edited in these modes.

Note:

Some regular expressions may indefinitely block the Java Regular Expressions engine. If the

execution of the regular expression does not end in about five seconds, the application displays a

dialog box that allows you to interrupt the operation.

Large File Viewer
XML files tend to become larger and larger mostly because they are frequently used as a format for database

export or for porting between multiple database formats. Traditional XML text editors simply cannot handle

opening these huge export files, some having sizes exceeding one gigabyte, because all of the file content

must be loaded in memory before the user can actually view it.

The best performance of the viewer is obtained for encodings that use a fixed number of bytes per character

(such as UTF-16 or ASCII). The performance for UTF-8 is very good for documents that use mostly characters

Oxygen XML Editor 27.1 | 20 - Tools | 2715

of the European languages. For the same encoding, the rendering performance is higher for files consisting of

long lines (up to few thousands characters) and may degrade for short lines. In fact, the maximum size of a

file that can be rendered in the Large File Viewer decreases when the total number of the text lines of the file

increases. Trying to open a very large file (for example, a file of 4 GB) with a very high number of short lines

(100 or 200 characters per line) may produce an out of memory error (OutOfMemoryError) that would require

either increasing the Java heap memory with the -Xmx startup parameter or decreasing the total number of

lines in the file.

The powerful Large File Viewer is available from the Tools menu or as a standalone application. You can also

right-click a file in your project and choose to open it with the viewer. It uses an efficient structure for indexing

the open document. No information from the file is stored in the main memory, just a list of indexes in the file.

In this way the viewer can open very large files, up to 10 gigabytes. If the open file is XML, the encoding used

to display the text is detected from the XML prolog of the file. For other file types, the encoding is taken from

the Oxygen XML Editor options. See Encoding for non-XML files (on page 176).

Figure 655. Large File Viewer

Large File Viewer components:

• The menu bar provides menu driven access to all the features and functions that are available in Large

File Viewer:

File > Open

Oxygen XML Editor 27.1 | 20 - Tools | 2716

Opens files in the viewer (also available in the contextual menu).

File > Exit

Closes the viewer.

Edit > Copy

Copies the selected text to clipboard (also available in the contextual menu).

Find > Find

Opens a reduced Find dialog box that provides some basic search options, such as:

◦ Case sensitive - When selected, operations are case-sensitive.

◦ Regular Expression - When selected, allows you to use any regular expression in

Perl-like syntax (on page 459).

◦ Wrap around - Continues the find operation from the start/end of the document

after reaching the end/, depending on whether the search is in forward or backward

direction.

Help > Help

Provides access to the User Manual.

• The status bar provides information about the current file path, the Unicode representation of the

character at the cursor position and the line and column in the open document where the cursor is

located.

Attention:

For faster computation the Large File Viewer uses a fixed font (plain, monospace font of size 12) to

display characters. The font is not configurable from the Preferences page (on page 132).

Tip:

The best performance of the viewer is accomplished for encodings that use a fixed number of bytes

per character (such as UTF-16 or ASCII). The performance for UTF-8 is very good for documents that

use mostly characters of the European languages. For the same encoding the rendering performance

is high for files consisting of short lines (up to a few thousand characters) and may degrade for long

lines.

Hex Viewer
When the Unicode characters that are visible in a text viewer or editor are not enough and you need to

see the byte values of each character of a document, you can start the Hex Viewer that is available on

the Tools menu. It has two panels: the characters are rendered in the right panel and the bytes of each

character are displayed in the left panel. There is a 1:1 correspondence between the characters and their byte

representation: the byte representation of a character is displayed in the same matrix position of the left panel

as the character in the matrix of the right panel.

Oxygen XML Editor 27.1 | 20 - Tools | 2717

Figure 656. Hex Viewer

To open a file in Hex Viewer use the File > Open action. Alternatively, you can drag a file and drop it in the Hex

Viewer panel.

Standalone SVG Viewer
Oxygen XML Editor includes a simple SVG Viewer that allows you to work with SVG images.

To open the viewer, select SVG Viewer from the Tools menu.

Figure 657. SVG Viewer

You can browse for and open any SVG file that has the .svg or .svgz extension.

Oxygen XML Editor 27.1 | 20 - Tools | 2718

If the file is included in the current project, you can open it in the viewer by right-clicking the image file in the

Project view (on page 414) and selecting Open with > SVG Viewer.

Actions Available in the SVG Viewer

The following actions are available in the SVG Viewer:

Zoom in

To zoom in on an image, use any of the following methods:

• Scroll forward with the mouse wheel.

• Select Zoom in from the contextual menu.

• Use the Ctrl + I (Command + I on macOS) keyboard shortcut.

Zoom out

To zoom in on an image, use any of the following methods:

• Scroll backward with the mouse wheel.

• Use the Ctrl + O (Command + O on macOS) keyboard shortcut.

• Select Zoom out from the contextual menu.

Rotate

To rotate an image, use either of the following methods:

• Use the Ctrl + Right-Click + Drag (Command + Right-Click + Drag on macOS) shortcut.

• Select Rotate from the contextual menu. This rotates the image exactly 90 degrees

clockwise.

Refresh

To refresh (or reset) an image, use either of the following methods:

• Use the Ctrl + T (Command + T on macOS) keyboard shortcut.

• Select Refresh from the contextual menu.

Move

To move an image, use either of the following methods:

• Use the Arrow Keys on your keyboard.

• Use the Shift + Left-Click + Drag shortcut.

Pan

To pan an image, click and drag the image with your mouse.

Oxygen XML Editor 27.1 | 20 - Tools | 2719

Related Information:

Editing SVG Files (on page 1287)

Tree Editor (Deprecated)
The Tree Editor (Tools > Tree Editor) is used for editing the content of a document displayed as an XML tree.

The workspace offers the following functional areas:

• Main menu - Provides access to all the features and functions available in Oxygen XML Editor Tree

Editor.

• Toolbar - Provides easy access to common and frequently used functions. Each icon is a button that

acts as a shortcut to a related function.

• Editor panel - Easy editing of structured mark-up documents. Each token has an associated icon for

easier visual identification.

• Message panel - Displays messages returned from user operations.

• Model view - Shows the detailed information about the attribute or element that you are working on.

• All Elements panel - Presents a list of all defined elements that can be inserted within your document.

The tree editor does not offer entity support. Entities are not presented with a special type of node in the tree

and new entity nodes cannot be inserted in the document.

Comparison Tools
Oxygen XML Editor includes some useful tools for comparing files and directories. These tools are found in

the Comparison Tools submenu within the Tools menu.

Compare Files Tool

The built-in Compare Files tool can be used to compare files or XML file fragments. The tool provides a

mechanism for comparing two files or fragments, as well as the mechanism for a three-way comparison. The

utility is available from the Tools > Comparison Tools menu or can be opened as a stand-alone application

from the Oxygen XML Editor installation folder (diffFiles.exe).

Oxygen XML Editor 27.1 | 20 - Tools | 2720

Figure 658. Compare Files Tool

Two-Way Comparisons

The Compare Files tool can be used to compare the differences between two files or XML fragments.

Compare Files

To perform a two-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the

path by using the text field, the history drop-down, or the browsing actions in the Browse drop-

down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used

to offer a better view of the differences.

2. To highlight the differences between the two files, click the Perform File Differencing button from

the toolbar.

3. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page

2722) for the operation.

Oxygen XML Editor 27.1 | 20 - Tools | 2721

4. You can also use the Diff Options button to access the Files Comparison preferences page where

you can choose to ignore certain types of markup and configure various options.

5. If you are comparing XML documents using the XML Fast or XML Accurate algorithms, you can enter

an XPath 2.0 expression in the Ignore nodes by XPath text field to ignore certain nodes from the

comparison.

The resulting comparison will show you differences between the two files. The line numbers on each side

and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences.

Adjacent changes are grouped into blocks of changes. This layout allows you to easily identify and focus on a

group of related changes.

Figure 659. Two-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines

connect the compared fragments in the middle section between the two panes. The highlighting colors can be

customized in the Files Comparison / Appearance preferences page (on page 299), but the default colors and

their shades mean the following:

• Pink - Identifies modifications on either side.

• Gray - Identifies an addition of a node in the left side (your outgoing changes).

• Blue - Identifies an addition of a node in the right side (incoming changes).

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Comparing Fragments (Copy/Paste)

To compare XML file fragments, you need to copy and paste the fragments you want to compare into each

side, without selecting a file. If a file is already selected, you need to close it using the Close (Ctrl + W

(Command + W on macOS)) button, before pasting the fragments. Other notes for pasting fragments:

• As long as the fragment is more than 10 characters, the application will attempt to automatically detect

the content type. It can detect the following types: XML, DTD, CSS, JSON, and Markdown (if it starts

with #). If one of those content types is detected, the fragments will be displayed with syntax highlights.

• If you save modified fragments, a dialog box opens that allows you to save the changes as a new

document.

Navigate Differences

To navigate through differences, do one of the following:

Oxygen XML Editor 27.1 | 20 - Tools | 2722

• Use the navigation buttons on the toolbar (or in the Compare menu).

• Select a block of differences by clicking its small colored marker in the overview ruler located in the

right-most part of the window. At the top of the overview ruler there is a success indicator that turns

green where there are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File

Differencing button.

A variety of actions are available on the toolbar (on page 498) and in the various menus (on page 502) (these

same actions are also available in the contextual menu in both editing panes). The tool also includes some

inline actions to help you merge, copy, or remove changes. When you select a change, the following inline

action widgets are available, depending on the type of change:

Append left change to right and Append right change to left

Copies the content of the selected change from one side and appends it on the other, according

to the content of the corresponding change. As a result, the side where the arrow points to will

contain the changes from both sides.

Copy change from left to right and Copy change from right to left

Replaces the content of a change from one side with the content of the corresponding change

from the other side.

Remove change

Rejects the change on the particular side and preserves the particular content on the other side.

Two-Way Diff Algorithms

Oxygen XML Editor offers the following two-way diff algorithms to compare files or fragments:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• Characters - Computes the differences at character level, meaning that it compares two files or

fragments looking for identical characters. This algorithm is not available when the file comparison is in

Author comparison mode.

• Words - Computes the differences at word level, meaning that it compares two files or fragments

looking for identical words. This algorithm is not available when the file comparison is in Author

comparison mode.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments

looking for identical lines of text. This algorithm is not available when the file comparison is in Author

comparison mode.

Oxygen XML Editor 27.1 | 20 - Tools | 2723

• Syntax Aware - Computes differences for known file types or fragments. This algorithm splits the files

or fragments into sequences of tokens and computes the differences between them. The meaning of a

token depends on the type of compared files or fragments.

Known file types include those listed in the New dialog box, such as XML file types (XSLT files, XSL-FO

files, XSD files, RNG files, NVDL files, etc.), XQuery file types (.xquery, .xq, .xqy, .xqm extensions),

DTD file types (.dtd, .ent, .mod extensions), TEXT file type (.txt extension), or PHP file type (.php

extension).

For example:

◦ When comparing XML files or fragments, a token can be one of the following:

▪ The name of an XML tag

▪ The < character

▪ The /> sequence of characters

▪ The name of an attribute inside an XML tag

▪ The = sign

▪ The " character

▪ An attribute value

▪ The text string between the start tag and the end tag (a text node that is a child of the

XML element corresponding to the XML tag that encloses the text string)

◦ When comparing plain text, a token can be any continuous sequence of characters or any

continuous sequence of whitespaces, including a new line character.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Three-Way Comparisons

Oxygen XML Editor also includes a three-way comparison feature to help you solve conflicts and merge

changes between multiple modifications. It is especially helpful for teams who have multiple authors editing

and committing the same documents. It provides a comparison between a local change, another change, and

the original base revision. Some additional advantages include:

• Visualize and merge content that was modified by you and another member of your team.

• Marks differences correctly even when the document structure is rearranged.

• Allows you to merge XML-relevant modifications.

Oxygen XML Editor 27.1 | 20 - Tools | 2724

Figure 660. Three-Way Comparison

Compare Files

To perform a three-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the

path by using the text field, the history drop-down, or the browsing actions in the Browse drop-

down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used

to offer a better view of the differences.

2. Click the Three-Way Comparison button on the toolbar and select the base (original) file in the

Base field. You can specify the path by using the text field, the history drop-down, or the browsing

actions in the Browse drop-down menu.

3. To highlight the differences, click the Perform File Differencing button on the toolbar.

4. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page

2722) for the operation.

5. You can also use the Diff Options button to access the Files Comparison preferences page where

you can choose to ignore certain types of markup and configure various options.

The resulting comparison will show you differences between the two files, as well as differences between

either of them and the base (original) file. The line numbers on each side and colored marks on the right-side

vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into

blocks of changes.

Figure 661. Three-Way Differences

Highlighting Colors

Oxygen XML Editor 27.1 | 20 - Tools | 2725

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines

connect the compared fragments in the middle section between the two panes. The highlighting colors can be

customized in the Files Comparison / Appearance preferences page (on page 299), but the default colors and

their shades mean the following:

• Pink - Identifies blocks of changes that include conflicts.

• Gray - Identifies your outgoing changes that do not include conflicts.

• Blue - Identifies incoming changes that do not include conflicts.

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).

• Select a block of differences by clicking its small colored marker in the overview ruler located in the

right-most part of the window. At the top of the overview ruler there is a success indicator that turns

green where there are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File

Differencing button.

A variety of actions are available on the toolbar (on page 498) and in the various menus (on page 502) (these

same actions are also available in the contextual menu in both editing panes). The tool also includes some

inline actions to help you merge, copy, or remove changes. When you select a change, the following inline

action widgets are available, depending on the type of change:

Append left change to right and Append right change to left

Copies the content of the selected change from one side and appends it on the other, according

to the content of the corresponding change. As a result, the side where the arrow points to will

contain the changes from both sides.

Copy change from left to right and Copy change from right to left

Replaces the content of a change from one side with the content of the corresponding change

from the other side.

Remove change

Rejects the change on the particular side and preserves the particular content on the other side.

Three-Way Diff Algorithms

Oxygen XML Editor offers the following three-way diff algorithms to compare files:

Oxygen XML Editor 27.1 | 20 - Tools | 2726

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments

looking for identical lines of text. This algorithm is not available when the file comparison is in Author

comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Second-Level Comparisons

For both two-way and three-way comparisons, Oxygen XML Editor automatically performs a second-level

comparison for the Lines, XML Fast, and XML Accurate algorithms. After the first comparison is finished, the

second-level comparison for the Lines algorithm is processed on text nodes using a word level comparison,

meaning that it looks for identical words. For the XML Fast and XML Accurate algorithms, the second-

level comparison is processed using a syntax-aware comparison (on page 2723), meaning that it looks for

identical tokens. This second-level comparison makes it easier to spot precise differences and you can merge

or reject the precise modifications.

Figure 662. Second-Level Diff Comparison

Note:

If a modified text fragment contains XML markup (such as processing instructions, XML comments,

CData, or elements), the second-level comparison will not automatically be performed. In this

case you can manually select a second-level comparison by doing a word level or character level

comparison.

To do a word level comparison, select Show word level details from the contextual menu or Compare

menu.

Figure 663. Word Level Comparison

Oxygen XML Editor 27.1 | 20 - Tools | 2727

To do a character level comparison, select Show Character Level details from the contextual menu or

Compare menu.

Figure 664. Character Level Comparison

Author Visual Mode

The Compare Files tool includes an Author comparison mode that displays the files in a visual mode similar

to the Author editing mode in Oxygen XML Editor/Author. This makes it easier to see how the compared

changes will look in the final output. This visual mode is available when the compared files are detected as

being XML. To determine whether the files are initially opened in the merge tool's Text or Author comparison

mode, it detects the Initial Edit Mode in the Document Type Association configuration (on page 150) and the

mode the files were last opened in Oxygen XML Editor/Author.

Note:

This mode is not available if the Enable file comparison in Author mode option (on page 296) is not

selected in the Diff > Files Comparison preferences page.

This visual mode includes unique features such as a Tags Display Mode drop-down button (on page

500) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode also

presents differences that were made using the Track Changes feature (although the Track Changes feature is

not available in the comparison tool).

Oxygen XML Editor 27.1 | 20 - Tools | 2728

Figure 665. File Comparison Tool - Author Mode

Author Mode Algorithms

The visual Author comparison mode offers the following diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Author Mode Second-Level Comparisons

The visual Author comparison mode automatically performs a second-level comparison for the XML Fast and

XML Accurate algorithms. After the first comparison is finished, the second-level comparisons is processed

on text nodes using a word-level comparison, meaning that it looks for identical words. This second-level

comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related information

Files Comparison Preferences Page (on page 296)

Compare Directories Tool (on page 506)

Toolbar and Contextual Menu Actions of the Compare Files Tool (on page 498)

Oxygen XML Editor 27.1 | 20 - Tools | 2729

Starting File Comparison Tool from a Command Line

The file comparison tool can be started by using command-line arguments. In the installation folder there is an

executable shell (diffFiles.bat on Windows, diffFiles.sh on macOS and Linux). To specify the files to

compare, you can pass command-line arguments using the following construct: diffFiles.bat/diffFiles.sh

[path to left file] [path to right file] [path to 3-way base file].

If three files are specified, the tool will start in the 3-way comparison mode (on page 489). If only two files

are specified, the tool will start in the 2-way comparison mode (on page 486). The first specified file will be

added to the left panel in the comparison tool, the second file to the right panel, and the optional third file will

be the base (ancestor) file used for a 3-way comparison. If you pass only one argument, you are prompted to

manually choose another file.

If you want to launch the file comparison tool from an external application with specified files and you want

the file browsing buttons at the top of both panels to be hidden, you should use the -ext argument as the first

command. There are some additional arguments that are allowed and to see all the details for the command-

line construct, type diffFiles.bat --help in the command line.

Example:

To do a 3-way comparison, the command line might look like this:

Windows

diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile

Tip:

If there are spaces in the path names, surround the paths with quotes.

Linux

diffFiles.sh home/file1 home/file2 home/basefile

macOS

diffFiles.sh documents/file1 documents/file2 documents/basefile

How to Integrate the File Comparison Tool with Git

The file comparison tool can be integrated with Git clients. It requires that you configure your .gitconfig file

and then you can simply start the tool from the command line.

To integrate the Compare Files tool with your Git client, follow this procedure:

Oxygen XML Editor 27.1 | 20 - Tools | 2730

1. Use one of the following methods to instruct your Git client to use the Oxygen Compare Files tool:

◦ Manual Configuration - Locate your Git user-specific configuration file (.gitconfig) and edit

it with a text editor (for example, in Windows, the .gitconfig file is most likely located in your

user home directory). Add (or replace) the following lines:

[diff]

 tool = oxygendiff

[merge]

 tool = oxygendiff

[difftool "oxygendiff"]

 cmd = '[pathToOxygenInstallDir]/diffFiles.exe' -ext $REMOTE $LOCAL $LOCAL

[mergetool "oxygendiff"]

 cmd = '[pathToOxygenInstallDir]/diffFiles.exe' -ext $LOCAL $REMOTE $BASE $MERGED

 trustExitCode = true

[difftool]

 prompt = false

Note:

For macOS, the cmd lines would start with something like: sh "/Applications/Oxygen

XML Editor/diffFiles.sh". For Linux, the cmd lines would start with something like: sh

"/Oxygen XML Editor/diffFiles.sh".

Tip:

On Redhat 7, the following command would work, where the whole command is quoted

and then inside that, the path to diffFiles.sh is quoted:

[difftool "oxygendiff"]

 cmd = '"/home/user/Oxygen XML Editor 21/diffFiles.sh"' -ext $REMOTE $LOCAL $LOCAL

[mergetool "oxygendiff"]

 cmd = '"/home/user/Oxygen XML Editor 21/diffFiles.sh"' -ext $LOCAL $REMOTE $BASE

 $MERGED trustExitCode = true

◦ Command Line Configuration - To automatically configure the .gitconfig file, you can run the

following commands from a command line:

git config --global diff.tool oxygendiff

git config --global difftool.oxygendiff.cmd '[Oxygen install dir]/diffFiles.exe -ext

$REMOTE $LOCAL $LOCAL'

git config --global merge.tool oxygendiff

git config --global mergetool.oxygendiff.cmd '[Oxygen install dir]/diffFiles.exe

Oxygen XML Editor 27.1 | 20 - Tools | 2731

-ext $LOCAL $REMOTE $BASE $MERGED'

git config --global mergetool.oxygendiff.trustExitCode true

Note:

For macOS, the Oxygen file comparison tool would be specified in the second and fourth

commands with something like: sh "/Applications/Oxygen XML Editor/diffFiles.sh". For

Linux, it would be something like: sh "/Oxygen XML Editor/diffFiles.sh".

2. To start the Compare Files tool and see a comparison of changes for a particular file, run the following

command from a command line:

git difftool [PathToFile]

Tip:

If the file you want to compare has conflicts, you can start the Compare Files tool as a merge

conflict resolution tool by running the following command:

git mergetool [PathToFile]

For more information about the Git difftool syntax, see https://git-scm.com/docs/git-difftool.

For more information about the Git mergetool syntax, see https://git-scm.com/docs/git-mergetool.

How to Integrate the File Comparison Tool with Sourcetree

The file comparison tool can be integrated with Sourcetree so that you can use it to compare changes. The

Oxygen Compare Files tool provides the following advantages when using it with Sourcetree:

• The files are presented side-by-side to make it much easier to determine real changes.

• XML comparison algorithms are available.

• Various options can be used to configure the comparison.

• You can navigate through changes, one by one.

To integrate the Compare Files tool with Sourcetree, use the following procedure, depending on your operating

system:

Windows

1. In Sourcetree, go to Tools > Options.

2. Go to the Diff tab.

3. In the External Diff/Merge section, configure the settings as follows:

◦ External Diff Tool - Select Custom.

◦ Diff Command - Enter the path of the Oxygen diffFiles.exe file (for example:

c:\Programs\Oxygen XML Editor\diffFiles.exe).

◦ Arguments - Enter -ext $REMOTE $LOCAL $LOCAL.

https://git-scm.com/docs/git-difftool
https://git-scm.com/docs/git-mergetool

Oxygen XML Editor 27.1 | 20 - Tools | 2732

◦ Merge Tool - Select Custom.

◦ Diff Command - Enter the path of the Oxygen diffFiles.exe file (for example:

c:\Programs\Oxygen XML Editor\diffFiles.exe).

◦ Arguments - Enter -ext $LOCAL $REMOTE $BASE $MERGED.

4. Click OK.

Result: In Sourcetree, you can now compare file changes with the Oxygen Compare Files tool by

simply selecting External Diff from the contextual menu, Actions menu, or Ctrl+D.

macOS

1. In Sourcetree, go to Sourcetree > Preferences.

2. Go to the Diff tab.

3. In the External Diff/Merge section, configure the settings as follows:

◦ External Diff Tool - Select Custom.

◦ Diff Command - Enter a command-line argument to launch the Oxygen

diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/

diffFiles.sh").

◦ Arguments - Enter -ext $REMOTE $LOCAL $LOCAL.

◦ Merge Tool - Select Custom.

◦ Diff Command - Enter a command-line argument to launch the Oxygen

diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/

diffFiles.sh").

◦ Arguments - Enter -ext $LOCAL $REMOTE $BASE $MERGED.

4. Close the preferences dialog box.

Result: In Sourcetree, you can now compare file changes with the Oxygen Compare Files tool by

simply selecting External Diff from the contextual menu or Actions menu.

Toolbar and Contextual Menu Actions of the Compare Files Tool

The toolbar of the Compare Files tool contains operations that can be performed on the source and target

files or XML fragments. Many of the actions are also available in the contextual menu.

Figure 666. Compare Toolbar

The following actions are available:

Algorithm

This drop-down menu allows you to select one of the following diff algorithms (depending on

whether it is a two-way or three-way comparison):

Oxygen XML Editor 27.1 | 20 - Tools | 2733

• Auto - Selects the most appropriate algorithm, based on the compared content and its

size (selected by default).

• Characters - Computes the differences at character level, meaning that it compares two

files or fragments looking for identical characters. This algorithm is not available when

the file comparison is in Author comparison mode.

• Words - Computes the differences at word level, meaning that it compares two files

or fragments looking for identical words. This algorithm is not available when the file

comparison is in Author comparison mode.

• Lines - Computes the differences at line level, meaning that it compares two files or

fragments looking for identical lines of text. This algorithm is not available when the file

comparison is in Author comparison mode.

• Syntax Aware - Computes differences for the file types or fragments known by Oxygen

XML Editor, taking the syntax (the specific types of tokens) into consideration. This

algorithm is not available when the file comparison is in Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise

than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed.

It compares two XML files or fragments looking for identical XML nodes.

Diff Options

Opens the Files Comparison preferences page (on page 296) where you can configure various

options.

Three-Way Comparison

Toggle action that allows you to perform a three-way comparison between the two files

displayed in the two editing panes and a base (ancestor) file.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Synchronized scrolling

Toggles synchronized scrolling on or off so that a selected difference can be seen on both sides

of the application window. This option is on by default.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before

performing the comparison, the application normalizes the content and trims its leading and

trailing whitespaces. This option is not available when in the Author comparison mode.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2734

Formats and indents both files before comparing them. Use this option for comparisons that

contain long lines that make it difficult to spot differences. This option is not available when in

the Author comparison mode.

Note:

When comparing two JSON files, the Format and Indent Both Files action will

automatically sort the keys in both files the same to make it easier to compare.

Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual comparison

mode (on page 493). You can choose between: Full Tags with Attributes, Full Tags,

Block Tags, Block Tags without Element Names, Inline Tags, Partial Tags, or No

Tags.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is positioned

on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the cursor is

positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last change from the

current block of changes is reached, it highlights the next block of changes. This action is not

available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first change from

the current block of changes is reached, it highlights the previous block of changes. This action

is not available when the cursor is positioned on the first change or when there are no changes.

Copy All Changes from Left to Right

Oxygen XML Editor 27.1 | 20 - Tools | 2735

Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Ignore Nodes by XPath

You can use this text field to enter an XPath expression (on page 2109) to ignore certain nodes

from the comparison. It will be processed as XPath version 2.0. You can also enter the name

of the node to ignore all nodes with the specified name (for example, if you want to ignore all

ID attributes from the document, you could simply enter @id). This field is only available when

comparing XML documents using the XML Fast or XML Accurate algorithms.

Note:

If an XPath expression is specified in the Ignore nodes by XPath option (on page 298)

in the Diff / File Comparison preferences page, that one is used as a default when the

application is started. If you then enter an expression in this field on the toolbar, this one

will be used instead of the default. If you delete the expression from this field, neither

will be used.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Base

Available for three-way comparisons (on page 489). It is the base file that will be compared with

the files opened in the left and right editors. You can specify the path to the file by using the text

field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Left-Side (Source) File

You can specify the path to the file to be compared on the left side (source) by using the text

field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Save

Saves the changes made in the source (left-side) file.

Reload

Reloads the source (left-side) file.

Close

Closes the source (left-side) file.

Right-Side (Target) File

You can specify the path to the file to be compared on the right side (target) by using the text

field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Oxygen XML Editor 27.1 | 20 - Tools | 2736

Save

Saves the target (right-side) file.

Reload

Reloads the target (right-side) file.

Close

Closes the target (right-side) file.

Compare Files Tool Menus

The menus in the Compare Files tool contain some of the same actions that are on the toolbar, as well as

some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu

actions include:

File Menu

Source > Open

Browses for a file that will be displayed in the left panel.

Source > Open URL

Browses for a remote file that will be displayed in the left panel.

Source > Open File from Archive

Browses an archive for a file that will be displayed in the left panel.

Source > Reload

Reloads the file in the left panel.

Source > Save

Saves the changes made to the file in the left panel.

Source > Save As

Allows you to choose a destination to save the file in the left panel.

Source > Close

Closes the file in the left panel.

Target > Open

Browses for a file that will be displayed in the right panel.

Target > Open URL

Browses for a remote file that will be displayed in the right panel.

Target > Open File from Archive

Browses an archive for a file that will be displayed in the right panel.

Oxygen XML Editor 27.1 | 20 - Tools | 2737

Target > Reload

Reloads the file in the right panel.

Target > Save

Saves the changes made to the file in the right panel.

Target > Save As

Allows you to choose a destination to save the file in the right panel.

Target > Close

Closes the file in the right panel.

Base > Open

Browses for a file that will be compared with both files in a three-way comparison (on page 489).

Base > Open URL

Browses for a remote file that will be compared with both files in a three-way comparison (on

page 489).

Base > Open File from Archive

Browses an archive for a file that will be compared with both files in a three-way comparison (on

page 489).

Save Results as HTML (Available in Text mode only)

Generates an HTML file that contains detailed information about the comparison result. See

an example of what the generated report look like in the Generate HTML Report for Directory

Comparison topic (on page 523).

Save Comparison as Document with Tracked Changes (Available for two-way comparison in Author

mode only)

Allows you to merge two compared documents based on the differences detected and save

the results as a specified file that includes the special change tracking marks. You can load

the resulting file in Oxygen's Author mode to review the changes that resulted from the merge

process and you can accept or reject them. Note that if the documents to be compared already

contain tracked changes, they will be automatically accepted before generating the output file.

Close (Ctrl + W (Command + W on macOS))

Closes the application.

Edit Menu

Cut

Cut the selection from the currently focused editor panel to the clipboard.

Copy

Oxygen XML Editor 27.1 | 20 - Tools | 2738

Copy the selection from the currently focused editor panel to the clipboard.

Paste

Paste content from the clipboard into the currently focused editor panel.

Select all

Selects all content in the currently focused editor panel.

Undo

Undo changes in the currently focused editor panel.

Redo

Redo changes in the currently focused editor panel.

Find Menu

Find/Replace

Perform find/replace operations in the currently focused editor panel.

Find Next

Go to the next match using the same options as the last find operation. This action runs in both

editor panels.

Find Previous

Go to the previous match using the same options as the last find operation. This action runs in

both editor panels.

Compare Menu

Three-Way Comparison

Toggle action that allows you to perform a three-way comparison between the two files

displayed in the two editing panes and a base (ancestor) file.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is positioned

on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2739

Jumps to the previous block of changes. This action is not available when the cursor is

positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last change from the

current block of changes is reached, it highlights the next block of changes. This action is not

available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first change from

the current block of changes is reached, it highlights the previous block of changes. This action

is not available when the cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on macOS))

Jumps to the last change.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Copy All Changes from Left to Right

Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Show Word Level Details

Provides a word-level comparison of the selected change.

Show Character Level Details

Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Formats and indents both files before comparing them. Use this option for comparisons that

contain long lines that make it difficult to spot differences.

Note:

When comparing two JSON files, the Format and Indent Both Files action will

automatically sort the keys in both files the same to make it easier to compare.

Oxygen XML Editor 27.1 | 20 - Tools | 2740

Options Menu

Preferences

Opens the preferences dialog box that includes numerous pages of options that can be

configured.

Menu Shortcut Keys

Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts

available for menu items.

Reset Global Options

Resets options to their default values. Note that this option appears only when the tool is

executed as a stand-alone application.

Import Global Options

Allows you to import an options set that you have previously exported.

Export Global Options

Allows you to export the current options set to a file.

Help Menu

Help (F1)

Opens a Help dialog box that displays the User Manual at a section that is appropriate for the

context of the current cursor position.

Use Online Help

If this option is selected, when you select Help or press F1 while hovering over any part of the

interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this

option is not selected or an internet connection fails, the help documentation is opened in offline

mode.

Report problem

Opens a dialog box that allows the user to write the description of a problem that was

encountered while using the application. You can change the URL where the reported problem is

sent by using the com.oxygenxml.report.problems.url system property. The report is sent in XML

format through the report parameter of the POST HTTP method.

Support Center

Opens the Oxygen XML Editor Support Center web page in a browser.

How to Compare and Merge Documents with Change Tracking Highlights

Oxygen XML Editor includes two actions (Merge Documents with Change Tracking Highlights and a Merge

Directories with Change Tracking Highlights) within the Tools > Comparison Tools menu that can be used

Oxygen XML Editor 27.1 | 20 - Tools | 2741

to compare and merge content and the comparison results are saved as documents with highlighted tracked

changes that can be later reviewed and accepted or rejected.

This topic provides instructions and several different use cases for how to get the most out of comparing and

merging documents with change tracking highlights present.

Use Case 1: Review Changes Made to an XML Document

The Merge Documents with Change Tracking Highlights tool (on page 2748) can be used to merge two XML

documents, based on a 2-way mode comparison. The files involved in the process are merged by saving the

comparison results as documents with highlighted tracked changes.

Here is the basic procedure:

1. Select the Merge Documents with Change Tracking Highlights action that is found in the Tools >

Comparison Tools menu to invoke the tool. It opens a dialog box where you can specify the documents

to merge.

2. In the resulting dialog box, you need to provide the URLs of the base version of the document (Base

document) and the modified version (Document to merge with), and then click the Merge button.

Step Result: The resulting document is automatically loaded into a new editor tab. It incorporates

special markings for the tracked changes/differences between the 2 compared and analyzed XML files.

3. Switch to the Author mode and then open the Review view (click the Manage reviews button on the

toolbar or select it from the Window > Show View menu).

Step Result: All detected changes are listed in the Review view and they are marked accordingly in the

resulting document as well.

4. You can analyze each detected change one by one and accept or reject them individually or in bulk.

5. Save the changes you made during the reviewing process.

Oxygen XML Editor 27.1 | 20 - Tools | 2742

Figure 667. Revised Merged Document

Use Case 2: Compare Differences Between Two Versions

Another interesting way of using the resulting merged document that incorporates the change tracking marks

between 2 versions is to apply a transformation of the resulting document into a PDF file that highlights the

changes between the compared versions.

Here is the basic procedure (for this particular example, suppose the resulting merged document is a DITA

file):

1. Select the Merge Documents with Change Tracking Highlights action that is found in the Tools >

Comparison Tools menu to invoke the tool. It opens a dialog box where you can specify the documents

to merge.

2. In the resulting dialog box, you need to provide the URLs of the base version of the document (Base

document) and the modified version (Document to merge with), and then click the Merge button.

3. With the resulting merged document open in the editor, click the Configure Transformation Scenario(s)

button from the toolbar.

4. Select the default read-only scenario DITA PDF - based on HTML5 & CSS and click the Duplicate button

to create a copy so that you can make a few changes to the default settings.

5. In the resulting Edit DITA Scenario dialog box, go to the Parameters tab and type "changes" in text

filter field above the table of parameters. This will display the three parameters that are responsible for

displaying the tracked changes in the resulting PDF and they must all be set to the value of yes:

◦ show.changes.and.comments

◦ show.changes.and.comments.as.changebars

◦ show.changes.and.comments.as.pdf.sticky.notes

Oxygen XML Editor 27.1 | 20 - Tools | 2743

6. Click OK, and with the newly created copy of the scenario selected, click the Apply associated button to

run the transformation.

Result: Once the transformation is finished, the resulting PDF is automatically opened in the system's

default PDF reader (e.g. Adobe). If you hover the mouse over the presented colored markers, you will

notice that the tooltip shows that some are of the type "inserted", while others are of the type "deleted".

Text areas and fragments with changes are also marked with gray "change" bars on the left. The

Oxygen XML Editor 27.1 | 20 - Tools | 2744

changed content is placed between curly brackets and is colored blue or red depending on the type of

change (insertion or deletion).

Use Case 3: Compare and Merge Entire Directories

Another use case is to use the Merge Directories with Change Tracking Highlights action to merge entire

directories instead of specified pairs of XML files.

Here is the basic procedure (for this particular example, suppose you want to review the changes between two

versions of an entire DITA project):

1. Select the Merge Directories with Change Tracking Highlights action that is found in the Tools >

Comparison Tools menu to invoke the tool. It opens a dialog box where you can specify the documents

to merge.

2. In the resulting dialog box, you need to provide the URLs of the Base directory, the Directory to merge

with, and the Output directory.

3. You can optionally select the Backup the base directory option. Not that this option is automatically

activated and selected in the following cases:

◦ The output directory is not specified (the field is left blank).

◦ The specified output directory is the base directory itself.

In these situations, a backup of the base directory will be performed automatically and the backup

operation must succeed to proceed with the merge. Otherwise, the merge process is aborted.

4. You can adjust the settings in the Merge options section. You can find details for each option in Merge

Directories with Change Tracking Highlights: Merge Options (on page 2768). Note that all of these

options are enabled by default except for Create change tracking markers for the XML files to be

added.

To better understand the merge options presented in this section, note that the merge process has

a preliminary phase where the entire structure and the content of the base directory is copied to the

output directory.

Oxygen XML Editor 27.1 | 20 - Tools | 2745

Since this example is for reviewing the changes between two versions of an entire DITA project, you

would select all options in the Merge options section, including the Create change tracking markers for

XML files to be added option.

5. Click the he Merge button to start the process of generating the results of the merge operation.

Depending on the number of files in the compared directories and the total number of changes

detected, the process may take some time.

Step Result: The operation report should automatically open in Author mode. The listed URLs are

actually links that will open the corresponding merged DITA file in the editor. You can inspect the

changes and accept or reject them, individually or in bulk.

The first group of URLs listed represents the group of XML files detected as modified and merged with

change tracking highlights.

The modified non-XML file group follows. Since the Update the modified non-XML files option was

selected, these type of non-XML files from the Base directory were replaced by their corresponding files

in the Directory to merge with.

Next are the XML files that were initially present only in the Directory to merge with. They were also

added to the Output directory, since the Add the files found only in the directory to merge with option

was selected.

Oxygen XML Editor 27.1 | 20 - Tools | 2746

Since the Create change tracking markers for the XML files to be added was also selected, change

tracking markers of type "entire content added/inserted" were created. Note that it does not make

sense to reject that type of change. The Create change tracking markers for the XML files to be added

option is not intended for the merge process itself, but it is useful if you want to apply various Oxygen

transformation scenarios to the resulting output directory, as explained later.

Next comes the group of non-XML files initially present only in the Directory to merge with and they

were also copied to the output directory. Basically, these are resources (usually image or video files)

used by the file group listed above. Clicking these types of file links results in opening them in the

appropriate application installed on your computer.

The last group listed in the report represents the group of files from the "base directory" that have no

longer counterparts in the "directory to merge with". Since the Delete the files found only in the base

directory option was selected, these files are eventually deleted, even if they were initially copied to the

output directory. The links also work for them, opening the associated files from the Base directory.

6. Now that you have the directory resulting from the merge operation at your disposal, you can apply a

transformation scenario to obtain a PDF document that highlights the changes between the 2 versions.

Open the DITA map that resulted from the merge operation in the DITA Maps Manager, click the

Configure Transformation Scenario(s) button in the toolbar of the view, and apply the DITA Map PDF -

based on HTML5 & CSS - Copy transformation scenario using the same configuration as explained in

Use Case 2: Compare Differences Between Two Versions (on page 2742).

Step Result: Once the transformation is finished, the resulting PDF is automatically opened in the

system's default PDF reader (e.g. Adobe).

7. In Adobe, there is a side view identified as Bookmarks (on the right or left side, depending of the Adobe

version). By selecting Contents in this view and then scrolling down, you can hover the mouse over

the presented colored markers for the new topics and you will notice that tooltip shows that they are

"inserted". You can click on any of these new topics to scroll to the respective topic and you will notice

that it is marked with blue in the document (the color used for newly added content). If you continue to

scroll down the PDF, you will notice various "insert" and "delete" changes.

8. Click the Review comments button on the side stripe of the Bookmarks view:

Oxygen XML Editor 27.1 | 20 - Tools | 2747

Step Result: A list appears that contains all highlighted changes in the PDF.

9. You can scroll through the list and click on the changes listed to conveniently analyze and review all

tracked and highlighted changes between the 2 versions of the DITA project.

WebHelp Responsive Alternative

As an alternative to the DITA Map PDF - based on HTML5 & CSS transformation, there are other types of

transformations that can be applied to the resulting DITA map, leading to a different kind of output. For

example, you can use the DITA Map WebHelp Responsive transformation scenario:

1. Select the default read-only scenario DITA Map WebHelp Responsive and click the Duplicate button to

create a copy so that you can make a few changes to the default settings.

2. In the resulting Edit DITA Scenario dialog box, go to the Parameters tab and type "changes" in text filter

field above the table of parameters. Make sure the webhelp.show.changes.and.comments parameter is set

to yes.

3. Click OK, and with the newly created copy of the scenario selected, click the Apply associated button to

run the transformation.

Oxygen XML Editor 27.1 | 20 - Tools | 2748

Step Result: Once the transformation finishes, the resulting WebHelp output is opened in your default

Internet browser. By clicking on any of the chapters listed, you can browse the respective content and

observe how the changes are rendered. The color code is the same (blue for the changes of the type

"added" or "inserted", and red for those of the type "deleted"). The yellow markings on the right side also

help to navigate through and analyze/review the highlighted changes.

Resources

For more information about how to merge documents/directories with change tracking highlights, watch our

video demonstration:

Merge Documents with Change Tracking Highlights

The Merge Documents with Change Tracking Highlights tool can be used to merge two XML documents

(based on a 2-way mode comparison) and the files involved in the process are merged by saving the

comparison results as documents with highlighted tracked changes that can later be reviewed and accepted

or rejected.

To invoke the tool, select the Merge Documents with Change Tracking Highlights action that is found in the

Tools > Comparison Tools menu. It opens a dialog box where you can specify the documents to merge.

Figure 668. Merge Documents with Change Tracking Highlights Dialog Box

The Merge Documents with Change Tracking Highlights dialog box contains the following options:

Base document (URL)

Specifies the URL of the base document.

Directory to merge with (URL)

Specifies the URL of the document to merge with.

After specifying the documents to be merged, click the Merge button to trigger the operation.

Once the merge operation is complete, the merged document is opened in a new editor tab. With the merged

document open in Author mode, the highlighted tracked changes can easily be reviewed and accepted or

rejected, thus finishing the entire merge process. Initially, the merged document is untitled and not saved. You

Oxygen XML Editor 27.1 | 20 - Tools | 2749

can choose the name when saving it in a location of your choosing (for example, a common use case is to

overwrite the base document with the final resulting merged file).

Additional Notes and Limitations:

• When comparing documents in Author mode, changes made in the prolog of XML documents

(where the XML version and encoding are declared) are not reported and therefore not

considered in the merge process.

• Any "doctype" changes are not reported and therefore not considered in the merge process.

• If one or both of the compared XML documents contain tracked changes (represented

internally by custom XML processing instructions), all these modifications are automatically

accepted prior to the compare and merge procedures.

Resources

For more information about the merge with change tracking support, see the following resources:

• Video: Mastering Document Comparisons: A Guide to Generating Tracked Changes Between Two

Versions

• Webinar: Discover the Power of Diff with Change Tracking

Compare Directories Tool

The Compare Directories tool can be used to compare and manage changes to files and folders within the

structure of your directories. The utility is available from the Tools > Comparison Tools menu or can be

opened as a stand-alone application from the Oxygen XML Editor installation folder (diffDirs.exe).

https://www.youtube.com/watch?v=U3OVaqOiC7Q
https://www.youtube.com/watch?v=U3OVaqOiC7Q
https://www.oxygenxml.com/events/2023/webinar_discover_the_power_of_diff_with_change_tracking.html

Oxygen XML Editor 27.1 | 20 - Tools | 2750

Figure 669. Diff Directories Dialog Box

Starting the Tool from a Command Line

The directory comparison tool can also be started by using command-line arguments. In the installation

folder there is an executable shell (diffDirs.bat on Windows, diffDirs.sh on macOS and Linux). To

specify the directories to compare, you can pass command-line arguments using the following construct:

diffDirs.bat/diffDirs.sh [directory path 1] [directory path 2].

If you pass only one argument, you are prompted to manually choose the second directory or archive.

Example:

To do a comparison between two directories, the command line would look like this:

Windows

diffDirs.bat "c:\documents new" "c:\documents old"

Tip:

If there are spaces in the path names, surround the paths with quotes.

Linux

diffDirs.sh home/documents1 home/documents2

macOS

diffDirs.sh documents1 documents2

Oxygen XML Editor 27.1 | 20 - Tools | 2751

Directory Comparisons

To perform a directory comparison, follow these steps:

1. Select a folder in the left panel and the folder you want to compare it to in the right panel. You can

specify the path by using the text field, the history drop-down, or the Browse for local directory action in

the Browse drop-down menu.

Step Result: The selected directory structures are opened in the two side-by-side panels.

2. To highlight the differences between the two folders, click the Perform Directories Differencing

button from the toolbar.

3. You can also use the Diff Options button to access the Directories Comparison preferences page

(on page 299) where you can configure various options.

To compare the content of two archives, follow these steps:

1. Use the Browse for archive file action in the Browse drop-down menu to select the archives in the

left and right panels.

2. By default, the supported archives are not treated as directories and the comparison is not performed

on the files inside them. To make Oxygen XML Editor treat supported archives as directories, select the

Look in archives option (on page 300) in the Directories Comparison preferences page.

3. To highlight the differences, click the Perform Directories Differencing button from the toolbar.

The directory comparison results are presented using two tree-like structures showing the files and folders,

including their name, size, and modification date. A column that contains graphic symbols separates the two

tree-like structures. The graphic symbols can be one of the following:

• An X symbol, when a file or a folder exists in only one of the compared directories.

• A ≠symbol, when a file exists in both directories but the content differs. The same sign appears when a

collapsed folder contains differing files.

The color used for the symbol and the directory or file name can be customized in the Directories

Comparison / Appearance preferences page (on page 300). You can double-click lines marked with the ≠

symbol to open a Compare Files window, which shows the differences between the two files.

The directories that contain files that differ are expanded automatically so that you can focus directly on the

differences. You can merge the contents of the directories by using the copy actions. If you double-click (or

press Enter) on a line with a pair of files, Oxygen XML Editor starts a file comparison (on page 486) between

the two files, using the Compare Files tool.

Related information

Compare Files Tool (on page 486)

Compare Directories Script (on page 3278)

Oxygen XML Editor 27.1 | 20 - Tools | 2752

Toolbar and Contextual Menu Actions of the Compare Directories Tool

The toolbar of the Compare Directories tool contains operations that can be performed on the compared

directory structure. Some of the toolbar actions are also available in the contextual menu.

Figure 670. Compare toolbar

Toolbar Actions

Perform Directories Differencing

Looks for differences between the two directories displayed in the left and right side of the

application window.

Perform Files Differencing

Opens the Compare Files tool (on page 486) that allows you to compare the currently selected

files.

Copy Change from Right to Left

Copies the selected change from the right side to the left side (if there is no file/folder in the

right side, the left file/folder is deleted).

Copy Change from Left to Right

Copies the selected change from the left side to the right side (if there is no file/folder in the left

side, the right file/folder is deleted).

Binary Compare

Performs a byte-level comparison on the selected files.

Diff Options

Opens the Directory Comparison preferences page (on page 299) where you can configure

various options.

Show Only Modifications

Displays a more uncluttered file structure by hiding all identical files.

Save Results as HTML

Generates an HTML file that contains detailed information about the comparison result.

File and folder filters

Differences can be filtered using three combo boxes: Include files, Exclude files, and Exclude

folders. They come with predefined values and are editable to allow custom values. All of them

accept multiple comma-separated values and the * and ? wildcards. For example, to filter out

Oxygen XML Editor 27.1 | 20 - Tools | 2753

all JPEG and GIF image files, edit the Exclude files filter box to read *.jpeg, *.png. Each filter

includes a drop-down menu with the latest 15 filters applied.

Contextual Menu Actions

Perform Files Differencing

Opens the Compare Files tool (on page 486) that allows you to compare the currently selected

files.

Binary Compare

Performs a byte-level comparison on the selected files.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Open

If the action is invoked on a file, the selected file is opened in Oxygen XML Editor. If the action

is invoked on a directory, the selected directory is opened in the default file browser for your

particular operating system.

Open in System Application

Opens the selected file in the system application that is associated with that type of file. The

action is available when launching the Compare Directories tool from the Tools menu in Oxygen

XML Editor.

Show in Explorer

Opens the default file browser for your particular operating system with the selected file

highlighted.

Compare Directories Tool Menus

The menus in the Compare Directories tool contain some of the same actions that are on the toolbar, as well

as some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu

actions include:

File Menu

Save Results as HTML

Generates an HTML file that contains detailed information about the comparison result. See

an example of what the generated report look like in the Generate HTML Report for Directory

Comparison topic (on page 523).

Close (Ctrl + W (Command + W on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2754

Closes the application.

Compare Menu

Perform Directories Differencing

Looks for differences between the two directories displayed in the left and right side of the

application window.

Perform Files Differencing

Opens the Compare Files tool (on page 486) that allows you to compare the currently selected

files.

Copy Change from Right to Left

Copies the selected change from the right side to the left side (if there is no file/folder in the

right side, the left file/folder is deleted).

Copy Change from Left to Right

Copies the selected change from the left side to the right side (if there is no file/folder in the left

side, the right file/folder is deleted).

Options Menu

Preferences

Opens the preferences dialog box that includes numerous pages of options that can be

configured.

Menu Shortcut Keys

Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts

available for menu items.

Reset Global Options

Resets options to their default values. Note that this option appears only when the tool is

executed as a stand-alone application.

Import Global Options

Allows you to import an options set that you have previously exported.

Export Global Options

Allows you to export the current options set to a file.

Help Menu

Help (F1)

Opens a Help dialog box that displays the User Manual at a section that is appropriate for the

context of the current cursor position.

Use Online Help

Oxygen XML Editor 27.1 | 20 - Tools | 2755

If this option is selected, when you select Help or press F1 while hovering over any part of the

interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this

option is not selected or an internet connection fails, the help documentation is opened in offline

mode.

Report problem

Opens a dialog box that allows the user to write the description of a problem that was

encountered while using the application. You can change the URL where the reported problem is

sent by using the com.oxygenxml.report.problems.url system property. The report is sent in XML

format through the report parameter of the POST HTTP method.

Support Center

Opens the Oxygen XML Editor Support Center web page in a browser.

Compare Images

You can use the Compare Directories tool to compare images. If you double-click a line that contains two

different images, the Compare images window is displayed. This dialog box presents the images in the left

and right sides, scaled to fit the available view area. You can use the contextual menu actions to scale the

images to their original size or scale them down to fit in the view area.

The supported image types are: GIF, JPG, JPEG, PNG, and BMP.

Compare Directories Against a Base (3-Way) Tool

The Compare Directories Against a Base (3-way) tool allows you to perform three-way comparisons on

directories to help you identify and merge changes between multiple modifications of the same directory

structure. It is especially helpful for teams that have multiple authors contributing documents to the same

directory system. It offers information about conflicts and changes, and includes actions to easily merge,

accept, overwrite, or ignore changes to the directory system.

How to Perform 3-Way Directory Comparisons

To perform a 3-way directories comparison, follow these steps:

1. Select Compare Directories Against a Base (3-way) from the Tools > Comparison Tools menu.

Step Result: This opens a dialog box that allows you to select the 3 file sets that will be used for the

comparison.

Oxygen XML Editor 27.1 | 20 - Tools | 2756

Figure 671. Compare Directories Against a Base File Set Chooser

2. Select the file sets to be compared:

◦ Base directory - This is the original (base) file set before any modifications were made by you or

others.

◦ Directory with your changes - This is the file set with changes that you have made. This file set

will be displayed in the left panel in the comparison tool.

◦ Directory with changes made by others - This is the file set with changes made by others that

you want to merge with your changes. This file set will be displayed in the right panel in the

comparison tool.

3. Click the Compare button to compare the file sets and open the comparison and merge tool.

4. Use the features and actions described in the next section to identify and merge the changes.

Oxygen XML Editor 27.1 | 20 - Tools | 2757

3-Way Directory Comparison and Merge Tool

Figure 672. Comparison and Merge Tool

The 3-way directory comparison and merge tool includes the following information, features, and actions:

Number of Changes and Conflicts

The first thing you see in the top-left corner of the tool is the grand total of all the changes made

by others, changes made by you, and the number of conflicts.

Filter Buttons

In the top-right corner you can use the toggle buttons to filter the list of modifications:

Show all files

Use this button to show all modified and unmodified files, as well as conflicts.

Show only files modified by you and others

Filters the list to show all files that have been modified, including conflicts.

Show only files modified by others

Filters the list to only show the files that were modified by others.

Show only files modified by you

Filters the list to only show the files that were modified by you.

Oxygen XML Editor 27.1 | 20 - Tools | 2758

Show only conflicting files

Filters the list to only show files that contain conflicts.

List of Files Panel

This panel shows the list of files in the compared file sets based upon the filter button that is

selected. This panel includes the following sortable columns:

• Name - The file names.

• Status - An icon that represents the file status. Red icons indicate some sort of conflict.

Gray icons indicate modifications made by you. Blue icons indicate modifications made

by others.

• Description - A description of the file status.

• Merge Action - This column provides a drop-down menu for each file that allows you to

choose some merge actions depending upon its status. A default action is always set to

Automatically merge the changes made by others with your changes. If there is a conflict,

the default is <Select action> and you are required to make a selection. Click this column

to access the drop-down menu where you can make a selection. The same actions are

available in the contextual menu.

Tip:

If the solution proposed in the Merge Action column for any particular file is not

satisfactory, you can change it directly in that column (even if that file is not selected)

without automatically re-triggering the comparison (except for in certain cases where re-

triggering the comparison is necessary).

You can click a file to open it in the file comparison panel (the file from your file set is shown in

the left panel while the file from the file set with changes made by others is shown in the right

panel). For image files, the comparison panel shows a preview of the image. For other binary

files, a preview is not available and you will just see its status.

File Comparison Panels

If you click a file in the top panel, the file is opened in this file comparison section. The file from

your file set is shown in the left panel and the file from the other file set is shown in the right

panel.

Note:

If Oxygen XML Editor does not recognize the file type, a dialog box will be displayed

that allows you to select the type of editor you want it to be associated with for this

comparison (if you want Oxygen XML Editor to remember this association, you can

select the Associate file type with editor option at the bottom of the dialog box).

This panel includes the following information and toolbar actions:

Oxygen XML Editor 27.1 | 20 - Tools | 2759

File Path

The first thing you see in this panel is the file path where merge actions will be

applied if you make changes.

Close

Closes the file comparison panel.

Algorithm Drop-down Menu

This drop-down menu allows you to select one of the following diff algorithms to

be used for file comparisons:

• Auto - Selects the most appropriate algorithm, based on the compared

content and its size (selected by default).

• Lines - Computes the differences at line level, meaning that it compares two

files or fragments looking for identical lines of text. This algorithm is not

available when the file comparison is in Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is

less precise than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the

expense of speed. It compares two XML files or fragments looking for

identical XML nodes.

Diff Options

Opens the Files Comparison preferences page (on page 296) where you can

configure various options.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side

panels.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be

seen in both panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means

that before performing the comparison, the application normalizes the content and

trims its leading and trailing whitespaces. This option is not available when the file

comparison is in Author mode.

Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual

mode. You can choose between: Full Tags with Attributes, Full Tags,

Oxygen XML Editor 27.1 | 20 - Tools | 2760

Block Tags, Block Tags without Element Names, Inline Tags, Partial

Tags, or No Tags.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left

panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is

positioned on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least

one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the

cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last

change from the current block of changes is reached, it highlights the next block

of changes. This action is not available when the cursor is positioned on the last

change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first

change from the current block of changes is reached, it highlights the previous

block of changes. This action is not available when the cursor is positioned on the

first change or when there are no changes.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Left-Side File (Your changes)

Above the panel you can see the file path and the following two buttons:

Save

Saves changes made to the file.

Reload

Oxygen XML Editor 27.1 | 20 - Tools | 2761

Reloads the file.

Right-Side File (Changes made by others)

Above the panel you can see the file path and the following two buttons:

Reload

Reloads the file.

Displaying Changes in the File Comparison Panels

The line numbers on each side and colored marks on the right-side vertical stripe help you to

quickly identify the locations of the differences. Adjacent changes are grouped into blocks of

changes.

Figure 673. File Comparison Panels

The differences are also highlighted in several colors, depending on the type of change, and

dynamic lines connect the compared fragments in the middle section between the two panes.

The highlighting colors can be customized in the Files Comparison / Appearance preferences

page (on page 299), but the default colors and their shades mean the following:

• Pink - Identifies modifications on either side.

• Gray - Identifies an addition of a node in the left side (your outgoing changes).

• Blue - Identifies an addition of a node in the right side (incoming changes).

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

• Darker Shade - Identifies specific changes within the blocks that can be merged more

precisely.

Direct Editing Actions in the File Comparison Panels

In addition to selecting merge actions from the drop-down menus in the Merge Action column

in the top panel, you can also edit the files directly in the left pane (your local changes). The

two editors are constantly synchronized and the differences are refreshed when you save

the modified document (Save button or Ctrl+S) or when you click the Perform File

Differencing button.

A variety of actions are available in the contextual menu in both editing panes. The tool also

includes some inline actions to help you merge, copy, or remove changes. When you select a

change, the following inline action widgets are available, depending on the type of change:

Append right change to left

Oxygen XML Editor 27.1 | 20 - Tools | 2762

Copies the content of the selected change from the right side and appends it on

the left side.

Copy change from right to left

Replaces the content of a change in the left side with the content of the change in

the right side.

Remove change

Removes the change from the left side.

Anytime you save manual changes (Save button or Ctrl+S), the selection in the Merge Action

column in the top panel automatically changes to Use merged and a copy of the original file is

kept so that you can revert to the original file if necessary. To discard your manual changes and

revert to your original changes, select a different action in the Merge Action drop-down menu.

Open Merged Files

If you select this option, all the files that will be modified by the merge operation will be opened

in the editor after the operation is finished.

Applying Changes

When you click the Apply button, all the merge actions you have selected and the changes you

have made will be processed.

If there are unresolved conflicts (conflicts where no merge action is selected in the Merge Action

drop-down menu), a dialog box will be displayed that allows you to choose how to solve the

conflicts. You can choose between the following:

• Keep your changes - If you select this option and then click Apply, your local changes will

be preserved for the unresolved conflicts.

• Overwrite your changes - If you select this option and then click Apply, your local changes

will be overwritten with the changes made by others, for the unresolved conflicts.

• Cancel - You can click the Cancel button to go back to the merge tool to resolve the

conflicts individually.

Canceling Changes

If you click the Cancel button at the bottom of the merge tool, all the changes you made in the

tool will be lost.

Author Visual Mode

The Comparison and Merge tool includes an Author mode that displays the files in a visual mode similar

to the Author editing mode in Oxygen XML Editor/Author. This makes it easier to see how the compared

changes will look in the final output. This visual mode is available when the compared files are detected as

being XML. To determine whether the files are initially opened in the merge tool's Text or Author mode, it

Oxygen XML Editor 27.1 | 20 - Tools | 2763

detects the Initial Edit Mode in the Document Type Association configuration (on page 150) and the mode the

files were last opened in Oxygen XML Editor/Author.

Note:

This mode is not available if the Enable file comparison in Author mode option (on page 296) is not

selected in the Diff > Files Comparison preferences page.

This visual mode includes unique features such as a Tags Display Mode drop-down button (on page

2759) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode

also presents differences that were made using the Track Changes feature (although the Track Changes

feature is not available in the comparison tool).

Figure 674. File Comparison Tool - Author Mode

Author Mode Algorithms

The visual Author mode offers the following diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by

default).

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML

Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares

two XML files or fragments looking for identical XML nodes.

Oxygen XML Editor 27.1 | 20 - Tools | 2764

Author Mode Second-Level Comparisons

The visual Author mode automatically performs a second-level comparison for the XML Fast and XML

Accurate algorithms. After the first comparison is finished, the second-level comparison is processed on text

nodes using a word level comparison, meaning that it looks for identical words. This second-level comparison

makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related information

Compare Directories Tool (on page 506)

Compare Files Tool (on page 486)

Generate HTML Report for Directory Comparison

The Generate HTML report for directory comparison tool can be used to generate a report in the form of

an HTML file that contains the results of a directory comparison (for either 2-way or 3-way comparisons).

The Generate HTML report for directory comparison action for invoking the tool can be found in the Tools >

Comparison Tools menu. It opens a dialog box where you can specify the directories to compare as well as

some other options.

Figure 675. Generate HTML Report for Directory Comparison Dialog Box

The Generate HTML report for directory comparison dialog box contains the following options:

Base directory

Specifies the path of the base directory that the other two directories will be compared against in

a 3-way comparison. This field should be left empty for 2-way comparisons.

Oxygen XML Editor 27.1 | 20 - Tools | 2765

First directory

Specifies the path of the first directory to be included in the comparison.

Second directory

Specifies the path of the second directory to be included in the comparison.

Diff options

Specifies which option set to use for generating the comparison report. If you choose Use the

current settings from Preferences, the options set in the Directories Comparison preferences

page (on page 299) and the include/exclude filter options in the Compare Directories tool (on

page 509) are taken into account when generating the comparison result. You can also click the

Diff options button to open the Directories Comparison preferences page where you can see

or modify the current settings. If you choose Use the default settings, the default values for all

settings are used.

Generate additional file comparison reports

Generates further comparison reports for all non-binary modified file pairs and provides links

to them in the main report (in the middle cells of the results table). See the example below (on

page 2766). These additional file comparison reports are saved to a directory that will have the

same parent directory and the same name as the output file provided, suffixed by "-OXY-FC-

REPORTS". The links created in the main report are relative to this directory. If the main HTML

report is later copied or moved to another location, to retain full functionality in the browser, the

directory with the additional file comparison reports must also be copied/moved to the same

location.

Note:

Generating additional file comparison reports could significantly increase the execution

time. A progress tracker for the whole operation is available.

Tip:

An XPath expression specified in the Ignore nodes by XPath text field within the Files

Comparison preferences page (on page 296) is now taken into account if you enable the

Generate additional file comparison reports option.

Output file

Specifies the path for an output file to save the comparison results file.

Open in Browser/System Application

Opens the comparison results file in the browser or system application that is associated with

HTML files.

After clicking the Generate report button, a report in the form of an HTML file is generated with details about

the comparison results.

Oxygen XML Editor 27.1 | 20 - Tools | 2766

Figure 676. HTML Report for Directory Comparison

Figure 677. Example of an Additional File Comparison Report

Resources

For more information about how to generate HTML comparison reports, watch our video demonstration:

https://www.youtube.com/embed/6jPccHKUNNk

https://www.youtube.com/embed/6jPccHKUNNk

Oxygen XML Editor 27.1 | 20 - Tools | 2767

Related information

Compare Directories Tool (on page 506)

Compare Directories Against a Base (3-Way) Tool (on page 512)

Compare Files Tool (on page 486)

Merge Directories with Change Tracking Highlights

The Merge Directories with Change Tracking Highlights tool can be used to merge two directories (based

on a 2-way mode comparison) and all pairs of modified XML files involved in the process are merged by

saving the comparison results as documents with highlighted tracked changes that can be later reviewed and

accepted or rejected.

All other detected situations are treated based on several options that are applicable to both XML and non-

XML files, or another option that is applicable only to non-XML files.

To invoke the tool, select the Merge Directories with Change Tracking Highlights action that is found in the

Tools > Comparison Tools menu. It opens a dialog box where you can specify the directories to merge and the

output directory to save the results, as well as some other options.

Figure 678. Merge Directories with Change Tracking Highlights Dialog Box

The Merge Directories with Change Tracking Highlights dialog box contains the following options:

Base directory

Specifies the path of the base directory.

Oxygen XML Editor 27.1 | 20 - Tools | 2768

Directory to merge with

Specifies the path of the directory to merge with.

Output directory

Specifies the path of the directory where the merge operation results are saved to. You can leave

this field blank and the merge results will be saved in the base directory by overwriting it, or you

can choose a separate output directory.

Note:

You cannot choose the same directory specified as the directory to merge with as the

output directory.

Backup the base directory

If this option is selected, a backup copy is saved on your hard disk when the operation

completes. This option is automatically activated and selected in the following cases:

• The output directory is not specified (the field is left blank).

• The specified output directory is the base directory itself.

• In both of the above situations, a backup of the base directory will be performed

automatically and the backup operation must succeed to proceed with the merge.

Otherwise, the merge process being aborted.

Note:

The backup copy will have the same parent directory as the base directory and its name

will be the name of the base directory suffixed by ".OXY.BAK".

Merge options

The merge process has a preliminary phase where the entire structure and the content of the

base directory is copied to the output directory. The following merge options are available:

Update the modified non-XML files

If this option is selected, all files in the output directory that are copies of non-XML

files in the base directory are replaced by their corresponding files in the directory

to merge with. Otherwise, they remain unchanged.

Add the files found only in the directory to merge with

If this option is selected, all files that are only present in the directory to merge with

are also added to the output directory.

Create change tracking markers for the XML files to be added

This option can only be used in conjunction with the Add the files

found only in the directory to merge with option. Select this option

Oxygen XML Editor 27.1 | 20 - Tools | 2769

if you want to create change tracking markers for the XML files that

are only present in the directory to merge with and will be added to

the output directory. Although these files have no counterparts in

the base directory, change tracking markers of type "entire content

added/inserted" will be created.

The option is not necessarily intended for the merge process itself,

but it is useful if you want to apply various Oxygen transformation

scenarios to the resulting output directory. For example, if you merge

2 versions of a DITA project and then want a PDF to highlight the

changes between those versions, you can apply a transformation on

the resulting ditamap file. This option results in presenting the new

DITA files as "added content" in the resulting PDF.

Delete the files found only in the base directory

If this option is selected, all files that are only present in the base directory and

initially copied to the output directory are deleted. Otherwise, they are preserved.

Open the operation report file in editor

Opens the merge operation report (XML file) in the editor.

Once the merge operation is complete, loading the report file in Oxygen XML Editor provides additional

functionality. Aside from the fact that the report provides an overview of the merge process, it also provides

links to all the files in the resulting output directory. This is helpful for generating XML documents with tracked

changes. For example, you can use the respective links to load these XML files in Author mode to review the

tracked changes and accept or reject them. This phase of reviewing and manually merging the XML files is

typically the final phase of the entire merge procedure.

Oxygen XML Editor 27.1 | 20 - Tools | 2770

Figure 679. Example of an Operation Overview Report File

Figure 680. Example of a Merged File Opened in Author Mode

Resources

For more information about the merge with change tracking support, see the following resources:

Oxygen XML Editor 27.1 | 20 - Tools | 2771

• Video: Mastering Document Comparisons: A Guide to Generating Tracked Changes Between Two

Versions

• Webinar: Discover the Power of Diff with Change Tracking

Syncro SVN Client (Deprecated)
The Syncro SVN Client is a client application for the Apache Subversion™ version control system, compatible

with Subversion 1.6, 1.7, and 1.8 servers. It manages files and directories that change over time and are

stored in a central repository. The version control repository is much like an ordinary file server, except that it

remembers every change ever made to your files and directories. This allows you to access older versions of

your files and examine the history of how and when your data changed.

To start Syncro SVN Client, go to Tools > SVN Client.

Attention:

The Syncro SVN Client that comes bundled with Oxygen XML Editor is considered deprecated as of

version 21.0.

Main Window

This section explains the main window of Syncro SVN Client.

Views

The main window consists of the following views:

• Repositories view (on page 2861) - Allows you to define and manage Apache Subversion™ repository

locations.

• Working Copy view (on page 2866) - Allows you to manage with ease the content of the working copy.

• History view (on page 2881) - Displays information (author name, revision number, commit message)

about the changes made to a resource during a specified period of time.

• Editor view (on page 2887) - Allows you to edit various types of text files, with full syntax-highlight.

• Annotations view (on page 2888) - Displays a list with information regarding the structure of a

document (author and revision for each line of text).

• Compare view (on page 2890) - Displays the differences between two revisions of a text file from the

working copy.

• Image Preview panel (on page 2894) - Allows you to preview standard image files supported by Syncro

SVN Client: JPG, GIF and PNG.

• Compare Images view (on page 2894) - Displays two images side by side.

• Properties view (on page 2894) - Displays the SVN properties of a resource under version control.

• Console view (on page 2896) - Displays information about the currently running operation, similar with

the output of the Subversion command-line client.

• Dynamic Help view (on page 2896) - Shows information about the currently selected view.

https://www.youtube.com/watch?v=U3OVaqOiC7Q
https://www.youtube.com/watch?v=U3OVaqOiC7Q
https://www.oxygenxml.com/events/2023/webinar_discover_the_power_of_diff_with_change_tracking.html

Oxygen XML Editor 27.1 | 20 - Tools | 2772

The main window's status bar presents in the left side the operation in progress or the final result of the last

performed action. In the right side there is a progress bar for the running operation and a stop button to cancel

the operation.

SVN Main Menu

The main menu of the Syncro SVN Client is composed of the following menus:

File Menu

New submenu:

New File

This operation creates a new file as a child of the selected folder

from the Repositories view (on page 2861) tree or the Working

Copy view (on page 2866) tree, depending on the view that was last

used. Note that for the Working Copy view (on page 2866), the file

is added to version control only if the selected folder is under version

control.

New Folder(Ctrl + Shift + F (Command + Shift + F on macOS))

This operation creates a new folder as a child of the selected folder

from the Repositories view (on page 2861) tree or the Working

Copy view (on page 2866) tree, depending on the view that was last

used. Note that for the Working Copy view (on page 2866), the file

is added to version control only if the selected folder is under version

control.

New External Folder (Ctrl + Shift + W (Command + Shift + W on macOS))

This operation allows you to add a new external definition on

the selected folder. An external definition is a mapping of a local

directory to a URL of a versioned directory (on page 2901), and

ideally a particular revision, stored in the svn:externals property of

the selected folder.

Tip:

You can specify a particular revision of the external item by

using a peg revision (on page 2903) at the end of the URL

(for example, URL@rev1234). You can also use peg revisions to

access external items that were deleted, moved, or replaced.

The URL used in the external definition format can be relative. You

can specify the repository URL that the external folder points to by

using one of the following relative formats:

Oxygen XML Editor 27.1 | 20 - Tools | 2773

• ../ - Relative to the URL of the directory that the svn:externals

property is set.

• ^/ - Relative to the root of the repository where the

svn:externals property is versioned.

• // - Relative to the scheme of the URL of the directory that the

svn:externals property is set.

• / - Relative to the root URL of the server that has the

svn:externals property versioned.

Important:

To change the target URL of an external definition, or to

delete an external item, do the following:

1. Modify or delete the item definition found in the

svn:externals property that is set on the parent folder.

2. For the change to take effect, use the Update

operation on the parent folder of the external item.

Note:

Syncro SVN Client does not support definitions of local

relative external items.

Open (Ctrl + O (Command + O on macOS))

This action opens the selected file in an editor where you can modify it. The action

is active only when a single item is selected. The action opens a file with the

internal editor or the external application associated with that file type. This action

works on any file selection from the Repositories view (on page 2861), Working

Copy view (on page 2866), History view (on page 2881), or Directory Change Set

view (on page 2886), depending on the view that was last used to invoke it. In the

case of a folder, the action opens the selected folder with the system application

for folders (for example, Windows Explorer on Windows or Finder on macOS). Note

that opening folders is available only for folders selected in the Working Copy view

(on page 2866).

Open with(Ctrl + Shift + O (Command + Shift + O on macOS))

Displays the Open with dialog box for specifying the editor where the selected file

is opened. If multiple files are selected only external applications can be used to

open the files. This action works on any file selection from Repositories view (on

page 2861), Working Copy view (on page 2866), History view (on page 2881), or

Directory Change Set view (on page 2886), depending on the view that was last

used to invoke it.

Oxygen XML Editor 27.1 | 20 - Tools | 2774

Show in Explorer/Show in Finder

Opens the parent directory of the selected working copy file and selects the file.

Save (Ctrl + S (Command + S on macOS))

Saves the local file currently opened in the editor or the Compare view.

Save as

Saves any file selected in the Repositories, History, or Directory Change Set view.

Copy URL Location (Ctrl + Alt + U (Command + Option + U on macOS))

Copies the URL location of the resource currently selected in the Repositories view

to clipboard.

Copy to

Copies the currently selected resource, either in Repositories or Working copy

view, to a specified location.

Note:

This action can also be used from History and Directory Change Set views

to recover older versions of a repository item.

Move to(Ctrl + M (Command + M on macOS))

Moves the currently selected resource, either in Repositories or Working copy view,

to a specified location.

Rename(F2)

Renames the resource currently selected, either in Repositories or Working copy

view.

Delete (Delete)

Deletes the resource currently selected either, in Repositories or Working copy

view.

Locking:

• Scan for locks (Ctrl + L (Command + L on macOS)) - Contacts the repository

and recursively obtains the list of locks for the selected resources. A dialog

box containing the locked files and the lock description will be displayed.

This is only active for resources under version control. For more details see

Scanning for locks (on page 2802).

• Lock (Ctrl + K (Command + K on macOS)) - Allows you to lock certain

files that need exclusive access. You can write a comment describing the

reason for the lock and you can also force (steal) the lock. This action is

Oxygen XML Editor 27.1 | 20 - Tools | 2775

active only on files under version control. For more details on the use of this

action see Locking a file (on page 2803).

• Unlock (Ctrl + Alt + K (Command + Option + K on macOS)) - Releases

the exclusive access to a file from the repository. You can also choose to

unlock it by force (break the lock).

Show SVN Properties (Ctrl + P (Command + P on macOS))

Opens the Properties view (on page 2894) and displays the SVN properties for a

selected resource from Repositories view (on page 2861) or Working Copy view

(on page 2866), depending on the view that was last used to invoke it.

Show SVN Information (Ctrl + I (Command + I on macOS))

Provides additional information for a selected resource. For more details, go to

Obtain information for a resource (on page 2819).

Exit (Ctrl + Q (Command + Q on macOS))

Closes the application.

Edit Menu

Undo (Ctrl + Z (Command + Z on macOS))

Undo edit changes in the local file that is currently opened in the editor or the

Compare view.

Redo (Ctrl + Y (Command + Y on macOS))

Redo edit changes in the local file that is currently opened in the editor or the

Compare view.

Cut (Ctrl + X (Command + X on macOS))

Cut selection from the local file that is currently opened in the editor view or the

Compare view to clipboard.

Copy (Ctrl + C (Command + C on macOS))

Copy selection from the local file that is currently opened in the editor or the

Compare view to clipboard.

Paste (Ctrl + V (Command + V on macOS))

Paste selection from clipboard into the local file that is currently opened in editor or

the Compare view.

Find/Replace (Ctrl + F (Command + F on macOS))

Perform find and replace operations in the local file that is currently opened in the

editor or the Compare view.

Find Next (F3)

Oxygen XML Editor 27.1 | 20 - Tools | 2776

Go to the next match using the same find options of the last find operation. This

action runs in the editor panel and in any non-editable text area (for example, the

Console view).

Find Previous (Shift + F3)

Go to the previous match using the same find options of the last find operation.

This action runs in the editor panel and in any non-editable text area (for example,

the Console view).

Repository Menu

New Repository Location (Ctrl + Alt + N (Command + Option + N on macOS))

Displays the Add SVN Repository dialog box. This dialog box allows you to define a

new repository location.

Figure 681. Add SVN Repository Dialog Box

If the Validate repository connection option is selected, the URL connection is

validated before being added to the Repositories view.

Edit Repository Location (Ctrl + Alt + E (Command + Option + E on macOS))

Context-dependent action that allows you to edit the selected repository location

using the Edit SVN Repository dialog box. It is active only when a repository

location root is selected.

Change the Revision to Browse (Ctrl + Alt + B (Command + Option + B on macOS))

Context-dependent action that allows you to change the selected repository

revision using the Change the Revision to Browse dialog box. It is active only when

a repository location root is selected.

Remove Repository Location (Ctrl + Alt + R (Command + Option + R on macOS))

Allows you to remove the selected repository location from the view. It shows

you a confirmation dialog box before removal. It is active only when a repository

location root is selected.

Refresh (F5)

Refreshes the resource selected in the Repositories view.

Check out (Ctrl + Alt + O (Command + Option + O on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2777

Allows you to create a working copy from a repository directory, on your local file

system. To read more about this operation, see Check out a working copy (on page

2792).

Export

Opens the Export dialog box (on page 2856) that allows you to configure options

for exporting a folder from the repository to the local file system.

Import:

Import folder (Ctrl + Shift + L (Command + Shift + L on macOS))

Allows you to import the contents of a specified folder from the file

system into the selected folder in a repository. To read more about

this operation, see the section Importing resources into a repository

(on page 2855).

Note:

The difference between the Import folder and Share project

actions is that the latter also converts the selected directory

into a working copy.

Import Files (Ctrl + Shift + I (Command + Shift + I on macOS))

Imports the files selected from the files system into the selected

folder in the repository.

Working Copy Menu

Working Copies Manager (on macOS)

Opens a dialog box with a list of working copies that the Apache Subversion™

client is aware of. In this dialog box you can add existing working copies or remove

those that are no longer needed.

Switch to

Selects one of the following view modes: All Files, Modified, Incoming,

Outgoing, or Conflicts.

Refresh (F5)

Refreshes the state of the selected resources or of the entire working copy (if there

is no selection).

Synchronize (Ctrl + Shift + S (Command + Shift + S on macOS))

Connects to the repository and determines the working copy and repository

changes made to the selected resources. The application switches to Modified

view mode if the Always switch to 'Modified' mode option (on page 293) is

selected.

Oxygen XML Editor 27.1 | 20 - Tools | 2778

Update (Ctrl + U (Command + U on macOS))

Updates all the selected resources that have incoming changes to the HEAD

revision. If one of the selected resources is a directory then the update for that

resource will be recursive.

Update to revision/depth

Allows you to update the selected resources from the working copy to an earlier

revision from the repository. You can also select the update depth for the current

folder. You can find out more about the depth term in the sparse checkouts (on

page 2860) section.

Commit

Collects the outgoing changes from the selected resources in the working copy

and allows you to choose exactly what resources to commit. A directory will

always be committed recursively. Unversioned resources will be deselected by

default. In the Commit dialog box you can also enter a comment before sending

your changes to the repository.

Update all(Ctrl + Shift + U (Command + Shift + U on macOS))

Updates all resources from the working copy that have incoming changes. It

performs a recursive update on the synchronized resources.

Commit all

Commits all the resources with outgoing changes. It is disabled when Incoming

mode is selected or the synchronization result does not contain resources with

outgoing changes. It performs a recursive commit on the synchronized resources.

Revert (Ctrl + Shift + V (Command + Shift + V on macOS))

Undoes all local changes for the selected resources. It does not contact the

repository and the files are obtained from Apache Subversion™ pristine copy. It is

available only for modified resources. See Revert your changes (on page 2810) for

more information.

Edit conflict (Ctrl + E (Command + E on macOS))

Opens the Compare editor, allowing you to modify the content of the currently

conflicting resources. For more information about editing conflicts, see Edit

conflicts (on page 2808).

Mark Resolved (Ctrl + Shift + R (Command + Shift + R on macOS))

Instructs the Subversion system that you resolved a conflicting resource. For more

information, see Merge conflicts (on page 2811).

Mark as Merged (Ctrl + Shift + M (Command + Shift + M on macOS))

Instructs the Subversion system that you resolved the pseudo-conflict by merging

the changes and you want to commit the resource. Read the Merge conflicts (on

Oxygen XML Editor 27.1 | 20 - Tools | 2779

page 2811) section for more information about how you can solve the pseudo-

conflicts.

Override and Update

Drops any outgoing change and replaces the local resource with the HEAD

revision. This action is available on resources with outgoing changes, including

conflicting ones. See the Revert your changes (on page 2810) section.

Override and Commit

Drops any incoming changes and sends your local version of the resource to the

repository. This action is available on conflicting resources. For more information

see Drop incoming modifications (on page 2812).

Mark as copied

You can use this action to mark an item from the working copy as a copy of

another item under version control, when the copy operation was performed

outside of an SVN client. The Mark as copied action is available when you select

two items (both the new item and source item), and it depends on the state of the

source item.

Mark as moved

You can use this action to mark an item from the working copy as being moved

from another location of the working copy, when the move operation was

performed outside of an SVN client. The Mark as moved action is available when

you select two items from different locations (both the new item and the source

item that is usually reported as missing), and it depends on the state of the source

item.

Mark as renamed

You can use this action to mark an item from the working copy as being renamed

outside of an SVN client. The Mark as renamed action is available when you select

two items from the same directory (both the new item and the source item that is

usually reported as missing), and it depends on the state of the source item.

Add to "svn:ignore" (Ctrl + Alt + I (Command + Option + I on macOS))

Allows you to add files that should not participate in the version control operations

inside your working copy. This action can only be performed on resources not

under version control. It actually modifies the value of the svn:ignore property in

the parent directory of the resource. Read more about this in the Ignore Resources

Not Under Version Control (on page 2798) section.

Add to version control (Ctrl + Alt + V (Command + Option + V on macOS))

Allows you to add resources that are not under version control. For further details,

see Add Resources to Version Control (on page 2796) section.

Remove from version control

Oxygen XML Editor 27.1 | 20 - Tools | 2780

Schedules the selected items for deletion from repository upon the next commit.

The items are not removed from the file system after committing.

Clean up (Ctrl + Shift + C (Command + Shift + C on macOS))

Performs a maintenance cleanup operation on the selected resources from the

working copy. This operation removes the Subversion maintenance locks that were

left behind. This is useful when you already know where the problem originated

and want to fix it as quickly as possible. It is only active for resources under version

control.

Expand All (Ctrl + Alt + X (Command + Option + X on macOS))

Displays all descendants of the selected folder. The same behavior is obtained by

double-clicking a collapsed folder.

Collapse all (Ctrl + Alt + Z (Command + Option + Z on macOS))

Collapses all descendants of the selected folder. The same behavior is obtained by

double-clicking an expanded folder.

Compare Menu

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side

panels.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is

positioned on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least

one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the

cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last

change from the current block of changes is reached, it highlights the next block

of changes. This action is not available when the cursor is positioned on the last

change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2781

Jumps to the previous change from the current block of changes. When the first

change from the current block of changes is reached, it highlights the previous

block of changes. This action is not available when the cursor is positioned on the

first change or when there are no changes.

Last Change (Ctrl + E (Command + E on macOS))

Jumps to the last change.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left

panel.

Show Word Level Details

Provides a word-level comparison of the selected change.

Show Character Level Details

Provides a character-level comparison of the selected change.

 ormat and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Formats and indents both files before comparing them. Use this option for

comparisons that contain long lines that make it difficult to spot differences.

Note:

When comparing two JSON files, the Format and Indent Both Files action

will automatically sort the keys in both files the same to make it easier to

compare.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means

that before performing the comparison, the application normalizes the content and

trims its leading and trailing whitespaces.

History Menu

Show History(Ctrl + H (Command + H on macOS))

Displays the history for an SVN resource at a given revision. The resource can be

one selected from the Repositories view, Working Copy view, or from the Affected

Oxygen XML Editor 27.1 | 20 - Tools | 2782

Paths table from the History view, depending on which view was last focused when

this action was invoked.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on macOS))

Opens the Show Annotation dialog box that computes the annotations for a file

and displays them in the Annotations view (on page 2888), along with the history

of the file in the History view.

Repositories

This operation is available for any resource selected from view, Working Copy view,

History view or Directory Change Sets view, depending on which view was last

focused when this action was invoked.

Revision Graph (Ctrl + G (Command + G on macOS))

This action allows you to see the graphical representation of a resource's history.

For more details about a resource's revision graph see the section Revision Graph

(on page 2896). This operation is available for any resource selected in the

Repositories view or Working Copy view.

Tools Menu

Share project

Allows you to share a new project (on page 2790) using an SVN repository. The

local project is automatically converted into an SVN working copy.

Branch / Tag

Allows you to copy the selected resource from the Repositories view or Working

Copy view to a branch or tag into the repository. To read more about this operation,

see the section Creating a Branch / Tag (on page 2821).

Merge (Ctrl + J (Command + J on macOS))

Allows you to merge the changes made on one branch back into the trunk, or vice

versa, using the selected resource from the working copy. To read more about this

operation, see the section Merging (on page 2823).

Switch (Ctrl + Alt + W (Command + Option + W on macOS))

Allows you to change the repository location of a working copy, or only of a

versioned item of the working copy, within the same repository. It is available when

the selected item of the working copy is a versioned resource, except for external

items. To read more about this action, see the Switching the Repository Location

(on page 2840) section.

Relocate

Allows you to change the base URL of the root folder of the working copy to a new

URL when the base URL of the repository changed. For example, if the repository

itself was moved to a different server. This operation is only available for the root

Oxygen XML Editor 27.1 | 20 - Tools | 2783

item of the working copy. To read more about this operation, see the Relocate a

Working Copy (on page 2842) section.

Create patch (Ctrl + Alt + P (Command + Option + P on macOS))

Allows you to create a file containing all the differences between two resources,

based on the svn diff command. To read more about creating patches, see the

section about patches (on page 2845).

Working copy format

This submenu contains the following two operations:

Upgrade

Upgrades the format of the currently loaded working copy to the

newest one known by Syncro SVN Client. This allows you to benefit

of all the new features of the client.

Downgrade

Downgrades the format of the currently loaded working copy to SVN

1.7 format. This is useful if you want to use older SVN clients with the

current working copy, or, by mistake, you have upgraded the format of

an older working copy to SVN 1.8.

Note:

SVN 1.7 working copies cannot be downgraded to older

formats.

See the section Working Copy Format (on page 2873) to read more about this

subject.

Options Menu

Preferences

Opens the Preferences dialog box.

Menu Shortcut Keys

Opens the Menu Shortcut Keys preferences page (on page 304), where users can

configure in one place the keyboard shortcuts available for menu items available in

Syncro SVN Client.

Global Run-Time Configuration

Allows you to configure SVN general options, that should be used by all the SVN

clients you may use:

Oxygen XML Editor 27.1 | 20 - Tools | 2784

• Edit 'config' file - In this file you can configure various SVN client-side

behaviors.

• Edit 'servers' file - In this file you can configure various server-specific

protocol parameters, including HTTP proxy information and HTTP timeout

settings.

Export Options

Allows you to export the current options to an XML file.

Import Options

Allows you to import options you have previously exported.

Reset Options

Resets all your options to the default ones.

Reset Authentication

Resets the Subversion authentication information.

Window Menu

Show View

Allows you to select the view you want to bring to front.

Show Toolbar

Allows you to select the toolbar you want to be visible.

Enable flexible layout

Toggles between a fixed and a flexible layout. When the flexible layout is enabled,

you can move and dock the internal views to adapt the application to various

viewing conditions and personal requirements.

Reset Layout

Resets all the views to their default position.

Help Menu

Help (F1)

Opens the Help dialog box.

Use online help (selected by default)

If this option is selected, when you select Help or press F1 while hovering over any

part of the interface, Oxygen XML Editor attempts to open the help documentation

in online mode. If this option is not selected or an internet connection fails, the help

documentation is opened in offline mode.

Show Dynamic Help view

Displays the Dynamic Help view.

Oxygen XML Editor 27.1 | 20 - Tools | 2785

Report Problem

Opens a dialog box that allows you to write the description of a problem that was

encountered while using the application.

Support Center

Opens the Support Center web page in a browser.

About

Opens the About dialog box.

SVN Main Toolbar

The toolbar of the Syncro SVN Client SVN Repositories window contains the following actions:

Check out

Checks out a working copy from a repository. The repository URL and the working copy format

must be specified.

Synchronize

Synchronizes the current working copy with the repository.

Update All

Updates all resources of the working copy that have an older revision that repository.

Commit All

Commits all resources of working copy that have a newer version compared to that of the

repository.

Refresh

Refreshes the whole content of the current working copy from disk starting from the root folder.

At the end of the operation, the modified files and folders that were not committed to repository

yet, are displayed in the Working Copy view.

Compare

The selected resource is compared with:

• The BASE revision, when the selected resource is:

◦ Locally modified and the All Files view mode is currently selected (no matter if

there are incoming changes).

◦ Locally modified and there are no incoming changes when any other view mode is

selected.

Oxygen XML Editor 27.1 | 20 - Tools | 2786

• The remote version of the same resource, when remote information is available after a

Synchronize operation (only when one of Modified, Incoming, Outgoing and Conflicts

view modes is selected).

• The working copy revision, when the selected resource is from the History view.

Show History

Displays the history of the selected resource (from the Working Copy or Repository views) in the

History view.

Show Annotation

Displays the annotations of the selected resource. The selected resource can be in the Working

Copy or the History views.

Revision Graph

Displays the revision graph of the selected resource. The selected resource can be in the

Working Copy or the Repositories views.

Enable/Disable flexible layout

Toggles between a fixed and a flexible layout. When the flexible layout is enabled, you can move

and dock the internal views to adapt the application to various viewing conditions and personal

requirements.

Status Bar

The status bar of the Syncro SVN Client window displays important details of the current status of the

application. This information is available only in the Working Copy view.

Figure 682. Status bar

The status bar is composed of the following areas:

• The path of the currently processed file from the current working copy (during an operation such as

Check out or Synchronize) or the result of the last operation.

• The current status of the following working copy options:

◦ Show ignored files ().

◦ Show deleted files ().

◦ Process svn:externals definitions ().

The options for ignored and deleted files are switched on and off from the Settings menu (on page

2872) of the Working Copy panel:

• The format of the currently loaded working copy.

Oxygen XML Editor 27.1 | 20 - Tools | 2787

• The current numbers of incoming changes (), outgoing changes () and conflicting changes

().

• A progress bar for the currently running SVN operation and a button () that allows you to stop it.

Getting Started

This section explains the basic operations that can be done in Syncro SVN Client.

SVN Repository Location

This section explains how to add and edit the repository locations in Syncro SVN Client.

Add / Edit / Remove Repository Locations

Usually, team members do all of their work separately, in their own working copy, and then must share their

work by committing their changes. This is done using an Apache Subversion™ repository. Oxygen XML Editor

supports versions 1.4, 1.5, 1.6, 1.7, and 1.8 of the SVN repository format.

Before you can begin working with a Subversion repository, you must define a repository location in the

Repositories view (on page 2861).

To create a repository location, use the New Repository Location action that is available in the Repository

menu, the Repositories view toolbar, and in the contextual menu. This action opens the New Repository

Location dialog box, which prompts you for the URL of the repository (on page 2901) you want to connect to.

You can also use peg revisions at the end of the URLs (on page 2903) (for example, URL@rev1234) to browse

only that specific revision. No authentication information is requested at the time the location is defined. It is

left to the Subversion client to request the user and password information when it is needed. The main benefit

of allowing Subversion to manage your password is that it prompts you for a new password only when your

password changes.

Once you enter the repository URL, Oxygen XML Editor tries to contact the server to get the content of the

repository for displaying it in the Repositories view (on page 2861). If the server does not respond in the

timeout interval set in the preferences, an error is displayed. If you do not want to wait until the timeout

expires, you can use the Stop button from the toolbar of the view.

To edit a repository location, use the Edit Repository Location action that is available in the Repository

menu and in the contextual menu. This action opens the Edit Repository Location dialog box, which prompts

you for the URL of the repository (on page 2901) you want to connect to. You can also use peg revisions at

the end of the URLs (on page 2903) (for example, URL@rev1234) to browse only that specific revision.

To remove a repository location, use the Remove Repository Location action that is available in the

Repository menu and in the contextual menu. A confirmation dialog box is displayed to make sure that you do

not accidentally remove the wrong locations.

Oxygen XML Editor 27.1 | 20 - Tools | 2788

The order of the repositories can be changed in the Repositories view at any time with the Up arrow

and Down arrow buttons on the toolbar of the view. For example, pressing the up arrow once moves the

selected repository in the list up one position.

To set the reference revision number of an SVN repository use the Change the Revision to Browse action

that is available in the Repository menu and in the contextual menu. The revision number of the repository is

used for displaying the contents of the repository when it is viewed in the Repositories view (on page 2861).

Only the files and folders that were present in the repository at the moment when this revision number was

generated in the repository are displayed as contents of the repository tree. Also, this revision number is used

for all the operations executed directly from the Repositories view (on page 2861).

Authentication

Five protocols are supported: HTTP, HTTPS, SVN, SVN + SSH and FILE. If the repository that you are trying

to access is password protected, the Enter authentication data dialog box requests a user name and a

password. If the Store authentication data checkbox is selected, the credentials are stored in the Apache

Subversion™ default directory:

• Windows - %HOME%\Application Data\Subversion\auth. Example: C:\Documents and

Settings\John\Application Data\Subversion\auth

• Linux and macOS - $HOME/.subversion/auth. Example: /home/John/.subversion/auth

There is one file for each server that you access. If you want to make Subversion forget your credentials, you

can use the Reset authentication command from the Options menu. This causes Subversion to forget all your

credentials. When you reset the authentication data, restart Oxygen XML Editor for the change to take effect.

Tip:

The FILE protocol is recommended if the SVN repository and Oxygen XML Editor are located on the

same computer as it ensures faster access to the SVN repository compared with other protocols.

For HTTPS connections where client authentication is required by your SSL server, you must choose the

certificate file and enter the corresponding certificate password that is used to protect your certificate.

When using a secure HTTP (HTTPS) protocol for accessing a repository, a Certificate Information dialog box

is displayed and asks you whether you want to accept the certificate permanently, temporarily, or simply deny

it.

If the repository has SVN+SSH protocol, the SSH authentication can also be made with a private key and a

pass phrase.

Oxygen XML Editor 27.1 | 20 - Tools | 2789

Figure 683. SSH Authentication Dialog Box

After the SSH authentication dialog box, another dialog box appears for entering the SVN user name that

accesses the SVN repository. The SVN user name is recorded as the committer in SVN operations.

When connecting for the first time to a Subversion repository through SVN+SSH protocol, you will be asked to

confirm if you trust the SSH host. The same dialog box is also displayed when the server changed the SSH key

or when the key was deleted from the local Subversion cache folder.

Figure 684. SSH server name and key fingerprint

Oxygen XML Editor 27.1 | 20 - Tools | 2790

Share a Project

Even if you start developing a new project, or you want to migrate an existing one to Subversion, the

Syncro SVN Client allows you to easily share it with the rest of your team. The shared project directory is

automatically converted to a working copy and added under Syncro SVN Client management. The Share

project action is available in the Tools menu and the contextual menu of the Repositories view.

Figure 685. Share Project Dialog Box

The following options can be configured in the Share project dialog box:

Project

The location of the project folder (on page 2901) on the local disk by using the text box or the

Browse button. This folder should not be empty or already under version control.

Important:

By default, the SVN system only imports the content of the specified folder, and not the

root folder itself. Therefore, it is recommended to use the Browse button to select the

project folder so that the client will automatically append the name of it to the specified

URL.

URL

The new location of the project (on page 2901) (inside the repository) that will be used to

access it.

Oxygen XML Editor 27.1 | 20 - Tools | 2791

Note:

Peg revisions have no effect for this operation since it is used to send information to the

repository.

Attention:

If the new location already exists, make sure that it is an empty directory to avoid mixing

your project content with other files (if items exist with the same name, an error will

occur and the operation will not proceed). Otherwise, if the address does not exist, it is

created automatically.

Format

The SVN format of the working copy. You can choose between SVN 1.8 or SVN 1.7.

Share files matching global ignore patterns

When selected, the file names that match the patterns defined in either of the following locations

are also imported into the repository:

• The global-ignores property in the SVN configuration file (on page 2901).

• The File name ignore patterns option (on page 294) in the SVN > Working Copy

preferences page (on page 293).

Enable automatic properties/Disable automatic properties

Enables or disables automatic property assignment (per runtime configuration rules), overriding

the enable-auto-props runtime configuration directive, defined in the SVN configuration file (on

page 2901).

Note:

This option is available only when there are defined properties to be applied

automatically for newly added items under version control. You can define these

properties in the SVN config file (in the auto-props section). Based on the value of the

enable-auto-props runtime configuration directive, the presented option is either Enable

automatic properties, or Disable automatic properties.

Defining a Working Copy

An Apache Subversion™ working copy is an ordinary directory tree on your local system, containing a

collection of files. You can edit these files however you want, your working copy being your private work area.

To make your own changes available to others or incorporate changes made by others, you must explicitly tell

Subversion to do so. You can even have multiple working copies of the same project.

Oxygen XML Editor 27.1 | 20 - Tools | 2792

Figure 686. Working Copy View

A Subversion working copy also contains some extra files, created and maintained by Subversion, to help it

keep track of your files. In particular, each directory in your working copy contains a subdirectory named .svn,

also known as the working copy administrative directory. This administrative directory contains an unaltered

copy of the last updated files from the repository. This copy is usually referred to as the pristine copy or the

BASE revision of the working copy. These files help Subversion recognize which files contain unpublished

changes, and which files are out-of-date with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects. Usually each

project is a subdirectory in the repository's file system tree. In this arrangement, a user's working copy usually

corresponds to a particular sub-tree of the repository.

Check Out a Working Copy

Check out means to make a copy of a project from a repository to your local file system. This copy is called a

working copy. An Apache Subversion™ working copy is a specially formatted directory structure that contains

additional .svn directories that store Subversion information, as well as a pristine copy of each item that is

checked out.

To check out a working copy, locate and select the desired directory in the Repositories view and select the

Check out action from the contextual menu, the toolbar, or the Repository menu.

Oxygen XML Editor 27.1 | 20 - Tools | 2793

Figure 687. Check Out Dialog Box

The following options can be configured in the Check out dialog box:

URL

The location of the repository directory (on page 2901) to be checked out.

Note:

To check out an item that was deleted, moved, or replaced, you need to specify the

original URL (before the item was removed) and use a peg revision (on page 2903) at

the end (for example, URL@rev1234).

Revision

You can choose between the HEAD or Other revision. If you need to check out a specific revision,

specify it in the Other text box or use the History button and choose a revision from the History

dialog box (on page 2794).

Check out to

Specify the location where you want to check out (on page 2901) the new working copy by

typing the local path in the text box or by using the Browse button. If the specified local path

does not point to an existing directory, it will automatically be created.

Important:

By default, the SVN system only checks out the content of the directory specified by the

URL, and not the directory itself. Therefore, it is recommended to use the Browse button

to select the check out location so that the client will automatically append the name of

the remote directory to the path of the selected directory.

Oxygen XML Editor 27.1 | 20 - Tools | 2794

Warning:

The destination directory should be empty. If files exist, they are skipped (left

unchanged) by the check out operation and displayed as modified (on page

2868) after the operation has finished. Also, the destination directory must not

already be under version control.

Format

The SVN format of the working copy. You can choose between SVN 1.8 or SVN 1.7.

Depth

The depth is useful if you want to check out only a part of the selected repository directory and

bring the rest of the files and subdirectories in a future update. You can find out more about the

checkout depth in the sparse checkouts (on page 2860) section. You can choose between the

following depths:

• Recursive (infinity) - Checks out all the files and folders contained in the selected folder.

• Immediate children (immediates) - Checks out only the child files and folders without

recursing subfolders.

• File children only (files) - Checks out only the child files.

• This folder only (empty) - Checks out only the selected folder (no child file or folder is

included).

Ignore "svn:externals" definitions

When selected, external items are ignored in the check out operation. This option is only

available if you choose the Recursive (infinity) depth.

After a check out, the new working copy is added to the list in the Working Copy view (on page 2866) and

loaded automatically.

History Dialog Box

The History dialog box presents a list of revisions for a resource. It is opened from the dialog boxes that

require setting an SVN revision number, such as the Check Out dialog box (on page 2792) or the Branch /

Tag dialog box (on page 2821). It presents information about revision, commit date, author, and commit

comment.

Oxygen XML Editor 27.1 | 20 - Tools | 2795

Figure 688. History Dialog Box

The initial number of entries in the list is 50. Additional revisions can be added to the list using the Get

next 50 and Get all buttons. The list of revisions can be refreshed at any time with the Refresh button.

You can group revisions in predefined time frames (today, yesterday, this week, this month), by pressing the

Group by date button from the toolbar.

The Affected Paths area displays all paths affected by the commit of the revision selected in history. You can

see the changes between the selected revision and the file's previous state using the Compare with previous

version action, available in the contextual menu.

Use an Existing Working Copy

Using an existing working copy is the process of taking a working copy that exists on your file system and

connecting it to the Apache Subversion™ repository. If you have a brand new project that you want to import

into your repository, then see the section Import resources into the repository (on page 2855). The following

procedure assumes that you have an existing valid working copy on your file system.

1. Click the Working Copies Manager toolbar button (on macOS) in the Working Copy view (on

page 2866).

Step Result: This action opens the Working copies list dialog box.

2. Click the Add button.

Oxygen XML Editor 27.1 | 20 - Tools | 2796

3. Select the working folder copy from the file system. The name is useful to differentiate between

working copies located in folders with the same name. The default name is the name of the root folder

of the working copy.

Note:

For SVN 1.7 and newer working copies, all the internal information is kept only in the root

directory. Thus, Syncro SVN Client needs to load the whole working copy.

4. Click the OK button.

The selected working copy is loaded and presented in the Working Copy view (on page 2866).

Notice:

You can add working copies older than SVN 1.7. However, to load any of them, Syncro SVN Client will

require to upgrade the working copy to SVN 1.8 format.

Manage Working Copy Resources

This section explains how to work with the resources that are displayed in the Working Copy view.

Edit Files

You can edit files from the Working Copy view (on page 2866) by double clicking them or by right clicking

them and choosing Open from the contextual menu.

Note that only one file can be edited at a time. If you try to open another file, it is opened in the same editor

window. The editor has syntax highlighting for known file types, meaning that a different color is used for each

type of recognized token in the file. If the selected file is an image, then it is previewed in the editor, with no

access to modifying it.

After modifying and saving a file from a working copy, a modified marker - an asterisk (*) - will be added to the

file's icon in the Working Copy view (on page 2866). The asterisk marks the files that have local modifications

that were not committed to the repository.

Add Resources to Version Control

To share new files and folders (created in your working copy), add them to version control using the Add to

version control option from the Working Copy view (on page 2866).

You can easily spot resources not under version control by the unversioned () icon displayed in the Local

file status column. Resources scheduled for addition are displayed with this added () icon in the Working

Copy view and are added in the repository after you commit them.

Oxygen XML Editor 27.1 | 20 - Tools | 2797

Note:

Do not make a confusion between and icons. The former icon stands for resources that are

actually copies of resources already committed in the repository, meaning they are scheduled for

addition with history.

When you use the Add to version control option on a directory, its entire structure is scanned and all the

resources that can be added under version control are presented.

Although it is not mandatory to add resources under version control explicitly, it is recommended. If you forgot

to add a resource, when you commit your changes (on page 2814), the resource is presented in the commit

dialog box, but not selected. When you commit and unversioned resource, it is automatically added under

version control before starting the commit operation.

Figure 689. Add to Version Control Dialog Box

Note:

Ignored () items can also be added under version control.

The Depth column is displayed only when directories are also presented in the dialog box. For any directory,

you can use one of the available values to instruct Subversion to limit the scope of the operation to a

particular tree depth.

Note:

The initial value of the Depth field can have the following values, depending on the listing mode of the

items in the working copy view (on page 2872):

Oxygen XML Editor 27.1 | 20 - Tools | 2798

• infinity - When the working copy items are presented as a tree.

• files - When the working copy items are presented compressed.

• empty - When the working copy items are presented flat.

When you add unversioned or ignored directories, the initial value of the Depth field also depends on

the state of the Show unversioned directories content and Show ignored directories content options.

If these options are selected, the value is based on the listing mode of the items in the working copy

view. When they are not selected, the value is empty.

The following options are available in this dialog box:

• Enable automatic properties or Disable automatic properties - enables or disables automatic property

assignment (per runtime configuration rules), overriding the enable-auto-props runtime configuration

directive, defined in the config file of the Subversion configuration directory.

Note:

This option is available only when there are defined properties to be applied automatically for

resources newly added under version control. You can define these properties in the config

file of the Subversion configuration directory, in the auto-props section. Based on the value of

the enable-auto-props runtime configuration directive, the presented option is either Enable

automatic properties, or Disable automatic properties.

• No ignore - when you select this option, file-name patterns defined to ignore unversioned resources do

not apply. Resources that are located inside an unversioned directory selected for addition, and match

these patterns, are also scheduled for addition in the repository.

Note:

This option is available only when directories are also presented in the dialog box.

You can define file-name patterns to ignore unversioned resources in one of the following

locations:

◦ In the config file of the Subversion configuration directory (the global-ignores option

from the miscellany section).

◦ In the Oxygen XML Editor options (open the Preferences dialog box (Options >

Preferences) (on page 132) and go to SVN > Working copy > Application global

ignores).

Each of the above two options is activated only when you select an item that can have the option applied.

Ignore Resources Not Under Version Control

Some resources inside your working copy do not need to be subject to version control. These resources

can be files created by the compiler, *.obj, *.class, *.lst, or output folders used to store temporary

Oxygen XML Editor 27.1 | 20 - Tools | 2799

files. Whenever you commit changes (on page 2814), Apache Subversion™ shows your modified files in the

commit dialog box, but the unversioned files are also listed. Since the unversioned files are committed unless

otherwise specified, it is difficult to see exactly what you are committing.

The best way to avoid these problems is to add the derived files to the Subversion ignore list. That way they

are never displayed in the commit dialog box and only genuine unversioned files that must be committed are

displayed.

You can choose to ignore a resource by using the Add to svn:ignore action in the contextual menu of the

Working Copy view (on page 2866).

In the Add to svn:ignore dialog box, you can specify the resource to be ignored by name or by a custom

pattern. The custom pattern can contain the following wildcard characters:

• * - Matches any string of characters of any size, including the empty string.

• ? - Matches any single character.

For example, you can choose to ignore all text documents by using the pattern: *.txt.

The action Add to svn:ignore adds a predefined Subversion property called svn:ignore to the parent directory

of the specified resource. In this property, there are specified all the child resources of that directory that must

be ignored. The result is visible in the Working Copy view. The ignored resources are represented with gray

icons.

Delete Resources

The Delete action is available in the contextual menu of the Working Copy view (on page 2866). When you

delete an item from the working copy, it is marked as deleted (scheduled for deletion from repository upon the

next commit) and removed from the file system. Depending on the state of each item, you are prompted to

confirm the operation.

If a resource is deleted from the file system without Subversion's knowledge, the resource is marked as

missing () in your working copy. You can decide what you want to do with a missing item:

• In the case of a commit, any missing item is first automatically deleted and then committed.

Note:

Not any missing item can be committed as deleted, and removed from the repository. For

example, you cannot commit an item that no longer exists on the disk and that was scheduled

for addition () previously, since this item does not exist in the repository, but you can use the

Delete action instead.

• If you want to recover missing items, either update (on page 2813) the items themselves or one of their

parent directories. This fetches their latest version from the repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2800

You can also delete conflicting items (file content conflicts, property conflicts, tree-conflicts) and Syncro SVN

Client automatically marks them as resolved.

Note:

It is recommended that you resolve conflicts manually to avoid loosing any important remote

modifications.

Finally, you can change your mind and revert (on page 2810) the deleted items to their initial, pristine, state.

Copy Resources

You can copy resources from various locations of the working copy. You select them in the Working Copy view

(on page 2866) and then use Copy to from the contextual menu. This is not a simple file system copy, but

an Apache Subversion™ command. It will copy the resource and the copy will also have the original history.

This is one of the important features of Subversion, as you can keep track of where the copied resources

originated.

Based on the selected items, the Copy to action is available only if it can be performed. Even if the operation

would not normally be possible in SVN (due to some invalid local file states against copy), Oxygen XML Editor

performs the copy operation as a simple file system operation. This means no SVN versioning meta-data is

affected.

Note:

• If you copy an item to a directory that is not under version control (on page 2868)

(unversioned or ignored), the history of the item is not preserved. For example, when copying

directories, all items inside them will also be copied without history.

• If you copy a directory that contains external (on page 2868) items, these are not copied.

This is specific for SVN 1.7 working copies only. To fetch the external items, use the Update

operation on the copied directory.

In the Copy to dialog box, you can navigate through the working copy directories to choose a target directory,

to copy inside it. If you try to copy a single resource you are also able to change that resource's name. For

versioned items, you can select Ignore resource history to copy them without their history (similar to a simple

file system copy).

Note:

The Copy to dialog box only presents all the local directories that are a valid destination against the

copy operation, based on their local file status. Also, the working copy settings (on page 2872) are

taken into account.

In the Commit dialog box, only the directory in question will appear without its children.

Oxygen XML Editor 27.1 | 20 - Tools | 2801

Move Resources

As in the case of the copy command, you can move several resources at once. Select the resources in the

Working Copy view (on page 2866) and choose the Move to action from the contextual menu. The move

command actually behaves as if a copy followed by a delete command were issued. You will find the moved

resources at the desired destination and also at their original location, but marked as deleted.

Note:

External items cannot be moved using the Move to action, because they cannot be deleted. Instead,

you should edit the svn:externals property defining the external item and use the Update operation on

the item's parent folder for the change to take effect.

Attention:

For SVN 1.8 working copies: when committing items that were moved and/or renamed, make sure you

select both the source and the destination. Otherwise, the commit operation will fail.

Rename Resources

The Rename action is available in the contextual menu of the Working Copy view (on page 2866) and can be

performed on a single resource. This action acts as a move command with the destination directory being the

same as the original location of the resource. A copy of the original item is created with the new name, also

keeping its history. The original item is marked as deleted.

Note:

External items cannot be renamed using the Rename action because they cannot be deleted. Instead,

you should edit the svn:externals property defining the external item, then use the Update operation

on the item's parent folder for the change to take effect.

Attention:

For SVN 1.8 working copies: when committing items that were moved and/or renamed, make sure you

select both the source and the destination. Otherwise, the commit operation will fail.

Lock / Unlock Resources

The idea of version control is based on the copy-modify-merge model of file sharing. This model states

that each user contacts the repository and creates a local working copy (check out). Users can then

work independently and modify their working copies according to their needs. When their goal has been

accomplished, it is time for the users to share their work with the others, to send them to the repository

(commit). When a user has modified a file that has been also modified on the repository, the two files will have

to be merged. The version control system assists the user with the merging as much as it can, but in the end

the user is the one that must make sure it is done correctly.

Oxygen XML Editor 27.1 | 20 - Tools | 2802

The copy-modify-merge model only works when files are contextually mergeable: this is usually the case of

line-based text files (such as source code). However this is not always possible with binary formats, such as

images or sounds. In these situations, the users must each have exclusive access to the file, ending up with a

lock-modify-unlock model. Without this, one or more users could end up wasting time on changes that cannot

be merged.

An SVN lock is a piece of metadata that grants exclusive access to a user. This user is called the lock owner. A

lock is uniquely identified by a lock token (a string of characters). If someone else attempts to commit the file

(or delete a parent of the file), the repository demands two pieces of information:

• User authentication - the user performing the commit must be the lock owner

• Software authorization - the user's working copy must have the same lock token as the one from the

repository, proving that it is the same working copy where the lock originated from.

Scanning for Locks

When starting to work on a file that is not contextually mergeable (usually a binary file), it is better to verify if

someone else is not already working on that file. You can do this in the Working Copy view (on page 2866)

by selecting one or more resources, then right-clicking them and choosing the Scan for Locks action from the

contextual menu.

Figure 690. Locked Items Dialog Box

The Locked items dialog box contains a table with all the resources that were found locked on the repository.

For each resource there are specified: resource path, state of the lock, owner of the lock, lock comment,

creation and expiration date for the lock (if any).

The state of the lock can be one of the following:

• - Appears when one of the following conditions apply:

◦ Another user has locked the file in the repository.

◦ The file was locked by the same user from another working copy.

◦ The file was locked from the Repositories view.

• - Displayed after you have locked a file from the current working copy.

Oxygen XML Editor 27.1 | 20 - Tools | 2803

• - A file already locked from your working copy is no longer locked in the repository (it was unlocked

by another user).

• - A file already locked from your working copy is being locked by another user. Now the owner of the

file lock is the user who stole the lock from you.

You can unlock a resource by selecting it and pressing the Unlock button.

Related Information:

Working Copy Locks (on page 2870)

Repository Locks (on page 2861)

Locking a File

By locking a file, you have exclusive write access to it in the repository.

You can lock a file from your working copy or directly from the Repositories view.

Note:

You can only lock files (not directories). This is a restriction imposed by Apache Subversion™.

The Lock dialog box allows you to write a comment when you set a lock or when you steal an existing

one. Note that you should steal a lock only after you made sure that the previous owner no longer needs it.

Otherwise, you may cause an unsolvable conflict, which could be the reason the lock was put there in the first

place. The Subversion server can have a policy concerning lock stealing, as it may not allow you to do this if

certain conditions are not met.

The lock stays in place until you unlock the file or until someone breaks it. There is also the possibility that the

lock expires after a period of time specified in the Subversion server policy.

Unlocking a File

A file can be unlocked from the contextual menu of the Working Copy view (on page 2866). A dialog box will

prompt you to confirm the unlocking and it will also allow you to break the lock (unlock it by force).

Synchronize with Repository

In the work cycle you will need to incorporate other people's changes (update) and to make your own work

available to others (commit). This is what the Incoming and Outgoing modes of the Working Copy view (on

page 2866) was designed for, to help you send and receive modifications from the repository.

The Incoming and Outgoing modes of this view focus on incoming and outgoing changes. The incoming

changes are the changes that other users have committed in the repository since you last updated your

working copy. The outgoing changes are the modifications you made to your working copy as a result of

editing, removing or adding resources.

Oxygen XML Editor 27.1 | 20 - Tools | 2804

The view presents the status of the working copy resources against the BASE revision after a Refresh

operation. You can view the state of the resources versus a repository HEAD revision by using the Synchronize

action from the Working Copy view (on page 2866).

View Differences

One of the most common requirements in project development is to see what changes have been made to

the files from your Working Copy or to the files from the repository. You can examine these changes after a

synchronize operation with the repository, by using the Open in compare editor action from the contextual

menu.

The text files are compared using a built-in Compare view (on page 2890) that uses a line differencing

algorithm or a specified external diff application (if such an application is set in the SVN Diff preferences page

(on page 294)). When a file with outgoing status is involved, the compare is performed between the file from

the working copy and the BASE revision of the file. When a file with incoming or conflict status is involved, the

differences are computed using a three-way algorithm that means that the local file and the repository file are

each compared with the BASE revision of the file. The results are displayed in the same view. The differences

obtained from the local file comparison are considered outgoing changes and the ones obtained from the

repository file comparison are considered incoming changes. If any of the incoming changes overlap outgoing

changes then they are in conflict.

A special case of difference is a diff pseudo-conflict. This is the case when the left and the right sections

are identical but the BASE revision does not contain the changes in that section. By default, this type of

changes are ignored. If you want to change this, you can go to the SVN preferences page and select the Allow

unversioned obstructions option (on page 292).

The right editor of the internal compare view presents either the BASE revision or a revision from the

repository of the file so its content cannot be modified. By default, when opening a synchronized file in the

Compare view, a compare is automatically performed. After modifying and saving the content of the local file

presented in the left editor, another compare is performed. You will also see the new refreshed status in the

Working Copy view (on page 2866).

Oxygen XML Editor 27.1 | 20 - Tools | 2805

Figure 691. Compare View

At the top of each of the two editors, there are presented the name of the open file, the corresponding SVN

revision number (for remote resources) and the author who committed the associated revision.

There are three types of differences:

• Incoming changes - Changes committed by other users and not present yet in your working copy file.

They are marked with a blue highlight and on the middle divider the arrows point from right to left.

• Outgoing changes - Changes you have done in the content of the working copy file. They are marked

with a gray highlight and the arrows on the divider are pointing from left to right.

• Conflicting changes - This is the case when the same section of text that you already modified in the

local file has been modified and committed by some other person. They are marked with a red highlight

and red diamonds on the divider.

There are numerous actions and options available in the Compare View toolbar (on page 2891) or in the

Compare menu from the main menu. You can decide that some changes need adjusting or that new ones

must be made. After you perform the adjustments, you may want to perform a new compare between the

files. For this case there is an action called Perform files differencing. After each files differencing operation

the first found change will be selected. You can navigate from one change to another by using the actions

Go to first, Go to previous, Go to next and Go to last modification. If you decide that some incoming change

needs to be present in your working file you can use the action Copy change from right to left. This is useful

also when you want to override the outgoing modifications contained in a conflicting section. The Copy all

Oxygen XML Editor 27.1 | 20 - Tools | 2806

non-conflicting changes from right to left action copies all incoming changes that are not contained inside a

conflicting section in your local file.

Suppose that only a few words or letters are changed. Considering that the differences are performed taking

whole lines of text into account, the change will contain all the lines involved. To find exactly what words or

letters have changed, the Word Details and Character Details dialog boxes are available. They present a more

detailed comparison result when you double-click the middle divider of a difference.

When you want to examine only the changes in the real text content of the files, while disregarding the

changes in the number of white spaces between words or lines, there is an option available in the SVN

Preferences (on page 291) that allows you to enable or disable the white space ignoring feature of the

compare algorithm.

Conflicts

A file conflict occurs when two or more developers have changed the same few lines of a file or the properties

of the same file. As Subversion knows nothing of your project, it leaves resolving the conflicts to the

developers. Whenever a conflict is reported, you should open the file in question, and try to analyze and

resolve the conflicting situation.

Real Conflicts vs Mergeable Conflicts

There are two types of conflicts:

• real conflict (icon in Name column) - Syncro SVN Client considers the following resource states to

be real conflicts:

◦ conflicted state - A file reported by SVN as being in this state is obtained after it was updated/

merged while having incoming and outgoing content or property changes at the same time,

changes that could not be merged. A content conflict (icon in Local file status column) is

reported when the modified file has binary content or it is a text file and both local and remote

changes were found on the same line. A properties conflict (icon in Local properties status

column) is reported when a property's value was modified both locally and remotely.

◦ tree conflicted state (icon in Local file status column) - Obtained after an update or merge

operation, while having changes at the directory structure level (for example, file is locally

modified and remotely deleted or locally scheduled for deletion and remotely modified).

◦ obstructed state (icon in Local file status column) - Obtained after a resource was versioned

as one kind of object (file, directory, symbolic link), but has been replaced outside Syncro SVN

Client by a different kind of object.

• pseudo-conflict (icon in Name column) - A file is considered to be in pseudo-conflict when it

contains both incoming and outgoing changes. When incoming and outgoing changes do not intersect,

an update operation may automatically merge the incoming file content into the existing locally one.

In this case, the pseudo-conflict marker is removed. This marker is used only as a warning that should

prevent you to run into a real conflict.

Oxygen XML Editor 27.1 | 20 - Tools | 2807

Note:

• A conflicting resource cannot be committed to repository. You have to resolve it first, by using

Mark Resolved action (after manually editing/merging file contents) or by using Mark as

Merged action (for pseudo-conflicts).

• and icons are presented only when one of the following view modes is selected:

Modified, Incoming, Outgoing, Conflicts.

• The icon is used also for folders to signal that they contain a file in real conflict or pseudo-

conflict state.

Content Conflicts vs Property Conflicts

A Content conflict appears in the content of a file. A merge occurs for every inbound change to a file that is

also modified in the working copy. In some cases, if the local change and the incoming change intersect each

other, Apache Subversion™ cannot merge these changes without intervention. So if the conflict is real when

updating the file in question the conflicting area is marked like this:

 <<<<<<< filename

 your changes

 ======

 code merged from repository

 >>>>>>> revision

Also, for every conflicted file Subversion places three additional temporary files in your directory:

• filename.ext.mine - This is your file as it existed in your working copy before you updated your

working copy, that is without conflict markers. This file has your latest changes in it and nothing else.

• filename.ext.rOLDREV - This is the file that was the BASE revision before you updated your

working copy, that is the file revision that you updated before you made your latest edits.

• filename.ext.rNEWREV - This is the file that Subversion client just received from the server when

you updated your working copy. This file corresponds to the HEAD revision of the repository.

OLDREV and NEWREV are revision numbers. If you have conflicts with binary files, Subversion does not

attempt to merge the files by itself. The local file remains unchanged (exactly as you last changed it) and you

will get filename.ext.r* files also.

A Property conflict is obtained when two people modify the same property of the same file or folder. When

updating such a resource a file named filename.ext.prej is created in your working copy containing the

nature of the conflict. Your local file property that is in conflict will not be changed. After resolving the conflict,

you should use the Mark resolved action to commit the file. Note that the Mark resolved action does not really

resolve the conflict. It just removes the conflicted flag of the file and deletes the temporary files.

Oxygen XML Editor 27.1 | 20 - Tools | 2808

Edit Real Content Conflicts

The conflicts of a file in the conflicted state (a file with the red double arrow icon) can be edited visually

with the Compare view (the built-in file comparison tool) or with an external diff application (on page 291).

Resolving the conflict means deciding for each conflict if the local version of the change will remain or the

remote one instead of the special conflict markers inserted in the file by the SVN server.

The Compare view (or the external diff application set in Preferences (on page 291)) is opened with the

Edit Conflict action, which is available on the contextual menus of the Working Copy view (on page 2866)

for files in the conflicted state (an update operation was executed but the differences could not be merged

without conflicts). The external diff application is called with 3 parameters because it is a 3-way diff operation

between the local version of the file from the working copy and the HEAD version from the SVN repository with

the BASE version from the working copy as common ancestor.

If theShow warning dialog when edit conflicts option (on page 295) is selected, you will be warned at the

beginning of the operation that the operation will overwrite the conflict version of the file received from the

SVN server (the version that contains the conflict markers <<<<<<<, =======, >>>>>>>) with the original local

version of the file that preceded the update operation. If you click the OK button the visual conflict editing will

proceed and a backup file of the conflict version received from the SVN server is created in the same working

copy folder as the file with the edited conflicts. The name of the backup file is obtained by appending the

extension .sync.bak to the file as stored on the SVN server. If you click the Cancel button the visual editing

will be aborted.

The usual actions on the differences between two versions of a file are available on the toolbar of this view:

Save

Saves the modifications of the local version of the file displayed in the left side of the view.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before

performing the comparison, the application normalizes the content and trims its leading and

trailing whitespaces.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both

panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Formats and indents both files before comparing them. Use this option for comparisons that

contain long lines that make it difficult to spot differences.

Oxygen XML Editor 27.1 | 20 - Tools | 2809

Note:

When comparing two JSON files, the Format and Indent Both Files action will

automatically sort the keys in both files the same to make it easier to compare.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is positioned

on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the cursor is

positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last change from the

current block of changes is reached, it highlights the next block of changes. This action is not

available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first change from

the current block of changes is reached, it highlights the previous block of changes. This action

is not available when the cursor is positioned on the first change or when there are no changes.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

The operation begins by overwriting the conflict version of the file received from the SVN server (the version

that contains the conflict markers <<<<<<<, =======, >>>>>>>) with the original local version of the file before

running the update action that created the conflict. After that the differences between this original local

version and the repository version are displayed in the Compare view.

If you want to edit the conflict version of the file directly in a text editor instead of the visual editing offered by

the Compare view you should work on the local working copy file after the update operation without running

the action Edit Conflict. If you decide that you want to edit the conflict version directly after running the action

Edit Conflict you have to work on the .sync.bak file.

Oxygen XML Editor 27.1 | 20 - Tools | 2810

If you did not finish editing the conflicts in a file at the first run of the action Edit Conflict you can run the

action again and you will be prompted to choose between resuming the editing where the previous run left it

and starting again from the conflict file received from the SVN server.

After the conflicts are edited and saved in the local version of the file you should run one of the following:

• The Mark Resolved action on the file so that the result of the conflict editing process can be committed

to the SVN repository.

• The Revert action so that the repository version overwrites all the local modifications.

Both actions remove the backup file and other temporary files created with the conflict version of the local file.

Revert Your Changes

If you want to undo changes made in your working copy, since the last update, select the items you are

interested in, right-click to display the contextual menu and select Revert. A dialog box will open that shows

you the files and folders that you have changed and can be reverted. Select those you want to revert and click

the OK button. Revert will undo only your local changes. It does not undo any changes that have already been

committed. If you choose to revert a conflicting item to its pristine copy, then the eventual conflict is solved by

losing your outgoing modifications. If you try to revert a resource not under version control, the resource will

be deleted from the file system.

Note:

By default, a directory will be recursively reverted (including any other modified item it contains).

However, if the directory has only property changes, you need to explicitly choose if the operation will

include any modified items found inside it.

If you want some of your outgoing changes to be overridden you must first open the file in Compare view (on

page 2890) and choose the sections to be replaced with ones from the repository file. This can be achieved

either by editing directly the file or by using the action Copy change from right to left from the Compare view

toolbar (on page 2891). After editing the conflicting file you have to run the action Mark as merged before

committing it.

If you want to drop all local changes and bring all incoming changes into your working copy resource, you can

use the Override and update action. It discards the changes in the local file and updates it from the repository.

A dialog box will display the files that will be affected.

Oxygen XML Editor 27.1 | 20 - Tools | 2811

Figure 692. Override and Update Dialog Box

In the first table of the dialog box you will be able to see the resources that will be overridden. In the second

table you will find the list of resources that will be updated. Only resources that have an incoming status are

updated.

Tip:

If you want to roll-back out of your working copy changes that have already been committed to the

repository, see Merge Revisions (on page 2828).

Merge Conflicted Resources

Before you can safely commit your changes to the repository you must first resolve all conflicts. In the case

of pseudo-conflicts they can be resolved in most cases with an update operation that will merge the incoming

modifications into your working copy resource. In the case of real conflicts, conflicts that persist after an

update operation, it is necessary to resolve the conflict using the built-in compare view and editor or, in the

case of properties conflict, the Properties view (on page 2894). Before you can commit you must mark as

resolved the affected files.

Both pseudo and real conflicts can be resolved without an update. You should open the file in the compare

editor and decide which incoming changes need to be copied locally and which outgoing changes must

Oxygen XML Editor 27.1 | 20 - Tools | 2812

be overridden or modified. After saving your local file you have to use the Mark as merged action from the

contextual menu before committing.

Drop Incoming Modifications

In the situation when your file is in conflict but you decide that your working copy file and its content is the

correct one, you can decide to drop some or all of the incoming changes and commit afterwards. The action

Mark as merged proves to be useful in this case too. After opening the conflicting files with Compare view

(on page 2890), Editor (on page 2887) or editing their properties in the Properties view and deciding that

your file can be committed in the repository replacing the existing one, you should use the Mark as merged

action. When you want to override completely the remote file with the local file you should run the Override

and commit action, which drops any remote changes and commits your file.

In general it is much safer to analyze all incoming and outgoing changes using the Compare view and only

after to update and commit.

Tree Conflicts

A tree conflict is a conflict at the directory tree structure level and occurs when the user runs an update action

on a resource that has the following conditions:

• It is locally modified and the same resource was deleted from the repository (or deleted as a result of

being renamed or moved).

• It was locally deleted (or deleted as a result of being renamed or moved) and the same resource is

incoming as modified from the repository.

The same conflict situation can occur after a merge or a switch action. The action ends with an error and the

folder containing the file that is now in the tree conflict state is also marked with a conflict icon.

Such a conflict can be resolved in one of the following ways that are available when the user double clicks on

the conflicting resource or when running the Edit conflict action:

Oxygen XML Editor 27.1 | 20 - Tools | 2813

Figure 693. Resolve a tree conflict

• Keep local change (delete resource) - Keeps the incoming change that comes from the repository.

• Keep incoming modified resource - If there is a renamed version of the file committed by other user

that will be added to the working copy too.

Update the Working Copy

While you are working on a project, other members of your team may be committing changes to the project

repository. To get these changes, you have to update your working copy. Updating may be done on single files,

a set of selected files, or recursively on entire directory hierarchies. The update operation can be performed

from Working Copy view (on page 2866). It updates the selected resources to the last synchronized revision

(if remote information is available) or to the HEAD revision of the repository.

There are three different kinds of incoming changes:

• Non-conflicting - A non-conflicting change occurs when a file has been changed remotely but has not

been modified locally.

• Conflicting, but auto-mergeable - An auto-mergeable conflicting change occurs when a text file has

been changed both remotely and locally (for example, has non-committed local changes) but the

changes are on different lines of text. Not applicable to binary resources (for example, multimedia files,

PDFs, executable program files)

• Conflicting - A conflicting change occurs when one or more of the same lines of a text file have been

changed both remotely and locally.

Oxygen XML Editor 27.1 | 20 - Tools | 2814

If the resource contains only incoming changes or the outgoing changes do not intersect with incoming ones

then the update will end normally and the Subversion system will merge incoming changes into the local file.

In the case of a conflicting situation the update will have as result a file with conflict status.

The Oxygen XML Editor allows you to update your working copy files to a specific revision, not only the most

recent one. This can be done by using the Update to revision/depth action from the Working Copy view (All

Files view mode) or the Update to revision action from the History view (on page 2881) contextual menu.

If you select multiple files and folders and then you perform an Update operation, all of those files and folders

are updated one by one. The Subversion client makes sure that all files and folders belonging to the same

repository are updated to the exact same revision, even if between those updates another commit occurred.

When the update fails with a message saying that there is already a local file with the same name Subversion

tried to check out a newly versioned file, and found that an unversioned file with the same name already exists

in your working folder. Subversion will never overwrite an unversioned file unless you specifically do this

with an Override and update action. If you get this error message, the solution is simply to rename the local

unversioned file. After completing the update, you can check to see if the renamed file is still needed.

Send Your Changes to the Repository

Sending the changes you made to your working copy is known as committing the changes. If your working

copy is up-to-date and there are no conflicts, you are ready to commit your changes.

The Commit action sends the changes from your local working copy to the repository. The Commit dialog box

presents all the items that you can commit.

Oxygen XML Editor 27.1 | 20 - Tools | 2815

Figure 694. Commit dialog box

Enter a message to associate with the commit, or choose a previous message from the Previous messages

list (the last 10 commit messages will be remembered even after restarting the SVN client application).

An item that can be committed has one of the following states: added, modified (content or properties),

replaced, and deleted. All items that have one of these states are selected in the dialog box by default. If you

do not want to commit one of the items, deselect it.

Attention:

For SVN 1.8 working copies: when committing items that were moved and/or renamed, make sure you

select both the source and the destination. Otherwise, the commit operation will fail.

Besides the items that have one of the mentioned states, Syncro SVN Client also includes the files being

unversioned or missing and these items are handled automatically:

• Unversioned items are added under version control.

• Missing items are deleted.

Oxygen XML Editor 27.1 | 20 - Tools | 2816

Note:

If the Show unversioned directories content option is not selected, the Commit dialog box does not

display the items inside an unversioneddirectory.

Unversioned or missing items are not selected by default in the Commit dialog box, unless you have selected

them explicitly when issuing the commit command.

Note:

In some cases, items that have one of the above states are not presented in the Commit dialog box.

For example:

• Items that have been added or replaced previously, but now are presented as missing after

being removed from the file system, outside of an SVN client. Such items do not exist in the

repository and you should use the Delete action to remove them from your working copy.

• Items that have incoming changes from the repository, after a synchronization. You need to

have your working copy up-to-date before committing your changes.

• Files that, after a synchronization, appear as locked by other users or from other locations than

the current working copy.

Note:

Due to dependencies between items, when you select or clear an unversioned () or added ()

item in the Commit dialog box, other items with one of these states can be selected or cleared

automatically.

The modifications that will be committed for each file can be reviewed in the compare editor window by

double-clicking a file in the Commit dialog box, or by right-clicking and selecting the Show Modifications

action from the contextual menu. This option is available to review only file content changes, not property

changes.

The Local file status column indicates the actual state of the items and the Local properties status

column indicates whether or not the properties of an item are modified.

The Lock information column is displayed if at least one of the files in the Commit dialog box has lock

information associated with it, valid against the commit operation.

The following options are available in this dialog box:

Oxygen XML Editor 27.1 | 20 - Tools | 2817

• Enable automatic properties or Disable automatic properties - enables or disables automatic property

assignment (per runtime configuration rules), overriding the enable-auto-props runtime configuration

directive, defined in the config file of the Subversion configuration directory.

Note:

This option is available only when there are defined properties to be applied automatically for

resources newly added under version control. You can define these properties in the config

file of the Subversion configuration directory, in the auto-props section. Based on the value of

the enable-auto-props runtime configuration directive, the presented option is either Enable

automatic properties, or Disable automatic properties.

• Keep locks - selecting the Keep locks option preserves any locks you set on various files.

Note:

This option is available only when files that you locked are presented in the dialog box.

Each of the above options is activated only when you select an item that can have the option applied.

Your working copy must be up-to-date with respect to the resources you commit. This is ensured by using the

Update action prior to committing, resolving conflicts and re-testing as needed. If your working copy resources

you are trying to commit are out of date you will get an appropriate error message.

Committing to Multiple Locations

Although Subversion does not support committing to multiple locations at once, Syncro SVN Client offers this

functionality regarding external items.

If items to be committed belong to different external definitions than those found in the working copy, they

are grouped under the corresponding item that indicates their repository origin. Each parent item is rendered

bold and its corresponding repository location is presented when hovering it. Parent items are decorated with

a small arrow () if they are external definitions. The working copy root directory is never decorated and is

not presented if there are no external items listed (all items belong to the main working copy). Each child item

is presented relative to the parent item.

Note:

When an external directory has modifications of its own, it is presented both as a parent item and as

an item that you can select and commit. This is always the case for external files.

The sets of items belonging to external definitions from the same repository are committed together, resulting

a single revision. So, the number of revisions can be smaller than the number of externals. External definitions

are considered from the same repository if they have the same protocol, server address, port, and repository

address within the server.

Oxygen XML Editor 27.1 | 20 - Tools | 2818

Note:

External files are always from the same repository as the parent directory that defines them, so they

are always committed together with the changes from their parent directory.

Integration with Bug Tracking Tools

Users of bug tracking systems can associate the changes they make in the repository resources with a

specific ID in their bug tracking system. The only requirement is that the user includes the bug ID in the

commit message that they enter in the Commit dialog box. The format and the location of the ID in the

commit message are configured with SVN properties.

To make the integration possible Syncro SVN Client needs some data about the bug tracking tool used in the

project. You can configure this using the following SVN properties (on page 2820) that must be set on the

folder that contains resources associated with the bug tracking system (usually they are set recursively on the

root folder of the working copy):

• bugtraq:message - A string property. If it is set the Commit dialog box (on page 2814) will display a

text field for entering the bug ID. It must contain the string %BUGID%, which is replaced with the bug

number on commit.

• bugtraq:label - A string property that sets the label for the text field configured with the

bugtraq:message property.

• bugtraq:url - A string property that is the URL pointing to the bug tracking tool. The URL string should

contain the substring %BUGID% which Syncro SVN Client replaces with the issue number. That way

the resulting URL will point directly to the correct issue.

• bugtraq:warnifnoissue - A boolean property with the values true/yes or false/no. If set to true, the

Syncro SVN Client will warn you if the bug ID text field is left empty. The warning will not block the

commit, only give you a chance to enter an issue number.

• bugtraq:number - A boolean property with the value true or false. If this property is set to false, then

any character can be entered in the bug ID text field. If the property is set to true or is missing then only

numbers are allowed as the bug ID.

• bugtraq:append - A boolean property. If set to false, then the bug ID is inserted at the beginning of the

commit message. If yes or not set, then it is appended to the commit message.

• bugtraq:logregex - This property contains one or two regular expressions, separated by a newline. If

only one expression is set, then the bug ID's must be matched in the groups of the regular expression

string (for example, [Ii]ssue #?(\d+)). If two expressions are set, then the first expression is used to

find a string which relates to a bug ID but may contain more than just the bug ID (for example, Issue

#123 or resolves issue 123). The second expression is then used to extract the bug ID from the string

extracted with the first expression. An example: if you want to catch every pattern issue #XXX and issue

#890, #789 inside a log message you could use the following strings:

◦ [Ii]ssue #?(\d+)(,? ?#?(\d+))+

◦ (\d+)

Oxygen XML Editor 27.1 | 20 - Tools | 2819

The data configured with these SVN properties is stored on the repository when a revision is committed. A

bug tracking system or a statistics tool can retrieve the revisions that affected a bug from the SVN server and

present the commits related to that bug to the user of the bug tracking system.

If the bugtraq:url property was filled in with the URL of the bug tracking system and this URL includes the

%BUGID% substring as specified above in the description of the bugtraq:url property then the History view

(on page 2881) presents the bug ID as a hyperlink in the commit message. Clicking such a hyperlink in the

commit message of a revision opens a Web browser at the page corresponding to the bug affected by that

commit.

Obtain Information for a Resource

This section explains how to obtain information for a SVN resource:

Request Status Information for a Resource

While you are working with the SVN Client you often need to know which files you have changed, added,

removed, or renamed, or even which files got changed and committed by others. This is where the

Synchronize action from the Working Copy view (on page 2866) comes in handy. The Working Copy view

shows you every file that has changed your working copy, as well as any unversioned files you may have.

If you want more detailed information about a given resource, you can use the Show SVN Information

action. This action is available from the File menu or the contextual menu of the Working Copy, Repositories,

History, or Directory Change Set views, or from the Revision Graph dialog box. The SVN Information dialog

box will be displayed, showing information about the selected resource. The information displayed depends

on the location of the item (local or remote) and may include the following:

• Local path and repository location

• Revision number

• Last change author, revision and date

• Information about locks

• Local file status

• Local properties status

• Local directory depth

• Repository location and revision number for copied files or directories

• Path information about locally moved items

• Path information about conflict generated files

• Remote file status

• Remote properties status

• File size and other information

The value of a property of the resource displayed in the dialog box can be copied by right-clicking the property

and selecting the Copy action.

Oxygen XML Editor 27.1 | 20 - Tools | 2820

Request History for a Resource

In Apache Subversion™, both files and directories are versioned and have a history. If you want to examine the

history for a selected resource and find out what happened at a certain revision you can use the History view

that can be accessed from Repositories view (on page 2861), Working Copy view (on page 2866), Revision

Graph (on page 2896), or Directory Change Set view (on page 2886). From the Working copy view you can

display the history of local versioned resources. If the view is not displayed, it can be opened by selecting it

from the Window > Show View menu.

Related Information:

History View (on page 2881)

Management of SVN Properties

In the Properties view (on page 2894) you can read and set the Apache Subversion™ properties of a file or

folder. There is a set of predefined properties with special meaning to Subversion. For more information about

properties in Subversion see the SVN Subversion specification. Subversion properties are revision-dependent.

After you change, add or delete a property for a resource, you have to commit your changes to the repository.

If you want to change the properties of a given resource you need to select that resource from the Working

Copy view (on page 2866) and run the Show properties action from the contextual menu. The Properties

view (on page 2894) will show the local properties for the resource in the working copy. Once the Properties

view is visible, it will always present the properties of the currently selected resource. There are actions

available in the Properties view toolbar (on page 2895) that allows you to add, change, and delete the

properties.

If you choose the Add a new property action, a new dialog box will appear that contains the following:

• Name - Combo box that allows you to enter the name of the property. The drop-down menu of

the combo box presents the predefined Subversion properties (such as svn:ignore, svn:externals,

svn:needs-lock, etc.)

• Current value - Text area that allows you to enter the value of the new property.

If the selected item is a directory, you can also set the property recursively on its children by selecting the Set

property recursively checkbox.

If you want to change the value for a previously set property, you can use the Edit property action, which will

display a dialog box with the following information:

• Name - Property name (cannot be changed).

• Current value - The current value (can be changed).

• Base value - The value of the property, if any, from the resource in the pristine copy (cannot be

changed).

Oxygen XML Editor 27.1 | 20 - Tools | 2821

If you want to completely remove a property previously set you can choose the Remove property action. It will

display a confirmation dialog box where you can also choose if the property will be removed recursively.

There is a Refresh action in the Properties view (on page 2894) that can be used when the properties have

been changed from outside the view. This can happen, for example, when the view was already presenting the

properties of a resource and they have been changed after an Update operation.

Branches and Tags

One of the fundamental features of version control systems is the ability to create a new line of development

from the main one. This new line of development will always share a common history with the main line if you

look far enough back in time. This line is known as a branch. Branches are mostly used to try out features or

fixes. When the feature or fix is finished, the branch can be merged back into the main branch (trunk).

Another feature of version control systems is the ability to take a snapshot of a particular revision, so you can

at any time recreate a certain build or environment. This is known as tagging. Tagging is especially useful

when making release versions.

In Apache Subversion™, there is no difference between a tag and a branch. On the repository, both are ordinary

directories that are created by copying. The trick is that they are cheap copies instead of physical copies.

Cheap copies are similar to hard links in Unix, which means that they merely link to a specific tree and revision

without making a physical copy. As a result, branches and tags occupy little space on the repository and are

created very quickly.

Provided that nobody ever commits to the directory in question, it remains a tag. If people start committing to

it, it becomes a branch.

Create a Branch / Tag

To create a branch or tag by copying a directory, use the Branch/Tag action that is available in the Tools menu

when an item is selected in the Working Copy view (on page 2866) or Repositories view (on page 2861), or

from the contextual menu of the Repositories view.

Oxygen XML Editor 27.1 | 20 - Tools | 2822

Figure 695. Branch/Tag Dialog Box

You can configure the following options in this dialog box:

You can specify the source revision of the copy in the Copy from section. You can choose between the

following options:

• HEAD revision in the repository - The new branch or tag will be copied in the repository from the HEAD

revision. The branch will be created very quickly, as the repository will make a cheap copy.

• Specific revision in the repository - The new branch will be copied into the repository, but you can

specify the exact desired revision. For example, this is useful if you forgot to make a branch or tag

when you released your application. If you click the History button you can select the revision number

from the History dialog box (on page 2794). This type of branch will also be created very quickly.

• Working copy - (Available only if the item is selected from the Working copy view). The new branch

will be a copy of your local working copy. If you have updated some files to an older revision in your

working copy, or if you have made local changes, that is exactly what goes into the copy. This involves

transferring some data from your working copy back to the repository, or more specifically, the locally

modified files.

You can specify the location of the new branch or tag in the Destination section:

Oxygen XML Editor 27.1 | 20 - Tools | 2823

• Into repository's directory - The URL of the parent directory (on page 2901) of the new branch or tag.

Note:

Peg revisions have no effect for this operation since it is used to send information to the

repository.

• Under the name - You can specify another branch or tag name other than the name of the resource

selected in the Repositories or Working copy view.

The new branch or tag will be created as a child of the specified URL of the repository directory and will have

the new name.

Merging

At some stage during the development process, you will want to merge the changes made on a branch back

into the trunk, or vice-versa. The merge is accomplished by comparing two points (branches or revisions) in

the repository and applying the obtained differences to your working copy. This process is closely related to

the diff concept.

Note:

A branch is a line of development that exists independently of another line, yet still shares a common

history if you look far enough back in time. A branch always begins life as a copy of something (such

as a trunk, another branch, or tag), and moves on from there, generating its own history.

The Merge action is available in the Tools menu. The working copy item selected when you issued the

command will be the one receiving the generated changes. If there is no item selected, the merge operation

will be performed on the entire working copy.

Oxygen XML Editor 27.1 | 20 - Tools | 2824

Figure 696. Merge Wizard

The four types of merging are as follows:

• Merge revisions (on page 2827) - Port changes from one branch to another. Note that the trunk can

also be considered a branch, in this context.

• Synchronize branch (on page 2829) - Fetch all the changes made on a parent branch (or the trunk) to a

child branch.

• Reintegrate a branch (on page 2831) - Merge a branch back to its parent branch (can also be the

trunk).

• Merge two different trees (on page 2833) - Integrate the changes done on a branch to a different

branch.

It is recommended that you enable the following pre-merge check:

Perform pre-merge best practices checks of the working copy target (on page 2825) - When selected, the

SVN Client checks if the working copy target item is ready for the merge operation and displays the pre-merge

checks wizard page.

Oxygen XML Editor 27.1 | 20 - Tools | 2825

Remember:

It is a good idea to perform a merge into an unmodified working copy. If you have made changes to

your working copy, commit them first. If the merge does not go as you expect, you may want to revert

the changes and revert cannot recover your uncommitted modifications.

Important:

The above recommendation becomes mandatory when reintegrating a branch (on page 2823).

Pre-Merge Checks

Before performing a merge, it is recommended to make sure that the working copy target item is ready for

the merge operation. The SVN Client includes a best practices step that checks various conditions of the

working copy target item to ensure that the merge operation will succeed. By selecting the Perform pre-merge

best practices checks of the working copy target option in the first page of the Merge wizard, the Pre-merge

checks wizard page is displayed to give you a summary of the verified conditions.

Figure 697. Pre-Merge Checks Wizard Page

The following conditions are checked in this operation:

No local modifications

Oxygen XML Editor 27.1 | 20 - Tools | 2826

The working copy item (or any of its children) receiving the merge should not contain

uncommitted changes, to make it easier to revert merge-generated changes if you encounter

unexpected results.

Tip:

If this condition fails, you should commit or revert the local modifications before

merging.

No switched children

None of the children of the working copy item receiving the merge should be switched, to avoid

incomplete merges and subtree mergeinfo.

Tip:

If this condition fails, you should switch back all the children before merging.

Complete working copy tree

The working copy item receiving the merge should be a complete directory tree structure with an

infinite depth, to avoid incomplete merges and subtree mergeinfo.

Tip:

If this condition fails, you should change the sticky depth of the working copy item

receiving the merge to infinity value.

No mixed revisions

To avoid unexpected merge conflicts, the working copy item that is receiving the merge should

not contain items that were updated to other revisions.

Tip:

If this condition fails, you should update the working copy before merging.

Each condition is marked with an icon that represents the state of the condition. The possible states are as

follows:

• (Successful) - The condition is fulfilled successfully.

• (Warning) - The condition is not fulfilled, but it is not mandatory.

• (Error) - The condition is not fulfilled and is mandatory (therefore, the operation cannot proceed until

you solve the error).

Oxygen XML Editor 27.1 | 20 - Tools | 2827

Tip:

For each condition state, a message is displayed that gives you additional information about the

results and, for warning or errors, a hint that explains how you can solve them.

Important:

After solving any of the warnings or errors, it is recommended that you perform the pre-merge checks

again to make sure your new changes are valid.

Merge Revisions

This case is when you have made one or more changes to a branch and you want to duplicate them in another

branch. For example, suppose you know that a problem has been fixed by committing revisions 17, 20, and 25

on branch B1. These changes are also needed in branch B2. Thus, to merge them, you need a working copy of

the B2 branch.

To merge revisions from a different branch, follow these steps:

1. Go to menu Tools > Merge.

The Merge wizard is opened.

2. Select the Merge revisions option.

3. It is recommended that you select the Perform pre-merge best practices checks of the working copy

target option to make sure that the working copy target item is ready for the merge operation.

a. Click the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected,

the Pre-Merge Checks wizard page (on page 2825) is displayed.

Note:

If errors are found you need to solve them before proceeding.

4. Click the Next button.

The Merge revisions wizard page is displayed.

5. In the Merge from (URL) text box, enter the URL of the branch or tag (on page 2901) that contain the

changes that you want to duplicate in your working copy.

You may also click the Browse button to browse the repository and find the desired branch. If you have

previously merged from this branch, then you can simply use the drop-down menu, which displays a

history of previously used URLs.

Note:

If the URL belongs to a different repository than the working copy, the Ignore ancestry / Disable

merge tracking option (in the Merge Options wizard page (on page 2836)) will be selected

Oxygen XML Editor 27.1 | 20 - Tools | 2828

automatically (and you cannot change this). This is because the Subversion client cannot track

changes between different repositories (on page 2839).

Tip:

You can also specify a peg revision (on page 2903) at the end of the URL (for example,

URL@rev1234). The peg revision does not affect the merge range you select. By default, the HEAD

revision is assumed.

6. In the Revisions to merge section, choose between the all revisions and specific revision(s) options.

◦ all revisions - The operation will include all eligible revisions that were not yet merged.

◦ specific revision(s) - You can specify one or more individual revisions and/or revision ranges.

Also, you can mix forward ranges (for example, 1-5), backward ranges (for example, 20-15), and

subtract specific revisions from a range (for example, 1-5, -3).

Note:

If using the Subversion command-line client, a revision range of the form 1-5 means all

changes starting from revision 2 up to revision 5 (the changes necessary to reach revision 5,

committed after revision 1). Unlike the Subversion command-line client, in Syncro SVN Client

the revision ranges are inclusive, meaning that it will process all revisions, starting with revision

1, up to and including revision 5.

Attention:

The HEAD revision is the only non-numerical revision allowed, and it can only be used when

specifying revision ranges as one of the ends of the range (for example, 10-HEAD). Be careful

when using it, as it might not refer to the desired revision, if it has recently been committed by

another user.

Tip:

If you want to perform a reverse merge and roll-back your working copy changes that have

already been committed to the repository, use the negative revisions notation (for example, -7)

or backward revision ranges (for example, 20-10).

a. If you click the History button, the History dialog box (on page 2794) is displayed, which allows

you to select one or more revisions to be merged.

7. Optionally, if you want to configure the options (on page 2836) for your merge, click the Next button.

The Merge Options wizard page (on page 2836) is displayed that allows you to configure options for

the operation.

Oxygen XML Editor 27.1 | 20 - Tools | 2829

Warning:

If the Ignore ancestry / Disable merge tracking option is selected and you chose all revisions

in the Revisions to merge section, revisions that were previously merged will also be included,

which may result in conflicts.

8. Click the Merge button.

The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be

merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it

meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts

(on page 2838) after making major changes.

Note:

The merge result is only in your local working copy and needs to be committed to the repository for it

to be available to others.

Synchronize a Branch

While working on your own branch, other people on your team might continue to make important changes

in the parent branch (which can be the trunk itself or any other branch). It is recommended to periodically

duplicate those changes in your branch to make sure your changes are compatible with them. This is done

by performing a synchronize merge, which will bring your branch up-to-date with any changes made to its

ancestral parent branch since your branch was last created or synchronized. Subversion is aware of the

history of your branch and can detect when it split away from the parent branch.

Frequently keeping your branch in sync with the parent branch helps you to prevent unexpected conflicts when

the time comes for you to duplicate your changes back into the parent branch. The synchronization uses

merge tracking to skip all those revisions that have already been merged, thus a sync merge can be repeated

periodically to fetch all the latest changes of the parent branch to keep up-to-date with it.

Important:

It is recommended to synchronize the whole working copy that was created from the child branch (the

root of the working copy), rather than just a part of it.

After running the synchronize merge, your working copy from the child branch now contains new local

modifications, and these edits are duplications of all of the changes that have happened on the trunk since

you first created your branch. At this point, your private branch is now synchronized with the trunk.

To synchronize your branch with its parent branch, follow these steps:

Oxygen XML Editor 27.1 | 20 - Tools | 2830

1. Go to Tools > Merge.

The Merge wizard is opened.

2. Select the Synchronize branch option.

3. It is recommended that you select the Perform pre-merge best practices checks of the working copy

target option to make sure that the working copy target item is ready for the merge operation.

a. Click the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected,

the Pre-Merge Checks wizard page (on page 2825) is displayed.

Note:

If errors are found you need to solve them before proceeding.

4. Click the Next button.

The Synchronize branch wizard page is displayed.

5. In the Parent branch (URL) text box, enter the URL of the branch where you created your branch (on

page 2901). This means that the URL must belong to the same repository as your working copy that

was created from the child branch.

You may also click the Browse button to browse the repository and find the desired branch. If you have

previously merged from this branch, then you can simply use the drop-down menu, which displays a

history of previously used URLs.

Tip:

You can also specify a peg revision (on page 2903) at the end of the URL (for example,

URL@rev1234). The peg revision specifies both the peg revision of the URL and the latest revision

that will be considered for merging. By default, the HEAD revision is assumed.

6. Optionally, if you want to configure the options (on page 2836) for your merge, click the Next button.

The Merge Options wizard page (on page 2836) is displayed that allows you to configure options for

the operation.

Note:

The Ignore ancestry / Disable merge tracking option is not available for this merge type, since

a synchronization merge should always be recorded in the destination branch.

7. Click the Merge button.

The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be

merged in your working copy.

Oxygen XML Editor 27.1 | 20 - Tools | 2831

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it

meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts

(on page 2838) after making major changes.

Note:

The merge result is only in your local working copy and needs to be committed to the repository for it

to be available to others.

Reintegrate a Branch

Prerequisites:

There are some conditions that apply to reintegrate a branch:

• The server must support merge tracking.

• The source branch (to be reintegrated) must be coherently synchronized with its parent branch.

This means that all revisions between the branching point and the last revision merged from

the parent branch to the child branch must be merged to the latter one (there must be no

missing revisions in-between).

• The working copy must not contain the following:

◦ Local modifications.

◦ A mixture of revisions (all items must point to the same revision).

◦ Sparse directories (all directories must be of infinity depth).

◦ Switched items.

• The revision of the working copy must be greater than or equal to the last revision of the parent

branch with which the child branch was synchronized.

Tip:

You can use the pre-merge checks option (on page 2825) to make sure these conditions are fulfilled.

This method is useful when you have a feature branch on which the development has concluded and it should

be merged back into its parent branch. Since you have kept the feature branch synchronized with its parent,

the latest versions of them will be absolutely identical except for your feature branch changes. These changes

can be reintegrated into the parent branch by using a working copy of it and the Reintegrate a branch option.

This method uses the merge-tracking features of Apache Subversion™ to automatically calculate the correct

revision ranges and to perform additional checks that will ensure that the branch to be reintegrated has been

fully updated with its parent changes. This ensures that you do not accidentally undo work that others have

committed to the parent branch since the last time you synchronized the child branch with it. After the merge,

all branch development will be completely merged back into the parent branch, and the child branch will be

redundant and can be deleted from the repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2832

Tip:

Before reintegrating the child branch it is recommended to synchronize it with its parent branch one

more time, to help avoid any possible conflicts.

To reintegrate a child branch into its parent branch, follow these steps:

1. Go to menu Tools > Merge.

The Merge wizard is opened.

2. Select the Reintegrate a branch option.

Note:

This option is not available if the selected working copy item (or if it is a directory, any of the

items inside of it) has any type of modification. This is because it is mandatory for the target

item to have no modifications.

3. It is recommended that you select the Perform pre-merge best practices checks of the working copy

target option to make sure that the working copy target item is ready for the merge operation.

a. Click the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected,

the Pre-Merge Checks wizard page (on page 2825) is displayed.

Note:

If errors are found you need to solve them before proceeding.

4. Click the Next button.

The Reintegrate a branch wizard page is displayed.

5. In the Child branch (URL) text box, enter the URL of the child branch to be reintegrated (on page 2901).

This means that the URL must belong to the same repository as your working copy that was created

from the parent branch.

You may also click the Browse button to browse the repository and find the desired branch. If you have

previously merged from this branch, then you can simply use the drop-down menu, which displays a

history of previously used URLs.

Tip:

You can also specify a peg revision (on page 2903) at the end of the URL (for example,

URL@rev1234). The peg revision specifies both the peg revision of the URL and the latest revision

that will be considered for merging. By default, the HEAD revision is assumed.

The Merge Options wizard page (on page 2836) is displayed that allows you to configure options for

the operation.

Oxygen XML Editor 27.1 | 20 - Tools | 2833

Note:

Since a reintegrate merge is so specialized, most of the merge options are not available, except

for those in the File Comparison category.

6. Click the Merge button.

The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be

merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it

meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts

(on page 2838) after making major changes.

Note:

The merge result is only in your local working copy and needs to be committed to the repository for it

to be available to others.

Merge Two Different Trees

This merge type is useful when you need to duplicate changes from one child branch (for example, CB1) to

another child branch (CB2) from the same parent branch. The SVN client will calculate the changes necessary

to get from the HEAD revision of the parent branch (or the trunk) to the HEAD revision of one of its child branches

(CB1), and apply those changes to your working copy of the other branch (CB2). The result is that the latter child

branch (CB2) will also include the changes made on the original child branch (CB1), although that branch was

not reintegrated into the parent branch.

This merge type could also be used to reintegrate a child branch back into its parent when the repository does

not support merge tracking.

Note:

If the server does not support merge-tracking, then this is the only way to merge a branch back to its

parent.

1. Go to menu Tools > Merge.

The Merge wizard is opened.

2. Select the option Merge two different trees.

3. It is recommended that you select the Perform pre-merge best practices checks of the working copy

target option to make sure that the working copy target item is ready for the merge operation.

Oxygen XML Editor 27.1 | 20 - Tools | 2834

a. Click the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected,

the Pre-Merge Checks wizard page (on page 2825) is displayed.

Note:

If errors are found you need to solve them before proceeding.

4. Click the Next button.

The Merge two different trees wizard is displayed.

5. In the From (starting URL and revision) section, enter the URL of the first branch (on page 2901).

You may also click the Browse button to browse the repository and find the desired branch. If you have

previously merged from this branch, then you can simply use the drop-down menu, which displays a

history of previously used URLs.

Tip:

If you are using this method to merge a feature branch back to its parent branch, you need to

start the merge wizard from within a working copy of the parent. In this field enter the full URL

of the parent branch. This may sound wrong, but remember that the parent is the starting point

to which you want to add the branch changes.

Note:

If the URL belongs to a different repository than the working copy, the Ignore ancestry / Disable

merge tracking option (in the Merge Options wizard page (on page 2836)) will be selected

automatically (and you cannot change this). This is because the Subversion client cannot track

changes between different repositories (on page 2839).

Tip:

You can also specify a peg revision (on page 2903) at the end of the URL (for example,

URL@rev1234). By default, the HEAD revision is assumed.

6. Enter the last revision number at which the two trees were synchronized by choosing between HEAD

revision and other revision.

◦ HEAD revision - Use this option if you are sure that no one else has committed changes since

the last synchronization.

◦ other revision - Use this option to input a specific revision number and avoid losing recent

commits. You can use the History button to see a list of all revisions.

7. In the To (ending URL and revision) section, enter the URL of the second branch (on page 2901).

You may also click the Browse button to browse the repository and find the desired branch. If you have

previously merged from this branch, then you can simply use the drop-down menu, which displays a

history of previously used URLs.

Oxygen XML Editor 27.1 | 20 - Tools | 2835

Tip:

If you are using this method to merge a feature branch back to its parent branch, enter the URL

of the feature branch. This way, only the changes unique to this branch will be merged, since

the branch should have been periodically synchronized with its parent.

Attention:

The URL must point to the same repository as the one in the From (starting URL and revision)

field. Otherwise, the operation will not be allowed, since Subversion cannot compute changes

between items from different repositories.

Tip:

You can also specify a peg revision (on page 2903) at the end of the URL (for example,

URL@rev1234). By default, the HEAD revision is assumed.

8. Select a revision to compute all changes committed up to that point by choosing between HEAD

revision and other revision.

◦ HEAD revision - This is the default selected revision.

◦ other revision - Use this option if you want to enter a previous revision. You can use the History

button to see a list of all revisions.

9. Optionally, if you want to configure the options (on page 2836) for your merge, click the Next button.

The Merge Options wizard page (on page 2836) is displayed that allows you to configure options for

the operation.

Warning:

If the Ignore ancestry / Disable merge tracking option is selected and you chose all revisions

in the Revisions to merge section, revisions that were previously merged will also be included,

which may result in conflicts.

10. Click the Merge button.

The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be

merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it

meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts

(on page 2838) after making major changes.

Oxygen XML Editor 27.1 | 20 - Tools | 2836

Note:

The merge result is only in your local working copy and needs to be committed to the repository for it

to be available to others.

Merge Options

Here is the list of options that can be used when merging:

Figure 698. Merge Wizard - Advanced Options

• Depth (This option is applicable only for directories) - sets the depth of the merge operation. You can

specify how far down into your working copy the merge should go by selecting one of the following

values:

◦ Current depth - Obeys the depths registered for the directories in the working copy that are to be

switched.

◦ Recursive (infinity) - Merges all the files and folders contained in the selected folder. This is the

recommended depth for most users, to avoid incomplete merges and subtree mergeinfo.

◦ Immediate children (immediates) - Merges only the child files and folders without recursing

subfolders.

◦ File children only (files) - Merges only the child files.

◦ This folder only (empty) - Merges only the selected folder (no child files or folders are included).

Oxygen XML Editor 27.1 | 20 - Tools | 2837

Note:

The depth term is described in the Sparse checkouts (on page 2860) section. The default

depth is the current depth of the working copy item receiving the merge.

• Ignore ancestry / Disable merge tracking - Changes the way two items are merged if they do not share

a common ancestry. Most merges involve comparing items that are ancestrally related to one another.

However, occasionally you may want to merge unrelated items. If this option is not selected, the first

item will be replaced with the second item. In these situations, you would want the merge to do a path-

based comparison only, ignoring any relations between the items. For example, if two different files

have the same name and are in the same relative location, deselecting the option replaces one of the

files with the other one, and selecting it merges their contents.

Note:

If the URL of the merge source belongs to a different repository than the URL of the target

working copy item (the one receiving the changes), this option is selected automatically (and

you cannot change this). This is because the Subversion client cannot track changes between

different repositories (on page 2839).

• Force deletion of modified or non-versioned items, if necessary - If not selected, when the merge

operation involves deleting locally modified or non-versioned items, it will fail. This is done to prevent

data loss. This option is only available if there are uncommitted changes in the working copy.

• Only record the merge (block revisions from getting merged) - Available when the Ignore ancestry /

Disable merge tracking option (on page 2837) is not selected. It enables a special mode of the merge

operation that just records it in the local merge tracking information, without actually performing it

(does not modify any file contents or the structure of your working copy). You might want to select this

option for two possible reasons:

◦ You made (or will make) the merge manually, and therefore need to mark the revisions as being

merged to make the merge tracking system aware of them. This will exclude them from future

merges.

◦ You want to prevent one or more particular changes from being fetched in subsequent merges.

• Ignore line endings - Allows you to specify how the line ending changes should be handled. By default,

all such changes are treated as real content changes, but you can ignore them if you select this option.

• Ignore whitespaces - Allows you to specify how the whitespace changes should be handled. By default,

all such changes are treated as real content changes, but you can ignore them if you select this option.

Oxygen XML Editor 27.1 | 20 - Tools | 2838

◦ Ignore whitespace changes - Ignores changes in the amount of whitespaces or to their type (for

example, when changing the indentation or changing tabs to spaces).

Note:

Whitespaces that were added where there were none before, or that were removed, are

still considered to be changes.

◦ Ignore all whitespaces - Ignores all types of whitespace changes.

• Test merge - Performs a dry run of the merge operation, allowing you to preview it without actually

performing the merge. In the Console view you will see a list of the working copy items that will be

affected and how they will be affected. This is helpful in detecting whether or not a merge will be

successful, and where conflicts may occur.

Resolving Merge Conflicts

After the merge operation is finished, it is possible to have some items in conflict. This means that some

incoming modifications for an item could not be merged with the current working copy version. If there are

such conflicts, the Merge conflicts dialog box will appear, presenting the items that are in conflict. This dialog

box offers you choices for resolving the conflicts.

Figure 699. Merge Conflicts Dialog Box

The options to resolve a conflict are as follows:

Oxygen XML Editor 27.1 | 20 - Tools | 2839

• Resolve later - Used for leaving the conflict as it is, to manually resolve it later.

• Keep incoming - This option keeps all the incoming modifications and discards all current ones from

your working copy.

• Keep outgoing - This option keeps all current modifications from your working copy and discards all

incoming ones.

• Mark resolved - You should choose this option after you have manually solved the conflict, to instruct

the Subversion that it was resolved. To do this, use the Edit conflict button, which displays a dialog box

that presents the contents of the conflicting items (the content of the working copy version versus the

incoming version).

Additional Notes About the Merge Operation

Sub-tree Merges

It is recommended to perform a merge on the whole working copy (select its root directory when triggering the

operation) to avoid sub-tree mergeinfo. Sub-tree mergeinfo is the mergeinfo recorded to describe a sub-tree

merge. That is, a merge done directly to a child of a branch root that might be needed in certain situations.

There is nothing special about sub-tree merges or sub-tree mergeinfo except that the complete record of

merges to a branch may not be contained solely in the mergeinfo on the branch root and you may have to look

to any sub-tree mergeinfo to get a full accounting. Fortunately, Subversion does this for you and rarely will you

need to look for it.

Merging from Foreign Repositories

Subversion supports merging from foreign repositories. While all merge source URLs must point to the same

repository, the merge target (from the working copy) may come from a different repository than the source.

However, copies made in the merge source will be transformed into plain additions in the merge target. Also,

merge-tracking is not supported for merges from foreign repositories.

Note:

When performing merges from repositories other than the one corresponding to the target item (from

the working copy), the Ignore ancestry / Disable merge tracking option (on page 2837) in the Merge

Options wizard page (on page 2836) will be selected automatically (and you cannot change this).

General Merge Recommendations

As a recommendation, you should only merge into clean working copies that do not contain any of the

following:

• Modifications.

• Sparse directories (all directories must be of depth infinity).

• Switched items.

Oxygen XML Editor 27.1 | 20 - Tools | 2840

Important:

This recommendation becomes mandatory when performing a reintegrate merge (on page 2831)

operation. Also, trying to merge to mixed-revision working copies will fail in all types of merge

operations.

Remember:

The merge result is only in your local working copy and needs to be committed to the repository for it

to be available to others.

Switch the Repository Location

The Switch action is useful when the repository location of a working copy, or an already committed item in

the working copy, must be changed within the same repository. The action is available on the Tools menu

when a versioned resource is selected in the current working copy that is displayed in the Working Copy view

(on page 2866).

Note:

External items cannot be switched using this action. Instead, change the value of the svn:externals

property set on the parent directory of the external item and update the parent directory.

Figure 700. Switch Dialog Box

The following options can be configured in the Switch dialog box:

Switch to URL

Oxygen XML Editor 27.1 | 20 - Tools | 2841

The new location in the same repository (on page 2901) you are switching to.

Tip:

You can switch to items that were deleted, moved, or replaced, by specifying the original

URL (before the item was removed) and use a peg revision (on page 2903) at the end

(for example, URL@rev1234).

Note:

For items that are already switched (on page 2868) that you want to switch back, the

proposed URL is the original location of the item.

Revision

The specific version of the location that you are switching to.

Depth - (This option is applicable only for directories)

Current depth

Obeys the depths registered for the directories in the working copy that are to be

switched.

Recursive (infinity)

Switches the location of the selected folder and all of its files and folders.

Immediate children (immediates)

Switches the location of the selected folder and its child files and folders without

recursing subfolders.

File children only (files)

Switches the location of the selected folder and its child files.

This folder only (empty)

Switches the location of the selected folder (no child files or folders are included).

Ignore "svn:externals" definitions

When selected, external items are ignored in the switch operation. This option is only available if

you choose the Current depth or Recursive (infinity) depth.

Change the working copy item to the specified depth

Changes the sticky depth on the directory in the working copy.

Ignore ancestry

When not selected, the SVN system does not allow you to switch to a location that does not

share a common ancestry with the current location. If selected, the SVN does not check for a

common ancestry.

Oxygen XML Editor 27.1 | 20 - Tools | 2842

Relocate a Working Copy

Sometimes the base URL of the repository is changed after a working copy is checked out from that URL. For

example, if the repository itself is moved to a different server. In such cases, you do not have to check out a

working copy from the new repository location. It is easier to change the base URL of the root folder of the

working copy to the new URL of the repository (on page 2901).

Note:

Peg revisions have no effect for this operation.

This Relocate action is available in the Tools menu when selecting the root item of the working copy.

Note:

External items that are defined using absolute URLs and that point to the same repository as the

working copy are not affected by the Relocate action (the URL is not updated). To relocate these

items, change the value of the svn:externals property for each external item (set on their parent

directories). For example, if an external item is defined as externalDir http://host/path/to/repo/

to/dir and the repository was moved to another server (host2) and its protocol changed to https, then

the value of the property needs to be updated to externalDir https://host2/path/to/repo/to/dir.

Tip:

If you edit external items using the method described in the previous note, on the next update the

system will try to fetch the external items again. To avoid this, you can invoke the Relocate action on

each of these external items.

Patches

This section explains how to work with patches in Syncro SVN Client.

What is a Patch

Suppose you are working with a set of XML files that you want to tag the project and distribute releases to

other team members. While working on the project and correcting problems, you may need to distribute

the corrections to other team members. In this case, you can distribute a patch (a collection of differences)

that would correct the problems when applied over the last distribution. By default, the Syncro SVN Client

generates patches in the Unified Diff format, but it can also use the Git format (on page 2854).

Creating a patch in Apache Subversion™ implies the access to either two revisions of a versioned item, or two

different versioned items from the repository:

http://en.wikipedia.org/wiki/Diff#Unified_format

Oxygen XML Editor 27.1 | 20 - Tools | 2843

• Two revisions of a version item - the item can be local or remote and you can select two versions of

it. This also applies when you need to generate a patch that only contains the changes in the working

copy that were not yet committed.

• Two different versioned items from the repository - the items are remote and you need to specify a

revision for both.

Warning:

The resulting patch file may contain content that was written using a mix of encodings, based upon

the encodings of the files that were compared. If you open the generated patch file in a text editor, it

may result in unrecognizable content.

Generating a Patch - Local Items

Based on a versioned item (already committed or scheduled for addition) in the working copy, you can

generate patches that contain the local changes, the differences between a specific revision of that item and

the item itself, or differences between the pristine item and another item from the repository. There are four

options for generating a patch based upon local items.

To open the Create patch wizard, use the Create patch action from the Tools menu or from the contextual

menu in the Modified, Incoming, Outgoing, or Conflicts modes.

Figure 701. Create Patch Wizard - Local Items

Oxygen XML Editor 27.1 | 20 - Tools | 2844

Create Patch from Local Modifications
This is the most commonly used type of patch and contains only the local changes for the selected item.

This option is useful if you want to share changes with other team members and you are not yet ready to

commit them. This option is only available for local items that contain modifications. It is not available for

items that have a local file status of unversioned or ignored, and in some cases missing or obstructed (on

page 2868).

The steps are as follows:

1. Go to menu Tools > Create patch.

This opens the Create patch wizard.

2. Select the Create patch from local modifications option in the dialog box.

3. Optionally, if you want to configure the options (on page 2852) for your patch, click the Next button.

This options page does not remember your selections when creating future patches. It will revert to the

default values.

The Options wizard page is displayed.

4. Click the Create patch button.

If the patch is applied on a folder of the working copy and that folder contains unversioned files (on

page 2868), this step of the wizard offers the option of selecting the ones that will be included in the

patch.

Figure 702. Create Patch Dialog Box - Add Unversioned Resources

The patch is created and stored in the path specified in the Output section of the Options page (on

page 2852) or in the default location.

Oxygen XML Editor 27.1 | 20 - Tools | 2845

Create Patch Against a Specific Revision
This type of patch contains changes between an old revision and the current content from the selected item

within the working copy.

This option is useful if you want to obtain differences between an older revision and the current state of the

working copy (for instance, to test how current changes apply to an older version).

The steps are as follows:

1. Go to menu Tools > Create patch.

This opens the Create patch wizard.

2. Select the Create patch against a specific revision option in the dialog box.

3. Click the Next button.

The second step of the wizard is opened:

Figure 703. Create Patch Wizard - Step 2

4. Select the revision to create patch against.

You can select between the HEAD revision and a specific revision number. For the other revision

option, you can click the History button (on page 2794) to display a list of the item revisions.

Oxygen XML Editor 27.1 | 20 - Tools | 2846

Note:

If the revision to create patch against is older than the revision that the working copy item was

updated for, the patch will include changes that were made after the selected revision.

5. Optionally, if you want to configure the options (on page 2852) for your patch, click the Next button.

This options page does not remember your selections when creating future patches. It will revert to the

default values.

The Options wizard page is displayed.

6. Click the Create patch button.

The patch is created and stored in the path specified in the Output section of the Options page (on

page 2852) or in the default location.

Create Patch Between Two Revisions of an Item
This type of patch contains historical changes between two revisions of a selected item.

This option is useful if you want to share changes between two revisions with other team members.

Tip:

If you need to generate a patch between two revisions of a previously deleted, moved, or replaced

item, you should use the Create patch between two repository items option (on page 2847) instead.

The steps are as follows:

1. Go to menu Tools > Create patch.

This opens the Create patch wizard.

2. Select the Create patch between two revisions of an item option in the dialog box.

3. Click the Next button.

The second step of the wizard is opened:

Figure 704. Create Patch Wizard - Step 2

4. Select the starting and ending revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision

option, you can click the History button (on page 2794) to display a list of the item revisions.

Oxygen XML Editor 27.1 | 20 - Tools | 2847

Note:

The patch will only include changes between the two specified revisions, starting with the

changes that were made after the older revision.

Tip:

If you want to reverse changes done between two revisions by using a patch file, you can

specify the newer revision in the From section and the older version in the To section.

5. Optionally, if you want to configure the options (on page 2852) for your patch, click the Next button.

This options page does not remember your selections when creating future patches. It will revert to the

default values.

The Options wizard page is displayed.

6. Click the Create patch button.

The patch is created and stored in the path specified in the Output section of the Options page (on

page 2852) or in the default location.

Create Patch Between Two Repository Items
This type of patch contains changes between one version of an item and a specific version of another item.

This option is useful for generating a patch that contains changes between existing, or even previously

deleted, moved, or replaced items from different branches. This is the default option when you do not have a

working copy loaded, when no repository items are selected, or when exactly two repository items of the same

kind are selected.

Tip:

To access an item that was deleted, moved, or replaced, you need to specify the original URL (before

the item was removed) and use a peg revision (on page 2903) at the end (for example, URL@rev1234).

The steps are as follows:

1. Go to menu Tools > Create patch.

This opens the Create patch wizard.

2. Select the Create patch between two repository items option in the dialog box.

3. Click the Next button.

The second step of the wizard is opened:

Oxygen XML Editor 27.1 | 20 - Tools | 2848

Figure 705. Create Patch Wizard - Step 2

4. Select the starting and ending URLs (on page 2901) and revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision

option, you can click the History button (on page 2794) to display a list of the item revisions.

Important:

Both URLs must point to items from the same repository.

Note:

If you use a peg revision in the URL field, anything specified in the other revision field is

ignored.

5. Optionally, if you want to configure the options (on page 2852) for your patch, click the Next button.

This options page does not remember your selections when creating future patches. It will revert to the

default values.

The Options wizard page is displayed.

6. Click the Create patch button.

The patch is created and stored in the path specified in the Output section of the Options page (on

page 2852) or in the default location.

Oxygen XML Editor 27.1 | 20 - Tools | 2849

Generating a Patch - Remote Items

Based on a repository item, you can generate patches that contain the differences between two specific

revisions of that item, or between a revision of that same item and another revision of another item from the

repository. There are two options for generating a patch based upon remote items.

To open the Create patch wizard, use the Create patch action from the Tools menu.

Figure 706. Create Patch Wizard - Remote Items

Create Patch Between Two Revisions of an Item
This type of patch contains historical changes between two revisions of a selected item.

This option is useful if you want to share changes between two revisions with other team members.

Tip:

If you need to generate a patch between two revisions of a previously deleted, moved, or replaced

item, you should use the Create patch between two repository items option (on page 2847) instead.

The steps are as follows:

1. Go to menu Tools > Create patch.

This opens the Create patch wizard.

2. Select the Create patch between two revisions of an item option in the dialog box.

3. Click the Next button.

The second step of the wizard is opened:

Oxygen XML Editor 27.1 | 20 - Tools | 2850

Figure 707. Create Patch Wizard - Step 2

4. Select the starting and ending revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision

option, you can click the History button (on page 2794) to display a list of the item revisions.

Note:

The patch will only include changes between the two specified revisions, starting with the

changes that were made after the older revision.

Tip:

If you want to reverse changes done between two revisions by using a patch file, you can

specify the newer revision in the From section and the older version in the To section.

5. Optionally, if you want to configure the options (on page 2852) for your patch, click the Next button.

This options page does not remember your selections when creating future patches. It will revert to the

default values.

The Options wizard page is displayed.

6. Click the Create patch button.

The patch is created and stored in the path specified in the Output section of the Options page (on

page 2852) or in the default location.

Create Patch Between Two Repository Items
This type of patch contains changes between one version of an item and a specific version of another item.

This option is useful for generating a patch that contains changes between existing, or even previously

deleted, moved, or replaced items from different branches. This is the default option when you do not have a

working copy loaded, when no repository items are selected, or when exactly two repository items of the same

kind are selected.

Oxygen XML Editor 27.1 | 20 - Tools | 2851

Tip:

To access an item that was deleted, moved, or replaced, you need to specify the original URL (before

the item was removed) and use a peg revision (on page 2903) at the end (for example, URL@rev1234).

The steps are as follows:

1. Go to menu Tools > Create patch.

This opens the Create patch wizard.

2. Select the Create patch between two repository items option in the dialog box.

3. Click the Next button.

The second step of the wizard is opened:

Figure 708. Create Patch Wizard - Step 2

4. Select the starting and ending URLs (on page 2901) and revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision

option, you can click the History button (on page 2794) to display a list of the item revisions.

Important:

Both URLs must point to items from the same repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2852

Note:

If you use a peg revision in the URL field, anything specified in the other revision field is

ignored.

5. Optionally, if you want to configure the options (on page 2852) for your patch, click the Next button.

This options page does not remember your selections when creating future patches. It will revert to the

default values.

The Options wizard page is displayed.

6. Click the Create patch button.

The patch is created and stored in the path specified in the Output section of the Options page (on

page 2852) or in the default location.

Patch Options

Figure 709. Create Patch Wizard - Options

Oxygen XML Editor 27.1 | 20 - Tools | 2853

Patch Section

Depth - (This option is applicable only for directories)

Current depth

The depth of recursing the folder for creating the patch is the same as the depth of

that same folder in the working copy (available only when generating patches that

contain changes from the working copy).

Recursive (infinity)

The patch is created on all the files and folders contained in the selected folder.

Immediate children (immediates)

The patch is created only on the child files and folders without recursing

subfolders.

File children only (files)

The patch is created only on the child files.

This folder only (empty)

The patch is created only on the selected folder (no child file or folder is included in

the patch).

Ignore content of added files

When selected, the patch file does not include the content of the added items. This option

corresponds to the --no-diff-added option of the svn diff command.

Ignore content of delete files

When selected, the patch file does not include the content of the deleted items. This option

corresponds to the --no-diff-deleted option of the svn diff command.

Treat copied files as newly added

When selected, copied items are treated as new, rather than comparing the items with their

sources. This option corresponds to the --show-copies-as-adds option of the svn diff

command.

Include files having a binary MIME type

When selected, the application is forced to compare items that are considered binary file types.

This option corresponds to the --force option of the svn diff command.

Ignore properties

When selected, differences in the properties of items are ignored. This option corresponds to the

--ignore-properties option of the svn diff command.

Properties only

Oxygen XML Editor 27.1 | 20 - Tools | 2854

When selected, only differences in the properties of the items are included in the patch file (file

content is ignored). This option corresponds to the --properties-only option of the svn diff

command.

Note:

The Ignore properties and Properties only options are mutually exclusive.

Notice ancestry

If selected, the SVN common ancestry is taken into consideration when calculating the

differences. This option corresponds to the --notice-ancestry option of the svn diff command.

Files Comparison Section

Ignore line endings

If selected, the differences in line endings are ignored when the patch is generated. This option

corresponds to the --ignore-eol-style option of the svn diff command.

Ignore whitespaces

If selected, it allows you to specify how the whitespace changes should be handled. When

selected, you can then choose between two options:

• Ignore whitespace changes (--ignore-space-change) - Ignores changes in the amount

of whitespaces or changes to their type (for example, when changing the indentation or

changing tabs to spaces).

Note:

Whitespaces that are added or removed are still considered to be changes.

• Ignore all whitespaces (--ignore-all-space) - Ignores all types of whitespace changes.

Output Section

Save as

The patch will be created and saved in the specified file.

Use Git extended diff format

When selected, the patch is generated using the Git format. This option corresponds to the --git

option of the svn diff command.

Working with Repositories

This section explains how to locate and browse SVN repositories in Syncro SVN Client.

Oxygen XML Editor 27.1 | 20 - Tools | 2855

Importing Resources Into a Repository

Importing resources into a repository is the process of copying local files and directories into a repository so

that they can be managed by an Apache Subversion™ server. If you have already been using Subversion and

you have an existing working copy you want to use, then you will likely want to follow the procedure for using

an existing working copy (on page 2795).

The Import folder and Import Files actions are available from the Import submenu of the Repository menu or

of the contextual menu in the Repositories view. These actions open a dialog box that allow you to select the

directories or files that will be imported into the selected repository location.

The Import folder action opens the Import folder dialog box.

Figure 710. Import Folder Dialog Box

You can configure the following options:

Folder

Specify the local folder (on page 2901) by using the text box or the Browse button. This folder

should not be empty or already under version control.

Important:

By default, the SVN system only imports the content of the specified folder, and not the

folder itself. Therefore, it is recommended to use the Browse button to select the local

folder so that the client will automatically append the name of it to the specified URL.

URL

Specify the repository location (on page 2901) that will be used to access the folder to be

imported.

Note:

Peg revisions have no effect for this operation since it is used to send information to the

repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2856

Attention:

If the new location already exists, make sure that it is an empty directory to avoid mixing

your project content with other files (if items exist with the same name, an error will

occur and the operation will not proceed). Otherwise, if the address does not exist, it is

created automatically.

Depth

Recursive (infinity)

Imports all the files and folders contained in the selected folder.

Immediate children (immediates)

Imports only the child files and folders without recursing subfolders.

File children only (files)

Imports only the child files.

This folder only (empty)

Imports only the selected folder (no child file or folder is included).

Share files matching global ignore patterns

When selected, the file names that match the patterns defined in either of the following locations

are also imported into the repository:

• The global-ignores property in the SVN configuration file (on page 2901).

• The File name ignore patterns option (on page 294) in the SVN > Working Copy

preferences page (on page 293).

Enable automatic properties/Disable automatic properties

Enables or disables automatic property assignment (per runtime configuration rules), overriding

the enable-auto-props runtime configuration directive, defined in the SVN configuration file (on

page 2901).

Note:

This option is available only when there are defined properties to be applied

automatically for newly added items under version control. You can define these

properties in the SVN config file (in the auto-props section). Based on the value of the

enable-auto-props runtime configuration directive, the presented option is either Enable

automatic properties, or Disable automatic properties.

Exporting Resources From a Repository

This is the process of taking a resource from the repository and saving it locally in a clean form, with no

version control information. This is very useful when you need a clean build for an installation kit.

Oxygen XML Editor 27.1 | 20 - Tools | 2857

The Export dialog box is similar to the Check out dialog box:

Figure 711. Export from Repository Dialog Box

You can configure the following options:

URL

Specify the source directory from the repository (on page 2901) by using the text box or the

Browse button.

Tip:

To export an item that was deleted, moved, or replaced, you need to specify the original

URL (before the item was removed) and use a peg revision (on page 2903) at the end

(for example, URL@rev1234).

Note:

The content of the selected directory from the repository and not the directory itself will

be exported to the file system.

Revision

You can choose between the HEAD or Other revision. If you need to export a specific revision,

specify it in the Other text box or use the History button and choose a revision from the History

dialog box.

Export to

Specify the location where you want to export (on page 2901) the repository directory by typing

the local path in the text box or by using the Browse button. If the specified local path does not

point to an existing directory, it will automatically be created.

Oxygen XML Editor 27.1 | 20 - Tools | 2858

Important:

By default, the SVN system only exports the content of the directory specified by the

URL, and not the directory itself. Therefore, it is recommended to use the Browse button

to select the export location so that the client will automatically append the name of the

remote directory to the path of the selected directory.

Warning:

The destination directory should be empty. If files exist, they will be overwritten by

exported files with matching names.

Depth

Recursive (infinity)

Exports all the files and folders contained in the selected folder.

Immediate children (immediates)

Exports only the child files and folders without recursing subfolders.

File children only (files)

Exports only the child files.

This folder only (empty)

Exports only the selected folder (no child file or folder is included).

Ignore "svn:externals" definitions

When selected, external items are ignored in the export operation. This option is only available if

you choose the Recursive (infinity) depth.

EOL style

Defines the end-of-line (EOL) marker that should be used when exporting files that have the

value or the svn:eol-style property set to native. You can choose between the following styles:

• Default - It uses the system-specific end-of-line marker.

• CRLF - The Windows-specific end-of-line marker (carriage return - line feed).

• LF - The Unix / macOS-specific end-of-line marker (line feed).

• CR - The macOS 9 (or older)-specific end-of-line marker (carriage return).

Ignore keywords

When selected, the export operation does not expand the SVN keywords found inside the files.

Oxygen XML Editor 27.1 | 20 - Tools | 2859

Copy / Move / Delete Resources From a Repository

Once you have a location defined in the Repositories view (on page 2861), you can run commands (such as

copy, move, and delete) directly on the repository. The commands correspond to the following actions in the

contextual menu:

The Copy to and Move to action allows you to copy and move individual or multiple resources to a specific

directory from the HEAD revision of the repository.

Figure 712. Copy/Move Items in Repository

The dialog box used to copy or move items allows you to browse the HEAD revision of the repository and

select the destination of the items, presenting its repository URL below the tree view.

The Source section presents relevant options regarding the item(s) that you move or copy:

• URL - This field is displayed only if you copy/move a single item.

• Revision - Presents the revision that will have one or more items copied, allowing you to also choose

another revision.

Oxygen XML Editor 27.1 | 20 - Tools | 2860

Note:

Since only items from the HEAD revision can be moved, the Revision options are not presented

for the Move to action.

Note:

When you copy a single item while browsing a revision other than HEAD, the Revision options

present this revision but does not allow you to change it. The same applies if copying multiple

items.

• New name - This option is presented when you copy or move a single item, allowing you to also rename

it.

Another useful action is Delete, allowing you to erase resources directly from the repository.

All three actions are commit operations and you will be prompted with the Commit message dialog box.

Sparse Checkout

Sometimes you only need to check out certain parts of a directory tree. In this case, you can check out the

top directory (using theCheck out action from the Repositories view (on page 2862)) and then recursively

update only the needed directories (using the Update action from the Working Copy view (on page 2874)).

Each directory then has a depth set to it, with four possible values:

• Recursive (infinity) - Updates all descendant directories and files recursively.

• Immediate children (immediates) - Updates the directory, including direct child directories and files, but

does not populate the child directories.

• File children only (files) - Updates the directory, including only child files without the child directories.

• This folder only (empty) - Updates only the selected directory, without updating any children.

For some operations, you can use as depth the current depth registered on the directories from the working

copy (the value Current depth). This is the depth value defined in a previous check out or update operation.

The sparse checked out directories are presented in the Working Copy view (on page 2866) with a marker

corresponding to each depth value, in the top left corner, as follows:

• Recursive (infinity) - This is the default value and it is has no mark. The directory has no limiting

depth.

• Immediate children (immediates) - The directory is limited to direct child directories (without

contents) and files.

• File children only (files) - The directory is limited to direct child files only.

• This folder only (empty) - The directory has empty depth set.

Oxygen XML Editor 27.1 | 20 - Tools | 2861

A depth set on a directory means that some operations process only items within the specified depth range.

For example, Synchronize on a working copy directory reports the repository modified items within the depth

set on the directory and those existing in the working copy outside of this depth.

The depth information is also presented in the SVN Information dialog box and in the tooltip displayed when

hovering a directory in the Working Copy view.

Syncro SVN Client Views

The main working area occupies the center of the application window, which contains the most important

views:

• Repositories View (on page 2861)

• Working Copy View (on page 2866)

• History View (on page 2881)

• Console View (on page 2896)

The other views that support the main working area are also presented in this section.

Repositories View

The Repositories view allows you to define and manage Apache Subversion™ repository locations and browse

repositories. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If no connections to your repository are available, you can add a new repository location (on page 2787).

Repository files and folders are presented in a tree view with the repository locations at the first level, where

each location represents a connection to a specific repository. More information about each resource is

displayed in a tabular form:

• Date - Date when the resource was last modified.

• Revision - The revision number at the time the resource was last modified.

• Author - Name of the person who made the last modification on the resource.

• Size - Resource size on disk.

• Lock information - Information about the lock status of a file. When a repository file is locked by a

user the icon is displayed in this column. If no icon is displayed the file is not locked. The tooltip of

this column displays the details about the lock:

◦ Owner - The name of the user who created the lock.

◦ Date - The date when the user locked the file.

◦ Expires on - Date when the lock expires. Lock expiry policy is set in the repository options, on the

server side.

◦ Comment - The message attached when the file was locked.

• Type - Contains the resource type or file extension.

Oxygen XML Editor 27.1 | 20 - Tools | 2862

Figure 713. Repositories View

Toolbar

The Repositories view's toolbar contains the following buttons:

• New Repository Location - Allows you to enter a new repository location by means of the Add SVN

Repository dialog box.

• Move Up - Move the selected repository up one position in the list of repositories in the Repositories

view.

• Move Down - Move the selected repository down one position in the list of repositories in the

Repositories view.

• Collapse all - Collapses all repository trees.

• Stop - Stops the current repository browsing operation executed when a repository node is

expanded. This is useful when the operation takes too long or the server is not responding.

• Settings - Allows you to configure the resource table appearance.

Repositories View Contextual Menu Actions

The Repositories view contextual menu contains various actions, depending on the selected item. If a

repository location is selected, the following management actions are available:

New Repository Location (Ctrl + Alt + N (Command + Option + N on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2863

Displays the Add SVN Repository dialog box. This dialog box allows you to define a new

repository location.

Figure 714. Add SVN Repository Dialog Box

If the Validate repository connection option is selected, the URL connection is validated before

being added to the Repositories view.

Edit Repository Location (Ctrl + Alt + E (Command + Option + E on macOS))

Context-dependent action that allows you to edit the selected repository location using the Edit

SVN Repository dialog box. It is active only when a repository location root is selected.

Change the Revision to Browse (Ctrl + Alt + B (Command + Option + B on macOS))

Context-dependent action that allows you to change the selected repository revision using the

Change the Revision to Browse dialog box. It is active only when a repository location root is

selected.

Remove Repository Location (Ctrl + Alt + R (Command + Option + R on macOS))

Allows you to remove the selected repository location from the view. It shows you a confirmation

dialog box before removal. It is active only when a repository location root is selected.

The following actions are common to all repository resources:

Open

Opens the selected file in the Editor view in read-only mode.

Open with

Displays the Open with dialog box to specify the editor where the selected file is opened. If

multiple files are selected, only external applications can be used to open the files.

Save as

Saves the selected files locally, as they are in the browsed revision.

Refresh (F5)

Refreshes the resource selected in the Repositories view.

Check out (Ctrl + Alt + O (Command + Option + O on macOS))

Allows you to create a working copy from a repository directory, on your local file system. To

read more about this operation, see Check out a working copy (on page 2792).

Branch/Tag

Oxygen XML Editor 27.1 | 20 - Tools | 2864

Allows you to create a branch or a tag from the selected folder in the repository. To read more

about how to create a branch/tag, see the Creation and management of Branches/Tags (on

page 2821) section.

Share project

Allows you to share a new project (on page 2790) using an SVN repository. The local project is

automatically converted into an SVN working copy.

Import:

Import folder (Ctrl + Shift + L (Command + Shift + L on macOS))

Allows you to import the contents of a specified folder from the file system into the

selected folder in a repository. To read more about this operation, see the section

Importing resources into a repository (on page 2855).

Note:

The difference between the Import folder and Share project actions is that

the latter also converts the selected directory into a working copy.

Import Files (Ctrl + Shift + I (Command + Shift + I on macOS))

Imports the files selected from the files system into the selected folder in the

repository.

Export

Opens the Export dialog box (on page 2856) that allows you to configure options for exporting a

folder from the repository to the local file system.

Show History (Ctrl + H (Command + T on macOS))

Displays the history of the selected resource. At the start of the operation, you can set filtering

options.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on macOS))

Opens the Show Annotation dialog box that computes the annotations for a file and displays

them in the Annotations view (on page 2888), along with the history of the file in the History

view.

Revision Graph (Ctrl + G (Command + G on macOS))

This action allows you to see the graphical representation of a resource history. For more details

about a resource revision graph see Revision Graph (on page 2896). This operation is available

for any resource selected in the Repositories view or Working Copy view.

Copy URL Location (Ctrl + Alt + U (Command + Option + U on macOS))

Copies to clipboard the URL location of the selected resource.

Copy to

Oxygen XML Editor 27.1 | 20 - Tools | 2865

Copies to a specified location the currently selected resource(s). This action is also available

when you browse other revisions than the latest one (HEAD), to allow restoring previous

versions of an item.

Move to (Ctrl + M (Command + M on macOS))

Moves to a specified location the currently selected resource(s).

Rename (F2)

Renames the selected resource.

Delete (Delete)

Deletes selected items from the repository via an immediate commit.

New Folder (Ctrl + Shift + F (Command + Shift + F on macOS))

Allows you to create a folder in the selected repository path (available only for folders).

Locking

The following options are available only for files:

Lock (Ctrl + K (Command + K on macOS))

Allows you to lock certain files that need exclusive access. For more details on the

use of this action, see Locking a file (on page 2803).

Unlock (Ctrl + Shift + K (Command + Shift + K on macOS))

Releases the exclusive access to a file from the repository. You can also choose to

unlock it by force (break the lock).

Show SVN Properties (Ctrl + Shift + P (Command + Shift + P on macOS))

Brings up the Properties view (on page 2894) displaying the SVN properties for the selected

resource. This view does not allow adding, editing, or removing SVN properties of a repository

resource. These operations are allowed only for working copy resources.

Show SVN Information (Ctrl + I (Command + I on macOS))

Provides additional information for the selected resource. For more details, go to Obtain

information for a resource (on page 2819).

Assistant Actions

When there is no repository configured, the Repositories view mode lists the following two actions:

Figure 715. Repositories View Actions

Oxygen XML Editor 27.1 | 20 - Tools | 2866

Drag and Drop Operations

The structure of the files tree can be changed with drag and drop operations inside the Repositories view.

These operations behave in the same way with the Copy to/Move to operations.

Working Copy View

The Working Copy view allows you to manage the content of an SVN working copy. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

The toolbar contains the following:

• The list of defined working copies.

• A set of view modes that allow you to filter the content of the working copy based on the resource

status (such as incoming or outgoing changes).

• Settings menu.

If you click any of the view modes (All Files, Modified, Incoming, Outgoing, Conflicts), the information

displayed changes as follows:

• All Files - Resources (files and folders) are presented in a hierarchical structure with the root of

the tree representing the location of the working copy on the file system. Each resource has an icon

representation that describes the type of resource and also depicts the state of that resource with a

small overlay icon.

Figure 716. Working Copy View - All Files View Mode

Oxygen XML Editor 27.1 | 20 - Tools | 2867

• Modified - The resource tree presents resources modified locally (including those with conflicting

content) and remotely. Decorator icons are used to differentiate between various resource states:

◦ Incoming modification from repository:

▪ - File content or properties modified remotely.

▪ - New file added remotely.

▪ - File deleted remotely.

◦ Outgoing modification to repository:

▪ - File content or properties modified locally.

▪ - New file added locally.

▪ - File deleted locally.

◦ Pseudo-conflict state - A resource being locally and remotely modified at the same time, or a

parent directory of such a resource.

◦ Real conflict state - A resource that had both incoming and outgoing changes and not all the

differences could be merged automatically through the update operation (manually editing the

local file is necessary for resolving the conflict).

Figure 717. Working Copy View - Modified View Mode

• Incoming - The resource tree presents only incoming changes.

• Outgoing - The resource tree presents only outgoing changes.

• Conflicts - The resource tree presents only conflicting changes (real conflicts and pseudo-

conflicts).

Oxygen XML Editor 27.1 | 20 - Tools | 2868

The following columns provide information about the resources:

• Name - Resource name. Resource icons can have the following decorator icons:

◦ Additional status information:

▪ Propagated modification marker - A folder marked with this icon indicates that the

folder itself presents some changes (such as modified properties) or a child resource has

been modified.

▪ External - This indicates a mapping of a local directory to the URL of a versioned

resource. It is declared with a svn:externals property in the parent folder and it indicates

a working copy not directly related with the parent working copy that defines it.

▪ Switched - This indicates a resource that has been switched from the initial repository

location to a new location within the same repository. The resource goes to this state as

a result of the Switch action (on page 2840) executed from the contextual menu of the

Working Copy view.

▪ Grayed - A resource with a grayed-out icon, but no overlaid icon, is an ignored

resource. It is obtained with the Add to svn:ignore action.

◦ Current SVN depth of a folder:

▪ Immediate children (immediates) (a variant of sparse checkout (on page 2860))

- The directory contains only direct file and folder children. Child folders ignore their

content.

▪ File children only (files) (a variant of sparse checkout (on page 2860)) - The directory

contains only direct file children, disregarding any child folders.

▪ This folder only (empty) (a variant of sparse checkout (on page 2860)) - The directory

discards any child resource.

Note:

▪ Any folder not marked with one of the depth icons, has recursive depth (infinity)

set by default (presents all levels of child resources).

▪ Although folders not under version control can have no depth set, Oxygen XML

Editor presents unversioned and ignored folders with empty depth when Show

unversioned directories content or Show ignored directories content options are

not selected.

• Local file status - Shows the changes of working copy resources that were not committed to the

repository yet. The following icons are used to mark resource status:

◦ - Resource is not under version control (unversioned).

◦ - Resource is being ignored because it is not under version control and its name matches a file

name pattern defined in one of the following places:

Oxygen XML Editor 27.1 | 20 - Tools | 2869

▪ global-ignores section in the SVN client-side config file (on page 2784).

Attention:

If you do not explicitly set the global-ignores runtime configuration option (either

to your preferred set of patterns or to an empty string), Subversion uses the

default value.

▪ Application global ignores option (on page 294) of Oxygen XML Editor.

▪ The value of a svn:ignore property (on page 2798) set on the parent folder of the

resource being ignored.

◦ - Marks a newly created resource, scheduled for addition to the version control system.

◦ - Marks a resource scheduled for addition, created by copying a resource already under

version control and inheriting all its SVN history.

◦ - The content of the resource has been modified.

◦ - Resource has been replaced in your working copy (the file was scheduled for deletion, and

then a new file with the same name was scheduled for addition in its place).

◦ - Resource is deleted (scheduled for deletion from Repository upon the next commit).

◦ - The resource is incomplete (as a result of an interrupted check out or update operation).

◦ - The resource is missing because it was moved or deleted without using an SVN-aware

application.

◦ - The contents of the resource is in real conflict state (on page 2806).

◦ - Resource is in a name conflict state.

◦ - Resource is in tree conflict state after an update operation because:

▪ Resource was locally modified and incoming deleted from repository.

▪ Resource was locally scheduled for deletion and incoming modified.

◦ - Resource is obstructed (versioned as one kind of object: file, directory, or symbolic link, but

has been replaced outside Syncro SVN Client by a different kind of object).

• Local properties status - Marks the resources that have SVN properties, with the following possible

states:

◦ - The resource has SVN properties set.

◦ - The resource properties have been modified.

◦ - Properties for this resource are in real conflict (on page 2806) with property updates

received from the repository.

• Revision - The current revision number of the resource.

• Date - Date when the resource was last time modified on the disk.

• BASE Revision - The revision number of the pristine version of the resource.

• BASE Date - Date when the pristine version of the resource was last time committed in the repository.

• Author - Name of the person who made the last modification on the pristine version of the resource.

• Remote file status - Shows changes of resources recently modified in the repository. The following

icons are used to mark incoming resource status:

◦ - Resource is newly added in repository.

◦ - The content of the resource has been modified in repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2870

◦ - Resource was replaced in repository.

◦ - Resource was deleted from repository.

• Remote properties status - Resources marked with the icon have incoming modified properties

from the repository.

• Remote revision - Revision number of the resource latest committed modification.

• Remote date - Date of the resource latest modification committed on the repository.

• Remote author - Name of the author who committed the latest modification on the repository.

• Lock information - Shows the lock state of a resource. The lock mechanism is a convention

intended to help you signal other users that you are working with a particular set of files. It minimizes

the time and effort wasted in solving possible conflicts generated by clashing commits. A lock gives

you exclusive rights over a file, only if other users follow this convention and they do not try to bypass

the lock state of a file.

A folder can be locked only by the SVN client application, completely transparent to the user, if an

operation in progress was interrupted unexpectedly. As a result, folders affected by the operation are

marked with the symbol. To clear the locked state of a folder, use the Clean up action.

Note:

Users can lock only files.

The following lock states are displayed:

◦ no lock - the file is not locked. This is the default state of a file in the SVN repository.

◦ remotely locked () - shown when:

▪ Another user has locked the file in the repository.

▪ The file was locked by the same user from another working copy.

▪ The file was locked from the Repositories view.

If you try to commit a new revision of the file to the repository, the server does not allow you to

bypass the file lock.

Note:

To commit a new revision, you need to wait for the file to be unlocked. Ultimately, you

might try to break or steal the lock, but this is not what other users expect. Use these

actions carefully, especially when you are not the file lock owner.

◦ locked () - displayed after you have locked a file from the current working copy. Now you have

exclusive rights over the corresponding file, being the only one who can commit changes to the

file in the repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2871

Note:

Working copies keep track of their locked files, so the locks are presented between

different sessions of the application. Synchronize your working copy with the repository

to make sure that the locks are still valid (not stolen or broken).

◦ stolen () - a file already locked from your working copy is being locked by another user. Now

the owner of the file lock is the user who stole the lock from you.

◦ broken () - a file already locked from your working copy is no longer locked in the repository (it

was unlocked by another user).

Note:

To remove the stolen or broken states from your working copy files, you have to Update

them.

If one of your working copy files is locked, hover the mouse pointer over the lock icon to see more

information:

◦ Lock type - current file lock state

◦ Owner - the name of the user who created the lock

◦ Date - the date when the user locked the file

◦ Expires on - date when the lock expires. Lock expiry policy is set in the repository options, on the

server side

◦ Comment - the message attached when the file was locked

• Size - Resource size on disk

• Type - Contains the resource type or file extension

Note:

The working copy table allows you to show or hide any of its columns and also to sort its contents

by any of the displayed columns. The table header provides a contextual menu that allows you to

customize the displayed information.

The toolbar contains the following options for switching to a different working copy:

• List of Defined Working Copies - A drop-down menu that contains all the working copies Oxygen XML

Editor is aware of. When you select a different working copy from the list, the newly selected working

copy content is scanned and displayed in the Working Copy view.

• Working Copies Manager (on macOS) - Opens a dialog box that displays the working copies

Oxygen XML Editor is aware of. In this dialog box, you can add existing working copies or remove those

Oxygen XML Editor 27.1 | 20 - Tools | 2872

you no longer need. If you try to add a folder that is not a valid Subversion working copy, Oxygen XML

Editor warns you that the selected directory is not under version control.

Note:

Removing a working copy from this dialog box does NOT remove it from your file system; you

will have to do that manually.

Working Copy Settings

The Settings button from the toolbar of the Working Copy view provides the following options:

• Show unversioned directories content - Displays the content of unversioned directories.

Note:

If this option is not selected, it will be ignored for items that, after a synchronize, are reported

as incoming from the repository. This applies for all working copy modes, except All Files.

• Show ignored items - Displays the ignored resource when All Files mode is selected.

• Show ignored directories content - Displays the content of ignored directories when All Files mode is

selected.

Note:

Although ignored items are not presented in the Modified, Incoming, and Conflicts modes, they

will be if, after a synchronize, they are reported as incoming from the repository.

• Show deleted items - Displays the deleted resource when All Files mode is selected. All other modes

always display deleted resources, disregarding this option.

• Tree / Compressed / Flat - Affect the way information is displayed inside the Modified,

Incoming, Outgoing, and Conflicts view modes.

• Configure columns - Allows you to customize the structure of the Working Copy view data. This action

opens the following dialog box:

Oxygen XML Editor 27.1 | 20 - Tools | 2873

Figure 718. Configure Columns of Working Copy View

The order of the columns can be changed with the two arrow buttons. The column size can be edited

in the Width of selected column field. The Restore Defaults button reverts all columns to the default

order, width, and enabled/disabled state from the installation of the application.

Working Copy Format

When an SVN working copy is loaded, Syncro SVN Client first checks the format of the working copy:

• If the format is older than SVN 1.7, you are prompted to upgrade it to SVN 1.8 to load it.

• If the format is 1.7, Syncro SVN Client takes into account the state of the When loading an old format

working copyoption (on page 293).

To change how working copy formats are handled, open the Preferences dialog box (Options > Preferences)

(on page 132), go to SVN > Working copy, and configure the options in the Administrative area (on page 293)

section.

Note:

• The format of the working copy can be downgraded or upgraded at any time with the Upgrade

and Downgrade actions available in the Tools menu. These actions allow switching between

SVN 1.7 and SVN 1.8 working copy formats.

• SVN 1.7 working copies cannot be downgraded to older formats.

Oxygen XML Editor 27.1 | 20 - Tools | 2874

Refresh a Working Copy

A refresh is a frequent operation triggered automatically when you switch between two working copies using

the toolbar selector of the Working Copy view and when you switch between Oxygen XML Editor and other

applications.

The Working Copy view features a fast refresh mechanism: the content is cached locally when loading the

working copy for the first time. Later on, when the same working copy is displayed again, the application uses

this cache to detect the changes between the cached content and the current content found on disk. The

refresh operation is run on these changes only, thus improving the response time. improvement is noticeable

especially when working with large working copies.

Working Copy View Contextual Menu Actions

The contextual menu in the Working Copy view contains the following actions:

Edit conflict (Ctrl + E (Command + E on macOS))

Opens the Compare editor, allowing you to modify the content of the currently conflicting

resources. For more information about editing conflicts, see Edit conflicts (on page 2808).

Open in Compare Editor (Ctrl + Alt + C (Command + Option + C on macOS))

Displays changes made in the currently selected file.

Open (Ctrl + O (Command + O on macOS))

Opens the selected resource from the working copy. Files are opened with an internal editor or

an external application associated with that file type, while folders are opened with the default

file system browsing application (Windows Explorer on Windows, Finder on macOS, etc).

Open with...

Submenu that allows you to open the selected resource either with Oxygen XML Editor or with

another application.

Show in Explorer/Show in Finder

Opens the parent directory of the selected working copy file and selects the file.

Expand All (Ctrl + Alt + X (Command + Option + X on macOS))

Displays all descendants of the selected folder. The same behavior is obtained by double-

clicking a collapsed folder.

Refresh(F5)

Re-scans the selected resources recursively and refreshes their status in the working copy view.

Synchronize (Ctrl + Shift + S (Command + Shift + S on macOS))

Connects to the repository and determines the working copy and repository changes made to

the selected resources. The application switches to Modified view mode if the Always switch to

'Modified' mode option (on page 293) is selected.

Oxygen XML Editor 27.1 | 20 - Tools | 2875

Update (Ctrl + U (Command + U on macOS))

Updates the selected resources to the HEAD revision (latest modifications) from the repository.

If the selection contains a directory, it will be updated depending on its depth.

Update to revision/depth

Allows you to update the selected resources from the working copy to an earlier revision from

the repository. You can also select the update depth for the current folder. You can find out more

about the depth term in the sparse checkouts (on page 2860) section.

Commit

Collects the outgoing changes from the selected resources in the working copy and allows you

to choose exactly what resources to commit. A directory will always be committed recursively.

Unversioned resources will be deselected by default. In the Commit dialog box you can also

enter a comment before sending your changes to the repository.

Revert (Ctrl + Shift + V (Command + Shift + V on macOS))

Undoes all local changes for the selected resources. It does not contact the repository and the

files are obtained from the Apache Subversion™ pristine copy. It is available only for modified

resources. See Revert your changes (on page 2810) for more information.

Override and Update

Drops any outgoing change and replaces the local resource with the HEAD revision. This action

is available on resources with outgoing changes, including conflicting ones. See the Revert your

changes (on page 2810) section.

Override and Commit

Drops any incoming changes and sends your local version of the resource to the repository.

This action is available on conflicting resources. For more information see Drop incoming

modifications (on page 2812).

Mark Resolved (Ctrl + Shift + R (Command + Shift + R on macOS))

Instructs the Subversion system that you resolved a conflicting resource. For more information,

see Merge conflicts (on page 2811).

Mark as Merged (Ctrl + Shift + M (Command + Shift + M on macOS))

Instructs the Subversion system that you resolved the pseudo-conflict by merging the changes

and you want to commit the resource. Read the Merge conflicts (on page 2811) section for

more information about how you can solve the pseudo-conflicts.

Create patch (Ctrl + Alt + P (Command + Option + P on macOS))

Allows you to create a file containing all the differences between two resources, based on the

svn diff command. To read more about creating patches, see the section about patches (on

page 2845).

Compare with:

Oxygen XML Editor 27.1 | 20 - Tools | 2876

• Latest from HEAD (Ctrl + Alt + H (Command + Option + H on macOS)) - Performs a 3-way

diff operation between the selected file and the HEAD revision from the repository and

displays the result in the Compare view. The common ancestor of the 3-way diff operation

is the BASE version of the file from the local working copy.

• BASE revision (Ctrl + Alt + C (Command + Option + C on macOS)) - Compares the

working copy file with the BASE revision file (the so-called pristine copy).

• Revision (Ctrl + Alt + R (Command + Option + R on macOS)) - Displays the History view

that contains the log history of that resource.

• Branch/Tag - Opens the Compare with Branch/Tag dialog box that allows you to specify

another file from the repository (on page 2901) (To URL field) to compare with the

working copy file. You can specify the revision of the repository file by choosing between

HEAD revision or specific Other revision.

Tip:

To compare with a file that was deleted, moved, or replaced, you need to specify

the original URL (before the file was removed) and use a peg revision (on page

2903) at the end (for example, URL@rev1234).

• Each other - Compares two selected files with each other.

These compare actions are available only if the selected resource is a file.

Replace with:

• Latest from HEAD - Replaces the selected resources with their versions from the HEAD

revision of the repository.

• BASE revision - Replace the selected resources with their versions from the pristine copy

(the BASE revision).

Note:

In some cases it is impossible to replace the currently selected resources with their

versions from the BASE/HEAD revision:

• For the Replace with BASE revision action, the resources being unversioned or

added have no BASE revision, and thus cannot be replaced. However, they will be

deleted if the action is invoked on a parent folder. The action will never work for

missing folders or for obstructing files (folders being obstructed by a file), since

you cannot recover a tree of folders.

• For the Replace with latest from HEAD action, you must be aware that there are

cases when resources will be completely deleted or reverted to the BASE revision

and then updated to a HEAD revision to avoid conflicts. These cases are:

Oxygen XML Editor 27.1 | 20 - Tools | 2877

◦ The resource is unversioned, added, obstructed, or modified.

◦ The resource is affected by a svn:ignore or svn:externals property that is

locally added on the parent folder and not yet committed to the repository.

Show History (Ctrl + H (Command + H on macOS))

Displays the History view where the log history for the selected resource will be presented. For

more details about resource history, see the sections about the resource history view (on page

2881) and requesting the history for a resource (on page 2820).

Show Annotation (Ctrl + Shift + A (Command + Shift + A on macOS))

Opens the Show Annotation dialog box that computes the annotations for a file and displays

them in the Annotations view (on page 2888), along with the history of the file in the History

view.

Revision Graph (Ctrl + G (Command + G on macOS))

This action allows you to see the graphical representation history of a resource. For more details

about the revision graph of resources, see Revision Graph (on page 2896).

Copy URL Location (Ctrl + Alt + U (Command + Option + U on macOS))

Copies the encoded URL of the selected resource from the Working Copy to the clipboard.

Mark as copied

You can use this action to mark an item from the working copy as a copy of another item under

version control, when the copy operation was performed outside of an SVN client. The Mark as

copied action is available when you select two items (both the new item and source item), and it

depends on the state of the source item.

Mark as moved

You can use this action to mark an item from the working copy as being moved from another

location of the working copy, when the move operation was performed outside of an SVN client.

The Mark as moved action is available when you select two items from different locations (both

the new item and the source item that is usually reported as missing), and it depends on the

state of the source item.

Mark as renamed

You can use this action to mark an item from the working copy as being renamed outside of

an SVN client. The Mark as renamed action is available when you select two items from the

same directory (both the new item and the source item that is usually reported as missing), and

it depends on the state of the source item.

Copy to

Copies the currently selected resource to a specified location.

Move to (Ctrl + M (Command + M on macOS))

Oxygen XML Editor 27.1 | 20 - Tools | 2878

Moves the currently selected resource to a specified location.

Rename (F2)

As with the move command, a copy of the original resource will be made with the new name and

the original will be marked as deleted. Note that you can only rename one resource at a time.

Delete (Delete)

Schedules selected items for deletion upon the next commit and removes them from the disk.

Depending on the state of each item, you are prompted to confirm the operation.

New:

• New File - Creates a new file inside the selected folder. The newly created file will be

added under version control only if the parent folder is already versioned.

• New Folder (Ctrl + Shift + F (Command + Shift + F on macOS)) - Creates a child folder

inside the selected folder. The newly created folder will be added under version control

only if its parent is already versioned.

• New External Folder (Ctrl + Shift + W (Command + Shift + W on macOS)) - This operation

allows you to add a new external definition on the selected folder. An external definition

is a mapping of a local directory to a URL of a versioned directory (on page 2901), and

ideally a particular revision, stored in the svn:externals property of the selected folder.

Tip:

You can specify a particular revision of the external item by using a peg revision

(on page 2903) at the end of the URL (for example, URL@rev1234). You can also

use peg revisions to access external items that were deleted, moved, or replaced.

The URL used in the external definition format can be relative. You can specify the

repository URL that the external folder points to by using one of the following relative

formats:

◦ ../ - Relative to the URL of the directory that the svn:externals property is set.

◦ ^/ - Relative to the root of the repository where the svn:externals property is

versioned.

◦ // - Relative to the scheme of the URL of the directory that the svn:externals

property is set.

◦ / - Relative to the root URL of the server that has the svn:externals property

versioned.

Important:

To change the target URL of an external definition, or to delete an external item,

do the following:

Oxygen XML Editor 27.1 | 20 - Tools | 2879

1. Modify or delete the item definition found in the svn:externals property

that is set on the parent folder.

2. For the change to take effect, use the Update operation on the parent

folder of the external item.

Note:

Syncro SVN Client does not support definitions of local relative external items.

Add to "svn:ignore" (Ctrl + Alt + I (Command + Option + I on macOS))

Allows you to add files that should not participate in the version control operations inside your

working copy. This action can only be performed on resources not under version control. It

actually modifies the value of the svn:ignore property in the parent directory of the resource.

Read more about this in the Ignore Resources Not Under Version Control (on page 2798)

section.

Add to version control (Ctrl + Alt + V (Command + Option + V on macOS))

Allows you to add resources that are not under version control. For further details, see Add

Resources to Version Control (on page 2796) section.

Remove from version control

Schedules the selected items for deletion from the repository upon the next commit. The items

are not removed from the file system after committing.

Clean up (Ctrl + Shift + C (Comman + Shift + Cd on macOS))

Performs a maintenance cleanup operation on the selected resources from the working copy.

This operation removes the Subversion maintenance locks that were left behind. This is useful

when you already know where the problem originated and want to fix it as quickly as possible. It

is only active for resources under version control.

Locking:

• Scan for locks (Ctrl + L (Command + L on macOS)) - Contacts the repository and

recursively obtains the list of locks for the selected resources. A dialog box containing

the locked files and the lock description will be displayed. This is only active for resources

under version control. For more details see Scanning for locks (on page 2802).

• Lock (Ctrl + K (Command + K on macOS)) - Allows you to lock certain files that need

exclusive access. You can write a comment describing the reason for the lock and you

can also force (steal) the lock. This action is active only on files under version control. For

more details on the use of this action see Locking a file (on page 2803).

• Unlock (Ctrl + Alt + K (Command + Option + K on macOS)) - Releases the exclusive

access to a file from the repository. You can also choose to unlock it by force (break the

lock).

Oxygen XML Editor 27.1 | 20 - Tools | 2880

Show SVN Properties (Ctrl + P (Command + P on macOS))

Brings up the Properties view (on page 2894) and displays the SVN properties for the selected

resource.

Show SVN Information (Ctrl + I (Command + I on macOS))

Provides additional information for the selected resource from the working copy. For more

details, go to Obtain information for a resource (on page 2819).

Drag and Drop Operations

The structure of the files tree can be changed with drag and drop operations inside the Working Copy view.

These operations behave in the same way with the Copy to/Move to operations.

Also, files and folders can be added to the file tree of the view as unversioned resources by drag and drop

operations from other applications (for example, from Windows Explorer or macOS Finder). In this case, the

items from the file system are only copied, without removing them from their original location.

Attention:

When you drag items from the working copy to a different application, the performed operation is

controlled by that application. This means that the moved items are left as missing in the working

copy (items are moved in the file system only, but no SVN versioning meta-data is changed).

Assistant Actions

To ensure a continuous and productive work flow, when a view mode has no files to present, it offers a set of

guiding actions with some possible paths to follow.

Initially, when there is no working copy configured the All Files view mode lists the following two actions:

Figure 719. All Files Panel

For Modified, Incoming, Outgoing, Conflicts view modes, the following actions may be available, depending on

the current working copy state in various contexts:

• Synchronize with Repository - Available only when there is nothing to present in the Modified and

Incoming view modes.

• Switch to Incoming - Selects the Incoming view mode.

• Switch to Outgoing - Selects the Outgoing view mode.

Oxygen XML Editor 27.1 | 20 - Tools | 2881

• Switch to Conflicts - Selects the Conflicts view mode.

• Show all changes/incoming/outgoing/conflicts - Depending on the currently selected view mode,

this action presents the corresponding resources after a synchronize operation was executed only on a

part of the working copy resources.

• (Information message) - Informs you why there are no resources presented in the currently

selected view mode.

History View

In Apache Subversion™, both files and directories are versioned and have a history. If you want to examine the

history for a selected resource and find out what happened at a certain revision you can use the History view

that can be accessed from Repositories view (on page 2861), Working Copy view (on page 2866), Revision

Graph (on page 2896), or Directory Change Set view (on page 2886). From the Working copy view you can

display the history of local versioned resources. If the view is not displayed, it can be opened by selecting it

from the Window > Show View menu.

The view consists of four distinct areas:

• The table showing details about each revision, such as revision number, commit date and time,

number of changes (more details available in the tooltip), author's name, and a fragment of the commit

message.

Some revisions may be highlighted to emphasize:

◦ The current revision of the resource that has the history displayed - a bold font revision.

◦ The last revision where the content or properties of the resource were modified - blue font

revision.

Note:

Both font highlights may be applied for the same revision.

• The complete commit message for the selected revision.

• A tree structure showing the folders where the modified resources are located. You can compress this

structure to a more compact form that focuses on the folders that contain the actual modifications.

• The list of resources modified in the selected revision. For each resource, the type of action done

against it is marked with one of the following symbols:

◦ - A newly created resource.

◦ - A newly created resource, copied from another repository location.

◦ - The content/properties of the resource were modified.

◦ - Resource was replaced in the repository.

◦ - Resource was deleted from the repository.

Oxygen XML Editor 27.1 | 20 - Tools | 2882

Figure 720. History View

You can group revisions in predefined time frames (today, yesterday, this week, this month), by pressing the

Group by date button from the toolbar.

History Filter Dialog Box

The History view does not always show all the changes ever made to a resource because there may be

thousands of changes and retrieving the entire list can take a long time. Normally you are interested in the

more recent ones. That is why you can specify the criteria for the revisions displayed in the History view by

selecting one of several options presented in the History dialog box that is displayed when you invoke the

Show History action.

Oxygen XML Editor 27.1 | 20 - Tools | 2883

Figure 721. History Filters Dialog Box

Options for the set of revisions presented in the History view are:

• All revisions of the selected resource.

• Only revisions between a start revision number and an end revision number.

• Only revisions added in a period of time (such as today, last week, last month, etc.)

• Only revisions between a start and an end date.

• Only revisions committed by a specified SVN user.

The toolbar of the History view has two buttons for extending the set of revisions presented in the view: Get

next 50 and Get all.

History Filter Field

When only the history entries that contain a specified substring need to be displayed in the History view, the

filter field displayed at the top of this view is a useful tool. Just enter the search string in the field next to the

Find label. Only the items (with an author name, commit message, revision number, or date) that match the

search string are kept in the History view. When you click the Search button, the filter action is executed

and the content of the table is updated.

History View Contextual Menu Actions

The History view contains the following contextual menu actions:

Compare with working copy

Compares the selected revision with your working copy file. It is available only when you select a

file.

Open

Oxygen XML Editor 27.1 | 20 - Tools | 2884

Opens the selected revision of the file into the Editor. This is available only for files.

Open with

Displays the Open with dialog box to specify the editor where the selected file will be opened.

Get Contents

Replaces the current version from the working copy with the contents of the selected revision

from the history of the file. The BASE version of the file is not changed in the working copy so

that after this action the file will appear as modified in a synchronization operation, that is newer

than the BASE version, even if the contents is from an older version from history.

Save as

Allows you to save the contents of a file as it was committed at a certain revision. This option is

available only when you access the history of a file.

Copy to

Copies to the repository the item whose history is displayed, using the selected revision. This

option is active only when presenting the history for a repository item (URL).

Note:

This action can be used to resurrect deleted items also.

Revert changes from this revision

Reverts changes that were made in the selected revisions. The are reverted only in the working

copy and do not affect the repository items. It does not replace your working copy items with

those from the selected revisions. This action is available when the resource history was

launched for a local working copy resource.

Note:

For items displayed in the Affected Paths section that were added, deleted, or replaced,

this action has no effect because such changes are considered to be changes to the

parent directory. To revert these types of changes, follow these steps:

1. Request the history for the parent directory.

2. Identify the revision that contains the changes you want to revert.

3. Invoke the action on that revision.

Warning:

There are instances where the SVN Client is not able to identify the corresponding

working copy item for the selected item in the Affected Paths section. In this case, the

action does not proceed and an error message is displayed. For example, the selected

Oxygen XML Editor 27.1 | 20 - Tools | 2885

item in the Affected Paths section is from a different repository location than the

working copy item that has the history displayed.

Update to revision

Updates your working copy resource to the selected revision. This is useful if you want your

working copy to reflect a time in the past. It is best to update a whole directory in your working

copy, not just one file. Otherwise, your working copy is inconsistent and you are unable to

commit your changes.

Check out

Checks out a new working copy of the directory that has the history presented, from the selected

revision.

Export

Opens the Export dialog box (on page 2856) that allows you to configure options for exporting a

folder from the repository to the local file system.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on macOS))

Opens the Show Annotation dialog box that computes the annotations for a file and displays

them in the Annotations view (on page 2888), along with the history of the file in the History

view.

Change

Allows you to change commit data for a file:

• Author - Changes the name of the SVN user that committed the selected revision.

• Message - Changes the commit message of the selected revision.

When two resources are selected in the History view, the contextual menu contains the following actions:

Compare revisions

When the resource is a file, the action compares the two selected revisions using the Compare

view. When the resource is a folder, the action displays the set of all resources from that folder

that were changed between the two revision numbers.

Revert changes from these revisions

Similar to the svn merge command, it merges two selected revisions into the working copy

resource. This action is only available when the resource history was requested for a working

copy item.

For more information about the History view and its features, see the Request history for a resource (on page

2820) and Using the resource history view (on page 2881) sections.

Oxygen XML Editor 27.1 | 20 - Tools | 2886

Directory Change Set View

The result of comparing two reference revisions from the history of a folder resource is a set with all the

resources changed between the two revision numbers. The changed resources can be contained in the folder

or in a subfolder of that folder. These resources are presented in a tree format. For each changed resource all

the revisions committed between the two reference revision numbers are presented.

Figure 722. Directory Change Set View

The set of changed resources displayed in the tree is obtained by running the action Compare revisions

available on the contextual menu of the History view when two revisions of a folder resource are selected in

the History view.

The left side panel of the view contains the tree hierarchy with the names of all the changed resources

between the two reference revision numbers. The right side panel presents the list with all the revisions of the

resource selected in the left side tree. These revisions were committed between the two reference revision

numbers. Selecting one revision in the list displays the commit message of that revision in the bottom area of

the right side panel.

Double-clicking a file listed in the left-side tree performs a diff operation between the two revisions of the file

corresponding to the two reference revisions. Double-clicking one of the revisions displayed in the right-side

list of the view performs a diff operation between that revision and the previous one for the same file.

The contextual menu of the right side list contains the following actions:

Compare with previous version

Performs a diff operation between the selected revision in the list and the previous one.

Open

Opens the selected revision in the associated editor type.

Open with

Oxygen XML Editor 27.1 | 20 - Tools | 2887

Displays a dialog box with the available editor types and allows you to select the editor type for

opening the selected revision.

Save as

Saves the selected file as it was in the selected revision.

Copy to

Copies to the repository the item whose history is displayed, using the selected revision.

Note:

This action can be used to resurrect deleted items also.

Check out

Checks out a new working copy of the selected directory, from the selected revision.

Export

Opens the Export dialog box (on page 2856) that allows you to configure options for exporting a

folder from the repository to the local file system.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on macOS))

Opens the Show Annotation dialog box that computes the annotations for a file and displays

them in the Annotations view (on page 2888), along with the history of the file in the History

view.

Show SVN Information (Ctrl + I (Command + I on macOS))

Provides additional information for a selected resource. For more details, go to Obtain

information for a resource (on page 2819).

Editor Panel of SVN Client

You can open a file for editing in an internal built-in editor. There are default associations between frequently

used file types and the internal editors in the File Types preferences panel (on page 307).

The internal editor can be accessed either from the Working copy view (on page 2866) or from the History

view (on page 2881). No actions that modify the content are allowed when the editor is opened with a

revision from history.

Only one file at a time can be edited in an internal editor. If you try to open another file it will be opened in the

same editor window. The editor provides syntax highlighting for known file types. This means that a different

color will be used for each recognized token type found in the file. If the file's content type is unknown you will

be prompted to choose the proper way the file should be opened.

After editing the content of the file in an internal editor you can save it to disk by using the Save action from

the File (on page 2772) menu or the Ctrl + S (Command + S on macOS) key shortcut. After saving your file

you can see the file changed status in the Working Copy view (on page 2866).

Oxygen XML Editor 27.1 | 20 - Tools | 2888

If the internal editor associated with a file type is not the XML Editor, then the encoding set in the preferences

for Encoding for non XML files (on page 176) is used for opening and saving a file of that type. This is

necessary because in the case of XML files, the encoding is usually declared at the beginning of the XML file

in a special declaration or it assumes the default value UTF-8, but in the case of non-XML files, there is no

standard mechanism for declaring the encoding for the file.

Annotations View

Sometimes you need to know not only what was changed in a file, but also who made those changes. The

Annotations view displays the revision and the author that changed every line in a file. The annotations of a file

are computed and this view is opened with the Show Annotation action, which is available in the History

menu, and from the contextual menu of the following views: Repositories view (on page 2861), Working copy

view (on page 2866), History view (on page 2881), and Directory Change Set view (on page 2886).

This action opens a dialog box that allows you to configure some options for showing the annotations.

Figure 723. Show Annotation Options Dialog Box

Once you have configured the options and click OK, the Annotations view is displayed (by default, on the right

side of the application). You can click a line in the editor panel where the file is opened to see the revision

where the line was last modified. The same revision is highlighted in the History view and you can also

see all the lines that were changed in the same revision highlighted in the editor panel. Also, the entries

of the Annotations view corresponding to that revision are highlighted. Therefore, the Annotations view,

Oxygen XML Editor 27.1 | 20 - Tools | 2889

History view, and annotations editor panel are all synchronized. Clicking a line in one of them highlights the

corresponding lines in the other two.

Figure 724. Annotations View

The following options can be configured in the Show Annotation dialog box:

From Revision Section

Select the revision to have the annotation computed. If you click the History button, the History

dialog box (on page 2794) is displayed, which allows you to select a revision.

To Revision Section

Select the ending revision by choosing between the HEAD revision or specify it in the Other text

box. If you click the History button, the History dialog box (on page 2794) is displayed, which

allows you to select a revision.

Encoding

Select the encoding to be used when the annotation is computed. For each line of text, the SVN

Client looks through the history of the file to be annotated see when it was last modified, and by

whom. It is required that it is in the form of a text file. Therefore, encoding is needed to properly

decode and read the file content. By default, the encoding of the operating system is used.

Ignore MIME type

If selected, the file is treated as a text file and ignores what the SVN system infers from the

svn:mime-type property.

Ignore line endings

If selected, the differences in line endings are ignored when the annotation is computed.

Ignore whitespaces

Oxygen XML Editor 27.1 | 20 - Tools | 2890

If selected, it allows you to specify how the whitespace changes should be handled. When

selected, you can then choose between two options:

• Ignore whitespace changes - Ignores changes in the amount of whitespaces or to their

type (for example, when changing the indentation or changing tabs to spaces).

Note:

Whitespaces that were added where there were none before, or that were

removed, are still considered to be changes.

• Ignore all whitespaces - Ignores all types of whitespace changes.

Tip:

Selecting any of these ignore options can help you better determine the last time a meaningful change

was made to a given line of text.

After you configure the options and click OK, the annotations will be computed and the Annotations view is

displayed, where all the users that modified the selected resource will be presented, along with the specific

lines and revision numbers modified by each user.

Note:

If the file has a very long history, the computation of the annotation data can take a long time to

process.

Compare View

In the Oxygen XML Editor, there are three types of files that can be checked for differences: text files, image

files and binary files. For the text files and image files you can use the built-in Compare view. This view is

automatically opened if you select two files and use the Compare with > Each Other action in the contextual

menu.

Oxygen XML Editor 27.1 | 20 - Tools | 2891

Figure 725. Compare View

At the top of each of the two editors, there are presented the name of the open file, the corresponding SVN

revision number (for remote resources) and the author who committed the associated revision.

When comparing text, the differences are computed using a line differencing algorithm. The view can be used

to show the differences between two files in the following cases:

• After obtaining the outgoing status of a file with a Refresh operation, the view can be used to show the

differences between your working file and the pristine copy. In this way you can find out what changes

you will be committing.

• After obtaining the incoming and outgoing status of the file with the Synchronize operation, you can

examine the exact differences between your local file and the HEAD revision file.

• You can use the Compare view from the History view to compare the local file and a selected revision

or compare two revisions of the same file.

The Compare view contains two editors. Edits are allowed only in the left editor and only when it contains the

working copy file. To learn more about how the view can be used, see View Differences (on page 2804).

Compare View Toolbar

The toolbar of the Compare view contains the operations that can be performed on the source and target files.

Oxygen XML Editor 27.1 | 20 - Tools | 2892

Figure 726. Compare View Toolbar

The following actions are available:

Algorithm

The algorithm to be used for performing a comparison. The following options are available:

• Auto - Selects the most appropriate algorithm, based on the compared content and its

size (selected by default).

• Lines - Computes the differences at line level, meaning that it compares two files or

fragments looking for identical lines of text. This algorithm is not available when the file

comparison is in Author comparison mode.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise

than XML Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed.

It compares two XML files or fragments looking for identical XML nodes.

Save action

Saves the content of the left editor when it can be edited.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before

performing the comparison, the application normalizes the content and trims its leading and

trailing whitespaces.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both

panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on macOS))

Formats and indents both files before comparing them. Use this option for comparisons that

contain long lines that make it difficult to spot differences.

Note:

When comparing two JSON files, the Format and Indent Both Files action will

automatically sort the keys in both files the same to make it easier to compare.

Copy Change from Right to Left

Oxygen XML Editor 27.1 | 20 - Tools | 2893

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on macOS))

Jumps to the next block of changes. This action is not available when the cursor is positioned

on the last change block or when there are no changes.

Note:

A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on macOS))

Jumps to the previous block of changes. This action is not available when the cursor is

positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on macOS))

Jumps to the next change from the current block of changes. When the last change from the

current block of changes is reached, it highlights the next block of changes. This action is not

available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on macOS))

Jumps to the previous change from the current block of changes. When the first change from

the current block of changes is reached, it highlights the previous block of changes. This action

is not available when the cursor is positioned on the first change or when there are no changes.

Ignore Nodes by XPath

You can use this text field to enter an XPath expression (on page 2109) to ignore certain nodes

from the comparison. It will be processed as XPath version 2.0. You can also enter the name

of the node to ignore all nodes with the specified name (for example, if you want to ignore all

ID attributes from the document, you could simply enter @id). This field is only available when

comparing XML documents using the XML Fast or XML Accurate algorithms.

Note:

If an XPath expression is specified in the Ignore nodes by XPath option (on page 298)

in the Diff / File Comparison preferences page, that one is used as a default when the

application is started. If you then enter an expression in this field on the toolbar, this one

will be used instead of the default. If you delete the expression from this field, neither

will be used.

First Change (Ctrl + B (Command + B on macOS))

Jumps to the first change.

Oxygen XML Editor 27.1 | 20 - Tools | 2894

Most of these actions are also available from the Compare (on page 2772) menu.

Image Preview

You can view your local files by using the built-in Image Preview component. The view can be accessed from

the Working copy view (on page 2866) or from the Repository view (on page 2861). It can also be used from

the History view (on page 2881) to view a selected revision of a image file.

Only one image file can be opened at a time. If an image file is opened in the Image preview and you try to

open another one it will be opened in the same window. Supported image types are GIF, JPEG/JPG, PNG,

BMP. Once the image is displayed in the Image Preview panel using the actions from the contextual menu,

you can scale the image at its original size (1:1 action) or scale it down to fit in the view's available area (Scale

to fit action).

Compare Images View

The images are compared using the Compare Images view. This view is automatically opened if you select

two image files and use the Compare with > Each Other action in the contextual menu. The images are

presented in the left and right part of the view, scaled to fit the available area. You can use the contextual

menu actions to scale the images at their original size or scale them down to fit the view's available area.

The supported image types are: GIF, JPG / JPEG, PNG, BMP.

Properties View

The properties view presents Apache Subversion™ properties for the currently selected resource from either

the Working Copy view or the Repositories view. If the view is not displayed, it can be opened by selecting it

from the Window > Show View menu.

Figure 727. Properties View

Oxygen XML Editor 27.1 | 20 - Tools | 2895

The table includes four columns:

• State - Can be one of the following:

◦ (empty) - Normal unmodified property (same current and base values)

◦ * (asterisk) - Modified property (current and base values are different)

◦ + (plus sign) - New property

◦ - (minus sign) - Removed property

• Name - The property name.

• Current value - The current value of the property.

• Base value - The base (original) value of the property.

svn:externals Property

The svn:externals property can be set on a folder or a file. In the first case, it stores the URL of a folder from

another repository (on page 2878).

In the second case, it stores the URL of a file from another repository. The external file will be added into the

working copy as a versioned item. There are a few differences between directory and external file:

• The path to the external file must be in a working copy that is already checked out. While external

directories can place the external directory at any depth and it will create any intermediate directories,

external files must be placed into a working copy that is already checked out.

• The external file URL must be in the same repository as the URL that the external file will be inserted

into (inter-repository external files are not supported).

• While commits do not descend into an external directory, a commit in a directory containing an external

file will commit any modifications to the external file.

The difference between a normal versioned file and an external file is that external files cannot be moved or

deleted (the svn:externals property must be modified instead. However, external files can be copied).

An external file is displayed as an X in the switched status column.

Toolbar / Contextual Menu

The properties view toolbar and contextual menu contain the following actions:

• Add a new property - This button invokes the Add property dialog box where you can specify the

property name and value.

• Edit property - This button invokes the Edit property dialog box where you can change the property

value and also see its original(base) value.

• Remove property - This button will prompt a dialog box to confirm the property deletion. You can

also specify if you want to remove the property recursively.

• Refresh - This action will refresh the properties for the current resource.

Oxygen XML Editor 27.1 | 20 - Tools | 2896

Console View

The Console View shows the traces of all the actions performed by the application. If the view is not

displayed, it can be opened by selecting it from the Window > Show View menu.

Part of the displayed messages mirror the communication between the application and the Apache

Subversion™ server. The output is expressed as subcommands to the Subversion server and simulates the

Subversion command-line notation. For a detailed description of the Subversion console output read the SVN

User Manual.

The view has a simple layout, with most of its space occupied by a message area. On its right side, there is a

toolbar holding the following buttons:

Clear

Erases all the displayed messages.

Lock scroll

Disables the automatic scrolling when new messages are appended in the view.

The maximum number of lines displayed in the console (length of the buffer) can be modified in the

Preferences (on page 291) page. By default, this value is set to 100.

Dynamic Help View

Dynamic Help view is a help window that changes its content to display the help section that is specific to

the currently selected view. As you change the focused view, you can read a short description of it and its

functionality. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Revision Graph of an SVN Resource

The history of an SVN resource can be watched on a graphical representation of all the revisions of that

resource together with the tags in which the resource was included. The graphical representation is identical

to a tree structure and very easy to follow.

The graphical representation of a resource history is invoked with the Revision graph action available on

the right-click menu of an SVN resource in the Working Copy view (on page 2866) and the Repository view

(on page 2861).

Oxygen XML Editor 27.1 | 20 - Tools | 2897

Figure 728. Revision Graph of a File Resource

In every node of the revision graph an icon and the background color represent the type of operation that

created the revision represented in that node. The commit message associated with that revision, the

repository path, and the revision number are also contained in the node. The tooltip displayed when the mouse

pointer hovers over a node specifies the URL of the resource, the SVN user who created the revision of that

node, the revision number, the date of creation, the commit message, the modification type and the affected

paths (on page 2794).

The types of nodes used in the graph are:

Added resource

The icon for a new resource added to the repository and a green background.

Copied resource

The icon for a resource copied to other location (for example, when an SVN tag is created

and a green background).

Modified resource

The icon for a modified resource and a blue background.

Deleted resource

The icon for a resource deleted from the repository and a red background.

Replaced resource

Oxygen XML Editor 27.1 | 20 - Tools | 2898

The icon for a resource removed and replaced with another one on the repository and an

orange background.

Indirect resource

The icon for a revision from where the resource was copied or an indirectly modified

resource, that is a directory where a resource was modified and a gray background. The

Modification type field of the tooltip specifies how that revision was obtained in the history of the

resource.

A directory resource is represented with two types of graphs:

Simplified graph

Lists only the changes applied directly to the directory;

Complete graph

Lists also the indirect changes of the directory resource, that is the changes applied to the

resources contained in the directory.

Figure 729. Revision Graph of a Directory (Direct Changes)

Oxygen XML Editor 27.1 | 20 - Tools | 2899

Figure 730. Revision Graph of a Directory (Including Indirect Changes)

The Revision graph toolbar contains the following actions:

Save as image

Saves the graphical representation as image. For a large revision graph you have to set more

memory in the startup script (on page 349). The default memory size is not enough when there

are more than 100 revisions that are included in the graph.

/ Show/Hide indirect modifications

Switches between simplified and complete graph.

Zoom In

Zooms in the graph.

Zoom Out

Zooms out the graph. When the font reaches its minimum size, the graph nodes will display only

the icons, leading to a very compact representation of the graph.

Reset scale

Resets the graphical scale to a default setting.

Print

Prints the graph.

Print preview

Oxygen XML Editor 27.1 | 20 - Tools | 2900

Offers a preview of the graph to allow you to check the information to be printed.

The contextual menu of any of the graph nodes contains the following actions:

Open

Opens the selected revision in the editor panel. Available only for files.

Open with

Opens the selected revision in the editor panel. Available only for files.

Save as

Saves the file that had the revision graph generated, based on the selected node revision.

Copy to

Copies to the repository the item whose revision graph is displayed, using the selected revision.

Note:

This action can be used to resurrect deleted items also.

Compare with HEAD

Compares the selected revision with the HEAD revision and displays the result in the diff panel.

Available only for files.

Show History

Displays the history of the resource in the History view (on page 2881). Available for both files

and directories.

Check out

Checks out (on page 2792) the selected revision of the directory. Available only for directories.

Export

Opens the Export dialog box (on page 2856) that allows you to configure options for exporting a

folder from the repository to the local file system.

When two nodes are selected in the revision graph of a file the right-click menu of this selection contains only

the Compare for comparing the two revisions corresponding to the selected nodes. If the resource that had

the revision graph built is a folder then the right-click menu displayed for a two nodes selection also contains

the Compare action but it computes the differences between the two selected revisions as a set of directory

changes. The result is displayed in the Directory Change Set (on page 2886) view.

Attention:

Generating the revision graph of a resource with many revisions may be a slow operation. You should

enable caching for revision graph actions so that future actions on the same repository will not

request the same data again from the SVN server, which will finish the operation much faster.

Oxygen XML Editor 27.1 | 20 - Tools | 2901

Oxygen XML Editor SVN Preferences

The options used in the SVN client are saved and loaded independently from the Oxygen XML Editor options.

However, if Oxygen XML Editor cannot determine a set of SVN options to be loaded at startup, some of the

preferences are imported from the XML Editor options (such as the License key and HTTP Proxy settings).

There is also an additional set of preferences applied to the SVN client that are set in global SVN files. There

are two editing actions available in the Global Runtime Configuration submenu of the Options menu. These

actions, Edit 'config' file and Edit 'servers' file, contain parameters that act as defaults applied to all the SVN

client tools that are used by the same user on their login account.

Entering Local Paths and URLs

The Oxygen XML Editor includes a variety of option configuration pages or wizards that contain text boxes

where you specify paths to local resources or URLs of items inside remote repositories. The Oxygen XML

Editor provides support in these text boxes to make it easier to specify these paths and URLs.

Local Item Paths

The text boxes used for specifying local item paths support the following:

• Absolute Paths - In most cases, the Oxygen XML Editor expects absolute paths for local file system

items.

• Relative Paths - The Oxygen XML Editor only accepts relative paths in the form ~[/...], where ~ is the

user home directory.

• Path Validation - Oxygen XML Editor validates the path as you type and invalid text becomes red.

• Drag and Drop - You can drag files and folders from the file system or other applications and drop them

into the text box.

• Automatic Use of Clipboard Data - If the text box is empty when its dialog box is opened, any data that

is available in the system clipboard is used, provided that it is valid for that text box.

Repository Item URLs

• Local Repository Paths - You can use local paths (absolute or relative) to access local repositories.

When you use the Browse button, the Oxygen XML Editor will convert the file path to a file:// form of

URL, provided that the location is a real repository.

◦ Absolute Paths - In most cases, the Oxygen XML Editor expects absolute paths for local file

system items.

◦ Relative Paths - The Oxygen XML Editor only accepts relative paths in the form ~[/...], where ~

is the user home directory.

• Peg Revisions - For URL text boxes found inside dialog boxes where you are pulling information

from the repository, you can use peg revisions at the end of the URLs (on page 2903) (for example,

URL@rev1234).

Oxygen XML Editor 27.1 | 20 - Tools | 2902

Note:

If you try to use a peg revision number in a dialog box where you are sending information to the

repository then the peg revision number will become part of the name of the item rather than

searching for the specified revision. For example, in the URL http://host/path/inside/repo/

item@100, the item name is considered to be item@100.

Tip:

You can even use peg revisions with local repository paths. For example, C:\path\to\local

\repo@100 will be converted to file:///C:/path/to/local/repo@100 and the Repository browser

will display the content of the local repository as it is at revision 100.

• URL Validation - Oxygen XML Editor validates the URLs as you type and invalid text becomes red. Even

paths to local repositories are not accepted unless using the Browse button to convert them to valid

URLs.

• Drag and Drop - You can drag URLs from other applications or text editors and drop them into the URL

text box. You can also drag folders that point to local repositories, from the local file system or from

other applications, and they are automatically converted to valid file:// type URLs.

• Automatic Use of Clipboard Data - If the URL text box is empty when its dialog box is opened, any data

that is available in the system clipboard is used, provided that it is valid for that text box. Even valid

local paths will be automatically converted to file:// type URLs.

Note:

The text boxes that are in the form of a combo box also allow you to select previously used URLs, or

URLs defined in the Repositories view.

Technical Issues

This section contains special technical issues found during the use of Syncro SVN Client.

Authentication Certificates Not Saved

If Syncro SVN Client prompts you to enter the authentication certificate, although you already provided it in a

previous session, then you should make sure that your local machine user account has the necessary rights

to store certificate files in the Subversion configuration folder (write access to Subversion folder and all its

subfolders). Usually, it is located in the following locations:

• Windows: [HOME_DIR]\AppData\Roaming\Subversion

• macOS and Linux: [HOME_DIR]/.subversion

Oxygen XML Editor 27.1 | 20 - Tools | 2903

Updating Newly Added Resources

When you want to get a resource that is part of a newly created structure of folders from the repository, you

need to also get its parent folders.

Figure 731. Incoming Changes

Syncro SVN Client allows you to choose how you want to deal with the entire structure from that moment

onwards:

Update ancestor directories recursively

This option brings the entire newly added folders structure into your working copy. In this case,

the update time depends on the total number of newly incoming resources, because of the full

update operation (not updating only selected resource).

Update selected files only (leave ancestor directories empty)

This option brings a skeleton structure composed of the resource's parent folders only, and the

selected resource at the end of the operation. All of the parent directories will have depth set to

empty in your working copy, thus subsequent Synchronize operations will not report any remote

modifications in those folders. If you need to update the folders to full-depth, you can use the

Update to revision/depth action (on page 2875) from the working copy view.

Accessing Old Items from a Repository

Usually, you point to an item from a repository using a URL. However, sometimes this might not be enough

because the URL alone might point to a different item than the one you want and a peg revision is needed.

A Subversion repository tracks any change made to its items by using revisions, which contain information

such as the name of the author who made the changes, the date when they were made, and a number that

uniquely identifies each of them. Over time, an item from a specific location in a repository evolves as a

result of committing changes to it. When an item is deleted, its entire life cycle (all changes made to it from

the moment it was created) remains recorded in the history of the repository. If a new item is created, with

the same name and in the same location of the repository as a previously existing one, then both items are

identified by the same URL even though they are located in different time frames. This is when a peg revision

comes in handy. A peg revision is nothing more than a normal revision, but the difference between them is

Oxygen XML Editor 27.1 | 20 - Tools | 2904

made by their usage. Many of the Subversion commands also accept a peg revision as a way to precisely

identify an item in time, beside an operative revision (the revision regarding the used command).

Example:

To illustrate an example, consider the following:

• A new repository file config was created, identified by the URL http://host.com/myRepository/dir/

config.

• The file has been created at revision 10.

• Over time, the file was modified by committing revisions 12, 15, 17.

To access a specific version of the file identified by the http://host.com/myRepository/dir/config URL, you

need to use a corresponding revision (the operative revision):

• If a revision number is used that is lower than 10, an error is triggered, because the file has not been

created yet.

• If a revision number is used that is between 10 and 19, the specific version you are interested in would

be obtained.

Note:

Although the file was modified in revisions 12, 15, 17, it existed in all revisions between 10

and 19. Starting with a revision where the file is modified, it has the same content across all

revisions generated in the repository until another revision where it is modified again.

At this point, the file is deleted, creating revision 20. Now, no version of the file can be accessed because it

no longer exists in the latest repository revision. This is due to the fact that Subversion automatically uses

the HEAD revision as a peg revision (it assumes any item currently exists in the repository if not instructed

otherwise). However, using any of the revision numbers from the 10-19 interval (when the file existed) as a

peg revision (beside the operative revision), will help Subversion to properly identify the time frame when the

file existed, and access the file version corresponding to the operative revision. If you use a revision number

greater than 19, this will also trigger an error.

Continuing the example, suppose that at revision 30, a directory called config is created in the same repository

location as the deleted file. This means that the new directory will be identified by the same repository

address: http://host.com/myRepository/dir/config. If you only use this URL in any Subversion command,

you will access the new directory. You will also access the same directory if you use any revision number

equal to or greater than 30 as peg revision. However, if you are interested in accessing an old version of the

previously existing file, then you must use one of the revisions that existed (10-19), as a peg revision, similar to

the previous case.

Oxygen XML Editor 27.1 | 20 - Tools | 2905

Checksum Mismatch Error

A Checksum Mismatch error could happen if an operation that sends or retrieves information from the

repository to the working copy is interrupted. This means that there is a problem with the synchronization

between a local item and its corresponding remote item.

If you encounter this error, try the following:

1. Identify the parent directory of the file that caused the error (the file name should be displayed in the

error message).

Note:

If the parent directory is the root of the working copy or if it contains a large amount of items

it is recommended that you check out the working copy again, rather than continuing with the

rest of this procedure.

2. Identify the current depth (on page 2868) of that directory.

3. Update the parent directory using the Update to revision/depth action that is available from the

contextual menu or the Working copy menu. For the Depth option, select This folder only (empty).

Warning:

If you have files with changes in this directory, those changes could be lost. You should

commit your changes or move the files to another directory outside the working copy prior to

proceeding with this operation.

4. After clicking OK the contents of the directory will be erased and the directory is be marked as having

an empty depth (on page 2868).

5. Once again, update the same directory using the Update to revision/depth action. This time, for the

Depth option, select the depth that was previously identified in step 2.

6. If you moved modified files to another directory outside the working copy, move them back to the

original location inside the working copy.

If this procedure does not solve the error, you need to check out the working copy again and move possible

changes from the old working copy to the new one.

External Tools
A command-line tool can be started in the Oxygen XML Editor user interface as if from the command line of

the operating system shell. Oxygen XML Editor offers you the option of integrating such a tool by specifying

just the command line for starting the executable file and its working directory. To integrate such a tool, open

the Preferences dialog box (Options > Preferences) (on page 132) and go to External Tools (on page 302) (or

select Configure from the Tools > External Tools menu).

Oxygen XML Editor 27.1 | 20 - Tools | 2906

The External Tools preferences page (on page 302) presents a list of the external tools that have been

configured. Once a tool has been configured (on page 302), you can open it by selecting it from the Tools >

External Tools menu or from the External Tools drop-down menu on the toolbar (the Tools toolbar needs

to be selected in the Configure Toolbars dialog box (on page 375)). You can also assign a keyboard shortcut

(on page 304) to be used to launch the tool.

If the external tool is applied on one of the files opened in Oxygen XML Editor, the Save all files before calling

external tools option (on page 211) (in the Save preference page) should be selected so that all edited files

are automatically saved when an external tool is applied.

When an external tool is launched, the icon on the toolbar changes to a stop icon () and you can use this

button to stop the tool. When the tool has finished running (or you close it), the icon changes back to the

original icon ().

Note:

Even though you can stop the external tool by invoking the stop action while it is running, that does

not necessarily mean it will also stop the processes spawned by that external tool. For instance, if you

stop an external tool that runs a batch file, the batch may be stopped but without actually stopping the

processes that the batch was running at that time.

Example: Integrating the Ant Tool

This is an example procedure for integrating the Ant build tool into Oxygen XML Editor:

1. Download and install Apache Ant (on page 3294) on your computer.

2. Test your Ant installation from the command-line interface in the directory where you want to use

Ant from. For example, run the clean target of your build.xml file C:\projects\XMLproject

\build.xml:

ant clean

3. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to External Tools (or

select Configure from the Tools > External Tools menu).

4. Click the New button to create a new external tool entry and enter the following information:

◦ Name - For example, Ant tool.

◦ Working directory - For example, C:\projects\XMLproject.

◦ Command line - For example, "C:\projects\XMLproject\ant.bat" clean.

5. Click OK to add the new tool to the list of external tools.

6. Run the tool from Tools > External Tools > Ant tool. You can see the output in the system console:

 Started: "C:\projects\XMLproject\ant.bat" clean

 Buildfile: build.xml

 clean:

http://ant.apache.org/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/install.html

Oxygen XML Editor 27.1 | 20 - Tools | 2907

 [echo] Delete output files.

 [delete] Deleting 5 files from C:\projects\XMLproject

 BUILD SUCCESSFUL

 Total time: 1 second

21.
Troubleshooting
This section provides a collection of common performance and other types of problems that might be

encountered when using Oxygen XML Editor, along with their possible solutions.

Performance Problems and Solutions
This section contains solutions for some common performance problems that may appear when running

Oxygen XML Editor.

Related Information:

Documents with Long Lines (on page 484)

Loading Large Documents (on page 482)

External Tools (on page 2905)

Display Problems on Linux or Solaris

Problem

I experience display problems (such as screen freezes) on Linux or Solaris.

Cause

This is possibly a rendering problem with the off-screen pixmap support.

Solution

Add the following startup parameter (on page 349): -Dsun.java2d.pmoffscreen=false.

Out of Memory on External Processes

Problem

Oxygen XML Editor throws an Out Of Memory error when trying to generate PDF output with the built-in

Apache FOP processor.

Cause

The amount of allocated memory might be insufficient.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2909

Solutions

• Open the Preferences dialog box (Options > Preferences) (on page 132), go to XML > PDF Output > FO

Processors, and increase the value of the Memory available to the Apache FOP option (on page 271).

• For external XSL-FO processors, XSLT processors, and external tools, the maximum value of the

allocated memory is set in the command line of the tool using the -Xmx parameter set to the Java

virtual machine.

Related Information:

FO Processors Preferences (on page 271)

Custom Engines Preferences (on page 269)

External Tools Preferences (on page 302)

How to Enable Debugging for FO Processor Transformations (on page 1583)

Too many nested apply-templates calls Error When Running a Transformation

Problem

I'm getting the error message Too many nested apply-templates calls when I try to transform my DocBook file

to HTML using default Oxygen XML Editor DocBook to HTML transformation scenario.

Cause

Most likely, this is the result of a masked stack overflow error.

Solution

Try setting a new VM option with the value -Xss4m. You can also try to slowly increase this to larger values

(e.g. -Xss5m or -Xss6m). Note that this consumes memory on a per thread basis (Oxygen XML Editor can

have tens of threads), so using a very large value here can backfire and leave Oxygen XML Editor without

memory.

Related Information:

Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page 349)

Performance Issues with Large Documents

Problem

The performance of the application slows down considerably over time when working with large documents.

Cause

A possible cause is that the application needs more memory to run properly.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2910

Solutions

• You can increase the maximum amount of memory available to Oxygen XML Editor by setting the -Xmx

parameter in a configuration file (on page 349) that is specific to the platform that runs the application.

Attention:

The maximum amount of memory should be less than 75% of the physical amount of memory

available on the machine. Otherwise, the operating system and other applications will have no

memory available.

• When installed on a multiple user environment, each instance of Oxygen XML Editor will be allocated

the amount stipulated in the memory value. To avoid degrading the general performance of the host

system, ensure that the amount of memory available is optimally apportioned for each of the expected

instances.

Note:

When starting Oxygen XML Editor from the icon created on the Start menu or Desktop in

Windows (or from the shortcut created on the Linux desktop), the default maximum memory

available to the application is set to 40% of the amount of physical RAM (but not more than 1

GB for 32-bit distributions or 4 GB for 64-bit distributions).

When starting Oxygen XML Editor from a command-line script, the default maximum memory

is 1 GB for 32-bit distributions or 4 GB for 64-bit distributions.

Performance Issues when Using Oxygen XML Editor with Remote Desktop

Problem

When trying to run Oxygen XML Editor in a Remote Desktop Protocol (RDP) environment, the performance is

slow and choppy.

Cause

Running a standalone version of Oxygen XML Editor over a slow RDP connection may result in performance

issues.

Solution

As a workaround, you try to run Oxygen XML Editor as an Eclipse plugin when working with a slow RDP

connection.

Misc Problems and Solutions
This chapter presents common problems that may appear when running the application along with solutions

for these problems.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2911

Address Family Not Supported by Protocol Family

Problem

I have experienced the following error: "Address Family Not Supported by Protocol Family; Connect". How do I

solve it?

Cause

This seems to be an IPv6 connectivity problem. By default, the Java runtime used by Oxygen XML Editor

prefers to create connections via IPv6, if the support is available. However, even though it is available in

appearance, IPv6 sometimes happens to be configured incorrectly on some systems.

Solution

A quick solution for this problem is to set the java.net.preferIPv4Stack Java property to true

(java.net.preferIPv4Stack=true), by following this procedure:

1. Create a file named custom_commons.vmoptions and on a single line, add

-Djava.net.preferIPv4Stack=true. Then save the file and copy it to the Oxygen XML Editor installation

folder (may need admin access).

2. Restart Oxygen XML Editor.

3. Make sure the procedure was successful by going to Help > About > System properties and check that

the value of the java.net.preferIPv4Stack property is true.

Application Reports Errors During Startup After Installing a New Version

Problem

Sometimes, after installing a new version of Oxygen XML Editor, various errors are reported when the

application starts.

Cause

This problem may occur if you install the application in a folder where an older version of the application

was previously installed. Especially on macOS, there is a possibility for older resources and libraries from the

previous application to remain in the installation folder and break the functionality of the newer version of the

application.

Solution

Close the application and completely uninstall it (on page 131), then install it again. The user-specific settings

are saved in a separate folder in the user home directory so they will not be lost.

• On macOS, you can move the entire application installation folder to the Trash, then re-install.

• On Linux and Windows, you can uninstall using the facilities provided by the installer (on page 131),

then re-install.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2912

If you intentionally want to load extra Java libraries with Oxygen XML Editor, you have the following choices:

• If the libraries are necessary for XSLT transformations, each XSLT transformation scenario has an

Extensions button that allows you to reference the libraries directly from the transformation scenario.

• If the libraries are necessary for database connections, you can configure them when you define the

data sources.

• You can add a plugin in Oxygen XML Editor that contributes libraries to the global libraries list. The

plugin can be distributed as an add-on. An example of such a plugin can be found here: https://

github.com/oxygenxml/oxygenxml.xlsx.import.

• In the Oxygen XML Editor lib folder, there is a file called libraries.list. You can edit that file

and add the names of the extra libraries present in the folder. You can also choose to delete that

libraries.list completely if you want to inhibit the libraries checking completely.

Application Takes Several Minutes to Start

Problem

Oxygen XML Editor seems to take an abnormally long amount of time to start.

Cause 1

Some anti-virus software can cause Java applications, including Oxygen XML Editor, to start very slowly due to

scanning compressed archives (such as the JAR libraries that all Java applications use). During the process,

various files would be accessed by Oxygen XML Editor (including installed plugins) files from its installation

folder, its user home folder (e.g. C:\Users\<username>\AppData\Roaming\com.oxygenxml), its

project folder, or local files from the Git projects (if the Git Client is used).

Solution

A possible solution is to add the aforementioned folders to the list of exceptions in the anti-virus software

settings.

Cause 2

If files/folders from the Oxygen XML Editor installation folder, its user home folder (e.g. C:\Users

\<username>\AppData\Roaming\com.oxygenxml), its project folder, or local files from the Git projects

(if the Git Client is used), project, Git projects) are located remotely, it sometimes slows down the process. For

example, Oxygen XML Editor (or Java) may wait until these connections time out before proceeding.

Solution 2

Keep a copy of those files/folders locally, rather than using them from the remote location.

Cause 3

The built-in file browser may be slow to open if it is trying to access shortcuts to inaccessible network shares

or drives on the Windows desktop.

https://www.oxygenxml.com/doc/versions/22.0/ug-editor/topics/oxygen-plugin.html
https://github.com/oxygenxml/oxygenxml.xlsx.import
https://github.com/oxygenxml/oxygenxml.xlsx.import

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2913

Solution 3

Remove the shortcuts to inaccessible network shares or drives.

Archive Distribution Fails to Run on macOS 10.12 (Sierra)

Problem

For versions prior to 18.1, the classic archive distributions of Oxygen XML Editor (.zip or .tar.gz) fail to run

on macOS 10.12 (Sierra).

Cause

This happens because the archives get quarantined and macOS 10.12 (Sierra) treats quarantined apps

differently than older versions and isolates them from their parent folder at launch. If Oxygen XML Editor was

already installed when you upgraded to macOS 10.12 (Sierra), there are no problems.

Solution

If Oxygen XML Editor was not already installed, or you need to reinstall an older version (prior to version 18.1),

the quarantine flag must be removed for the entire content of the Oxygen XML Editor installation directory or

the individual applications. To resolve this issue, follow these steps:

1. Open a Terminal window and change the directory to the folder where Oxygen XML Editor is located.

2. Run the following command:

xattr -dr com.apple.quarantine oxygen/

where "oxygen" is the actual name of the Oxygen XML Editor directory.

If Oxygen XML Editor is in a location that requires administrator privileges for write access, you need to

run the command from an administrator account and prefix the command with sudo. You will then be

prompted to enter your password.

Blank Window is Shown When Starting the App Over an RDP Connection on
Linux

Problem

When starting Oxygen XML Editor or its installer on Linux, a blank window is displayed when started over an

RDP connection.

Cause

Oxygen XML Editor and its installer are Java Swing apps that require a 24 bit color depth from the X server.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2914

Solution

1. If you are using xrdp, find the /etc/xrdp/xrdp.ini file.

2. Uncomment the xserverbpp=24 line.

3. Save your files and close all the apps (the subsequent step will terminate your remote session so you

could lose your progress if you do not save your files first).

4. Restart the xrdp service:

sudo systemctl restart xrdp.service

Note:

Alternatively, you can try setting max_bpp=24 in the same /etc/xrdp/xrdp.ini file.

Cannot Connect to SVN Repository from Repositories View

Problem

I cannot connect to an SVN repository from the Repositories view of SVN Client. How can I find more details

about the error?

Solution

First check that you entered the correct URL of the repository in the Repositories view. Also, check that an

SVN server is running on the server machine specified in the repository URL and is accepting connections

from SVN clients. You can check that the SVN server accepts connections with the command-line SVN client

from CollabNet.

If you try to access the repository with an svn+ssh URL, also check that an SSH server is running on port 22 on

the server machine specified in the URL.

If the above conditions are verified and you cannot connect to the SVN repository, generate logging files on

your computer and send them to support@oxygenxml.com. For generating the logging files, follow these

steps:

1. Create a text file called logback.xml in the application installation folder with the following content:

<configuration>

 <appender name="R2" class="ch.qos.logback.core.rolling.RollingFileAppender">

 <file>${user.home}/Desktop/oxygenLog/oxygen.log</file>

 <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">

 <fileNamePattern>${user.home}/Desktop/oxygenLog/oxygen%i.log.gz</fileNamePattern>

 <minIndex>1</minIndex>

 <maxIndex>20</maxIndex>

 </rollingPolicy>

 <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">

 <maxFileSize>12MB</maxFileSize>

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2915

 </triggeringPolicy>

 <encoder>

 <pattern>%r %marker %p [%t] %c - %m%n</pattern>

 </encoder>

 </appender>

 <root level="debug">

 <appender-ref ref="R2" />

 </root>

</configuration>

2. Restart the application.

3. Reproduce the error.

4. Close the application.

5. Delete the logback.xml file because it might cause performance issues if you leave it in the

installation folder.

Important:

The logging mode may severely decrease the performance of the application. Therefore, do not

forget to delete the logback.xml file when you are done with the procedure.

Result: The resulting logging files are named oxygen.log and oxygen#.log.qz (for example,

oxygen.log, oxygen1.log.gz, oxygen2.log.gz, etc.) and are located in the Desktop\oxygenLog

folder.

Cannot Open Files from Desktop/Downloads/OneDrive on macOS

Problem

When using Oxygen XML Editor on macOS, the application cannot open files from Desktop/Downloads/

OneDrive.

Cause

Sometimes, macOS shows a popup about allowing the application access to some special folders (e.g.

Downloads or Desktop), and unless you explicitly agree, it will leave it unchecked (the app does not allowed

access). The popup can go unnoticed and disappears after a while, so it is easy to overlook it and the

application will not have access to that folder.

Solution

Go to the macOS System preferences > Security & Privacey > Privacy tab > Files and Folders. You should find

Oxygen in that list and the folders you were prompted to access. Check the box for the folder (i.e. Downloads

or Desktop), if there is one unchecked.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2916

Note:

If that does not work, look at "Full Disk Access" from the same Privacy tab. Add Oxygen there so that

it has full access. However, only use this method as a last resort.

Cannot Uninstall Oxygen XML Editor in Windows

Problem

When I try to uninstall Oxygen XML Editor in Windows, I get an error that says it cannot find the files.log

file.

Cause

The install4j installer that is used by Oxygen XML Editor creates the files.log file during the installation

process. If you cannot uninstall the product, then most likely something went wrong with this file during the

installation process.

Solution

To solve this, simply reinstall the software in the same directory as the current installation. This will

automatically uninstall the old version or overwrite it with a clean install. You should then be able to uninstall

this new installation.

Compatibility Issue Between Java and Certain Graphics Card Drivers

Problem

Under certain settings, a compatibility issues can appear between Java and some graphics card drivers, which

results in the text from the editor (in Author or Text mode) being displayed garbled.

Solution

If you encounter this problem, update your graphics card driver. Another possible workaround is, open the

Preferences dialog box (Options > Preferences) (on page 132), go to Appearance > Fonts, and set the value of

the Text antialiasing option (on page 142) to ON.

Note:

If this workaround does not resolve the problem, set the Text antialiasing option (on page 142) to

other values.

Crash at Startup on Windows with an Error About the nvoglv32.dll File

Problem

I try to start Oxygen XML Editor on Windows but it crashed with an error message about “Fault Module Name:

nvoglv32.dll”. What is the problem?

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2917

Cause

It is most likely an OpenGL driver issue.

Solution

This can be avoided by creating an empty file called opengl32.dll in the Oxygen XML Editor install folder

(if you start Oxygen XML Editor with the shortcut created by the installer on the Start menu or on Desktop)

or in the subfolder bin of the home folder of the Java virtual machine that runs Oxygen XML Editor (if you

start Oxygen XML Editor with the oxygen.bat script). The home folder of the Java virtual machine that runs

Oxygen XML Editor is the value of the java.home property that is available in the System properties tab of the

About dialog box (Help > About).

Damaged File Associations on macOS

Problem

After upgrading macOS and Oxygen XML Editor, it is no longer associated to the appropriate file types (such

as XML, XSL, XSD). How can I re-create the file associations?

Cause

The upgrade damaged the file associations in the LaunchService Database on your macOS machine.

Solution

You can rebuild the LaunchService Database with the following procedure. This will reset all file associations

and rescan the entire file system searching for applications that declare file associations and collect them in a

database used by Finder.

1. Find all the Oxygen XML Editor installations on your hard drive.

2. Delete them by dragging them to the Trash.

3. Clear the Trash.

4. Unpack the Oxygen XML Editor installation kit on your desktop.

5. Copy the contents of the archive into the folder /Applications/Oxygen.

6. Run the following command in a Terminal:

/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/

LaunchServices.framework/Versions/A/Support/lsregister -kill -r -domain local -domain system

-domain user

7. Restart Finder with the following command:

killall Finder

8. Create an XML or XSD file on your desktop. It should have the Oxygen XML Editor icon.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2918

9. Double-click the file.

10. Accept the confirmation.

Result: When you start Oxygen XML Editor, the file associations should work correctly.

Details to Submit in a Request for Technical Support Using the Online Form

Problem

What details should I add to my request for technical support on the online form in the product website?

Solution

When completing a request for Technical Support using the online form, include as many details as possible

about your problem. For problems where a simple explanation may not be enough for the Technical Support

team to reproduce or address the issue (such as server connection errors, unexpected delays while editing a

document, an application crash, etc.), you should generate log files and attach them to the problem report. In

the case of a crash, you should also attach the crash report file generated by your operating system.

If the text content of an XML document you want to send to the support team contains sensitive or private

information, you can use the Randomize XML text content action (on page 52) to create filler content. Before

using this action, you need to copy the initial XML resources and save them in a separate folder. Otherwise,

you might lose your original information.

To generate the Oxygen XML Editor log files, follow these steps:

1. Create a text file called logback.xml in the application installation folder, with the following content:

<configuration>

 <appender name="R2" class="ch.qos.logback.core.rolling.RollingFileAppender">

 <file>${user.home}/Desktop/oxygenLog/oxygen.log</file>

 <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">

 <fileNamePattern>${user.home}/Desktop/oxygenLog/oxygen%i.log.gz</fileNamePattern>

 <minIndex>1</minIndex>

 <maxIndex>20</maxIndex>

 </rollingPolicy>

 <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">

 <maxFileSize>12MB</maxFileSize>

 </triggeringPolicy>

 <encoder>

 <pattern>%r %marker %p [%t] %c - %m%n</pattern>

 </encoder>

 </appender>

 <root level="debug">

 <appender-ref ref="R2" />

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2919

 </root>

</configuration>

2. Restart the application.

3. Reproduce the error.

4. Close the application.

5. Delete the logback.xml file because it might cause performance issues if you leave it in the

installation folder.

Important:

The logging mode may severely decrease the performance of the application. Therefore, do not

forget to delete the logback.xml file when you are done with the procedure.

Result: The resulting log files are named oxygen.log and oxygen#.log.qz (for example, oxygen.log,

oxygen1.log.gz, oxygen2.log.gz, etc.) and are located in the Desktop\oxygenLog folder.

Dialog Boxes Cannot Be Resized on Mac

Problem

When using Oxygen XML Editor on macOS Big Sur, dialog boxes (for example the Find/Replace or

Preferences dialog box) cannot be resized.

Cause

This is caused by an issue with resizing dialog boxes in Oxygen XML Editor on macOS Big Sur (and possibly

later versions) causing crashes if the main application is in full screen mode.

Solution

Until this limitation is resolved in a future Oxygen XML Editor version, dialog boxes cannot be maximized or

resized on macOS Big Sur.

DITA Map Transformation Fails (Cannot Connect to External Location)

Problem

DITA map (on page 3296) transformation fails because it cannot connect to an external location.

Solution

The transformation is run as an external Ant process so you can continue using the application as the

transformation unfolds. All output from the process appears in the DITA Transformation tab.

The HTTP proxy settings are used for the Ant transformation, so if the transformation fails because it cannot

connect to an external location, you can check the the Proxy preferences page (on page 311)

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2920

DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)

Problem

DITA Map WebHelp transformation fails with a message that indicates duplicate topic references were found.

Cause

By default the WebHelp transformation uses the force-unique parameter set to true to force the

transformation to create unique output files for each instance of a resource when a map contains multiple

references to a single topic. However, there are cases when this feature does not work as expected and the

duplicate topic references are not handled properly.

Solution

To solve this issue, you should manually set a unique @copy-to attribute on any duplicate topic reference that

was not handled automatically by DITA-OT:

<map>

...

 <topicref href="../topics/MyTopic.dita"/>

...

 <topicref href="../topics/MyTopic.dita" copy-to="../topics/MyTopic-2.dita"/>

</map>

DITA-OT Transformation Takes a Long Time to Process

Problem

A DITA transformation takes an extremely long time to process (over an hour, for example).

Cause

Large delays in DITA-OT processing are usually caused by intensive disk operations, CPU usage, or

connections to remote websites. The DITA-OT processing is very disk-intensive, each stage takes the entire

content from the transformation temporary files folder, reads it, modifies it, and then writes it back.

Solution

There are several things you can try to troubleshoot this problem:

• If you are using a shared or remote drive, it is recommended to specify a local drive for the output and

temporary files directory (edit the transformation scenario and in the Output tab, select a local directory

for Temporary files directory and Output directory).

• If you want to test if the publishing has a problem downloading remote resources, you could disable

the network adapter on the computer and then try to publish. The purpose is to see if the publishing

finishes without any reported error about obtaining a certain HTTP resource.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2921

• Using DTDs instead of XML Schemas is faster. This is because of a default transformation parameter

called args.grammar.cache that only works for DTD-based DITA topics.

• You can increase the memory available to Oxygen XML Editor (on page 2909). Sometimes, just

increasing the amount of memory available to the DITA-OT process may be enough to lower the time

necessary for the publishing to run.

• You can enable some logging to help you determine which stage in the process is taking

a long time. Edit the transformation scenario and in the Advanced tab, enter logger

org.apache.tools.ant.listener.ProfileLogger in the Additional arguments field. Then go to Options >

Preferences > DITA > Logging and select Always for the Show console output option.

• You could try disabling antivirus applications since the publishing process is very disk intensive and

certain antivirus application might slow down the process.

• If the published DITA map is part of a larger DITA project with lots of maps and topics, references

from topics in the current map to topics in other sub-projects might result in problems resolving those

references. You could look in the output folder to see if the number of HTML documents match the

number of DITA topics in your map.

DITA PDF Transformation Fails

Problem

The DITA to PDF transformation fails.

Cause

To generate the PDF output, Oxygen XML Editor uses the DITA Open Toolkit. This process sometimes results

in errors. For information about some of the most common errors, see DITA PDF Processing Common Errors

(on page 3192).

Solution

If your transformation fails, you can detect some of the problems that caused the errors by running the

Validate and Check for Completeness action (on page 2995). Depending on the options you select when you

run it, this action reports errors such as topics referenced in other topics but not in the DITA map (on page

3296), broken links, and missing external resources.

You can analyze the Results tab of the DITA transformation and search for messages that contain text

similar to [fop] [ERROR]. If you encounter this type of error message, edit the transformation scenario

you are using and set the clean.temp parameter to no and the retain.topic.fo parameter to yes. Run the

transformation, go to the temporary directory of the transformation, open the topic.fo file and go to the line

indicated by the error. Depending on the XSL FO context try to find the DITA topic that contains the text that

generates the error.

If none of the above methods helps you, go to Help > About > Components > Frameworks and check what

version of the DITA Open Toolkit you are using. Copy the whole output from the DITA-OT console output and

either report the problem on the DITA User List or send it to support@oxygenxml.com.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2922

Related Information:

How to Enable Debugging for FO Processor Transformations (on page 1583)

DITA PDF Processing Common Errors

There are cases when the PDF processing fails when trying to publish DITA content to a PDF file. This topic

lists some of the common problems and possible solutions.

Problem: Cannot Save PDF

The FO processor cannot save the PDF at the specified target. The console output contains messages like

this:

[fop] [ERROR] Anttask - Error rendering fo file:

C:\samples\dita\temp\pdf\oxygen_dita_temp\topic.fo

<Failed to open C:\samples\dita\out\pdf\test.pdf>

Failed to open samples\dita\out\pdf\test.pdf

.............

[fop] Caused by: java.io.FileNotFoundException:

C:\Users\default\Desktop\bev\out\pdf\test.pdf

(The process cannot access the file because it is being used by another process)

Solution: Cannot Save PDF

Such an error message usually means that the PDF file is already opened in a PDF reader application. The

solution is to close the open PDF before running the transformation.

Problem: Table Contains More Cells Than Defined in Colspec

One of the DITA tables contains more cells in a table row than the defined number of <colspec> elements. The

console output contains messages like this:

[fop] [ERROR] Anttask - Error rendering fo file:

D:\projects\eXml\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo

<net.sf.saxon.trans.XPathException: org.apache.fop.fo.ValidationException:

The column-number or number of cells in the row overflows the number of

fo:table-columns specified for the table.

(See position 179:-1)>net.sf.saxon.trans.XPathException:

org.apache.fop.fo.ValidationException: The column-number or number of cells

in the row overflows the number of fo:table-columns specified for the table.

(See position 179:-1)

[fop] at org.apache.fop.tools.anttasks.FOPTaskStarter.renderInputHandler

(Fop.java:657)

[fop] at net.sf.saxon.event.ContentHandlerProxy.startContent

(ContentHandlerProxy.java:375)

............

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2923

[fop] D:\projects\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo ->

D:\projects\samples\dita\flowers\out\pdf\flowers.pdf

Solution: Table Contains More Cells Than Defined in Colspec

To resolve this issue, correct the @colspec attribute on the table that caused the issue. To locate the table that

caused the issue:

1. Edit the transformation scenario and set the parameter clean.temp to no.

2. Run the transformation, open the topic.fo file in Oxygen XML Editor, and look in it at the line

specified in the error message (See position 179:-1).

3. Look around that line in the XSL-FO file to find relevant text content that you can use (for example, with

the Find/Replace in Files action in the DITA Maps Manager view (on page 2950)) to find the original

DITA topic where the table was generated.

Problem: Broken Link

There is a broken link in the generated XSL-FO file. The PDF is generated but contains a link that is not

working. The console output contains messages like this:

[fop] 1248 WARN [main] org.apache.fop.apps.FOUserAgent -

Page 6: Unresolved ID reference "unique_4_Connect_42_wrongID" found.

Solution: Broken Link

To resolve this issue:

1. Use the Validate and Check for Completeness action available in the DITA Maps Manager view (on

page 2950) to find such problems.

2. If you publish to PDF using a DITAVAL filter, select the same DITAVAL file in the DITA Map

Completeness Check dialog box.

3. If the Validate and Check for Completeness action does not discover any issues, edit the

transformation scenario and set the clean.temp parameter to no.

4. Run the transformation, open the topic.fo file in Oxygen XML Editor, and search for the unresolved

ID references (for example: unique_4_Connect_42_wrongID).

5. Look in the XSL-FO file to find relevant text content that you can use (for example, with the Find/

Replace in Files action in the DITA Maps Manager view (on page 2950)) to find the original DITA topic

where the table was generated.

Related Information:

How to Enable Debugging for FO Processor Transformations (on page 1583)

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2924

DITA PDF CSS-based Processing Common Errors

For information about possible common errors that could be encountered when processing CSS-based DITA

to PDF output, see the Troubleshooting section in the CSS-based PDF Customization guide (on page 2090).

DITA to CHM Transformation Fails - Cannot Open File

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5010: Error: Cannot open

"fileName.chm". Compilation stopped.

Cause

This error occurs when the CHM output file is opened and the transformation scenario cannot rewrite its

content.

Solution

To solve this issue, close the CHM help file and run the transformation scenario again.

Tip:

It is a good practice to validate the DITA map (on page 3296) before executing the transformation

scenario. To do so, run the Validate and Check for Completeness action (on page 2995). Depending

on the selected options, it will report detected errors, such as topics referenced in other topics (but

not in the DITA map), broken links, and missing external resources.

Related Information:

DITA Map CHM (Compiled HTML Help) Transformation (on page 3160)

DITA to CHM Transformation Fails - Compilation Failed

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5003: Error: Compilation failed

while compiling fileName.

Cause 1

One possible cause for this error is that the processed file does not exist.

Solution 1

To solve this issue, fix the file reference before executing the transformation scenario again.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2925

Cause 2

Another possible cause for this error is that the processed file has a name that contains space characters.

Solution 2

To solve the issue, remove any spacing from the file name and run the transformation scenario again.

Tip:

It is a good practice to validate the DITA map (on page 3296) before executing the transformation

scenario. To do so, run the Validate and Check for Completeness action (on page 2995). Depending

on the selected options, it will report detected errors, such as topics referenced in other topics (but

not in the DITA map), broken links, and missing external resources.

Related Information:

DITA Map CHM (Compiled HTML Help) Transformation (on page 3160)

Fonts Installed in Windows Do Not Appear in Fonts Preferences Page

Problem

I installed a font in Windows and it does not appear in the list of available fonts in the Preferences > Fonts

page (on page 141) (in the Editor section).

Cause

Oxygen XML Editor is a Java application and Java does not detect fonts that are installed at the user level.

This most likely occurred because you installed the font via the Install for me option in Windows.

Solution

Reinstall the font using the Install for all users option in Windows. You will need Administrator privileges to

access this option.

Format and Indent Fails

Problem

When I use the Format and Indent function, I get an error message that indicates the Format and Indent

failed.

Cause

This happens because the application tries to limit the exposure to XXE attacks so the parser blocks the

expansion of system entities (the ones that are loaded from disk or from remote sources).

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2926

Solution

If you are in complete control of the XML documents (you manage or trust those who are creating and editing

the documents), you can disable this particular check by selecting the Enable system parameter entity

expansion in other entity definitions option (on page 247) in the XML Parser preferences page.

Handshake Failure Error When Accessing an HTTPS (SSL) Resource

Problem

When attempting to access an HTTPS (SSL) resource, I receive a handshake_failure error.

Cause

The issue is most likely due to the limitation of Java cryptography capabilities.

Solution

A solution might be to download and deploy Java Cryptography Extension (JCE) Unlimited Strength

Jurisdiction Policy Files 8 (for Java 11).

Warning:

It is possible that this may not be legal in your country. Be advised that you bare legal responsibility

for activating unlimited strength Java cryptography capabilities, so you must have the legal right to

use such cryptography (consult your export/import control counsel or attorney to determine the exact

requirements for your jurisdiction).

To deploy it in Oxygen XML Editor, unpack the downloaded zip archive and move the two jar files

(local_policy.jar and US_export_policy.jar) from UnlimitedJCEPolicyJDK8 to the following directory,

overwriting existing files:

• Windows - [OXYGEN_INSTALL_DIR]/jre/lib/security

• Linux - [OXYGEN_INSTALL_DIR]/jre/lib/security

• macOS - [OXYGEN_INSTALL_DIR]/jre.bundle/Contents/Home/jre/lib/security

Hunspell Spell Checker is Unusable on Your Platform Error

Problem

When trying to use the Check Spelling option, I receive the error Hunspell spell checker is unusable on your

platform. It has crashed the application in a previous session.

Cause

There are instances where Oxygen XML Editor determines that an internal component (such as the spell

checker) has crashed the application and disables that component from running in the future (to prevent a

possible future crash).

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2927

Solution

To re-enable the spell checker component, follow these steps:

1. Close Oxygen XML Editor.

2. Open the %APPDATA%\com.oxygenxml folder and look for a file called something like

HunspellCrashGuard*.txt. Delete that file.

3. Restart Oxygen XML Editor.

High Resolution Scaling Issues

Problem

I encounter scaling detection issues in a high resolution display (for example, some GUI components are too

small).

Cause

This sometimes happens when using multiple displays with different resolutions because the application

cannot detect the correct scaling setting.

Solution

You can use the sun.java2d.uiScale Java system property to instruct Java to use a particular scaling factor:

-Dsun.java2d.uiScale=1.5

High Resolution Scaling Issues on Linux

Problem

On Linux bundled with Oracle OpenJDK 11, Oxygen XML Editor does not automatically scale high-resolution

images when using the system's scaling settings.

Cause

This happens because Java 11 does not detect the system scaling setting for HiDPI displays on Linux

operating system.

Solution

In the Oxygen XML Editor installation folder, create a new file named custom_commons.vmoptions. Inside the

file, manually add -Dsun.java2d.uiScale=2. This command instructs Java to use 2x (200%) scaling.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2928

Images Appear Stretched Out in the PDF Output

Problem

When publishing XML content (DITA, DocBook, etc.), images are sometimes scaled up in the PDF outputs but

are displayed perfectly in the HTML (or WebHelp) output.

Solution

PDF output from XML content is obtained by first obtaining an intermediary XML format called XSL-FO and

then applying an XSL-FO processor to it to obtain the PDF. This stretching problem is caused by the fact that

all XSL-FO processors take into account the DPI (dots-per-inch) resolution when computing the size of the

rendered image.

The PDF processor that comes out of the box with the application is the open-source Apache FOP processor.

Here is what Apache FOP does when deciding the image size:

1. If the XSL-FO output contains width, height or a scale specified for the image <external-graphic> tag,

then these dimensions are used. This means that if in the XML (DITA, DocBook, etc.) you set explicit

dimensions to the image they will be used as such in the PDF output.

2. If there are no sizes (width, height or scale) specified on the image XML element, the processor looks

at the image resolution information available in the image content. If the image has such a resolution

saved in it, the resolution will be used and combined with the image width and height to obtain the

rendered image dimensions.

3. If the image does not contain resolution information inside, Apache FOP will look at the FOP

configuration file for a default resolution. The FOP configuration file for XSLT transformations that

output PDF is located in the [OXYGEN_INSTALL_DIR]/lib/fop.xconf. DITA publishing uses the

DITA Open Toolkit that has the Apache FOP configuration file located in [DITA-OT-DIR/plugins/

org.dita.pdf2.fop/fop/conf/fop.xconf. The configuration file contains two XML elements

called <source-resolution> and <target-resolution>. The values set to those elements can be increased

(usually a DPI value of 110 or 120 should render the image in PDF the same as in the HTML output).

The commercial RenderX XEP XSL-FO processor behaves similarly but as a fallback it uses 120 as the DPI

value instead of using a configuration file.

Tip:

It is best to save your images without any DPI resolution information. For example, when saving a

PNG image in the open-source GIMP image editor, you do not want to save the resolution.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2929

This allows you to control the image resolution from the configuration file for all referenced images.

Increasing the Memory for the Ant Process

Problem

The Ant build process runs out of memory.

Solution

For details about setting custom JVM arguments to the Ant build process, see JVM Arguments (on page

3179).

Java Virtual Machine (JVM) Crash on macOS

Problem

Oxygen XML Editor crashed the Java virtual machine or it could not start up on my macOS computer due to a

JVM crash.

Cause

Usually it is an incompatibility between the JVM and a native library of the host system. More details are

available in the crash log file generated by macOS and reported in the crash error message.

Solution

If this happens, it is best to send a copy of the logs via email to support@oxygenxml.com. Usually, the

operating system will offer a prompt that allows you to see the logs. If not, you should be able to find the logs

in the Console app (Applications > Utilities, under ~/Library/Logs/DiagnosticReports. They are usually named

JavaApplicationStub*.crash/.hang.

JPEG CMYK Color Space Issues

Problem

JPEG images with the CMYK color profile and have the color profiles embedded in the image aren't rendered in

the Author mode.

Solution

If the color profile information is missing from the JPEG image but you have the ICC file available, you can

copy the profileFileName.icc to the [OXYGEN_INSTALL_DIR]\lib directory.

If the color space profile is missing, JPEG images that have the CMYK color space are rendered without taking

the color profile into account. The Unsupported Image Type message is displayed above the image.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2930

Keyboard Language Resets to Default on Windows

Problem

In Windows, I have set a specific language for my keyboard and while using Oxygen XML Editor, it keeps

getting reset to the default language.

Cause

When multiple languages are enabled in Windows, the default shortcut key combination for switching

the input language is Left Alt + Shift. Trying to use various shortcuts in Oxygen XML Editor that involves

combinations of those two keys is probably resetting your input language to the default setting if you press

those two keys without a third combination.

Solution

You can change the Windows shortcut keys that are assigned to the input language by going to the control

panel and searching for the Switch input languages option. For example, in Windows, go to Control Panel >

Language > Advanced Setting. In the Switching input methods section, click on Change language bar hot

keys. Click the Change Key Sequence button. This opens a dialog box that allows you to switch the shortcut

keys for the input language or keyboard layout.

Keyboard Shortcuts Do Not Work At All

Problem

The keyboard shortcuts listed in the Menu Shortcut Keys preferences page (on page 304) do not work.

Cause

Usually this happens when a special keyboard layout is set (in the operating system) that generates non-

standard characters. For example, an extended Greek layout will generate special characters that are not

present in the default Greek layout. This causes the Java virtual machine that runs the application to receive

unexpected key codes.

Solution

Reset the keyboard layout to the standard layout for your particular language.

Keyboard Shortcuts Result in Unexpected Behavior

Problem

In some rare cases, using certain keyboard shortcuts listed in the Menu Shortcut Keys preferences page (on

page 304) result in something different than what is listed in that preferences page.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2931

Cause

This is usually caused by the operating system intercepting the keyboard shortcut. For example, certain

applications or hardware drivers intercept certain keyboard shortcuts by default. Another example is if you

have multiple input sources configured, the operating system might intercept shortcuts if they match the ones

used to change between the input sources.

Solution

Assign a different keyboard shortcut for the particular action in the Menu Shortcut Keys preferences page

(on page 304) or refer to documentation for your operating system or hardware equipment to see if there are

options to change the behavior.

Mac Touch Bar Function Keys Do Not Work

Problem

I am using a Mac that has a Touch Bar but its function keys do not work in Oxygen XML Editor.

Causes

By default, the Touch Bar function keys are not enabled for Oxygen XML Editor.

Solution

To enable the Touch Bar function keys for Oxygen XML Editor, follow these steps:

1. Go to System Preferences and select Keyboard.

2. Click Shortcuts.

3. From the left sidebar, select Function Keys.

4. Click the + symbol, select Oxygen from the list of apps, and click Add.

Server Signature Mismatch Error

Problem

I receive an error indicating that the current license was already activated on a License Server or that the

License Server's Signature does not match.

During the license activation process, the license key becomes bound to a particular license server

deployment. This means that a code that uniquely identifies your license server deployment (called Server

Signature) is sent to the Oxygen servers, which in turn will sign the license key. The Server Signature is

computed from the list of network interfaces of the server where you deployed the license.

When starting the license server, if you receive an error stating that your Server Signature does not match,

there are several possible causes:

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2932

Possible Cause 1

The license key was moved to a new server that hosts your license server.

Solution

Revert to your previous configuration.

Possible Cause 2

A new network interface was changed, added, or activated in the server that hosts your license server.

Note:

A specific example of when this could happen is if the Bluetooth or the WiFi module is activated/

deactivated.

Solution

If reverting is not possible, contact the Oxygen support team.

Possible Cause 3

The license server was restarted from a different location as the previous restart. For example, some server

configurations will have the Apache Tomcat server installed in a versioned folder (/usr/local/apache-

tomcat-V.V.V) with a symbolic link to the typical folder (/usr/local/tomcat). The server can be

restarted from either location, but it is recommended to always restart from the typical folder (/usr/local/

tomcat) and always restart from the same location.

Solution

The server simply needs to always be restarted from the same location.

MSXML 4.0 Transformation Issues

Problem

When running a transformation scenario that uses the MSXML 4.0 transformer (deprecated), I receive an error

that looks like this:

Could not create the 'MSXML2.DOMDocument.4.0' object.

Make sure that MSXML version 4.0 is correctly installed on the machine.

Cause

It is likely that the latest MSXML 4.0 service pack is not installed on your computer.

Solution

To fix this issue, go to the Microsoft website and get the latest MSXML 4.0 service pack.

https://www.oxygenxml.com/support.html

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2933

Navigation to a Web Page is Canceled when Viewing CHM on a Network Drive

Problem

When viewing a CHM on a network drive, I only see the TOC and an empty page that displays the message:

Navigation to the web page was canceled.

Cause

This is actually normal behavior. The Microsoft viewer for CHM does not display the topics for a CHM open on

a network drive.

Solution

As a workaround, copy the CHM file on your local system and view it there.

Out Of Memory Error When Opening Large Documents

Problem

I am trying to open a file larger than 100 MB in Oxygen XML Editor, but it runs out of memory

(OutOfMemoryError).

Solution

You should make sure that the value of the Optimize loading in the Text edit mode for files over option (on

page 209) is less than the size of your document. This will enable the optimized support for large documents.

If that fails and you still get an Out Of Memory error you should increase the memory available to Oxygen XML

Editor (on page 2909).

Other tips:

• Make sure that you close other files before opening the large file.

• You can set the default editing mode in the Preferences dialog box (on page 179). The Text editing

mode uses less memory than other editing modes.

• If the file is too large for the editor to handle, you can open it in for viewing in Large File Viewer (on

page 2714).

References Outside the Main DITA Map Folder

Problem

A reference to a DITA topic, map, or binary resource (for example, an image) that is located outside of the

folder where the main DITA map (on page 3296) is located leads to problems when publishing the content

using the DITA Open Toolkit.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2934

Cause

DITA-OT often has trouble resolving references that are outside the directory where the published DITA map is

found. By default, it does not even copy the referenced topics to the output directory.

Solution

To solve this, try one of the following solutions:

• Create another DITA map that is located in a folder path above all referenced folders and reference the

original DITA map from this new map. Then transform this DITA map instead.

• Edit the transformation scenario and in the Parameters tab, change the value of the

fix.external.refs.com.oxygenxml parameter to true. This parameter is used to specify whether or not

the application tries to fix such references in a temporary files folder before the DITA Open Toolkit is

invoked on the fixed references. The fix has no impact on your edited DITA content.

Important:

The fix.external.refs.com.oxygenxml parameter is only supported when the DITA-OT

transformation process is started from Oxygen XML Editor or using the transform script.

• For PDF output, you can edit the transformation scenario and in the Parameters tab set the value of

the generate.copy.outer parameter to 3. This parameter specifies whether to generate output files for

content that is not located in or beneath the directory containing the DITA map file. By setting the value

of this parameter to 3, the transformation scenario shifts the output directory so that it contains all

output for the publication.

Important:

This method is recommended for transformation scenarios that use an external DITA-OT.

Saxon 9.7 Transformer Issues

Problem

I have upgraded to Oxygen XML Editor version 19.0 (which comes bundled with Saxon 9.7) and I am

experiencing issues when trying to use the Saxon 9.7 transformer. Is it possible to use the Saxon 9.6

transformer with Oxygen XML Editor version 19.0 or later?

Solution

There is a plugin available that can be installed and it allows you to use Saxon 9.6. To install it, follow these

instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.

2. Select the default update site from the drop-down menu (https://www.oxygenxml.com/InstData/

Addons/default/updateSite.xml).

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2935

3. Select the Saxon 9.6 XSLT and XQuery Transformer plugin and click Next.

4. Select the I accept all terms of the end user license agreement option and click Finish.

5. Restart the application.

Result: When you configure the transformation scenario, you will now have the option to choose the Saxon 9.6

transformer.

Scroll Function of my Notebook Trackpad is Not Working

Problem

I got a new notebook (Lenovo Thinkpad™ with Windows) and noticed that the scroll function of my trackpad is

not working in Oxygen XML Editor.

Cause

It is most likely a problem with the Synaptics™ trackpads.

Solution

Try adding the following lines to the C:\Program Files\Synaptics\SynTP\TP4table.dat file

(depending on your version of Oxygen XML Editor). For example:

,,oxygen20.1.exe,*,*,*,WheelStd,1,9

,,oxygenAuthor20.1.exe,*,*,*,WheelStd,1,9

,,oxygenDeveloper20.1.exe,*,*,*,WheelStd,1,9

,,syncroSVNClient.exe,*,*,*,WheelStd,1,9

,,diffDirs.exe,*,*,*,WheelStd,1,9

,,diffFiles.exe,*,*,*,WheelStd,1,9

Special Characters are Replaced with a Square

Problem

My file was created with another application and it contains special characters (such as é, ©, ®, etc.) but

Oxygen XML Editor displays a square for these characters.

Solution

You must set a font that is able to render the special characters in the Font preferences (on page 141). If it is a

text file, you must also set the encoding used for non XML files (on page 176). If you want to set a font that is

installed on your computer but that font is not accessible in the Font preferences, this means the Java virtual

machine is not able to load the system fonts (probably because it is not a True Type font). It is a problem of

the Java virtual machine and a possible solution is to copy the font file in the [JVM_DIR]/lib/fonts folder.

[JVM_DIR] is the value of the property java.home that is available in the System properties tab of the About

dialog box that is opened from menu Help > About.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2936

TocJS Transformation Does not Generate All Files for a Tree-Like TOC

Problem

The TocJS transformation of a DITA map (on page 3296) does not generate all the files needed to display the

tree-like table of contents.

Solution

To get a complete set of output files, follow these steps:

1. Run the XHTML transformation on the same DITA map. Make sure the output gets generated in the

same output folder as for the TocJS transformation.

2. Copy the content of the DITA-OT-DIR/plugins/com.sophos.tocjs/basefiles folder to the

transformation output folder.

3. Copy the DITA-OT-DIR/plugins/com.sophos.tocjs/sample/basefiles/frameset.html

file to the transformation output folder.

4. Edit frameset.html file.

5. Locate element <frame name="contentwin" src="concepts/about.html">.

6. Replace "concepts/about.html" with "index.html".

Text on Buttons and Labels is Invisible for Linux Installer

Problem

After starting the Linux installer, the text on buttons and labels is invisible.

Cause

This seems to be a font issue between Oracle Java SE 8 (bundled with the installer) and Fedora/Gnome.

Solution

There are two possible workarounds:

• Run the installer with the default (non-native) Java L&F by using the -Dinstall4j.nolaf=true argument.

For example:

oxygen-64bit-openjdk.sh -Dinstall4j.nolaf=true

• Run the installer in console mode using the -c argument. For example:

oxygen-64bit-openjdk.sh -c

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2937

Text Rendering Issues on macOS

Problem

On macOS, I sometimes encounter issues there text is not rendered properly. For example, when tags are

displayed in Author mode, sometimes the tag icon is rendered over the top of text (hiding the text) and

sometimes text flows outside of code blocks.

Cause

This is an uncommon error that cannot be fixed in current versions.

Solution

Open the Preferences dialog box (Options > Preferences) (on page 132), go to Editor > Edit modes > Author,

and deselect the Fast text layout option (on page 185).

XML Document Takes a Long Time to Open

Problem

Oxygen XML Editor takes a long time to open an XML document.

Cause

It takes longer to open an XML document if the whole content of your document is on a single line or if the

document size is very large.

Solution

If the content is on a single line, you can speed up loading by selecting the Format and indent the document

on open option (on page 213) (in the Format preferences page).

If the document is very large (above 30 MB), make sure that the value of the Optimize loading in the Text

edit mode for files over option (on page 209) (in the Open preferences page) is greater than the size of your

document.

If that fails and you get an Out Of Memory error (OutOfMemoryError) you can increase the memory available

to Oxygen XML Editor. (on page 2909)

XSLT Debugger Is Very Slow

Problem

When I run a transformation in the XSLT Debugger perspective (on page 3299), it is very slow.

Oxygen XML Editor 27.1 | 21 - Troubleshooting | 2938

Solution

If the transformation produces HTML or XHTML output, you can disable rendering of output in the XHTML

output view (on page 266) during the transformation process. To view the XHTML output result do one of the

following:

• Run the transformation in the Editor perspective (on page 3299) and make sure the Open in Browser/

System Application option (on page 1514) is selected.

• Run the transformation in the XSLT Debugger perspective (on page 3299), save the text output area to

a file, and use a browser application for viewing it (for example, Firefox or Chrome).

22.
DITA Authoring
DITA is an XML standard, an architectural approach, and a writing methodology, developed by technical

communicators for technical communicators. It provides a standardised architectural framework (on page

3297) for a common structure for content that promotes the consistent creation, sharing, and re-use of

content.

Some of the benefits of using DITA include the following:

• Flexibility - DITA is a topic-based architecture and it offers flexibility in content organization.

• Modularity - DITA allows for content reuse that saves time and reduces the number of modifications.

• Structured Authoring - DITA offers a standardized, methodological approach that helps to reduce

authoring time and improve consistency.

• Single-Source Publishing - DITA provides the ability to change content in one place and have the

change propagate everywhere.

• Multiple Output Formats - DITA supports multiple types of output.

• Inheritance - The DITA inheritance model makes it easy to specialize topics or elements within topics

and you only have to define how the element is different from its immediate ancestor.

• Process Automation - DITA offers various ways to automate processes, such as with index or glossary

production, output delivery, validation, and more.

• Specialization - DITA allows you to define your own information types and semantic elements/

attributes to suit the needs of your particular content model.

• Multi-Lingual - DITA is a translation-friendly structure that supports numerous languages and text

encodings.

• Conditional Profiling - DITA supports conditional text processing and profiling to filter content in the

publishing stage.

This chapter is designed to be a guide to help content authors who use DITA. It also presents the Oxygen XML

Editor features that are specific to working with DITA documents and concepts.

DITA Resources

For more information and technical details about working with DITA, refer to the following resources:

• The DITA Specifications.

• The DITA Style Guide Best Practices for Authors.

• Various sample DITA topics and maps can be found in the [OXYGEN_INSTALL_DIR]/samples/dita

folder.

• Webinar: Getting Started with DITA Using Oxygen

• Webinar: DITA Project Management, Validation, and Translation in a Docs as Code Environment

https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/dita/styleguide/index.html
https://www.oxygenxml.com/events/2020/webinar_getting_started_with_dita_using_oxygen_xml_editor.html
https://www.oxygenxml.com/events/2023/webinar_dita_project_management_validation_and_translation_in_a_docs_as_code_environment.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2940

Related information

DITA Topics Document Type (Framework) (on page 1375)

DITA Map Document Type (Framework) (on page 1399)

Getting Started with DITA
The information in this topic is meant to be a very basic starting point for those who are just getting started

using DITA in Oxygen XML Editor. Oxygen XML Editor makes it easy to create, edit, manage, and publish DITA

content, but it requires at least some basic DITA knowledge. To truly get the most out of Oxygen XML Editor

and all of its DITA-related features, you should explore resources in the online DITA community to acquire

knowledge of its concepts and uses.

Understanding DITA Topics

It is important to understand the role that a DITA topic plays in a DITA project. A DITA topic is not associated

with a single published document. It is a separate entity that can potentially be included in many different

books, help systems, or websites. Therefore, when you write a DITA topic you are not writing a book, a help

system, or a website. You are writing an individual piece of content. This affects how you approach the writing

task and how Oxygen XML Editor works to support you as you write.

Most of your topics are actually related to other topics, and those relationships can affect how you write and

handle things such as links and content reuse. Oxygen XML Editor helps you manage those relationships.

Depending on how your topics are related, you can use the tools provided in Oxygen XML Editor, along with the

features of DITA, in a variety of ways.

Creating a DITA Topic in Oxygen XML Editor

To create a DITA topic (on page 3015):

1. Select File > New or click the New button on the toolbar.

Step Result: The New Document Wizard (on page 378) is displayed:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2941

Figure 732. New DITA Document Wizard

2. Go to Framework templates > DITA > topic and select the type of topic that you want to create.

Note:

If your organization has created DITA customizations, the appropriate template files may be

in another location, and various types of topics may be provided for your use. Check with the

person who manages your DITA system to see if you should be using templates from another

directory.

3. Select a file path where it will be saved. You can also optionally specify a title.

4. Click Create.

Result: Your document is opened in the editor. Eventually, you will need to add a reference to it in your DITA

map (on page 2943).

Your DITA topic is an XML document, thus all the editing features that Oxygen XML Editor provides for editing

XML documents (on page 33) also apply to DITA topics. Oxygen XML Editor also provides additional specific

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2942

DITA-related support for working with DITA topics (on page 3013), their associated DITA maps (on page

2948), and for creating DITA output (on page 3140).

Role of Maps

The basic method that DITA uses to express the relationship between topics is through a DITA map (on page

3296). Other relationships between topics, such as cross references, generally need to be made between

topics in the same root map. DITA uses maps to determine which topics are part of any output that you

create. While customized DITA solutions can use other mechanisms, generally DITA is not used as a way to

publish individual topics. Output is created from a map and includes all the topics referenced by the map.

A publication is not always represented by a single map. For instance, if you are writing a book, you might

use a submap to create each chapter and then organize the chapters in a main root map to create the book.

This helps you to manage your content, offers the possibility of reusing submaps, and segregates content to

support multiple people working on the same project.

Creating a Map in Oxygen XML Editor

To create a map (on page 2967):

1. Select File > New or click the New button on the toolbar.

2. Go to Framework templates > DITA Map > map and select the type of map you want to create.

3. Choose whether you want to open the map in the Editor or in the DITA Maps Manager (on page 2950).

Usually, opening it in the DITA Maps Manager is the best choice. The DITA Maps Manager presents a

view of the DITA map that is similar to a table of contents.

Figure 733. DITA Maps Manager View

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2943

Adding Existing Topics to a Map in Oxygen XML Editor

There are several ways to add a topic reference to a map (on page 2971). Perhaps the easiest method is to

add a reference to a topic that is already open in the editor:

1. Open the DITA topic in the main editing window.

2. Right-click the DITA map in the DITA Maps Manager view (on page 2950) and choose Reference to the

currently edited file from the Append Child, Insert Before, or Insert After submenu.

Step Result: This opens the Insert Reference dialog box (on page 2976) with all of the required fields

already filled in for you.

Figure 734. Insert Reference Dialog Box

3. You can fill in additional information in the various tabs in this dialog box or add it to the map later.

4. Select Insert and close to add a reference to your topic in the map.

5. Save the DITA map.

Adding New Topics to a Map in Oxygen XML Editor

As you add topics to your map, you may want to create a new topic as a child or sibling of another topic. This

is usually done at the map level.

To add a new topic to a map (on page 2971), follow these steps:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2944

1. In the DITA Maps Manager (on page 2950), right-click the node in the current map where you want to

add the new topic.

2. Select one of the following actions:

◦ Append Child > New - Select this action to insert the new topic as a child of the selected node.

This action opens a New file dialog box (on page 3016) that allows you to select the type of

document and assists you with naming it. After you have configured your new topic, click Create.

◦ Insert Before > New - Select this action to insert the new topic as a sibling to the current node,

before it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Insert After > New - Select this action to insert the new topic as a sibling to the current node,

after it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Duplicate - Select this action to create a copy of the selected topic and insert it as a sibling. This

action opens a dialog box that allows you to choose the file name and location for the newly

created copy of the topic. After you have selected the name and path for your new topic, click

OK.

Note:

The value of the root ID is generated taking the Use the file name as the value of the

root ID attribute option from the DITA > Topics preferences page (on page 283) into

account. When the option is deselected, a unique ID is generated.

Step Result: The new topic is now referenced (as a <topicref>) in the DITA map at the location where

you inserted it and the new topic is opened in the editor.

3. Save the DITA map.

You can also change the order and nesting of topics in the DITA Maps Manager view by doing either of the

following:

• Select the topic to move while holding down the Alt key and use the arrow keys to move it around.

• Use the mouse to drag and drop the topic to the desired location.

The way your parent and child topics are organized in any particular output depends on both the configuration

of those topics in the map and the rules of the output transformation that is applied to them. Do not assume

that your topics must have the same organization for all output types. The map defines the organization of the

topics, not the topics themselves. It is possible to create a variety of maps, each with different organization

and configuration options to produce a variety of outputs.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2945

Adding Submaps in Oxygen XML Editor

If you have a large set of information, such as a long book or extensive help system, a single map can become

long and difficult to manage. To make it easier to manage, you can break up the content into smaller submaps

(on page 2968). A submap might represent a chapter of a book, a section of a user manual, or a page on a

website. To build a publication out of these smaller maps, you must add them to a map that represents the

overall publication.

To add a child map to the current map (on page 2968):

1. Right-click the parent DITA map in the DITA Maps Manager view (on page 2950) and choose Append

child > Map reference.

Step Result: This opens the Insert Reference dialog box (on page 2976) with all of the required fields

already filled in for you.

2. You can fill in additional information in the various tabs in this dialog box or add it to the map later.

3. Select Insert and close to add a reference to your submap in the main map.

4. Save the main DITA map.

Validating a Map in Oxygen XML Editor

Just as it is with your individual topics, it is important to validate your maps (on page 2995). Oxygen XML

Editor provides a validation function for DITA maps that does more than simply validating that the XML is well-

formed. It also does the following:

• Validates all of the relationships defined in the maps.

• Validates all of the files that are included in the map.

• Validates all of the links that are expressed in the files.

Validating the map that describes your entire publication validates all the files that make up the publication

and all of the relationships between them.

To validate a map:

1. Click the Validate and Check for Completeness button in the DITA Maps Manager view (on page

2950).

Step Result: This opens the DITA Map Completeness Check dialog box (on page 2996).

2. Select any of the various options you want to check.

3. Click Check to run the validation process.

Publishing Your Topics in Oxygen XML Editor

As noted previously, in DITA standards you usually do not publish output from an individual topic. Instead,

you create published output (on page 3140) by running a DITA transformation on a map. This collects all

the topics that are referenced in the map, organizes them, and produces output in a particular format. By

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2946

default, Oxygen XML Editor uses the transformations provided by the DITA Open Toolkit for publishing to

various output formats (such as PDF, WebHelp or EPUB). Your organization may have created various custom

transformations or modified the built-in DITA Open Toolkit transformations. In either case, Oxygen XML Editor

manages them by using transformation scenarios.

To publish output for a map:

1. Click the Configure Transformation Scenario(s) button in the DITA Maps Manager view (on page

2950).

Step Result: This opens the Configure Transformation Scenario(s) dialog box (on page 1616).

Figure 735. Configure Transformation Scenarios Dialog Box

2. Select the appropriate transformation depending on the type of output you desire.

3. To change or view the configuration or storage options for a transformation scenario, select the

transformation and click Edit.

4. Click Apply associated.

Result: Depending on the configuration of the transformation scenario, when the transformation is finished,

your output may automatically be opened in the appropriate application.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2947

DITA Projects

Once you have a basic understanding of DITA and how to work with DITA topics and maps, you probably want

to create a DITA project to organize and manage your planned content/resources (on page 410). Oxygen

XML Editor includes a Project view (on page 414) that helps you organize your projects and offers a variety of

helpful project-related features and makes it easy to share your projects with other members of your team.

Tip:

There are several sample project templates available for DITA users that can be used as a starting

point or for inspiration. These sample project templates are found in the Framework templates > DITA

folder in the New Project wizard: (on page 411)

• Sample DITA Project - This is a basic DITA project meant to help new users see how a DITA

project is structured.

• Startup DITA Project - This is a startup DITA project that imposes a custom set of options

(e.g. spell check settings and custom dictionaries), a custom DITA framework extension (e.g.

custom new file templates. custom actions, custom CSS used for visual editing) and a folder

structure for a DITA project according to best practices. Once created, the project contains a

Readme.html file that explains all customizations and their benefits. If you plan to start your

own DITA project using a version control system (such as Git), you can use this startup DITA

project template to customize various aspects of DITA editing and share them with your team.

Resources

For more information about getting started with DITA and how to work with DITA in Oxygen XML Editor, see

our compiled collection of DITA-related webinars that are meant to help you with your journey into working

with DITA: Webinars: Working with DITA in Oxygen.

Related information

DITA Authoring (on page 2939)

Editing XML Documents in Author Mode (on page 601)

https://www.oxygenxml.com/dita/1.3/specs/

Webinars: Working with DITA in Oxygen

Doctales - DITA Introduction

Working with Projects in DITA
Oxygen XML Editor provides the ability to organize your DITA resources in projects, the same as with other

XML-related files. This helps you manage and organize your files and projects allow you to perform batch

operations (such as validation and transformation) over multiple files or to use Main Files support to rename

or move DITA resources (on page 3245) while updating the references to them. You can also share your

project settings and transformation/validation scenarios (on page 427) with other users.

https://www.oxygenxml.com/working_with_dita_in_oxygen.html
https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/working_with_dita_in_oxygen.html
https://stefan-jung.org/dita-introduction/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2948

To learn how to create a new project from a template and how add resources and manage it, see Creating a

New Project (on page 410).

To help you get more familiar with how to use projects in DITA, there are two DITA-specific sample project

templates available when using the New Project action (available, for example, from the Project menu):

• DITA Project With Editing Customizations - This sample DITA project imposes custom general settings

and an editing behavior using a DITA framework extension. More details can be found in the project's

Readme.html file.

• Sample DITA Project - This sample DITA project is a best practice example that shows how DITA

content can be organized to provide a scalable and flexible project structure. More details can be found

in the project's Readme.html file.

Resources

For more information about working with DITA projects, see our webinar: Working with DITA in Oxygen - Quick

Start with the DITA Startup Project.

Related information

Using Projects to Group Documents (on page 410)

Working with DITA Maps
In the DITA standard architecture you create documents by collecting topics into maps.

DITA Maps

A DITA map (on page 3296) organizes a set of topics into a hierarchy. In most output formats, the structure

of the map becomes the structure of the table of contents. Oxygen XML Editor provides support for creating

(on page 2967) and managing DITA maps (on page 2970) through the DITA Maps Manager (on page 2950).

There are also specialized types of DITA maps, such as a bookmap (on page 3294), which is intended for

creating the structure of a book.

Submaps

You do not have to create an entire publication using a single map. It is generally good practice to break up

a large publication into several smaller submaps (on page 2968) that are easier to manage. You can reuse

submaps in multiple publications by including them in each of the main maps. The DITA Maps Manager (on

page 2950) provides support for easily creating and managing submaps.

Opening a DITA Map

There are several ways to open a DITA map and you can choose to open it in the DITA Maps Manager (on

page 2950) or in the XML Editor. Use any of the following methods to open a map:

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2949

• To open a submap in its own tab in the DITA Maps Manager, simply double-click it (or right-click it and

select Open).

• To open a map in the XML editor from the DITA Maps Manager, right-click it and select Open Map in

Editor.

• Drag a DITA map file from your system browser and drop it in the XML editor. This will open the map in

the editor.

• If you open a file with the .ditamap or .bookmap extension (from the Project view (on page 414) or a

system browser), a dialog box is opened that offers you the choice of opening it in the XML editor or in

the DITA Maps Manager.

Note:

If you select the Do not show the dialog again option, it will always be opened in the method

that you choose and you will not be asked in the future. However, you can reset this by

selecting Always ask for the When opening a map option in the DITA preferences page (on

page 280).

• To open a map in the DITA Maps Manager, you can right-click a map file in the Project view (on page

414) and select Open with > DITA Maps Manager.

• If you have a DITA map file open in the XML editor, you can open it in the DITA Maps Manager by right-

clicking the title tab and selecting Open in DITA Maps Manager View.

Chunking DITA Maps

By default, many output types place a single topic on each output page. In some cases you may want to

output multiple topics as a single output page (also known as chunking) (on page 2995). To support this,

Oxygen XML Editor provides an Edit Properties dialog box (on page 2986) that allows you to easily configure

the attributes of a topic to control how your table of contents and topics are rendered in the output.

Validating a Map

You should validate your maps (on page 2995) to make sure that the individual topics are valid and that the

relationships between them are working. Oxygen XML Editor provides a validation function for DITA maps that

performs a comprehensive validation of a map and its topics.

Resources

For more information about getting started with DITA and how to work with DITA in Oxygen XML Editor, see

our compiled collection of DITA-related webinars that are meant to help you with your journey into working

with DITA: Webinars: Working with DITA in Oxygen.

Related information

DITA Map Document Type (Framework) (on page 1399)

DITA Map Author Mode Actions (on page 3001)

https://www.oxygenxml.com/working_with_dita_in_oxygen.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2950

DITA Maps Manager

Oxygen XML Editor provides a view for managing and editing DITA maps. The DITA Maps Manager view

presents a DITA map as a tree or table of contents. It allows you to navigate the topics and maps, make

changes, and apply transformation scenarios to obtain various output formats. By default, it is located to the

left of the main editor. If the view is not displayed, it can be opened by selecting it from the Window > Show

View menu.

The DITA Maps Manager includes a variety of useful actions to help you edit and organize the structure of

your DITA maps and topics. The actions that are available and their functions depend on the type of nodes

that are selected in the DITA Maps Manager. If you select multiple sibling nodes, the result of the actions will

be applied to all the selected nodes. If you select multiple nodes that are not on the same hierarchical level,

the actions will be applied to the parent node and the child nodes will inherit certain attributes from the parent

node.

Figure 736. DITA Maps Manager View

An icon that represents its type of DITA resource is displayed on the left side of each node. For example, a

DITA Map is displayed with the icon, a DITA Topic is displayed with , a DITA Task is displayed with ,

etc. Any node that has processing-role="resource-only" set in its properties is displayed with a gray dot in the

bottom-right corner of the icon ().

The title of the DITA resource is also displayed for each node. The displayed title depends on how the

referenced resource is configured within the DITA structure. For example, the title could be resolved as the text

value inside the referenced topic's <title> element or the value of the @navtitle attribute specified within the

DITA map. For non-DITA resources that are referenced in a DITA map, the file name of the resource is usually

displayed for the title. However, it is possible to obtain the title from the referenced non-DITA documents

by dynamically converting them using the process described in: Dynamic Word, Excel, OpenAPI, HTML,

Markdown to DITA Conversion (on page 3187). In this case, the document title obtained from the conversion

process is displayed as the resource title in the DITA Maps Manager.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2951

Opening Maps in the DITA Maps Manager

The DITA Maps Manager view supports opening multiple maps at the same time, with each one presented in

its own tab. To open a DITA map in the DITA Maps Manager, use any of the following methods:

• To open a submap in its own tab, simply double-click it (or right-click it and select Open).

• If you open a file with a .ditamap or .bookmap extension (from the Project view (on page 414) or

a system browser), a dialog box is opened that offers you the choice of opening it in the DITA Maps

Manager or the XML editor.

Note:

If you select the Do not show the dialog again option, it will always be opened in the method

that you choose and you will not be asked in the future. However, you can reset this by

selecting the Always ask choice for the When opening a map option in the DITA preferences

page (on page 280).

• Right-click a map file in the Project view (on page 414) and select Open with > DITA Maps Manager.

• If you have a DITA map file open in the XML editor, you can right-click the title tab and select Open in

DITA Maps Manager View.

By default, when a map is opened in the DITA Maps Manager, its index is automatically refreshed. You can

disable this feature by deselecting the Refresh index when opening a map in DITA Maps Manager option (on

page 308) in the Open/Find Resource preferences page.

Submap Nodes

If your root map (on page 3301) (main DITA map) references other maps (submaps), they can be expanded

and you can navigate their content in the DITA Maps Manager.

References within those submaps are not editable, by default, unless you open the submap separately in its

own tab. If you want to be able to edit submaps when the main (root/parent) map is open in the DITA Maps

Manager, go to Options > Preferences > DITA > Maps and select the Allow referenced submaps to be edited

option (on page 281). The references within submap nodes are shown with a gray background if they are not

editable.

Moving Nodes in the DITA Maps Manager

You can move topics or nodes within the same map, or other maps, by dragging and dropping them into the

desired position. You can arrange the nodes by dragging and dropping one or more nodes at a time. You

can arrange multiple topics by dragging them while pressing the Ctrl or Shift key. Drop operations can be

performed before, after, or as child of the targeted node.

Operations include:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2952

Copy

Select the nodes you want to copy and start dragging them. Before dropping them in the

appropriate place, press and hold the Ctrl key. The mouse pointer changes to a symbol to

indicate that a copy operation is being performed.

Move

Select the nodes you want to move and drag and drop them in the appropriate place.

Promote (Alt + LeftArrow) /Demote (Alt + RightArrow)

You can move nodes between child and parent nodes by using the Promote (Alt + LeftArrow)

and Demote (Alt + RightArrow) operations.

DITA Maps Manager Toolbar

The toolbar includes the following actions (also available in the DITA Maps menu) and their availability depend

on the nodes that are selected:

New DITA Map

Opens the New Document wizard (on page 378) that you can use to create a new DITA map

document.

Open Drop-down Menu

You can use this drop-down menu to open new DITA maps or to reopen recently viewed maps.

The drop-down menu contains the following:

• List of recently viewed DITA maps that can be selected to reopen them.

• Clear history - Clears the history list of the recently viewed DITA maps.

• Open - Allows you to open the map in the DITA Maps Manager view (on page 2950).

You can also open a map by dragging it from the file system explorer and dropping it into

the DITA Maps Manager view (on page 2950).

• Open URL - Displays the Open URL dialog box where you can specify a URL (defined

by a protocol, host, resource path, and an optional port) or use the browsing actions in the

Browse for remote file drop-down menu.

Save (Ctrl + S (Meta + S on macOS))

Saves the current DITA map.

Validation drop-down menu

This drop-down menu contains options for validating the current map. The following options are

available:

Validate and Check for Completeness

Opens the DITA Map Completeness Check dialog box where you can configure

options for checking the validity and integrity (on page 2995) of the map.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2953

Validate

Validates the current map that is open in the DITA Maps Manager using the

associated validation scenarios.

Configure Validation Scenario(s)

Use this option to configure validation scenarios and their associations (on page

813).

Generate Metrics Report

Generate a report that contains statistics (on page 3161) about the entire DITA map in HTML

format.

Apply Transformation Scenario(s)

Applies the DITA Map transformation scenario (on page 1473) that is associated with the

current map.

Configure Transformation Scenario(s)

Opens the Configure Transformation Scenarios(s) dialog box (on page 1616) where you can edit

or create transformation scenarios or associate a DITA Map transformation scenario (on page

1530) with the current map.

Open Map in Editor with Resolved Topics

Opens the DITA map in the main editor area with content from all topic references expanded

in-place. Referenced content is presented as read-only by default. To edit it, you must use the

Edit Reference contextual menu action to open the source topic that contains the referenced

content.

If you want to edit the referenced topics directly without having to open the source document,

go to Options > Preferences > Editor > Edit Modes > Author and select the Allow referenced

content to be edited option (on page 187). Since a single topic may be referenced in multiple

places in the DITA map, be careful not to make conflicting changes to that topic.

Tip:

If you want to print the expanded content, you should consider changing selecting +

Print ready from the Styles drop-down menu on the toolbar.

Open Map in Editor

For complex operations that cannot be performed in the simplified DITA Maps Manager view

(for instance, editing a relationship table) you can open the map in the main editing area.

Note:

You can also use this action to open referenced DITA maps in the Editor.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2954

Link with Editor

Toggles the synchronization between the file path of the current editor and the selected

topic reference in the DITA Maps Manager view. If enabled, it results in the following types of

synchronizations:

• If you select a topic tab in the main editing area and it is referenced in the map currently

opened in the DITA Maps Manager, the reference to that topic is selected in the DITA

Maps Manager.

• If you have a map opened in both the DITA Maps Manager and the main editor, selecting

the map tab in the main editing area opens that map in the DITA Maps Manager.

• If you have a map opened in both the DITA Maps Manager and the main editor (Author

mode), selecting one or more topicrefs in the DITA Maps Manager will also select the

same topicrefs in the main editor.

• If you have a map opened in both the DITA Maps Manager and the main editor (Author

mode), selecting one or more topicrefs in the main editor will also select the same

topicrefs in the DITA Maps Manager.

Settings

Show extended toolbar

Toggles whether or not the extended toolbar will be displayed in the DITA Maps

Manager toolbar.

Show context toolbar

Toggles whether or not the Context option (on page 2954) will be displayed in the

DITA Maps Manager toolbar.

Show topic titles

Toggles how topics are presented in the DITA Maps Manager. If selected, the title

of each topic is shown. Otherwise, the file path (value of the @href attribute) for

each topic is shown.

Show key reference values

Toggles how key references are presented in the DITA Maps Manager. If selected,

the value of the @keyref attribute for each key reference is shown.

Context Root Map Drop-down menu

The drop-down menu displayed after Context can be used to specify the DITA root map (on

page 3301)) that Oxygen XML Editor uses to define a hierarchical structure of submaps and to

establish a key space (on page 3298) that defines the keys that are propagated throughout the

entire map structure. For more information, see Selecting a Root Map (on page 2967).

Choose context root map browsing/search menu

You can use this drop-down menu to browse or search for root maps with the following choices:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2955

• Browse for local file - Opens a local file browser dialog box, allowing you to select a

local root map.

• Browse for remote file - Displays the Open URL dialog box (on page 398) that allows

you to select a remotely stored root map.

• Browse for archived file - Displays the Archive Browser (on page 2118) that allows

you to browse the content of an archive and choose a root map.

• Browse Data Source Explorer - Opens the Data Source Explorer (on page 2125) that

allows you to browse the data sources defined in the Data Sources preferences page (on

page 286).

Tip:

You can open the Data Sources preferences page by using the Configure

Database Sources shortcut from the Open URL dialog box.

• Search for file - Displays the Find Resource dialog box (on page 437) to search for a

root map.

• Choose context from main files - Allows you to choose a context root map from the

DITA maps and the DITA-OT project files that are set in the Main Files (on page 3245)

folder.

Profiling/Conditional Text Drop-down Menu

You can use this drop-down menu to select and apply a defined profiling condition set (on page

3205) to filter the content based on that condition set. The drop-down menu also contains the

following other options:

• Show Profiling Colors and Styles - Select this option to turn on conditional styling. To

configure the colors and styles open the Preferences dialog box (Options > Preferences)

(on page 132) and go to Editor > Edit modes > Author > Profiling/Conditional Text >

Colors and Styles.

• Show Profiling Attributes - Select this option to display the values of the profiling

attributes at the end of the titles of topic references. When selected, the values of the

profiling attributes are displayed in both the DITA Maps Manager view and in the Author

view.

• Show Excluded Content - Controls if the content filtered out by a particular condition set

is hidden or grayed-out in the editor area and in the Outline (on page 551) and DITA Maps

Manager views. When this option is selected, the content filtered by the currently applied

condition set is grayed-out. To show only the content that matches the currently applied

condition set, deselect this option.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2956

• Profiling Settings - Opens the preferences page for adding and editing the profiling

conditions that you can apply in the DITA Maps Manager view and the Author mode

editing pane. When a profiling condition set (on page 689) is applied, the keys that are

defined in the DITA map are gathered by filtering out the excluded content.

The following additional actions are displayed in the toolbar when the Show extended toolbar option is

selected in the Settings menu:

Insert Topic Reference

Opens the Insert Reference dialog box (on page 2976) that allows you to insert references to

targets such as topics, maps, topic sets, or key definitions.

Refresh References

You can use this action to manually trigger a refresh and update of all referenced documents.

This action is useful when the referenced documents are modified externally. When they are

modified and saved from Oxygen XML Editor, the DITA map is updated automatically.

Edit Properties

Opens the Edit Properties dialog box that allows you to configure the properties of a selected

node. For more details about this dialog box, see Edit Properties Dialog Box (on page 2986).

Edit Attributes

Opens a small in-place editor that allows you to edit the attributes of a selected node. You can

find more details about this action in the Attributes View in Author Mode (on page 641) topic.

Delete

Deletes the selected node.

Move Up

Moves the selected node up within the DITA map tree.

Move Down

Moves the selected node down within the DITA map tree.

Promote(Alt + LeftArrow)

Moves the selected node up one level to the level of its parent node.

Demote(Alt + RightArrow)

Moves the selected node down one level to the level of its child nodes.

Contextual Menu of the DITA Maps Manager

Root Map

The following actions can be invoked from the contextual menu on the root map (on page 3301)

of an opened DITA map (many of them are also available in theDITA Maps menu):

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2957

Open Map in Editor

For complex operations that cannot be performed in the simplified DITA Maps

Manager view (for instance, editing a relationship table) you can open the map in

the main editing area.

Open Map in Editor with Resolved Topics

Opens the DITA map in the main editor area with content from all topic references,

expanded in-place. Content from the referenced topics is presented as read-only

and you have to use the contextual menu action Edit Reference to open the topic

for editing.

Export DITA Map

Opens a dialog box that allows you to choose a destination for exporting the DITA

map. It also includes an Export as Zip archive option that allows you to package

the DITA map as a zip archive. The result will contain all directly and indirectly

referenced topics from the DITA Map.

Find Unreferenced Resources

Allows you to search for orphaned resources that are not referenced in the DITA

maps.

Add to Review Task

This action can be used to add the selected documents to a task in the Content

Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive

collaboration platform designed to adapt to any type of documentation review

workflow. This functionality is available through a pre-installed connector add-

on. To fully take advantage of all of the benefits and features of Content Fusion,

your organization will need an Oxygen Content Fusion Enterprise Server. For more

information, see the Oxygen Content Fusion website.

Show Feedback Comments Manager

Opens the Feedback Comments Manager view. This view is for those who use

Oxygen Feedback to provide a commenting component in WebHelp output. This

view makes it possible to see all the comments added by users in WebHelp output

directly in Oxygen XML Editor.

Edit Properties

Opens the Edit Properties dialog box that allows you to configure the properties of

a selected node. For more details about this dialog box, see Edit Properties Dialog

Box (on page 2986).

Fast Create Topics

https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion/get_started.html
https://www.oxygenxml.com/content_fusion/get_started.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/doc/ug-feedback/index.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2958

Opens the Fast Create Topics dialog box (on page 3018) that allows you to quickly

create multiple skeleton topics at once and you can specify their hierarchical

structure within the DITA map (on page 3296).

Append Child submenu

Container sub-menu for a number of actions that create a map node as a child of

the currently selected node:

• New - Opens a dialog box that allows you to configure some options for

inserting a new topic (on page 3015).

• Reference - Inserts a reference to a topic file. You can find more details

about this action in the Inserting References (on page 2976) topic.

• Reference to the currently edited file - Inserts a reference to the currently

edited file. You can find more details about this action in the Inserting

References (on page 2976) topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you

to insert a targeted key definition (on page 2986) (for example, to target a

resource such as an image or external link).

• Key Reference with Keyword - Opens an Insert Key Definition dialog box

that allows you to define a key and a value inside a keyword (on page

2985).

• A set of actions that open the Insert Reference dialog box (on page 2976)

that allows you to insert various reference specializations (such as Anchor

Reference, Glossary Reference, Map Reference, Navigation Reference,

Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

Search References

Searches all references to the current topic in the entire DITA map (on page

3296). It also reports references that are defined as related links in relationship

tables. If you have enabled Main Files support (on page 3245), it also searches for

references in the DITA maps added to the Main Files folder.

Refactoring submenu

The following actions are available from this submenu when invoked from a root

map:

Rename resource

Allows you to change the name of a resource linked in the edited

DITA map (on page 2973) and you have the option of updating all

the references to the renamed DITA resource. If you have enabled

Main Files support (on page 3245), it also searches for references

in the DITA maps added to the Main Files folder and it provides the

option of updating all the references even for non-DITA resources.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2959

Move resource

Allows you to change the location on disk of a resource linked in

the edited DITA map (on page 2973) and you have the option of

updating all the references to the moved DITA resources. If you have

enabled Main Files support (on page 3245), it also searches for

references in the DITA maps added to the Main Files folder and it

provides the option of updating all the references even for non-DITA

resources.

Rename Key

Use this operation to rename a key. It also updates all references to it.

Note that it does not work on DITA 1.3 key scopes.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA

Concept topic type (for example, Topic to Concept).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA

General Task topic type (for example, Task to General Task). A

DITA General Task is a less restrictive alternative to the Strict Task

information type.

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA

Reference topic type (for example, Topic to Reference).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA

Task topic type (for example, Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA

Topic (for example, Task to Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA

Troubleshooting topic type (for example, Topic to Troubleshooting).

Generate IDs

Use this operation to automatically generate unique IDs for elements.

Other XML Refactoring Actions

For your convenience, the last 5 XML Refactoring tool operations (on

page 856) that were finished or previewed will also appear in this

submenu.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2960

XML Refactoring

Opens the XML Refactoring tool wizard (on page 856) that presents

refactoring operations to assist you with managing the structure of

your XML documents.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace content across multiple files.

Check Spelling in Files

Allows you to spell check multiple files (on page 471).

Paste

Allows you to paste content from the clipboard into the DITA map.

Paste Before

Pastes the content of the clipboard (only if it is a part of the DITA map) before the

currently selected DITA map node.

Paste After

Pastes the content of the clipboard (only if it is a part of the DITA map) after the

currently selected DITA map node.

Expand All

Allows you to expand the entire DITA map structure.

Collapse All

Allows you to collapse the entire DITA map structure.

Editable Child Nodes

The following actions are available when the contextual menu is invoked on an editable child

node of a DITA map:

Note:

If multiple nodes are selected, the availability of the actions depends on the nodes that

are selected.

Note:

Topic references inside submaps are not editable by default. If you want to be able to

edit submaps when the main (root/parent) map is open in the DITA Maps Manager, go

to Options > Preferences > DITA > Maps and select the Allow referenced submaps to be

edited option (on page 281).

Open

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2961

Opens the selected resource in the editor.

Add to Review Task

This action can be used to add the selected documents to a task in the Content

Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive

collaboration platform designed to adapt to any type of documentation review

workflow. This functionality is available through a pre-installed connector add-

on. To fully take advantage of all of the benefits and features of Content Fusion,

your organization will need an Oxygen Content Fusion Enterprise Server. For more

information, see the Oxygen Content Fusion website.

Edit Properties

Opens the Edit Properties dialog box that allows you to configure the properties of

a selected node. For more details about this dialog box, see Edit Properties Dialog

Box (on page 2986).

Fast Create Topics

Opens the Fast Create Topics dialog box (on page 3018) that allows you to quickly

create multiple skeleton topics at once and you can specify their hierarchical

structure within the DITA map (on page 3296).

Append Child submenu

Container sub-menu for a number of actions that create a map node as a child of

the currently selected node:

• New - Opens a dialog box that allows you to configure some options for

inserting a new topic (on page 3015).

• Reference - Inserts a reference to a topic file. You can find more details

about this action in the Inserting References (on page 2976) topic.

• Reference to the currently edited file - Inserts a reference to the currently

edited file. You can find more details about this action in the Inserting

References (on page 2976) topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you

to insert a targeted key definition (on page 2986) (for example, to target a

resource such as an image or external link).

• Key Reference with Keyword - Opens an Insert Key Definition dialog box

that allows you to define a key and a value inside a keyword (on page

2985).

• A set of actions that open the Insert Reference dialog box (on page 2976)

that allows you to insert various reference specializations (such as Anchor

Reference, Glossary Reference, Map Reference, Navigation Reference,

Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

Insert Before submenu

https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion/get_started.html
https://www.oxygenxml.com/content_fusion/get_started.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2962

Container sub-menus for a number of actions that create a map node as a sibling

of the currently selected node, above the current node in the map:

• New - Opens a dialog box that allows you to configure some options for

inserting a new topic (on page 3015).

• Reference - Inserts a reference to a topic file. You can find more details

about this action in the Inserting References (on page 2976) topic.

• Reference to the currently edited file - Inserts a reference to the currently

edited file. You can find more details about this action in the Inserting

References (on page 2976) topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you

to insert a targeted key definition (on page 2986) (for example, to target a

resource such as an image or external link).

• Key Reference with Keyword - Opens an Insert Key Definition dialog box

that allows you to define a key and a value inside a keyword (on page

2985).

• A set of actions that open the Insert Reference dialog box (on page 2976)

that allows you to insert various reference specializations (such as Anchor

Reference, Glossary Reference, Map Reference, Navigation Reference,

Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

Insert After submenu

Container sub-menus for a number of actions that create a map node as a sibling

of the currently selected node, below the current node in the map:

• New - Opens a dialog box that allows you to configure some options for

inserting a new topic (on page 3015).

• Reference - Inserts a reference to a topic file. You can find more details

about this action in the Inserting References (on page 2976) topic.

• Reference to the currently edited file - Inserts a reference to the currently

edited file. You can find more details about this action in the Inserting

References (on page 2976) topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you

to insert a targeted key definition (on page 2986) (for example, to target a

resource such as an image or external link).

• Key Reference with Keyword - Opens an Insert Key Definition dialog box

that allows you to define a key and a value inside a keyword (on page

2985).

• A set of actions that open the Insert Reference dialog box (on page 2976)

that allows you to insert various reference specializations (such as Anchor

Reference, Glossary Reference, Map Reference, Navigation Reference,

Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2963

Search References

Searches all references to the current topic in the entire DITA map (on page

3296). It also reports references that are defined as related links in relationship

tables. If you have enabled Main Files support (on page 3245), it also searches for

references in the DITA maps added to the Main Files folder.

Refactoring submenu

The following actions are available from this submenu:

Convert Markdown to DITA Topic (Available for Markdown documents)

Opens a dialog box that allows you to configure options for

converting the Markdown document into a DITA topic (on page

3081).

Rename resource

Allows you to change the name of a resource linked in the edited

DITA map (on page 2973) and you have the option of updating all

the references to the renamed DITA resource. If you have enabled

Main Files support (on page 3245), it also searches for references

in the DITA maps added to the Main Files folder and it provides the

option of updating all the references even for non-DITA resources.

Move resource

Allows you to change the location on disk of a resource linked in

the edited DITA map (on page 2973) and you have the option of

updating all the references to the moved DITA resources. If you have

enabled Main Files support (on page 3245), it also searches for

references in the DITA maps added to the Main Files folder and it

provides the option of updating all the references even for non-DITA

resources.

Extract to New DITA Map

Use this operation to extract editable topics into a new DITA map.

The operation will open a map creation dialog box where you can

select the type of map and configure the title or file name. Click

Create to complete the operation and a new DITA map will be

inserted at the location where the action was invoked with the

selected topic references moved into the new map.

Rename Key

Use this operation to rename a key. It also updates all references to it.

Note that it does not work on DITA 1.3 key scopes.

Convert Nested Topics to New Topics (Available from the contextual menu of

editable maps/nodes in the DITA Maps Manager (on page 2950))

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2964

Use this operation on topics that contain nested <topic> elements

to convert each nested topic to a new topic. Also, the new topics

are added in the DITA Maps Manager as the first child topics of the

original topic.

Convert Sections to New Topics (Available from the contextual menu of

editable maps/nodes in the DITA Maps Manager (on page 2950))

Use this operation on topics that contain multiple sections to convert

each section to a new topic. Also, the new topics are added in the

DITA Maps Manager as the first child topics of the original topic.

Note:

As long as the DITA topic is of the type topic, concept, or

reference, the new topics that will be created from the inner

sections will retain the same topic type as the original topic.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA

Concept topic type (for example, Topic to Concept).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA

General Task topic type (for example, Task to General Task). A

DITA General Task is a less restrictive alternative to the Strict Task

information type.

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA

Reference topic type (for example, Topic to Reference).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA

Task topic type (for example, Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA

Topic (for example, Task to Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA

Troubleshooting topic type (for example, Topic to Troubleshooting).

Generate IDs

Use this operation to automatically generate unique IDs for elements.

Other XML Refactoring Actions

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2965

For your convenience, the last 5 XML Refactoring tool operations (on

page 856) that were finished or previewed will also appear in this

submenu.

XML Refactoring

Opens the XML Refactoring tool wizard (on page 856) that presents

refactoring operations to assist you with managing the structure of

your XML documents.

Apply all default quick fix proposals

Opens the Apply all default quick fix proposals tool (on page

894) that can be used to apply quick fix proposals for all reported

validation errors in the selected documents when one or more quick

fix proposals have been detected for reported validation errors.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 448) that allows you to find

and replace content across multiple files.

Check Spelling in Files

Allows you to spell check multiple files (on page 471).

Cut

Deletes the currently selected node and copies it to the clipboard.

Copy

Copies the currently selected node to the clipboard.

Paste

Allows you to paste content from the clipboard into the DITA map.

Paste Before

Pastes the content of the clipboard (only if it is a part of the DITA map) before the

currently selected DITA map node.

Paste After

Pastes the content of the clipboard (only if it is a part of the DITA map) after the

currently selected DITA map node.

Delete

Deletes the currently selected node from the DITA map.

Remove from Disk

This action can be used to remove the selected resource(s) from disk. Selecting

this action will open a confirmation dialog box where you can also choose to

remove the descendants by selecting the Also remove all descendants option.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2966

If you proceed, a search for references is triggered. If multiple references are

detected for any of the selected resources, you will have the option to review them

since this would lead to broken links. If you have enabled Main Files support (on

page 3245), it also searches for references in the DITA maps added to the Main

Files folder.

Organize

Allows you to organize the DITA map with the several submenu actions:

• Move Up - Moves the selected node up within the DITA map tree.

• Move Down - Moves the selected node down within the DITA map tree.

• Promote(Alt + LeftArrow) - Moves the selected node up one level to the

level of its parent node.

• Demote(Alt + RightArrow) - Moves the selected node down one level to

the level of its child nodes.

Expand All

Allows you to expand the entire DITA map structure.

Collapse All

Allows you to collapse the entire DITA map structure.

Other Nodes

The following additional actions are available when the contextual menu is invoked from other

nodes, such as a submap node or a relationship table:

Open Map in Editor (available when invoking on a submap)

Opens the currently selected DITA map in the editor.

Open parent DITA map (available when invoking on a read-only topic reference or a

submap reference)

Opens the parent DITA map of the currently selected reference in the DITA Maps

Manager.

Edit Attributes (only available for relationship table nodes)

Opens a small in-place editor that allows you to edit the attributes of a selected

node. You can find more details about this action in the Attributes View in Author

Mode (on page 641) topic.

Edit Profiling Attributes (only available for relationship table nodes)

Allows you to change the profiling attributes (on page 683) defined on the selected

node.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2967

Resources

For more information about the DITA Maps Manager view and many of its features, watch our video

demonstration:

https://www.youtube.com/embed/ozFZz6YZMCY

Related information

DITA Map Validation and Completeness Check (on page 2995)

DITA Map Author Mode Actions (on page 3001)

Find/Replace in Multiple Files (on page 448)

Creating a Map

To create a DITA map (on page 3296), subject scheme map (on page 3301), bookmap (on page 3294), or

other types of DITA maps, follow these steps:

1. Use the New Document wizard (on page 378) to start creating your map.

Tip:

If you want the map to be a submap, you can create it the same way by right-clicking the place

in the current map where you want to add it (in the DITA Maps Manager (on page 2950)) and

selecting New from the Append Child, Insert Before, or Insert After submenu.

2. Select one of the DITA Map templates from the Framework templates folder.

3. Click the Create button.

4. Select whether you want to open the map in the DITA Maps Manager (on page 2950) or the Editor.

5. Save the map using the Save button on the toolbar of the DITA Maps Manager view (on page

2950).

Related Information:

Customizing Profiling Values with a Subject Scheme Map (on page 3214)

Managing DITA Maps (on page 2970)

Selecting a Root Map

Oxygen XML Editor allows you to select a root map (on page 3301) (a main DITA map (on page 3296)) that

defines a hierarchical structure of submaps and establishes a key space (on page 3298) that defines the keys

used in all the other DITA maps and topics in the project. Specifying the correct root map helps to prevent

validation problems when you work with keyrefs and also acts as the foundation for content completion. All

the keys that are defined in a root map are available in the submaps that are contained within the root map.

There are several ways to select or change the root map:

https://www.youtube.com/embed/ozFZz6YZMCY

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2968

• The easiest method is to use the Context drop-down menu (on page 2954) on the DITA Maps Manager

(on page 2950) toolbar to select the appropriate context root map that Oxygen XML Editor uses to

define a hierarchical structure of submaps and to establish a key space (on page 3298) that defines

the keys that are propagated throughout the entire map structure.

• You can use the Choose context root map drop-down on the DITA Maps Manager (on page

2950) toolbar to browse or search for root maps with the following choices:

◦ Browse for local file - Opens a local file browser dialog box, allowing you to select a local root

map.

◦ Browse for remote file - Displays the Open URL dialog box (on page 398) that allows you to

select a remotely stored root map.

◦ Browse for archived file - Displays the Archive Browser (on page 2118) that allows you to

browse the content of an archive and choose a root map.

◦ Browse Data Source Explorer - Opens the Data Source Explorer (on page 2125) that allows

you to browse the data sources defined in the Data Sources preferences page (on page 286).

Tip:

You can open the Data Sources preferences page by using the Configure Database

Sources shortcut from the Open URL dialog box.

◦ Search for file - Displays the Find Resource dialog box (on page 437) to search for a root

map.

◦ Choose context from main files - Allows you to choose a context root map from the DITA

maps and the DITA-OT project files that are set in the Main Files (on page 3245) folder.

• If you insert a key reference using the Cross Reference action from the Link drop-down menu

(from the toolbar or Link submenu of the contextual menu) and keys are not gathered from the

expected DITA map, you can change the root map by using the Change Root Map link in the Choose

Key dialog box that is opened when you click the Choose Key Reference button.

• If you insert a content key reference or key reference using the Reuse Content action (from the

toolbar, DITA menu, or Reuse submenu of the contextual menu) and keys are not gathered from the

expected DITA map, you can change the root map by using the Change Root Map link in the Choose

Key dialog box that is opened when you click the Choose Key Reference button.

Creating DITA Submaps

You can break up a large DITA map (on page 3296) into more manageable pieces by creating submaps.

A submap is simply a DITA map that is included by another DITA map. There is no separate markup for a

submap.

For example, if you are creating a book, you might use one submap for each chapter of the book. If you are

reusing a set of topics in multiple publications, you might collect them into a map and reuse the map as a

submap in multiple other maps, rather than referencing the topics individually from the new maps.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2969

You add a submap to a map the same way that you would add a new topic or insert an existing topic into a

map (on page 2971), except you choose a map rather than a topic to create or add. When adding a submap

to a map make sure that you use a <mapref> element or a <topicref> element with the @format attribute set to

ditamap. In most cases, Oxygen XML Editor takes care of this for you.

Adding a Submap to a Map

To add a submap to a map:

1. Right-click the place in the current map where you want to add the new submap.

2. To insert the submap as a child of the selected node, select Append Child > New. To insert the submap

as a sibling to the current node, select Insert After > New or Insert Before > New.

Step Result: This opens a New DITA file dialog box (on page 3015) that allows you to select the type of

document and assists you with naming it.

3. Select the type of map in one of the folders inside the DITA Map folder and give it a name (the file

should have a .ditamap file extension).

4. Click Create to insert the submap.

You can manage and move submaps the same as you would with topics. They can also be expanded and

you can navigate their content in the DITA Maps Manager when the root (main) DITA map is open, but the

references within those submaps are not editable, by default, unless you open the submap separately in its

own tab.

Tip:

If you want to be able to edit submaps when the main (root/parent) map is open in the DITA Maps

Manager, go to Options > Preferences > DITA > Maps and select the Allow referenced submaps to be

edited option (on page 281).

Related Information:

Managing DITA Maps (on page 2970)

Creating a Bookmap in DITA

If you want to create a traditional book in DITA, you can use a bookmap (on page 3294) to organize your

topics into a book. A DITA bookmap is a specialized type of map, intended for creating output that is

structured like a book. A bookmap allows you to add book-specific elements such as <frontmatter>, <part>,

<chapter>, <appendix>, and <backmatter> to the map. How these book-specific elements are processed for

publication is up to the processing script for each media. See the DITA documentation for details.

You can find additional support for creating books in DITA in the DITA for Publishers plugin, which is included

with Oxygen XML Editor.

To create a book in DITA using a bookmap, follow these steps:

https://www.oxygenxml.com/dita/1.3/specs/langRef/technicalContent/bookmap.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2970

1. Create a new bookmap (on page 2969) (File > New > Framework templates > DITA Map > map >

Bookmap). If you want the bookmap to be a submap, you can create it the same way by right-clicking

the place in the current map where you want to add it (in the DITA Maps Manager (on page 2950)) and

selecting New from the Append Child, Insert Before, or Insert After submenus.

2. Create the structure of your book by adding the appropriate book sections and defining containers

for chapters and any appendices. To add sections to a bookmap, or children to a section, right-click

the bookmap or section icon and choose any of the reference actions in the Append child menu. The

selections offered in the menu will adjust depending on the element they are applied to. Consult the

DITA documentation to fully understand the structure of a DITA bookmap and where to create each

element.

3. Create special elements such as an index (on page 2993) and table of contents (on page 2992). The

index and table of contents will be generated by the build process, based on the content of the map and

the topics it points to.

4. Add topics (on page 2971) to your chapters to add content to your book. You may find it easier to

manage if you use submaps (on page 2968) to create the content of your chapters. This keeps your

bookmap from becoming long and difficult to manage.

Managing DITA Maps

This section includes various topics that describe how you can manage DITA maps and resources. You may

want to manage your DITA maps (on page 3296) in a variety of ways, including:

• Change the order and nesting of topics in a map.

• Add topics to a map.

• Insert various types of references in a map.

• Find, move, or rename resources in a map.

• Change other properties of the items in a map.

• Use the Edit Properties dialog box to manage attributes, keys, metadata, or add profiling to any section

of a map.

Resources

For more information about the DITA Maps Manager view and many of its features, watch our video

demonstration:

https://www.youtube.com/embed/ozFZz6YZMCY

Change the Order of Topics in DITA Maps

You can change the order and nesting of the topics in a map in several ways:

https://www.oxygenxml.com/dita/1.3/specs/langRef/technicalContent/bookmap.html
https://www.youtube.com/embed/ozFZz6YZMCY

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2971

• By dragging and dropping topics within the DITA Maps Manager (on page 2950).

• By highlighting a topic in the DITA Maps Manager (on page 2950), holding down the Alt key, and

pressing the arrow keys.

• By showing the extended DITA Maps Manager (on page 2950) toolbar (click the Settings icon on

the DITA Maps Manager (on page 2950) toolbar and select the extended toolbar) and then using the

node moving buttons () on the toolbar to move topics around in the map.

To understand how to organize topics in a DITA map using the DITA Maps Manager (on page 2950),

you can examine and experiment with the sample map called flowers.ditamap, located in the

[OXYGEN_INSTALL_DIR]/samples/dita folder.

Adding Topics to a DITA Map

When you are working in DITA, there are several approaches that you can use to create topics and maps. You

can start by first creating topics and then assembling your finished topics into one or more documents by

creating one or more maps, or you can start by creating a map and then adding new topics to it as you work.

The topics-first approach is generally more appropriate if you intend to do a lot of content reuse, as it

encourages you to think of each topic as an independent unit that can be combined with other topics in

various ways. The map-first approach will be more familiar to you if you are used to creating books or manuals

as a whole. Oxygen XML Editor supports both approaches.

A DITA map (on page 3296) organizes content hierarchically, so you can add a topic as a child of the map

root element or as a child or sibling of any item already in the map. Therefore, the first step to adding a topic

to a map is always to choose the place it will be inserted into the map.

Adding Existing Topics to a Map

At the XML-level, a topic is added to a map by adding a reference to the map that points to the topic. There

are a variety of reference types that you can use. The default type is the <topicref> element. See the DITA

documentation for the full range of reference elements and their uses. Oxygen XML Editor provides several

tools for inserting reference elements into a map:

Using the Insert Reference Dialog Box

The Insert Reference dialog box (on page 2976) allows you to create various reference types

and configure the most commonly used attributes. You can open the Insert Reference dialog

box with any of the following methods:

• Right-click an item in the current map where you want to add the reference, select Append

Child, Insert Before, or Insert After and select the type of reference to enter.

• If the topic you want to add is currently open in the editor, you can right-click an item

in the current map where you want to add the reference and select Reference to the

currently edited file.

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/map.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/map.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2972

• Selecting an item in the map and click the Insert Reference button from the DITA

Maps Manager (on page 2950) toolbar.

• Select Insert Reference from the DITA Maps menu.

Dragging and Dropping a File into the DITA Maps Manager

You can add a topic to a DITA map by dragging and dropping the file into the DITA Maps

Manager (on page 2950). You can drag and drop files from any of the following:

• Your OS file system explorer.

• The Project view (on page 414).

• The Open/Find Resource view (on page 434).

Adding topics this way will not open the Insert Reference dialog box, but you can adjust all the

same properties by invoking the contextual menu from the topic and selecting Edit Properties.

Adding a New Topic to a Map

To add a new topic to a map, follow these steps:

1. In the DITA Maps Manager (on page 2950), right-click the node in the current map where you want to

add the new topic.

2. Select one of the following actions:

◦ Append Child > New - Select this action to insert the new topic as a child of the selected node.

This action opens a New file dialog box (on page 3016) that allows you to select the type of

document and assists you with naming it. After you have configured your new topic, click Create.

◦ Insert Before > New - Select this action to insert the new topic as a sibling to the current node,

before it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Insert After > New - Select this action to insert the new topic as a sibling to the current node,

after it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Duplicate - Select this action to create a copy of the selected topic and insert it as a sibling. This

action opens a dialog box that allows you to choose the file name and location for the newly

created copy of the topic. After you have selected the name and path for your new topic, click

OK.

Note:

The value of the root ID is generated taking the Use the file name as the value of the

root ID attribute option from the DITA > Topics preferences page (on page 283) into

account. When the option is deselected, a unique ID is generated.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2973

Step Result: The new topic is now referenced (as a <topicref>) in the DITA map at the location where

you inserted it and the new topic is opened in the editor.

3. Save the DITA map.

Adding Multiple Skeleton Topics at Once

Oxygen XML Editor includes a feature in the DITA Maps Manager (on page 2950) that allows you to quickly

create multiple skeleton topics at once and you can specify their hierarchical structure within the DITA map

(on page 3296).

To access this feature, right-click a node in the DITA Maps Manager where you want the new topics to be

inserted and select Fast Create Topics. This opens the Fast Create Topics dialog box where you can configure

the structure for the new topics.

For more information, see Fast Create Multiple DITA Topics (on page 3018).

Adding Multiple References to the Same Topic in a Map

Oxygen XML Editor allows you to reuse entire topics by adding multiple references to the same topic in a DITA

map. Whenever multiple references to the same topic are detected in the context of the current map in the

DITA Maps Manager (on page 2950), an indicator will appear in the top-right corner of the Author mode editor

that shows the number of times the topic is referenced in the DITA map. It also includes navigation arrows

that allow you to jump to the next or previous reference.

Remove Topics from a Map

You can remove topics from a map in a number of ways. Some ways to remove a topic from a map include:

• Highlight the topic and press the Delete or Backspace key on your keyboard.

• Highlight the topic and click the Delete button on the DITA Maps Manager (on page 2950)

extended toolbar.

Related Information:

Fast Create Multiple DITA Topics (on page 3018)

Moving and Renaming Resources

You can move or rename resources referenced in your DITA project on disk directly from Oxygen XML Editor

and you have the option of updating all the references to the moved or renamed resources. If the resources

are referenced in the DITA map, you can do this from the DITA Maps Manager view (on page 2950). You

can also move and rename resources (DITA topics, maps, or other resources such as folders, images, HTML

files, audio, video, text files, Markdown documents) from the Project view (on page 414). If you have enabled

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2974

Main Files support (on page 3245), you will also have the option to update all the references to the moved or

renamed resource.

Moving or Renaming DITA Resources (Topics or Maps)

To move or rename resources (such as topics, maps, or other referenced non-DITA resources) referenced

directly in the DITA map, use one of the following actions available in the Refactoring submenu of the

contextual menu when invoked on the resource in the DITA Maps Manager view (on page 2950):

Refactoring > Move resource

This action allows you to change the location of a resource linked in the edited DITA map using

the Move resource dialog box. This dialog box contains the following options:

• Destination - Specifies the target location of the edited resource.

• File name - Allows you to change the name of the edited resource.

• Preview - Select this button to display a preview of the changes Oxygen XML Editor is

about to make.

• Move - Moves the edited resource in the target location on disk.

• Cancel - Cancels the Move resource operation. No changes are applied.

Refactoring > Rename resource

This action allows you to change the name of a resource linked in the edited DITA map (on page

3296) using the Rename resource dialog box. This dialog box contains the following options:

• New name - Presents the current name and allows you to change it.

• Preview - Select this button to display a preview of the changes Oxygen XML Editor is

about to make.

• Rename - Executes the Rename resource operation.

• Cancel - Cancels the Rename resource operation. No changes are applied.

Note:

If a root DITA map (on page 3301) is not defined, the move and rename actions are executed in the

context of the current DITA map.

Moving or Renaming Resources and Updating the References to Them Using the Project
View

To move or rename DITA (topics, maps) or non-DITA resources (such as folders, images, HTML files, audio,

video, text files, Markdown documents), you can simply follow the procedures described in Moving/Renaming

Resources in the Project View (on page 424). However, this approach will not give you the option to update the

references to the moved or renamed resources.

To perform move or rename operation on resources while also updating all the references to them, use the

following sets of procedures:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2975

1. Enable Main Files support and add your root DITA map (on page 3301) to the Main Files folder by

following the procedure found here: How to Enable Main Files Support in DITA (on page 3245).

2. Move or rename resources and update the references to them by following the procedure found here:

Moving or Renaming Non-DITA Resources and Updating the References to Them (on page 3246).

Related Information:

Main Files Support in DITA (on page 3245)

Finding Resources Not Referenced in DITA Maps (on page 2975)

Finding Resources Not Referenced in DITA Maps

Over the course of time, large projects can accumulate a vast amount of resources from a variety of sources.

Especially in organizations with a large number of content authors or complex project structures, organizing

the project resources can become a challenge. Over time a variety of actions can cause resources to become

orphaned from DITA maps (on page 3296). To assist you with organizing project resources, Oxygen XML

Editor includes the Find Unreferenced Resources action, that searches for such resources.

To perform this search, open the DITA map in the DITA Maps Manager (on page 2950), invoke the contextual

menu on the map, and select the Find Unreferenced Resources action. It can also be selected from the DITA

Maps menu. This action opens the Find Unreferenced Resources dialog box, shown below.

Figure 737. Find Unreferenced Resources Dialog Box

The Find Unreferenced Resources dialog box includes the following options:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2976

• DITA Maps - Provides a list of DITA maps to be included in the search and allows you to Add maps to

the list or Remove them.

• Folders - Provides a list of folders to be included in the search and allows you to Add or Remove

specific folders. All files from this list of folders that are not referenced from the maps specified in the

DITA Maps list will be reported.

• Filters - Provides three combo boxes that allow you to filter the search to include or exclude certain files

or folders:

◦ Include files - Allows you to filter specific files to include in the search.

◦ Exclude files - Allows you to filter specific files to exclude from the search.

◦ Exclude folders - Allows you to filter specific folders to exclude from the search.

Note:

In any of the filter combo boxes you can enter multiple filters by separating them with

a comma and you can use the ? and * wildcards. Use the drop-down arrow to select a

previously used filter pattern.

When you click the Find button, if the search operation finds unreferenced resources, they are displayed in the

Results panel at the bottom of the editor. If you want to delete an unreferenced resource, you can right-click

its result and select Remove from Disk. If you want to see the resource before deciding what to do with it, you

can right-click its result and select Show in Explorer.

Inserting References in DITA Maps

A DITA map (on page 3296) may contain various types of references. The targets of the references can be a

variety of references, such as chapters, maps, topics, topic sets, or key definitions. You can insert references

to such targets with the Insert Reference dialog box (on page 2976).

This section explains how to insert and configure references (such as topic references, topic groups, topic

headings, and key definitions) in a DITA map.

Insert Reference Dialog Box

The Insert Reference dialog box allows you to insert and configure references in DITA maps (on page

3296). There are numerous types of references that can be inserted into maps. They include references to

topics, other maps, glossary terms, and keys. You can also use this dialog box to configure the attributes of a

reference, add profiling or metadata, and define keys.

To open the Insert Reference dialog box, use one of the following methods:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2977

• Select Reference, Reference to the currently edited file, or any of the other specific reference

actions that are available from the Append Child, Insert Before, and Insert After submenus when

invoking the contextual menu in the DITA Maps Manager (on page 2950).

◦ To insert the reference as a child of the current node, select the reference from the Append Child

submenu.

◦ To insert the reference as a sibling of the current node, below the current node in the map, select

the reference from the Insert After submenu.

◦ To insert the reference as a sibling of the current node, above the current node in the map, select

the reference from the Insert Before submenu.

Note:

The content of these submenus depends on the node that is selected in the DITA map tree

when the contextual menu is invoked. For example, if the selected node is a topic reference

(<topicref>), its possible child nodes include the following elements: <anchorref>, <chapter>,

<keydef>, <mapref>, <topicgroup>, <topichead>, <topicref>, <topicset>, and <topicsetref>.

• Click the Insert Reference button on the DITA Maps Manager extended toolbar. This action will

insert the reference as a sibling of the current node (below the current node in the map).

• Select Insert Reference from the DITA Maps menu. This action will insert the reference as a sibling

of the current node (below the current node in the map).

For the Reference or Reference to the currently edited file actions, a Reference type drop-down list is

displayed at the top of the Insert Reference dialog box and you can select the type of reference you want

to insert. Depending on the place where the reference will be inserted, Oxygen XML Editor will propose only

valid reference types. When you change the reference type, the fields in the various tabs of the dialog box are

reconfigured depending upon the availability of the associated attributes. For the other reference actions in

the Append Child, Insert Before, and Insert After submenus, the reference type is automatically chosen based

upon the invoked action and you cannot change it.

The main section of the dialog box includes the following tabs: Target, Keys, Attributes, Metadata, and

Profiling.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2978

Target Tab

Figure 738. Insert Reference Dialog Box - Target Tab

The Target tab of the Insert Reference dialog box allows you to specify information about the target

reference. It includes the following sections and fields:

Choose a file location section

You can browse for and select the source target file by using the Look in drop-down list,

browsing buttons, or file window in this section. You can use the Files of type drop-down menu

to narrow the list of possible file types that will be displayed.

URL

Displays the path to the target and allows you to select or change it by using the combo box or

browsing buttons.

ID

The drop-down list displays all of the target elements that are available for the selected target

URL.

Href

The selected target automatically modifies this value to point to the corresponding @href

attribute of the target element.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2979

Note:

If the Reference type is a Navigation Reference, the Href field is changed to Mapref,

since a <navref> element requires a @mapref attribute instead.

Keys Tab

Figure 739. Insert Reference Dialog Box - Keys Tab

The Keys tab allows you to use and define keys (on page 2984) for indirect referencing. For more information,

see Working with Keys in DITA (on page 3084). This tab includes the following:

Define keys

Use this text field to define the @keys attribute for the target.

Key scopes

Use this text field to define or edit the value of a @keyscope attribute. Key scopes allow you to

specify different sets of key definitions for different map branches.

Key reference

Instead of using the Target tab to select a file that contains the target reference, you can

reference a key definition by using this text field. Use the Choose key reference button to

access the list of keys that are already defined in the current root map (on page 3301).

https://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2980

Attributes Tab

Figure 740. Insert Reference Dialog Box - Attributes Tab

The Attributes tab of the Insert Reference dialog box allows you to insert and edit attribute values for the

target reference. This tab includes the following sections and actions:

Navigation title

This text field allows you to specify a custom navigation title for the target reference. If you want

this attribute to always be populated with a detected value (based on the specifications for the

target file), select the Navigation title checkbox for the Always fill values for attributes option

in the DITA preferences page (on page 281). For references to DITA resources, you can enforce

the use of the specified title by selecting the Lock checkbox (otherwise, the topic <title> takes

precedence).

Collection type

This drop-down list allows you to select the @collection-type attribute to create hierarchical

linking between topics in a DITA map (for example, unordered, sequence, choice, family, -dita-

use-conref-target).

Type

Allows you to select a @type attribute (such as topic, task, concept, etc.) for the target element. If

you want this attribute to always be populated with a detected value (based on the specifications

for the target file), select the Type checkbox for the Always fill values for attributes option in the

DITA preferences page (on page 281).

Scope

This property corresponds to the @scope attribute of the target element. It is populated

automatically, based on the selected file type, unless its value for the selected target file is the

same as the default attribute value. If you want this attribute to always be populated with a

detected value based on the specifications (regardless of the default value), select the Scope

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2981

checkbox for the Always fill values for attributes option in the DITA preferences page (on page

281).

Format

This property corresponds to the @format attribute of the target element. It is populated

automatically, based on the selected file type, unless its value for the selected target file is the

same as the default attribute value. If you want this attribute to always be populated with a

detected value based on the specifications (regardless of the default value), select the Format

checkbox for the Always fill values for attributes option in the DITA preferences page (on page

281).

Processing Role

This drop-down list allows you to set the @processing-role attribute to one of the allowed values

for DITA reference elements (for example, resource-only, normal, -dita-use-conref-target).

Other attributes table

This table contains the attributes that are available for the selected reference. You can use this

table to insert or edit the values of any of the listed attributes. Clicking a cell in the Value column

allows you to use the combo box to enter, edit, or select attribute values.

Metadata Tab

Figure 741. Insert Reference Dialog Box - Metadata Tab

The Metadata tab allows you to add metadata elements to the target reference. Use the buttons on the right

side of the tab to insert specific metadata elements (you can add the following metadata elements: <navtitle>,

<linktext>, <shortdesc>, <keyword>, <indexterm>). The metadata elements are inserted inside a <topicmeta>

element. The editing window allows you to easily insert and modify the content of the metadata that will be

inserted.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2982

Profiling Tab

Figure 742. Insert Reference Dialog Box - Profiling Tab

The Profiling tab allows you to select or change profiling attributes for the selected reference. This tab

displays profiling attributes and their values as determined by the following:

• If your root map (on page 3301) references a DITA subject scheme map (on page 3301) that defines

values for the profiling attributes, those values are used.

• If your project defines project-level (on page 3300) configuration values for the profiling attributes (on

page 196), those values are used.

• If Oxygen XML Editor defines global-level (on page 3297) configuration values for the profiling

attributes (on page 196), they are used.

• Otherwise, a basic default set of profiling attributes and values are used.

When you modify a selection of values in this tab, the change will also automatically be reflected in the

Attributes tab. For more information, see DITA Profiling / Conditional Text (on page 3196).

Finalizing Your Insert Reference Configuration

Once you click Insert or Insert and close, the configured reference is added in the map.

Tip:

You can easily insert multiple references by keeping the Insert Reference dialog box opened, using

the Insert button.

Related Information:

DITA Profiling / Conditional Text (on page 3196)

Working with Keys in DITA (on page 3084)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2983

Inserting Topic Headings

The <topichead> element provides a title-only entry in a navigation map, as an alternative to the fully-linked title

provided by the <topicref> element.

You can insert a topic heading by doing the following:

• Select Topic Head from the Append Child, Insert Before, or Insert After submenus when invoking the

contextual menu in the DITA Maps Manager view (on page 2950).

• Open the DITA map in the XML editor (on page 2949) and select the Insert Topic Heading action

from the main toolbar (or from the Insert submenu of the contextual menu).

Those actions open the Insert Topic Head dialog box (on page 2976) that allows you to easily insert a

<topichead> element. A Navigation title (@navtitle attribute) is required but other attributes can also be

specified from this dialog box (such as Type, Scope, Format, etc.)

Figure 743. Insert Topic Heading Dialog Box

Related Information:

Insert Reference Dialog Box (on page 2976)

Inserting Topic Groups

The <topicgroup> element identifies a group of topics (such as a concepts, tasks, or references) or other

resources. A <topicgroup> can contain other <topicgroup> elements, allowing you to express navigation or table-

of-contents hierarchies, as well as implying relationships between the containing <topicgroup> and its children.

You can set the collection-type of a container <topicgroup> to determine how its children are related to each

other. Relationships end up expressed as links in the output (with each participant in a relationship having

links to the other participants by default).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2984

You can insert a topic group by doing the following:

• Select Topic Group from the Append Child, Insert Before, or Insert After submenus when invoking the

contextual menu in the DITA Maps Manager view (on page 2950).

• Open the DITA map in the XML editor (on page 2949) and select the Insert Topic Group action

from the main toolbar (or from the Insert submenu of the contextual menu).

Those actions open the Insert Topic Group dialog box (on page 2976) that allows you to easily insert a

<topicgroup> element and various attributes can be specified (such as Collection type, Type, Scope, Format,

etc.)

Figure 744. Insert Topic Group Dialog Box

Related Information:

Insert Reference Dialog Box (on page 2976)

Defining Keys in DITA Maps

DITA uses keys (on page 3084) to insert content that may have different values in various circumstances.

Keys provide the means for indirect referencing in DITA. This can make it easier to manage and to reuse

content. In DITA, keys are defined in maps and can then be reused and referenced throughout the whole

structure of the map. It is considered best practice to create a separate submap that contains all of the key

definitions and reference that submap in the main (root) map (on page 3301). This makes it easier to manage

since they're all in one location.

There are two types of key definitions that can be created in a map.

• Key with a value inside a keyword.

• Key with a target (for example, to target a resource such as an image or external link).

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/key-based-addressing.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2985

The following example is a DITA map (on page 3296) (a key definition submap) that contains some key

definitions with various values for the product key and some targets to external URLs:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">

<map id="keydefs">

 <!-- product name -->

 <title>Key Definitions</title>

 <keydef keys="product" product="basic">

 <topicmeta>

 <keywords>

 <keyword>Basic Widget</keyword>

 </keywords>

 </topicmeta>

 </keydef>

 <keydef keys="product" product="pro">

 <topicmeta>

 <keywords>

 <keyword>Professional Widget</keyword>

 </keywords>

 </topicmeta>

 </keydef>

 <keydef keys="url_eula" href="https://www.example.com/eula.html" format="html"

 scope="external"/>

 <keydef keys="url_eula2" href="https://www.example.com/eula2.html" format="html"

 scope="external"/>

</map>

Note:

The profiling of the names is now contained in the map, where it only has to occur once to reuse

throughout the whole map structure.

Key Definition with a Keyword Value

To define a key with a value inside a keyword, follow these steps:

1. [Optional but Recommended] Create a submap (on page 2968) that will contain all of your key

definitions and reference the submap in your main (root) map (if you don't already have one created).

2. Open that map in the DITA Maps Manager (on page 2950).

3. Right-click the map or an item in the map where you want to add the reference and select Key

Definition with Keyword from the Append Child, Insert Before, or Insert After submenu (depending on

where you want to insert the key definition). This opens an Insert Key Definition dialog box.

4. Enter the name of the key in the Key field.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2986

5. Enter the key's value in the Keyword field.

6. Click Insert and close.

Tip:

If you need to profile the key or add other attributes, you can right-click the key definition in

the DITA Maps Manager, select Edit properties, and configure them in the Profiling tab or

Attributes tab, respectively.

Key Definition with a Target

To insert a targeted key definition (for example, to target a resource such as an image or external link), follow

these steps:

1. [Optional but Recommended] Create a submap (on page 2968) that will contain all of your key

definitions and reference the submap in your main (root) map (if you don't already have one created).

2. Open that map in the DITA Maps Manager (on page 2950).

3. Right-click the map or an item in the map where you want to add the reference and select Key

Definition from the Append Child, Insert Before, or Insert After submenu (depending on where you

want to insert the key definition in the DITA map). This opens an Insert Key Definition dialog box.

4. Go to the Keys tab and enter the name of the key in the Define keys field.

5. Go to the Target tab and select a target resource (such as an image or external link).

Tip:

You can profile the key by using the Profiling tab and other attributes can also be defined in the

Attributes tab.

6. Once you are done configuring the targeted key definition, click Insert and close.

Related Information:

Working with Variable Text in DITA (on page 3114)

Working with Keys in DITA (on page 3084)

DITA 1.3 Specification: Indirect Key-based Addressing

Edit Properties Dialog Box

The DITA Maps Manager view (on page 2950) includes a feature that allows you to view and edit the

properties of a selected node. The Edit properties action is available on both the DITA Maps Manager

toolbar and in the contextual menu. This action is also available in the contextual menu when you edit a

DITA map (on page 3296) document in Author mode. The action opens the Edit Properties dialog box and

it includes several tabs with various functions and fields that are initialized with values based upon the node

where the action was invoked.

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/key-based-addressing.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2987

Note:

If you select multiple sibling nodes and invoke the Edit properties action, only the Profiling tab will

be available and your modifications in that tab will be applied to all the selected nodes. If you select

multiple nodes that are not on the same hierarchical level, the other tabs will also be available and

your modifications will be applied to the parent node (the child nodes will inherit the attributes of the

parent node).

You can use the Edit Properties dialog box to modify or define attributes, metadata, profiling, or keys in DITA

maps or topics. You can also use it to modify the title of root maps (on page 3301).

At the top of the Edit Properties dialog box, the Reference type drop-down list displays the type of the

selected node and it depends on the node where the action was invoked.

The main section of the dialog box includes the following tabs: Target, Keys, Attributes, Metadata, and

Profiling. The availability of the tabs and their functions depend on the selected node. For example, if you

invoke the action on a root map (on page 3301), only the Attributes, Metadata, and Profiling tabs are

accessible and the Title property can be configured. Also, if you select multiple nodes, only the Profiling tab is

available.

Target Tab

Figure 745. Edit Properties Dialog Box - Target Tab

The Target tab of the Edit Properties dialog box displays information about the target node on which the

action was invoked and allows you to change the target. It includes the following sections and fields:

Choose a file location section

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2988

You can browse for and select the source target file by using the Look in drop-down list,

browsing buttons, or file window in this section. You can use the Files of type drop-down menu

to narrow the list of possible file types that will be displayed.

URL

Displays the path to the target and allows you to select or change it by using the combo box or

browsing buttons.

ID

The drop-down list displays all of the target elements that are available for the selected target

URL.

Href

The selected target automatically modifies this value to point to the corresponding @href

attribute of the target element.

Note:

If the Reference type is a Navigation Reference, the Href field is changed to Mapref,

since a <navref> element requires a @mapref attribute instead.

Keys Tab

Figure 746. Edit Properties Dialog Box - Keys Tab

The Keys tab allows you to use and define keys (on page 2984) for indirect referencing. For more information,

see Working with Keys in DITA (on page 3084). This tab includes the following:

Define keys

Use this text field to define the @keys attribute for the target.

Key scopes

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2989

Use this text field to define or edit the value of a @keyscope attribute. Key scopes allow you to

specify different sets of key definitions for different map branches.

Key reference

Use this combo box (or the Choose key reference button) to select a key that is already

defined in the root map (on page 3301).

Attributes Tab

Figure 747. Edit Properties Dialog Box - Attributes Tab

The Attributes tab of the Edit Properties dialog box allows you to insert and edit attribute values for the target

node where the action was invoked.

If the target is a root map (on page 3301), the tab displays the title of the map. You can change it in the Title

text field and assign it to an Attribute, Element, or All. However, if the title of the map contains elements other

than plain text, the title is not editable and cannot be changed using this dialog box (you would need to open

the DITA map in the main editor to edit the title).

Figure 748. Attributes Tab for a Root Map

For other types of targets, the tab includes the following sections and fields that can be used to edit the

attributes of the target:

Navigation title

https://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2990

This text field allows you to specify a custom navigation title for the target reference. If you want

this attribute to always be populated with a detected value (based on the specifications for the

target file), select the Navigation title checkbox for the Always fill values for attributes option

in the DITA preferences page (on page 281). For references to DITA resources, you can enforce

the use of the specified title by selecting the Lock checkbox (otherwise, the topic <title> takes

precedence).

Tip:

You can also select the Prefer navigation title for topicref rendering option in the DITA

preferences page (on page 281) to always enforce the use of the @navtitle value rather

than selecting this Lock option on individual topics.

Collection type

This drop-down list allows you to select the @collection-type attribute to create hierarchical

linking between topics in a DITA map (for example, unordered, sequence, choice, family, -dita-

use-conref-target).

Type

Allows you to select a @type attribute (such as topic, task, concept, etc.) for the target element. If

you want this attribute to always be populated with a detected value (based on the specifications

for the target file), select the Type checkbox for the Always fill values for attributes option in the

DITA preferences page (on page 281).

Scope

This property corresponds to the @scope attribute of the target element. It is populated

automatically, based on the selected file type, unless its value for the selected target file is the

same as the default attribute value. If you want this attribute to always be populated with a

detected value based on the specifications (regardless of the default value), select the Scope

checkbox for the Always fill values for attributes option in the DITA preferences page (on page

281).

Format

This property corresponds to the @format attribute of the target element. It is populated

automatically, based on the selected file type, unless its value for the selected target file is the

same as the default attribute value. If you want this attribute to always be populated with a

detected value based on the specifications (regardless of the default value), select the Format

checkbox for the Always fill values for attributes option in the DITA preferences page (on page

281).

Processing Role

This drop-down list allows you to set the @processing-role attribute to one of the allowed values

for DITA reference elements (for example, resource-only, normal, -dita-use-conref-target).

Other attributes table

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2991

This table contains the attributes that are available for the selected reference. You can use this

table to insert or edit the values of any of the listed attributes. Clicking a cell in the Value column

allows you to use the combo box to enter, edit, or select attribute values.

Metadata Tab

Figure 749. Edit Properties Dialog Box - Metadata Tab

The Metadata tab allows you to add metadata elements to the target node. Use the buttons on the right side

of the tab to insert specific metadata elements (you can add the following metadata elements: <navtitle>,

<linktext>, <shortdesc>, <keyword>, <indexterm>). The metadata elements are inserted inside a <topicmeta>

element. The editing window allows you to easily insert and modify the content of the metadata that will be

inserted.

Profiling Tab

Figure 750. Edit Properties Dialog Box - Profiling Tab

The Profiling tab allows you to select or change profiling attributes for the selected target nodes. This tab

displays profiling attributes and their values as determined by the following:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2992

• If your root map (on page 3301) references a DITA subject scheme map (on page 3301) that defines

values for the profiling attributes, those values are used.

• If your project defines project-level (on page 3300) configuration values for the profiling attributes (on

page 196), those values are used.

• If Oxygen XML Editor defines global-level (on page 3297) configuration values for the profiling

attributes (on page 196), they are used.

• Otherwise, a basic default set of profiling attributes and values are used.

If you have a large list of profiling attributes, you can use the text filter field to search for attributes or values,

and you can expand or collapse attributes by using the Expand All/ Collapse All buttons to the right of

the text filter or the arrow button to the left of the profiling attribute name.

When you modify a selection of values in this tab, the change will also automatically be reflected in the

Attributes tab. For more information, see DITA Profiling / Conditional Text (on page 3196).

Note:

If you invoke the Edit properties action on a selection of multiple nodes that have different values

for the same profiling attribute, a conflict panel will be displayed in the Profiling tab and you can

choose between the following actions for resolving it:

• Keep - Preserves the current attribute values.

• Change Now - Allows you to edit the selection of values in this Profiling tab and the changes

will be applied to all the selected nodes.

Figure 751. Profiling Conflict Panel

Finalizing Your Modifications

Once you click OK, all your changes are applied to the target node.

Related Information:

DITA Profiling / Conditional Text (on page 3196)

Working with Keys in DITA (on page 3084)

Generating a Table of Contents in DITA

In DITA, the order and hierarchy of the table of contents of a document is based directly on the DITA map

that defines the document (on page 2948). In most cases, the processor generates a table of contents (TOC)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2993

based on the hierarchy of the topics in a DITA map. By default, each <topicref> element in a map represents a

node in the TOC.

It is also possible to instruct DITA where the table of contents should occur (or other content lists, such as a

list of figures or tables). If you want to instruct the processor to generate a table of contents at a particular

location within your DITA map structure, you can use the <toc> element in a bookmap (on page 2969) (as in

the example below). For more information about the <toc> element, see https://docs.oasis-open.org/dita/v1.2/

os/spec/langref/toc.html.

Example:

<bookmap>

.....

 <frontmatter>

 <booklists>

 <toc href="chapter1.dita"/>

 </booklists>

 </frontmatter>

.....

Creating an Index in DITA

In DITA, indexes are created from <indexterm> elements. You can insert index term elements in the following:

• The header of a topic: In paginated media, such as a printed book or a PDF, this results in an index

entry that points to the page where the topic starts, even if it is not the page in which the indexed term

occurs.

• In the <topicref> element in a map that references the topic: This applies those index terms to that

topic only when used in that map, allowing you to index topics differently in various publications. In

paginated media, index entries point to the page where the topic starts.

• In the body of a topic: In paginated media, this results in an index entry that points to the page where

the <indexterm> element occurs, even if that is not the page where the topic starts.

To add index terms to the text of a topic of the topic header, create the elements as you normally would in

Oxygen XML Editor (on page 3021). To add index terms to a map, open the map in the editor and add the

elements, as you normally would, in a topic.

In some media, indexes will be generated automatically when index entries are found in the source. For other

media, such as books, you may need to tell DITA where to place the index. For instance, to add an index to a

bookmap (on page 3294), you need to add an <indexlist> element to the <backmatter> of the book.

1. Open your bookmap (on page 2969) in the DITA Maps Manager (on page 2950).

2. Right-click the bookmap and select Append Child > Backmatter.

The Insert Reference dialog box (on page 2976) appears.

3. Click Insert and Close to insert the <backmatter> element.

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/toc.html
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/toc.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2994

4. Right-click the <backmatter> element and create a <booklists> element using Append Child > Book Lists.

5. Use the same steps to create an <indexlist> element.

CAUTION:

Adding index entries and an <indexlist> to your project creates an instruction to the DITA publishing

routines to create an index. There is no guarantee that all DITA output types or third-party

customizations obey that instruction or create the index the way you want it. Modifying the output

may be necessary to get the result you want.

Resolving Topic References Through an XML Catalog

There are situations where you want to resolve references with an XML Catalog (on page 3302):

• You customized your DITA map (on page 3296) to reference topics using URIs instead of local paths.

• You have URI content references in your DITA topic files and you want to map them to local files when

the map is transformed.

In such situations, you have to add the catalog to Oxygen XML Editor. The DITA Maps Manager view (on

page 2950) will solve the displayed topic refs through the added XML catalog URI mappings. The resolution

through the XML catalog URI mappings are done only for reference values starting with the urn: prefix.

To add an XML catalog to the DITA framework (on page 3297), follow these steps:

1. Create an XML catalog using the guidelines described in Working with XML Catalogs (on page 842).

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Document Type

Association.

3. Select the DITA document type and use the Edit, Duplicate, or Extend button to open a Document type

configuration dialog box (on page 148).

4. Go to the Catalogs tab (on page 172).

5. Click on the Add button to open a dialog box that allows you to add your created XML Catalog to the

list.

6. After adding your catalog, click OK. You may need to reopen any currently edited files that use the new

catalog or run a manual Validate action (on page 790) for the changes to take effect.

Note:

You could also add your created catalog to the list of global catalogs in the XML Catalog

preferences (on page 244) page.

Adding a Custom URI Resolver to Oxygen XML Editor

You can use the XMLUtilAccess.addPriorityURIResolver(URIResolver) API to add your own priority URI

resolver from a Workspace Access plugin (on page 2577), allowing you to take control over how topic

references in a DITA map are located or how references in DITA topics are resolved.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2995

Publishing a DITA Map with References Resolved Through the XML Catalog

If you are publishing a DITA map that contains references to topics that need to be resolved through the XML

catalog support in Oxygen XML Editor, you must enable the fix.external.refs.com.oxygenxml parameter in the

Parameters tab of the transformation scenario configuration dialog box.

Chunking DITA Topics

By default, when a DITA map (on page 3296) is published to an online format, each topic becomes a separate

page in the output. In some cases, you may want to combine multiple source topics into one output page. For

instance, you may want to combine several types of information into a single page, or you may have chosen

to create many small DITA topics for reuse purposes but feel they are too small to be useful to a reader by

themselves. This is referred to as chunking.

To chunk DITA topics, you set the chunking attribute on the <topicref> that contains the sub-topics in a DITA

map. There are several values that you can set on the chunking attribute (for example, by-topic or to-content).

See the DITA documentation for full details. To achieve the effects you want in your topics and table of

contents, you may also need to set the @toc and @collection-type attributes on the sub-topics or container topic

to suitable values. See the DITA documentation for details.

You can set the @collection-type attribute on your topics using the Edit Properties action in the DITA Maps

Manager (on page 2950). To set the @toc and @chunk attributes, you must open the map file in the editor and

add or edit the attributes directly (double-click the map icon in the DITA Maps Manager (on page 2950) to

open the map in the editor).

DITA Map Validation and Completeness Check

You should validate your DITA maps (on page 3296) regularly to make sure that your maps and topics are

valid, and all of the relationships between them are working. Changing one topic, image, or piece of metadata

may create errors in references that rely on them. You may not discover these problems all at once. Validate

your map to catch all of these kinds of problems. The longer you wait between validating your maps, the more

difficult it may be to detect and correct any errors you find.

Validating a DITA Map

To validate a DITA, follow these steps:

1. In the DITA Maps Manager view (on page 2950), make sure that the tab that holds your root map (on

page 3301) is selected and that the Context selection is set either to the name of your root map or to

<current map>.

2. It is a good practice to refresh your DITA map before running the validation process. To do so, select

the DITA map in the DITA Maps Manager view and click Reload (F5).

3. Click the Validate and Check for Completeness button from the Validation drop-down menu

on the DITA Maps Manager toolbar to open the DITA Map Completeness Check dialog box (on page

2996).

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/chunking.html
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/ditamap-attributes.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2996

4. If you are using profiling, check the Use DITAVAL filters box and select the appropriate option.

5. Select any other options you want to check.

6. Click Check to run the validation process.

Result: The progress of the validation is displayed in the status bar and can be stopped from there.

Validation Process

The validation process of a DITA map includes the following:

• Verifies that the file paths of the topic references are valid. For example, if an @href attribute points to an

invalid file path, it is reported as an error in the message panel at the bottom of the editor.

• Validates each referenced topic and map. Each topic file is opened and validated against the

appropriate DITA DTD. If another DITA map is referenced in the main one, the referenced DITA map is

verified recursively, applying the same algorithm as for the main map.

• If errors or warnings are found, they are displayed in a separate message pane at the bottom of the

editor and clicking them takes you to the location of the error or warning in the file where it was found.

DITA Map Completeness Check Dialog Box

The DITA Map Completeness Check dialog box allows you to configure the DITA map validation.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2997

Figure 752. DITA Map Completeness Check Dialog Box

You can configure the validation process with the following options that are available in the DITA Map

Completeness Check dialog box:

Batch validate referenced DITA resources

This option specifies the level of validation that applies to referenced DITA files:

• If the checkbox is left unchecked (default setting), the DITA files will be validated using

the rules defined in the DTD or XML Schema declared in the document.

• If the checkbox is selected, the DITA files will be validated using rules defined in their

associated validation scenario (on page 802).

Check the existence of non-DITA references resources

Extends the validation of referenced resources to non-DITA files.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2998

Include remote resources

Select this option if you want to check that remote referenced binary resources

(such as images, movie clips, ZIP archives) exist at the specified location.

Use DITAVAL filters

The content of the map is filtered by applying a profiling condition set (on page 3196) before

validation.

Note:

The validation process also takes branch filtering <ditavalref> elements into account as

long as they appear before the referenced topics.

You can choose between the following options:

• From the current condition set - The map is filtered using the condition set currently

applied in the DITA Maps Manager view (on page 2950). Clicking the Details icon

opens a topic in the Oxygen XML Editor User Guide that explains how to create a profiling

condition set.

• From all available condition sets - For each available condition set, the map content is

filtered using that set before validation.

• From the associated transformation scenario - The filtering condition set is specified

explicitly as a DITAVAL file in the current transformation scenario associated with the

DITA map.

• Other DITAVAL files - For each DITAVAL file from this list, the map content is filtered

using the DITAVAL file before validation. Use the Add or Remove buttons to configure

the list. The Add button opens a dialog box that allows you to select a local or remote

path to a DITAVAL file. You can specify the path by using the text field, its history drop-

down, the Insert Editor Variables (on page 333) button, or the browsing actions in the

Browse drop-down list.

Report references to resources outside of the DITA map folder

If selected, it will report any references to DITA resources that are located outside the main DITA

map (on page 3301) folder.

Report links to topics not referenced in DITA maps

Checks that all the topics referenced by other topics are also linked in the DITA map. Also

reports related links defined in relationship tables whose target topics are not referenced in the

DITA Map.

Report multiple references to the same topic

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 2999

If selected, it will report warnings when a topic is referenced multiple times in the DITA map,

unless a unique @copy-to attribute is used on the <topicref> element for any topic that is

referenced multiple times.

For example, it will not report a warning if there is a topic referenced twice, but the second

<topicref> has a @copy-to attribute set:

<topicref href="topic.dita"/>

.....

 <topicref href="topic.dita" copy-to="topic2.dita"/>

On the other hand, it will report a warning if there is a topic referenced twice and none of the

reference-type elements has a @copy-to attribute set or both of them have the @copy-to attribute

set to the same value:

<topicref href="topic.dita" copy-to="topic2.dita"/>

......

 <topicref href="topic.dita" copy-to="topic2.dita"/>

Check for duplicate topic IDs within the DITA map context

Checks for multiple topics with the same ID in the context of the entire map.

Report duplicate key definitions

Checks the DITA map for multiple key references with the same key defined for them. This is

helpful because if you have two different resources with the same value for the @keys attribute, all

references will point to the first one encountered and the other will be ignored.

Note:

This option takes key scopes (on page 3116) into account. For example, if you have

something like this:

<topicref href="t2.dita" keys="k2"/>

 <topicgroup keyscope="ks">

 <topicref href="t2.dita" keys="k2"/>

 </topicgroup>

it will not report the "k2" key as a duplicate because it is defined in a key scope (on page

3116) on the second occurrence.

Report unreferenced key definitions

Checks the entire DITA map and reports any key definitions that are not referenced anywhere.

Note that if the Use DITAVAL filters option is selected, this check will search for unreferenced

key definitions based upon your selected filter.

Report unreferenced reusable elements

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3000

Checks the entire DITA map and reports any detected reusable elements that are not referenced

anywhere. It looks for elements that have an ID specified in the following types of topic

references:

• Any <topicref> that contains a @processing-role attribute set to resource-only.

• Any other referenced topic that contains elements that are reused elsewhere through a

@conref or @conkeyref.

Report table layout problems

Looks for table layout problems. The types of errors that may be reported include:

• If a row has fewer cells than the number of columns detected.

• For a CALS table, if a cell has a vertical span greater than the available rows count.

• For a CALS table, if the number of <colspecs> is different than the number of columns

detected from the table @cols attribute.

• For a CALS table, if the number of columns detected from the table @cols attribute is

different than the number of columns detected in the table structure.

• For a CALS table, if the value of the @cols, @rowsep, or @colsep attributes are not numeric.

• For a CALS table, if the @namest, @nameend, or @colname attributes point to an incorrect

column name.

Identify possible conflicts in profile attribute values

When the profiling attributes of a topic contain values that are not found in parent topic profiling

attributes, the content of the topic is overshadowed when generating profiled output. This option

reports these possible conflicts.

Report attributes and values that conflict with profiling preferences

Looks for profiling attributes and values that are not defined in the Profiling / Conditional Text

preferences page (on page 196) (you can click the Profiling Preferences button to open this

preferences page). It also checks if profiling attributes defined as single-value have multiple

values set in the searched topics.

Additional Schematron checks

Allows you to select a Schematron file that Oxygen XML Editor will use for the validation of DITA

resources. You can specify the path by using the text field, its history drop-down, the Insert

Editor Variables (on page 333) button, or the browsing actions in the Browse drop-down

list.

Advanced Tip:

Some APIs are available that retrieve information about DITA keys that are referenced

within a topic. The APIs can be called from XSLT Stylesheets (including XML

Refactoring operations) or Schematron schemas. For details, see API Documentation:

DITAXSLTExtensionFunctionUtil.

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3001

Export settings

Allows you to export the settings assigned in this dialog box to an XML file that you can share

with other users or use on other systems.

Import settings

Allows you to import settings for this dialog box from an XML file that was created by the Export

settings action.

Check

Use the Check button to begin the validation process. The options that you choose in this dialog

box are preserved between sessions.

Tip:

This function can be executed from an automated command-line script, for more details, see Scripting

Oxygen (on page 3260).

Related information

DITA Maps Manager (on page 2950)

DITA Map Author Mode Actions

A variety of actions are available for DITA map documents that can be found in DITA menu, toolbar, contextual

menu, and the Content Completion Assistant (on page 3295).

DITA Map Toolbar and Menu Actions

When a DITA map is opened in Author mode, the following default actions are available on the DITA Map

toolbar (by default, they are also available in the DITA menu and in various submenus of the contextual menu):

Insert New DITA Resource

Opens a New DITA file dialog box (on page 3015) where you can choose the type of DITA

document to create and inserts a reference to it at the current position within the map.

Insert Topic Reference

Opens the Insert Reference dialog box (on page 2976) where you can configure a topic

reference and inserts it at the current position within the map.

Insert Key Definition with Keyword

Opens a dialog box where you can choose the name of a key and its keyword value and inserts

the key definition at the current position within the map.

Reuse Content

Opens the Reuse Content dialog box (on page 3101) that allows you to insert and configure a

content reference (@conref), or a content key reference (@conkeyref) at the cursor position.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3002

Insert Topic Heading

Opens the Insert Reference dialog box (on page 2976) that allows you to insert a topic heading

at the cursor position.

Insert Topic Group

Opens the Insert Reference dialog box (on page 2976) that allows you to insert a topic group at

the cursor position.

Insert Relationship Table

Opens a dialog box that allows you to configure the relationship table to be inserted. The dialog

box allows you to configure the number of rows and columns of the relationship table, if the

header will be generated and if the title will be added.

Relationship Table Properties

Allows you to change the properties of rows in relationship tables.

Insert Relationship Row

Inserts a new table row with empty cells. The action is available when the cursor position is

inside a table.

Insert Relationship Column

Inserts a new table column with empty cells after the current column. The action is available

when the cursor position is inside a table.

Delete Relationship Column

Deletes the table column where the cursor is located.

Delete Relationship Row

Deletes the table row where the cursor is located.

Move Up

Moves the selected node up one position on its same level.

Move Down

Moves the selected node down one position on its same level.

Promote(Alt + LeftArrow)

Moves the selected node up one level to the level of its parent node.

Demote(Alt + RightArrow)

Moves the selected node down one level to the level of its child nodes.

DITA Map Contextual Menu Actions

The following actions are available in the contextual menu when editing in Author mode (most of them are

also available in the DITA menu at the top of the interface):

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3003

Add File to Review Task

This action can be used to add the current document to a task in the Content Fusion Tasks

Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to

adapt to any type of documentation review workflow. This functionality is available through a

connector add-on. To fully take advantage of all of the benefits and features of Content Fusion,

your organization will need an Oxygen Content Fusion Enterprise Server. For more information,

see the Oxygen Content Fusion website.

Edit Properties

Opens the Edit Properties dialog box that allows you to configure the properties of a selected

node. For more details about this dialog box, see Edit Properties Dialog Box (on page 2986).

Cut (Ctrl + X (Command + X on macOS))

Removes the currently selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on macOS))

Places a copy of the currently selected content in the clipboard.

Paste (Ctrl + V (Command + V on macOS))

Inserts the current clipboard content into the document at the cursor position.

Paste special submenu

This submenu includes the following special paste actions that are specific to the DITA

framework:

Paste as content reference

Inserts a content reference (a DITA element with a @conref attribute) to the DITA

XML element from the clipboard. An entire DITA XML element with an ID attribute

must be present in the clipboard when the action is invoked. The conref attribute

will point to this ID value.

Paste as content key reference

Allows you to indirectly reference content using the @conkeyref attribute. When the

DITA content is processed, the key references are resolved using key definitions

from DITA maps (on page 3296). To use this action, you must first do the

following:

1. Make sure the DITA element that contains the copied content has an ID

attribute assigned to it.

2. In the DITA Maps Manager view, make sure that the Context combo box

points to the correct map that stores the keys.

https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion/get_started.html
https://www.oxygenxml.com/content_fusion/get_started.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3004

3. Make sure the topic that contains the content you want to reference has a

key assigned to it. To assign a key, right-click the topic with its parent map

opened in the DITA Maps Manager, select Edit Properties, and enter a value

in the Keys field.

Paste as link

Looks for the first element with an ID value in the clipboard and inserts an <xref>

that points to that element. If no elements with an ID value are found, a message

will appear that informs you that to use this action, the clipboard contents must

include at least one element with a declared ID.

Paste as link (keyref)

Inserts a link to the element that you want to reference. To use this action, you

must first do the following:

1. Make sure the DITA element that contains the copied content has an ID

attribute assigned to it.

2. In the DITA Maps Manager view, make sure that the Context combo box

points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has a

key assigned to it. To assign a key, right-click the topic with its parent map

opened in the DITA Maps Manager, select Edit Properties, and enter a value

in the Keys field.

Insert submenu

This submenu includes the following insert actions that are specific to the DITA Map framework:

Insert New DITA Resource

Opens a New DITA file dialog box (on page 3015) where you can choose the type

of DITA document to create and inserts a reference to it at the current position

within the map.

Insert Topic Reference

Opens the Insert Reference dialog box (on page 2976) where you can configure a

topic reference and inserts it at the current position within the map.

Insert Key Definition with Keyword

Opens a dialog box where you can choose the name of a key and its keyword value

and inserts the key definition at the current position within the map.

Reuse Content

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3005

Opens the Reuse Content dialog box (on page 3101) that allows you to insert and

configure a content reference (@conref), or a content key reference (@conkeyref) at

the cursor position.

Insert Topic Heading

Opens the Insert Reference dialog box (on page 2976) that allows you to insert a

topic heading at the cursor position.

Insert Topic Group

Opens the Insert Reference dialog box (on page 2976) that allows you to insert a

topic group at the cursor position.

Insert Entity

Allows you to insert a predefined entity or character entity. Surrogate character

entities (range #x10000 to #x10FFFF) are also accepted. Character entities can be

entered in one of the following forms:

• #<decimal value> - e.g. #65

• &#<decimal value> - e.g. A

• #x<hexadecimal value> - e.g. #x41

• &#x<hexadecimal value> - e.g. A

Relationship Table > Insert Relationship Table

Opens a dialog box that allows you to configure the relationship table to be inserted. The dialog

box allows you to configure the number of rows and columns of the relationship table, if the

header will be generated and if the title will be added.

Generate IDs

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on

how the action is invoked:

• When invoked on a single selection, an ID is generated for the selected element at the

cursor position.

• When invoked on a block of selected content, IDs are generated for all top-level elements

and elements listed in the ID Options dialog box that are found in the current selection.

Note:

The Generate IDs action does not overwrite existing ID values. It only affects elements

that do not already have an @id attribute.

Search References

Finds the references to the @href or @keys attribute value of the topic/map reference element at

the current cursor position, in all the topics from the current DITA map (opened in the DITA Maps

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3006

Manager view (on page 2950)). The current topic/map reference element must have an @href or

@keys attribute defined to complete the search.

Show Key Definition

Available for elements that have a @conkeyref or @keyref attribute set (or elements with an

ancestor element that has a @conkeyref or @keyref attribute). It computes the key name and opens

the DITA map (on page 3296) that contains the definition of the key with the element that

defines that key selected.

Select submenu

This submenu allows you to select the following:

Element

Selects the entire element at the current cursor position.

Content

Selects the entire content of the element at the current cursor position, excluding

the start and end tag. Performing this action repeatedly will result in the selection

of the content of the ancestor of the currently selected element content.

Parent

Selects the entire parent element at the current cursor position.

Text submenu

This submenu contains the following actions:

To Lower Case

Converts the selected content to lower case characters.

To Upper Case

Converts the selected content to upper case characters.

Capitalize Sentences

Converts to upper case the first character of every selected sentence.

Capitalize Words

Converts to upper case the first character of every selected word.

Count Words

Counts the number of words and characters (no spaces) in the entire document or

in the selection for regular content and read-only content.

Note:

The content marked as deleted with change tracking (on page 3301) is

ignored when counting words.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3007

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on

macOS))

Converts a sequence of hexadecimal characters to the corresponding Unicode

character (on page 475). The action can be invoked if there is a selection

containing a valid hexadecimal sequence or if the cursor is placed at the right side

of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed

of 2 to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X

prefix. Examples of valid sequences and the characters they will be converted to:

• 0x0045 will be converted to E

• 0X0125 to ĥ

• 265 to ɥ

• 2190 to ←

Note:

For more information about finding the hexadecimal value of a

character, see Finding the Decimal, Hexadecimal, or Character Entity

Equivalent (on page 478).

Refactoring submenu

Contains a series of actions designed to alter the XML structure of the document:

Toggle Comment

Encloses the currently selected text in a comment, or removes the comment if it is

commented.

Move Up (Alt + UpArrow (Option + UpArrow on macOS))

Moves the current node or selected nodes in front of the previous node.

Move Down (Alt + DownArrow (Option + DownArrow on macOS))

Moves the current node or selected nodes after the subsequent node.

Split Element (Alt + Shift + D (Ctrl + Option + D on macOS))

Splits the content of the closest element that contains the position of the cursor.

Thus, if the cursor is positioned at the beginning or at the end of the element, the

newly created sibling will be empty.

Join Elements

Joins two adjacent block elements (on page 3294) that have the same name. The

action is available only when the cursor position is between the two adjacent block

elements. Also, joining two block elements can be done by pressing the Delete or

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3008

Backspace keys and the cursor is positioned between the boundaries of these two

elements.

Surround with Tags (Ctrl + E (Command + E on macOS))

Allows you to choose a tag to enclose a selected portion of content. If there is no

selection, the start and end tags are inserted at the cursor position.

• If the Position cursor between tags option (on page 221) is selected in the

Content Completion preferences page, the cursor is placed between the

start and end tag.

• If the Position cursor between tags option (on page 221) is not selected in

the Content Completion preferences page, the cursor is placed at the end of

the start tag, in an insert-attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on macOS))

Surround the selected content with the last tag used.

Rename Element

The element from the cursor position, and any elements with the same name, can

be renamed according with the options from the Rename dialog box.

Delete Element Tags

Deletes the tags of the closest element that contains the position of the cursor.

This operation is also executed if the start or end tags of an element are deleted by

pressing the Delete or Backspace keys.

Remove All Markup

Removes all the XML markup inside the selected block of content and keeps only

the text content.

Remove Text

Removes the text content of the selected block of content and keeps the markup

intact with empty elements.

Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of

the information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3009

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

Allows you to search for a text fragment inside an attribute value and

change the fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some

of the information preconfigured based upon the current context.

Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of

the information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while

keeping the content unchanged.

Wrap element

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with

some of the information preconfigured based upon the current context.

Insert XML fragment

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3010

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment

Allows you to replace elements with an XML fragment.

Review submenu

This submenu includes the following actions:

Track Changes

Enables or disables the Track Changes (on page 3301) support for the current

document.

Accept Change(s) and Move to Next

Accepts the Tracked Change (on page 3301) located at the cursor position or all

of the changes in a selection and then moves to the next change. If you select a

part of a deletion or insertion change, only the selected content is accepted.

Accept All Changes

Accepts all Tracked Changes (on page 3301) in the current document.

Reject Change(s) and Move to Next

Rejects the Tracked Change (on page 3301) located at the cursor position or all of

the changes in a selection and then moves to the next change. If you select a part

of a deletion or insertion change, only the selected content is rejected.

Reject All Changes

Rejects all Tracked Changes (on page 3301) in the current document.

Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked

Change (on page 3301). The comment will appear in a callout and a tooltip when

hovering over the change. If the action is selected on an existing commented

change, the dialog box will allow you to edit the comment.

Highlight

Enables the highlighting tool that allows you to mark text in your document.

Colors

Allows you to select the color for highlighting text.

Stop highlighting

Use this action to deactivate the highlighting tool.

Remove highlight(s)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3011

Use this action to remove highlighting from the document.

Add Comment

Inserts a comment at the cursor position. The comment appears in a callout box

and a tooltip (when hovering over the change).

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current

user to edit comments that do not have replies. If you are not the author who

inserted the original comment, the dialog box just displays the comment without

the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all

of the replies will also be removed.

Manage Reviews

Opens the Review view (on page 678).

Folding submenu

This submenu includes the following actions:

Toggle Fold

Toggles the state of the current fold.

Collapse Other Folds

Folds all the elements except the current element.

Collapse Child Folds

Folds the elements indented with one level inside the current element.

Expand Child Folds

Unfolds all child elements of the currently selected element.

Expand All

Unfolds all elements in the current document.

About Element > Go to Definition

Moves the cursor to the definition of the current element.

Inspect Styles

Opens the CSS Inspector view (on page 654) that allows you to examine the CSS rules that

match the currently selected element.

Options

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3012

Opens the Author mode preferences page (on page 184) where you can configure various

options with regard to the Author editing mode.

Floating Contextual Toolbar for DITA

Oxygen XML Editor includes a dynamic feature where certain editing contexts will trigger a floating toolbar

with common actions that are available in the current editing context.

The floating contextual toolbar is automatically displayed when editing DITA map documents when a

<topicref> element is selected and it includes actions for moving the topic reference node up or down (or

promoting/demoting the node).

DITA Map Drag/Drop Actions

Dragging a file from the Project view (on page 414) or DITA Maps Manager view (on page 2950) and

dropping it into a DITA map document that is edited in Author mode creates a link to the dragged file (a

<topicref> element, <chapter>, <part>, etc.) at the drop location.

Opening a Topic from a DITA Map in Author Mode

If a DITA map is open in the Author visual editing mode, you can open a referenced topic by clicking the

icon to the left of the particular topic. The source topic is opened in a new tab in the main editor.

Tip:

For information about customizing Author mode actions for a particular framework (on page 3297)

(document type), see the Customizing the Author Mode Editing Experience for a Framework (on page

2254) section.

Related Information:

Customizing the Author Mode Editing Experience for a Framework (on page 2254)

Opening a DITA Map With Topic Content Resolved

It is possible to open a DITA map in the main editor with all the content from the referenced topics resolved

and presented in one document. To do this, select the DITA map in the DITA Maps Manager view and click the

Open Map in Editor with Resolved Topics toolbar button. This opens the DITA map in the main editor area

with content from all topic references expanded in-place.

If the Display referenced content setting in the Author Preferences (on page 184) page is not selected,

references to maps, topics, and content references can be expanded on demand by clicking the small Expand

Reference expansion button located next to each element that contains a reference.

Content from the resolved topics that is referenced using a @conref or @conkeyref attribute is presented as read-

only by default. To edit it, you must use the Edit Reference contextual menu action to open the source topic

that contains the referenced content.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3013

Editing Referenced Content Directly

If you want to edit the referenced content directly without having to open the source document, go to Options

> Preferences > Editor > Edit Modes > Author and select the Allow referenced content to be edited option

(on page 187). The referenced content becomes editable in-place and saving the document will save all other

modified topics.

Things to be Aware of When Enabling This Option:

• The references become editable only if the referenced topics are the root elements. If, for

example, in the DITA map, there are references directly to subtopics embedded in a larger topic,

those references will not be editable.

• If the content is stored in a CMS, you need to deselect the Local files only option (on page 187)

to edit such remote referenced topics directly but this feature might not function properly with

remote resources (it depends on the capabilities of the CMS connector).

• Since a single topic may be referenced in multiple places in the DITA map, be careful not to

make conflicting changes to that topic.

• When modified topics are saved, the Only modified content option in the Options >

Preferences > Editor > Edit Modes > Author > Serialization page (on page 205) is ignored.

• The toolbar has two DITA map-specific actions for inserting topic references and all DITA topic-

specific actions that can be used to make changes in the referenced DITA topics.

• The content completion and schema-aware insertion strategies work in each referenced topic

according to their respective schema.

• The contextual menu presents the relevant actions in each referenced topic.

• Validation works for each individual referenced topic but only if it contains modifications.

Working with DITA Topics
DITA is a structured writing format. Structure can have several meanings, all of which are relevant to DITA.

This section includes information about working with DITA topics and the structure.

Information Types

The structure of a piece of content refers to how the words and images are selected and organized to convey

information. One approach to structured writing is to divide content into discrete blocks that contain various

types of information, and then to combine those blocks to form publications. DITA is based on this approach,

and encourages the author to write in discrete blocks called topics. DITA provides three base topic types

(concept, task, and reference), a number of extended topic types, and the capability to create new topic types

through specialization.

Text Structure

Every piece of text is made up of certain text structures, such as paragraphs, lists, and tables. DITA supports

text structures through XML elements such as <p>, , and <simpletable>. The DITA markup specifies the text

https://www.oxygenxml.com/dita/1.3/specs/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3014

structures, but not how they will be published in various types of media. The formatting of text structures is

determined by the output transformations and may be customized to meet the needs of various organizations

and type of media.

Semantic Structure

Semantic structure is structure that shows the meaning of things. For example:

• A <task> element specifies that a block of content contains the description of a task.

• A <codeblock> element specifies that a block of text consists of programming code.

• A <uicontrol> element specifies that a word is the name of a control in a computer GUI.

• The @platform profiling attribute specifies that a particular piece of content applies only to certain

computing platforms.

Semantic structure is important in a structured writing system because it allows both authors and readers to

find content, and it allows processing scripts to process various pieces of content differently, based on their

role or meaning. This can be used to do things such as filtering content related to a specific product so that

you can produce documentation on many products from the same source.

There can be many forms of semantics captured in a document set. DITA captures some of these in topics

and some of them in maps. If you are using a CMS, it may capture additional semantics.

Document Semantics

Documents consist of elements that may be made up of the same basic text structures as the rest of the

text, but have a special function within the structure of the document. For instance, both tables of contents

and indexes are lists, but they play a special role in the document. Chapters and sections are just sequences

of paragraphs and other text structures, yet they are meaningful in the structure of the document. In some

cases, such as indexes and tables of contents, these structures can be generated from semantic information

embedded in the source. For instance, a table of contents can be built by reading the titles of chapters and

sections. DITA provides elements to describe common document semantics.

Subject Matter Semantics

In some cases, the semantics of the content relate directly to the subject matter that the content describes.

For instance, DITA supports tags that allow you to mark a piece of text as the name of a window in a software

application (<wintitle>), or to mark a piece of text as applying only to a particular product.

Audience Semantics

In some cases, the semantics of the content relate to the audience that it is addressed to. For instance, a topic

might be addressed to a particular role, or to a person with a particular level of experience. DITA provides an

<audience> element to capture audience metadata.

Creating Topic Structures

Oxygen XML Editor provides a number of tools to help you create topic structures:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3015

• Content Completion Assistant (on page 3295) - Shows you which elements can be created at the

current position.

• Model view (on page 557) - Shows you the complete structure supported by the current element.

• Outline view (on page 551) - Shows you the current structure of your document.

• DITA toolbar - Helps you to easily insert many common structures.

Resources

For more information about getting started with DITA and how to work with DITA in Oxygen XML Editor, see

our compiled collection of DITA-related webinars that are meant to help you with your journey into working

with DITA: Webinars: Working with DITA in Oxygen.

Related information

Getting Started with DITA (on page 2940)

DITA Topics Document Type (Framework) (on page 1375)

Creating a New DITA Topic

The basic building block for DITA information is the DITA topic. DITA provides a variety of specialized topic

types, the most common of which are:

• Topic - The base topic type from which all other topic types are specialized. Typically, it is used when a

more specialized topic type is inappropriate.

• Task - For procedural information such as how to use a dialog box.

• Concept - For general, conceptual information such as a description of a product or feature.

• Reference - For reference information.

Oxygen XML Editor also supports numerous other specialized topic types that you will find templates for in

the various folders in the New DITA file dialog box (on page 3016). They include DITA 1.3 specializations,

Lightweight DITA templates, MathML composites, Markdown documents, and other DITA specialized topic

and DITA map (on page 3296) types such as Glossentry, Troubleshooting, Questions and Answers, Bookmap

(on page 3294), and Subject Scheme Map (on page 3301).

To create a new DITA topic and add a reference to it in your DITA map (on page 3296), follow these steps:

1. In the DITA Maps Manager (on page 2950), right-click the node in the current map where you want to

add the new topic.

2. Select one of the following actions:

◦ Append Child > New - Select this action to insert the new topic as a child of the selected node.

This action opens a New file dialog box (on page 3016) that allows you to select the type of

document and assists you with naming it. After you have configured your new topic, click Create.

◦ Insert Before > New - Select this action to insert the new topic as a sibling to the current node,

before it. This action opens a New file dialog box (on page 3016) that allows you to select the

https://www.oxygenxml.com/working_with_dita_in_oxygen.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3016

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Insert After > New - Select this action to insert the new topic as a sibling to the current node,

after it. This action opens a New file dialog box (on page 3016) that allows you to select the

type of document and assists you with naming it. After you have configured your new topic, click

Create.

◦ Duplicate - Select this action to create a copy of the selected topic and insert it as a sibling. This

action opens a dialog box that allows you to choose the file name and location for the newly

created copy of the topic. After you have selected the name and path for your new topic, click

OK.

Note:

The value of the root ID is generated taking the Use the file name as the value of the

root ID attribute option from the DITA > Topics preferences page (on page 283) into

account. When the option is deselected, a unique ID is generated.

Step Result: The new topic is now referenced (as a <topicref>) in the DITA map at the location where

you inserted it and the new topic is opened in the editor.

3. Save the DITA map.

Creating a New DITA Topic Using the New File Wizard

The New DITA file dialog box allows you to create a new DITA topic using various types of DITA file templates

and provides some options that help you to configure the new topic.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3017

Figure 753. New DITA File Dialog Box

Note:

The templates that appear in this dialog box include all templates that have an associated

.properties file and the type property is set to dita, as well as templates that do not have an

associated properties file or the type property is not defined. It will also include custom templates that

you create using the procedures presented in Creating New Document Templates (on page 387).

The New DITA file dialog box includes the following features and options:

Choose a file template

Use the template preview pane to select the appropriate type of DITA file you want to create.

Once you select a template, the other options will appear below the preview pane.

Tip:

You can use the text filter field at the top of the dialog box to search for a specific

template.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3018

Title

Depending on the selected file template, the value of the Title field is set in:

• The <title> element of a DITA topic file. The <title> element needs to be the first child of

the root element.

• The <glossterm> element of a Glossentry file.

New Topics Preferences

Pressing this button opens the DITA New Topics preference page (on page 283).

Save as

Use this option to specify a file name and path for the new file. You can specify the path by using

the text field, the history drop-down, or the browsing actions in the Browse drop-down

menu.

Create

When you click this button, a reference (<topicref>) to the new topic is added to the current DITA

map and the new topic is opened in the editor.

Other Ways to Create a New DITA Topic

In addition to the methods described above, Oxygen XML Editor also provides other ways to create DITA

topics, including the following:

• Fast Create Topics - You can use the Fast Create Topics feature (on page 3018) to quickly create

multiple skeleton topics at once and you can specify their hierarchical structure within the DITA map.

• Extract Topic From Selection - When editing a DITA topic in Author mode, an Extract Topic From

Selection action is available in the contextual menu (and the DITA menu). It creates a new DITA topic

from a selection of content in the current topic.

Related Information:

Getting Started with DITA (on page 2940)

Adding Topics to a DITA Map (on page 2971)

Working with Markdown Documents in DITA (on page 3080)

Fast Create Multiple DITA Topics (on page 3018)

Fast Create Multiple DITA Topics

The DITA Maps Manager (on page 2950) includes a feature that allows you to quickly create multiple

skeleton topics at once and you can specify their hierarchical structure within the DITA map (on page 3296).

A common use-case for using this feature is when you need to insert a new chapter or section that will include

multiple topics and you have the structure and titles planned out in advance.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3019

Note:

The Fast Create Topics feature works for the following types of local and remote resource protocols:

file, http, https ftps.

To access this feature, right-click a node in the DITA Maps Manager where you want the new topics to be

inserted and select Fast Create Topics. This opens the Fast Create Topics dialog box where you can configure

the structure for the new topics.

Figure 754. Fast Create Topics Dialog Box

The Fast Create Topics dialog box includes the following features and options:

Hierarchy Text Pane

Use this text area to enter the titles for your new topics, one per line, and specify the hierarchy by

using indents (Tab or Space). Topic references will be created in the DITA map according to the

hierarchy you enter in this section.

File name generation rules

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3020

The titles that you enter in the text pane will not only be used for the topic titles but also to

generate their file names and you can click the File name generation rules link to configure the

rules (on page 283) for how those file names will be generated.

Tip:

If you have added a file name prefix or suffix to the properties file (on page 389) for DITA

document templates, the generated file name will include that prefix or suffix.

File name prefix

Use this option to add a specified prefix to the file name. If you have added a file name prefix

to the properties file (on page 389) for DITA document templates, the prefix you enter here will

override the one from the properties file.

File name suffix

Use this option to add a specified suffix to the end of the file name. If you have added a file name

suffix to the properties file (on page 389) for DITA document templates, the suffix you enter here

will override the one from the properties file.

Topic type

All of the topics that will be created will have the same DITA topic type, which is detected from

the most recently created topic. You can click the Change button to select a different type from a

list of possible DITA templates.

Tip:

You can convert any of these new files to a different DITA topic type at a later time by

using another feature that allows you to easily convert DITA documents to other types

(on page 3024).

Add created topic hierarchy relative to the selection as

By default, the hierarchy of topics will be added to the DITA map as the First Child of the node

where the action was invoked. You can change this to Last Child, Preceding Sibling, or Following

Sibling if the selected node allows topics to be inserted as such.

Create

When you click Create, the specified hierarchy is added as topic references in the DITA map. The

new documents are created as bare skeleton topics with only the topic title and possibly the root

ID populated.

Tip:

You can easily change the order of the topics in the DITA map (on page 2970) at a later

time,

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3021

Related Information:

Adding Topics to a DITA Map (on page 2971)

Converting DITA Topics to Another Type (on page 3024)

Editing DITA Topics

Oxygen XML Editor provides a number of features to help you edit DITA topics. A DITA topic is an XML

document, thus all the editing features that Oxygen XML Editor provides for editing XML documents also apply

to DITA topics. Oxygen XML Editor also provides extensive additional support specifically for DITA.

Opening a DITA Topic

There are several ways to open a DITA topic in the XML editor. Use any of the following methods to open a

topic:

• Double-click the topic in the DITA Maps Manager (on page 2950) (or right-click the topic and select

Open).

• Double-click the file in the Project view (on page 414) (or right-click the file and select Open).

• If you have a DITA map (on page 3296) opened in the XML editor, you can click the icon to the

left of the topic.

• Drag a DITA file from your system browser and drop it in the XML editor.

Visual Editing in Author Mode

DITA is an XML format (on page 33), although you do not have to write raw XML to create and edit DITA

topics. Oxygen XML Editor provides a graphical view of your topics in Author mode (on page 364). Your topics

will likely open in Author mode by default, so this is the first view you will see when you open or edit a DITA

topic. If your topic does not open in Author mode, just click Author at the bottom left of the editor window to

switch to this mode.

Author mode presents a graphical view of the document you are editing, similar to the view you would see in a

word processor. However, there are some differences, including:

• Author mode is not a WYSIWYG view. It does not show you exactly what your content will look like

when printed or displayed on-screen. The appearance of your output is determined by the DITA

publishing process, and your organization may have modified that process to change how the output is

displayed. Oxygen XML Editor has no way of determining what your final output will look like or where

line breaks or page breaks will fall. Treat Author mode as a friendly visual editing environment, not a

faithful preview of your output.

• Your document is still an XML document. Author mode creates a visual representation of your

document by applying a CSS stylesheet to the XML. You can see the XML at any time by switching to

Text mode (on page 363). You, or someone in your organization, can change how the Author view looks

by changing the CSS stylesheet or providing an alternate stylesheet.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3022

• Your aim in editing a DITA document is not to make it look right, but to create a complete and correct

DITA XML document. Author mode keeps you informed of the correctness of your content by

highlighting XML errors in the text and showing you the current status in a box at the top right of the

editor window. Green means that your document is valid, yellow means valid with warnings, and red

means invalid. Warnings and errors are displayed when you place the cursor on the error location.

• Your XML elements may have attributes set on them. Conventionally, attributes are used to contain

metadata that is not displayed to the reader. By default, attributes are not displayed in the Author view

(though there are some exceptions) and cannot be edited directly in the Author view (though in some

cases the CSS that drives the display may use form controls to let you edit attributes directly). To edit

the attributes of an element, place your cursor on the element and press Alt+Enter to bring up the

attribute editor. Alternatively, you can use the Attributes view (on page 641) to edit attributes.

Tip:

You can select Hints from the Styles drop-down menu (available on the Author Styles toolbar) to

display tooltips throughout the DITA document that offers additional information to help you with the

DITA structure. For more information, see the Selecting and Combining Multiple CSS Styles (on page

2254) section.

Content Completion Assistance

Since it is a structured format, DITA only allows certain elements in certain places. The set of elements

allowed differs from one DITA topic type to another (this is what makes one topic type different from another).

To help you figure out which elements you can add in any given place and help you understand what they

mean, Oxygen XML Editor has a number of Content Completion Assistant (on page 3295) features.

• The Enter key: In Author mode, the Enter key does not create line breaks, it brings up the Content

Completion Assistant to help you enter a new element. In XML, you do not use line breaks to separate

paragraphs. You create paragraphs by creating paragraph elements (element <p> in DITA) and tools

insert the line breaks in the output and on-screen.

Figure 755. Content Completion Assistant

The Content Completion Assistant not only suggests new elements you can add. If you press Enter at

the end of a block element (on page 3294) (such as a paragraph) it suggests creating a new element

of the same type. If you press Enter in the middle of a block element, it suggests splitting that element

into two elements.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3023

A useful consequence of this behavior is that you can create a new paragraph simply by hitting Enter

twice (just as you might in a text editor).

As you highlight an element name, a basic description of the element is displayed. Select the desired

element and press Enter to create it.

To wrap an element around an existing element or piece of text, simply select it and press Enter and

use the Content Completion Assistant to choose the wrapper element.

• The Model view: You can see the entire model of the current element by opening the Model view (on

page 557) (Window > Show View > Model, if the view is not already open). The Model view shows

you what type of content the current element can contain, all the child elements it can contain, all its

permitted attributes, and their types.

Tip:

You can also select Inline actions from the Styles drop-down menu (available on the Author Styles

toolbar) to display possible elements that are allowed to be inserted at various locations throughout

the DITA document. For more information, see the Selecting and Combining Multiple CSS Styles (on

page 2254) section.

DITA Editing Actions

A variety of actions are available in the DITA framework (on page 3297) to specifically assist you with editing

DITA documents. These various actions are available in the contextual menu, the DITA menu, the DITA (Author

Custom Actions) toolbar, or the Content Completion Assistant.

The DITA toolbar contains buttons for inserting a number of common DITA elements (elements that are found

in most DITA topic types).

If the DITA toolbar is not displayed, right-click anywhere on the toolbar area, select Configure Toolbars, and

select it from the displayed dialog box.

Note:

The DITA toolbar contains a list of the most common elements and actions for DITA, such as

inserting an image, creating a link, inserting a content reference, or creating a table. It does not

contain a button for inserting every possible DITA element. For a complete list of elements that you

can insert at the current location in your document, press Enter to open the Content Completion

Assistant.

Whenever the current document in the editor is a DITA document, the DITA menu is displayed in the menu

bar. It contains a large number of actions for inserting elements, creating content references and keys, editing

DITA documents, and controlling the display. These actions are specific to DITA and supplement the general

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3024

editing commands available for all document types. Many of these actions are also conveniently available in

the contextual menu. In addition to the DITA framework-specific actions (on page 3057), the contextual menu

also includes various general Author mode contextual menu actions (on page 774).

Related Information:

Getting Started with DITA (on page 2940)

DITA Topic Author Mode Actions (on page 3057)

Converting DITA Topics to Another Type

Oxygen XML Editor includes a feature that allows you to convert an existing DITA document to a different

topic type. For example, if you want to convert a DITA Task to a DITA Topic, or vice versa. There are several

ways to access these refactoring actions and you can choose a scope for the operation and some filtering

options.

DITA Conversion Refactoring Operations for DITA

The following conversion operations are available:

Convert Nested Topics to New Topics (Available from the contextual menu of editable maps/nodes in

the DITA Maps Manager (on page 2950))

Use this operation on topics that contain nested <topic> elements to convert each nested topic

to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics

of the original topic.

Convert Sections to New Topics (Available from the contextual menu of editable maps/nodes in the

DITA Maps Manager (on page 2950))

Use this operation on topics that contain multiple sections to convert each section to a new

topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the

original topic.

Note:

As long as the DITA topic is of the type topic, concept, or reference, the new topics that

will be created from the inner sections will retain the same topic type as the original

topic.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for

example, Topic to Concept).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for

example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict

Task information type.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3025

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for

example, Topic to Reference).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example,

Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to

Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for

example, Topic to Troubleshooting).

Methods for Accessing the DITA Conversion Refactoring Operations

To access the conversion operations, use one of the following methods:

Single Document Method

With the document opened in the editor, right-click anywhere in the main editing pane (or right-

click the topic reference in the DITA Maps Manager (on page 2950)), go to the Refactoring

submenu, and choose whichever operation is appropriate for your needs.

Multiple Documents At Once Method

Select XML Refactoring from the Tools menu (or from the Refactoring submenu when you

right-click one or more documents in the Project view (on page 414)or the DITA Maps Manager

view (on page 2950)). Then select whichever operation is appropriate for your needs.

XML Refactoring Wizard Dialog Box

When you select any of the operations, Oxygen XML Editor proceeds to the XML Refactoring Wizard. If you

used the Multiple Documents At Once Method (on page 3025), the wizard page allows you to choose a scope

for the operation and some filtering options:

• Scope - Select from a variety of options to define the scope that will have resources affected by the

operation. For example, you can choose to affect all resources in the Project, All opened files, Current

DITA map hierarchy, Selected reference, and others depending on the context.

• Filters section

◦ Include files - Specifies files to be excluded from the operation. You can specify multiple files by

separating them with commas and the patterns can include wildcards (such as * or ?).

◦ Restrict to known XML file types only - Excludes non-XML file types from the operation.

◦ Look inside archives - If this option is selected, the scope of the operation will include files

inside archives.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3026

If you used the Single Document Method (on page 3025), the scope will be the current file so the scope and

filtering options are not displayed.

You can then use one of the following buttons to proceed with the operation:

Preview

You can use the Preview button to open a comparison panel where you can review all the

changes that will be made by the refactoring operation before applying the changes.

Warning:

It is always recommended to use the Preview button to make sure the operation is not

going to do something unexpected and after you click the Finish button, any Undo action

will only revert changes on the current document.

Finish

When you use the Finish button, behind the scenes Oxygen XML Editor maps the structure of

the previous DITA document type to a structure that fits the new type. In some cases, especially

when the previous structure was very complex, the conversion might result in an invalid structure

and some manual adjustments might be required.

Handling Special Characters When Generating New File Names

For refactoring operations that generate a new file, if special characters are detected in an element that will

be used to generate the new file name, the special characters will automatically be replaced with their ASCII

equivalents (for example, Ä is changed to AE). If an ASCII equivalent does not exist, it will be replaced with an

underline character (_). The purpose of this functionality is to avoid generating invalid file names.

It is possible to customize the list of replaceable symbols by editing the following XSLT character map file:

[OXYGEN_INSTALL_DIR]/frameworks/dita/refactoring/utils/character-map.xsl.

Converting To and From DITA Specialization Document Types

If you use your own DITA specialization document type (on page 3240), you can modify mappings for the

predefined conversion operations to work with your specialization.

To use the conversion operations with your DITA specialization, follow these steps:

1. Locate the conversion stylesheets in the following directory (and its subdirectories):

[OXYGEN_INSTALL_DIR]/frameworks/dita/refactoring/.

Note:

The stylesheets for converting entire files (from one type to another) are located in the

dita-files-conversion-stylesheets folder. Each of these conversion operations

has a stylesheet with the word entrypoint at the end of its name. Edit the appropriate *-

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3027

entrypoint.xsl file (for example, to modify the Convert to Task operation, edit the

convert-resource-to-task-entrypoint.xsl file).

2. Depending on whether you use a DTD, XML Schema, or Relax NG-based specialization, you can:

a. Modify the values of the declared root-element, public-literal-target, and system-literal-target

variables to match your specialization's DTD information.

b. Modify the value of the declared schema-location variable to match the location of your

specialization's XML schema.

c. Modify the value of the declared xml-model-location variable to match your Relax NG

specialization.

3. For the Convert Nested Topics to New Topics and Convert Sections to New Topics operations, if your

DITA specialization uses your own custom URN or DOCTYPE, you can replace the default mappings in

the [OXYGEN_INSTALL_DIR]/frameworks/dita/refactoring/utils/dita-formats.xsl

stylesheet with your own values for the DOCTYPE or xml-model.

4. If you want to change the name of the operation that will be displayed in Oxygen XML Editor, follow

these substeps:

a. Locate the resource XML file for the same conversion operation in the following directory:

[OXYGEN_INSTALL_DIR]/frameworks/dita/refactoring/ (for example, for the Convert

to Task operation, it is convertResource2Task.xml).

b. Edit that XML file and change the name attribute to match whatever you want to be displayed for

that operation (for example, name="Convert to My DocType").

5. Save your changes to all modified files.

6. Restart Oxygen XML Editor

Result: You should now see your changes when accessing the conversion operations (on page 3025).

Tip:

You can also create your own customized refactoring operations. For more information, see Custom

Refactoring Operations (on page 872).

Related Information:

Editing DITA Topics (on page 3021)

Refactoring XML Documents (on page 856)

Changing the Look of DITA Documents in Author Mode Using the Styles
Menu

The Author mode renders the content of the DITA documents visually, based on CSS stylesheets associated

with the document.

Oxygen XML Editor provides a Styles drop-down menu on the toolbar that allows you to select one main (non-

alternate) CSS style (on page 3298) and multiple alternate CSS styles (on page 3294). This makes it easy to

change the look of the document as it appears in Author mode.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3028

Figure 756. Styles Drop-down Menu in a DITA Document

You can use the Styles drop-down menu to select a main css style (on page 3298) that applies to the whole

document and then select one or more alternate css styles (on page 3294) that behave like layers and are

merged sequentially with the main style. Each of the styles that are listed in this drop-down menu have a

corresponding CSS file that defines how your documents are rendered in Author mode and in the output. Also,

the selections from this drop-down menu are persistent, meaning that Oxygen XML Editor remembers them

when subsequent documents are opened.

Unique CSS Styles for DITA

Oxygen XML Editor comes with a set of built-in CSS layer stylesheets for DITA documents (as well as some

that are specifically for DITA maps (on page 3296)).

Some of these unique alternate styles for DITA documents include:

• Hints - Displays tooltips throughout DITA documents that offer additional information to help you with

the DITA structure.

• Inline actions - Displays possible elements that are allowed to be inserted at various locations

throughout DITA documents.

• Inline insertion actions - Displays a widget () near each empty paragraph that makes it easy to insert

DITA elements (for example, to insert lists, notes, or tables).

Tip:

For information about configuring the Styles drop-down menu, see Configuring and Managing Multiple

CSS Styles for a Framework (on page 2254).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3029

Working with Images in DITA Topics

There are several ways to add images to a DITA topic, depending on if you want to create a figure element

(with a title and caption), just insert an image inline, or if you want to use multiple versions of a graphic

depending on the situation. For instance, you might want to use a specific image for each different product

version or output media.

Adding an Image Inline with the Insert Image Dialog Box

Use the following procedure to add an image inline:

1. Place the cursor in the position you want the graphic to be inserted.

2. Select the Insert Image action. The Insert Image dialog box appears.

Figure 757. Insert Image Dialog Box

3. Configure the options in this dialog box and click Insert.

The Insert Image dialog box includes the following options and features for inserting images into a

DITA document:

Location

Use this option to specify a URL for the image as the value of an @href attribute inside the

<image> element. You can type the URL of the image you want to insert or use browsing

actions in the Browse drop-down menu (there is also a history drop-down).

Key

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3030

Use this option to insert the selected key as the value of a @keyref attribute inside the

<image> element. All keys that are presented in the dialog box are gathered from the

root map (on page 3301) of the current DITA map. You can use the Choose Key

Reference button to open the Choose Key dialog box that presents the list of keys

available in the selected root map.

Note:

If your defined keys are not listed in this dialog box, it is most likely trying to

gather keys from the wrong root map. You can change the root map by using the

Change Root Map link in the Choose Key dialog box or change it in the Context

option in the toolbar of the DITA Maps Manager.

Figure title

Use this text box to insert a <title> and <image> element inside a <fig>.

Alternate text

Use this text box to insert an <alt> element inside the <image>.

Size

Use this section to configure the Width and Height of the image, or Scale the image.

Specifying a value in these options inserts a @width, @height, and @scale attribute,

respectively.

Layout

Use the options in this section to insert @placement and @align attributes into the <image>

element.

Preview

The Preview box shows a thumbnail of the selected image so that you can see a preview

of the image before clicking Insert.

Adding an Image Inline with Drag/Drop (or Copy/Paste) Actions

You can drag images from your system explorer or the Project view (on page 414) and drop them into a DITA

document (or copy and paste). This will insert the path of the image file as the value of the @href attribute in a

DITA <image> element:

<image href="../images/image_file.png"/>

Tip:

To replace an image, just drag and drop a new image over the existing one. Oxygen XML Editor will

automatically update the reference to the new image.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3031

Adding an Image in a Figure Element

To add an image in a figure:

1. Add a <fig> element to your document at the appropriate place.

2. Add a <title> and/or <desc> element to <fig>, according to your needs.

3. Add an <image> element (on page 3029) to the <fig> element.

Note:

The <fig> element has a number of other child elements that may be appropriate to your content. See

the DITA documentation for complete information about <fig>.

Note:

The order that the content of the <image>, <title>, and <desc> elements will appear in the output is

determined by the output transformation. If you want to change how they appear, you may have to

modify the output transformation, rather than your source content.

Floating Images in DITA Topics for PDF or XHTML Output

Oxygen XML Editor provides the possibility of floating an image to the left or right of blocks of content in DITA

topics, for both PDF and XHTML output.

To float an image, you simply need to set the @outputclass attribute on the <image> element. The possible values

are:

• float-left

• float-right

For example, the following DITA structure will present the image to the right of the paragraph content in the

output:

<p><image href="../../images/Lilac.jpg" scale="45" outputclass="float-right"/>

 Lilac (Syringa) is a genus of about 20–25 species of flowering plants

 in the olive family (Oleaceae), native to Europe and Asia.

</p>

Figure 758. Image Floated to the Right

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/fig.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3032

Searching for References to Images

You can search for all references to an image by selecting Search References from the contextual menu.

The result depends on how the image is defined, as follows:

• If the action is invoked on an <image> element that contains an @href attribute but does not include an

@id attribute, all direct references to the image are reported. If the <image> element does have an @id

attribute, all links to the specified ID are also reported.

• If the action is invoked on an <image> element that contains a @keyref attribute but does not include an

@id attribute, all direct references to the image are reported along with all instances where the key is

used. If the <image> element does have an @id attribute, all links to the specified ID are also reported.

Related information

Working with Image Maps in DITA (on page 3035)

Short Video Clip: Learn DITA Editing with Oxygen - Various Ways to Insert Image References

Adding Video, Audio, and Embedded HTML Resources in DITA Topics

You can insert references to media resources (such as videos, audio clips, or embedded HTML frames) in your

DITA topics. The media resources can be played directly in Author mode and in all HTML5-based outputs.

There is a toolbar button () that allows you to insert and configure a reference to the media resource. You

can also drag media files from your system explorer or the Project view (on page 414) and drop them into your

documents (or copy and paste them).

Table 53. Supported Media Types

Media Description Type Supported Size Properties

mp3 Moving Picture Ex

perts Group Layer-3

Audio

audio Width

wav Windows Wave audio Width

pcm Pulse Code Modula

tion

audio Width

m4a Moving Picture Ex

perts Group Layer-4

Audio

audio Width

aif Audio Interchange

Format

audio Width

mp4 Moving Picture Ex

perts Group Layer-4

Video

video Width & Height

https://blog.oxygenxml.com/topics/shorts_insert_image_references.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3033

Table 53. Supported Media Types (continued)

Media Description Type Supported Size Properties

m4v Itunes Video File video Width & Height

avi Audio Video Inter

leaved

video Width & Height

embedded video

(such as YouTube,

Vimeo, or Vidyard)

Embedded Iframe

Code

iframe Width & Height

Adding a Media Resource

To insert a media resource in a DITA document, use the following procedure:

1. Place the cursor at the location where you want the media resource.

2. Select the Insert Media Resource action from the toolbar. The Insert Media dialog box appears.

Note:

You can also drag media files from your system explorer or the Project view (on page 414) and

drop them into your documents (or copy and paste them). Note that this method will bypass

the Insert Media dialog box, so if you need to adjust the size you will need to adjust the @width

or @height attributes manually.

Figure 759. Insert Media Dialog Box

3. Configure the options in this dialog box and click Insert.

The Insert Media dialog box includes the following options:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3034

Location

Use this option to specify a URL for the media resource as the value of a @data attribute

inside the <object> element. You can type the URL of the resource you want to insert or

use browsing actions in the Browse drop-down menu (there is also a history drop-

down).

Key

Use this option to insert the selected key as the value of a @datakeyref attribute inside

the <object> element. All keys that are presented in the dialog box are gathered from

the root map (on page 3301) of the current DITA map. You can use the Choose

Key Reference button to open the Choose Key dialog box that presents the list of keys

available in the selected root map.

Note:

If your defined keys are not listed in this dialog box, it is most likely trying to

gather keys from the wrong root map. You can change the root map by using the

Change Root Map link in the Choose Key dialog box or change it in the Context

option in the toolbar of the DITA Maps Manager.

Type

Oxygen XML Editor detects and automatically selects the media type based upon the

specified resource in the URL field (on page 3034). You can manually change the type,

but keep in mind that in the publishing stage the object element is converted to an HTML5

element (on page 3034) based upon the type selected here. You can choose between:

audio, video, or iframe.

Size

Use this section to configure the Width and Height of the frame for the media resource.

Specifying a value in these options inserts a @width and @height attribute, respectively. For

audio clips, only the Width can be adjusted.

Result in Author Mode: A reference to the specified video, audio, or embedded HTML frame is inserted in an

<object> element and it is rendered in Author mode so that it can be played directly from there.

Attention:

• On Ubuntu 17.10, if you receive an error when trying to play videos in Author mode, you need to

install the libavformat57 library.

Result in Output: In the publishing stage, the <object> element is converted to an HTML5 element so that it can

be rendered properly and played in all HTML5-based outputs.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3035

• Videos - The <object> element is converted to an HTML5 <video> element.

• Audio Clips - The <object> element is converted to an HTML5 <audio> element.

• Embedded HTML Frames - The <object> element is converted to an HTML5 <iframe> element.

Tip:

There is an even faster way of inserting an embedded video (such as a YouTube, Vimeo, or Vidyard).

If you copy the embed code from the source (for example, you can right-click on a YouTube video

and select Copy embed code), you can then paste the contents of the clipboard in the URL field (on

page 3034) and the Type (on page 3034) will automatically be set on iframe, while the Width and

Height (on page 3034) will be populated according to the detected size, and an allowfullscreen

parameter will automatically be added (set the value of this parameter to true to allow videos to play

in full screen mode once the document is converted to XHTML output).

Inserting Media in HTML Outputs That Do Not Support Embedded Media

For certain types of HTML output (for example, CHM) that do not support embedded media (such as videos or

audio files), Oxygen XML Editor provides a parameter that can be set in the transformation scenario to present

the media object as a plain link in the output.

This can be achieved by following these steps:

1. Edit the DITA transformation scenario (on page 3167) for the output type that does not support

embedded objects (for example, DITA Map CHM).

2. Go to the Parameters tab (on page 3174) and click the New button to add a new parameter.

3. For the Name, enter: com.oxygenxml.xhtml.linkToMediaResources.

4. For the Value, enter: true.

5. Click OK and run the transformation.

Result: The media object will appear in the output as a plain link instead of an embedded object.

Resources

For more information, see the following video demonstration:

https://www.youtube.com/embed/llX11gS4WaU

Related Information:

Working with Images in DITA Topics (on page 3029)

How to Add Video and Audio Objects in DITA WebHelp Output (on page 1743)

Working with Image Maps in DITA

Oxygen XML Editor includes support for image maps in DITA documents through the use of the <imagemap>

element. This feature provides an easy way to create hyperlinks in various areas within an image without

https://www.youtube.com/embed/llX11gS4WaU

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3036

having to divide the image into separate image files. The visual Author editing mode includes an Image Map

Editor that helps you to easily create and configure image maps.

Figure 760. Image Map Editor in DITA

Image Map Editor Interface in DITA

The interface of the Image Map Editor consists of the following sections and actions:

Toolbar

New Rectangle

Use this button to draw a rectangular shape over an area in the image. You can

drag any of the four points to adjust the size and shape of the rectangle.

New Circle

Use this button to draw a circle over an area in the image. You can drag any of the

four points to adjust the size of the circle.

New Polygon

Use this button to draw a polygon shape over an area in the image. This action

opens a dialog box that allows you to select the number of points for the polygon.

You can drag any of the points to adjust the size and shape of the polygon.

New Free Form Shape

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3037

Use this button to draw a free form shape over an area in the image. After selecting

this button, left-click anywhere in the image to place the first point of your shape.

Then move the cursor to the location of the next desired point and left-click to

place the next point, and so on. To complete the shape (area), click the first point

again and a line will automatically be added from the last point that was added, or

simply double-click the last point to automatically add the line from the last point

back to the first.

Duplicate

Use this button to create a duplicate of the currently selected shape.

Delete

Use this button to delete the currently selected shape.

Undo

Use this button to undo the last action.

Redo

Use this button to redo the last action that was undone.

Show/Hide Numbers

Use this button to toggle between showing or hiding the numbers for the shapes.

Bring Shape to Front

Use this button to bring the currently selected shape forward to the top layer.

Bring Shape Forward

Use this button to bring the currently selected shape forward one layer.

Send Shape Backward

Use this button to send the currently selected shape back one layer.

Send Shape to Back

Use this button to send the currently selected shape back to the bottom layer.

Color Chooser

Use this drop-down menu to select a color scheme for the lines and numbers of

the shapes.

Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3038

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within

an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

• Use the mouse to select and move shapes around in the image pane. It is

easy to see which shape is selected in this image pane because the border

of the selected shape changes from a solid line to a dotted one.

• You can also drag any of the points of a selected shape to adjust its size

and shape.

• You can hold down the Ctrl key to select multiple shapes and then move

them simultaneously.

• You can also move shapes by using the arrow keys on your keyboard. In

addition, you can hold down Shift while using the arrow keys to move the

shape further or Alt to move it 1 pixel at a time.

• To zoom in or out, you can use the NumPad + or NumPad - keys

respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default

value.

• You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that

was undone.

Contextual Menu Actions Available in the Image Pane

You can right-click the shapes, points, or anywhere in the Image Pane to invoke the

contextual menu where the following actions are available:

Add Point

Adds a point to Polygon or Free Form shapes.

Remove Point

Removes the current point from Polygon or Free Form shapes.

Duplicate

Create a duplicate of the currently selected shape.

Delete

Delete the currently selected shape.

New Rectangle

Creates a rectangular shape over an area in the image. You can drag

any of the four points to adjust the size and shape of the rectangle.

New Circle

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3039

Creates a circle over an area in the image. You can drag any of the

four points to adjust the size of the circle.

New Polygon

Creates a polygon shape over an area in the image. This action opens

a dialog box that allows you to select the number of points for the

polygon. You can drag any of the points to adjust the size and shape

of the polygon.

Undo

Use this action to undo the last action.

Redo

Use this action to redo the last action that was undone.

Shape Table

The table at the right of the Image Pane is a sequential list of all the areas (shapes) that have

been added in the image. It shows their number, type, and description (if one has been added). If

you select one of the entries in the table, the corresponding shape will be selected in the Image

Pane.

Properties

Type

Displays information about the selected coordinate.

Target

Allows you to choose the target resource that you want the selected area (shape)

to be linked to. Select a target by using the Link drop-down menu to the

right of the text field. You can choose between the following types of links: Cross

Reference, File Reference, or Web Link. All three types will open a dialog box that

allows you to define the target resource. This linking process is similar to the

normal process of inserting links in DITA (on page 3132) by using the identical

Link drop-down menu from the main toolbar.

When you click OK to finalize your changes in the Image Map Editor, an <xref>

element will be inserted with either an @href attribute or a @keyref attribute.

Additional attributes may also be inserted and their values depend on the target

and the type of link. For details about the three types of links and their dialog

boxes, see Inserting a Link in Oxygen XML Editor (on page 3132).

Description

You can enter an optional description for the selected area (shape) that will be

displayed in the Image Map Details section (on page 3040) in Author mode and as

a tooltip message when the end-user hovers over the hyperlink in the output.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3040

How to Create an Image Map in DITA

To create an image map on an existing image in a DITA document, follow these steps:

1. Right-click the image and select Image Map Editor.

Step Result: This action will apply an image map to the current image and open the Image Map Editor

dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (New Rectangle, New Circle,

or New Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its

size or form. You can use the other buttons on the toolbar (on page 3036) to adjust its layer and color,

or to perform other editing actions.

Tip:

You can right-click any of the points, shapes, or anywhere in the Image Pane to access various

helpful contextual menu actions (on page 3038). For example, the easiest way to remove a

point is to right-click the point and select Remove Point.

4. With the shape selected, use one of the linking options (on page 3039) in the Link drop-down

menu to select a target resource (or enter its path in the Target (on page 3039) text field).

5. (Optional) Enter a Description (on page 3039) for the selected area (shape).

6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate

steps.

7. When you are finished creating hyperlinks, click OK to process your changes.

Result: The image map is applied on the image and the appropriate elements and attributes are automatically

added. In Author mode, the image map is now rendered over the image. If the image includes an <alt>

element, its value will be displayed under the image. The following two buttons will also now be available

under the image in Author mode:

• Image Map Editor - Click this button to open the Image Map Editor.

• Image Map Details - Click this button to expand a section that displays the details of the image map

and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that

if you change the shape in this section, you also need to add or remove coordinates to match the

requirements of the new shape.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3041

Figure 761. Image Map Details

How to Edit an Existing Image Map in DITA

To edit an existing image map, use any of the following methods:

• Simply double-click the image.

• Right-click the image and select Image Map Editor.

• Click the Image Map Editor button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the

various features described above. You can also make changes to the XML structure of the image map in the

Text editing mode.

You can also click the Image Map Details button below the image to expand a section that displays the details

of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in

mind that if you change the shape in this section, you also need to add or remove coordinates to match the

requirements of the new shape.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number

shown inside each shape represents its layer (if the numbers are not displayed, click the Show/Hide

Numbers button on the Image Map Editor toolbar (on page 3036)). To change the layer order for a shape, use

the layer buttons on the Image Map Editor toolbar (on page 3036) (, , ,).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will

display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a

shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger

shape.

Related Information:

DITA 'imagemap' Element Specifications

Working with Images in DITA Topics (on page 3029)

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3042

Adding Tables in DITA Topics

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a DITA

topic. By default, DITA supports four types of tables:

• DITA Simple table model (on page 3042) - This is the most commonly used model for basic tables.

• CALS table model (OASIS Exchange Table Model) (on page 3044) - This is used for more advanced

functionality.

• DITA Choice table model (on page 3046) - This is used within a <step> element in a DITA Task

document to describe a series of optional choices that a user must make before proceeding.

• DITA Properties table model (on page 3048) - This is used in DITA Reference documents to describe a

property (for example, its type, value, and description).

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables

are allowed. The Oxygen XML Editor toolbar provides support for entering and editing tables. It also helps to

indicate where you are allowed to insert a table or its components by disabling the appropriate buttons.

Inserting a Simple Table Model

To insert a Simple DITA table, select the Insert Table action on the toolbar or from the contextual menu

(or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table

Model.

Figure 762. Insert Table Dialog Box - Simple Model

The dialog box allows you to configure the following options when you select the Simple table model:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3043

Title

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @relcolwidth attribute with the values listed

as the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%,

33.3%, and 66.7%. When entering content into a cell in one column, the width proportions

of the other columns are maintained. If you change the width by dragging a column

in Author mode, the values of the @relcolwidth attribute are automatically changed

accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value

of the @relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width.

Entering content into a cell changes the rendered width dynamically. If you change the

width by dragging a column in Author mode, a dialog box will be displayed that asks you if

you want to switch to proportional or fixed column widths.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Note:

The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one

session will carry over to another.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3044

When you click Insert, a simple table is inserted into your document at the current cursor position.

Inserting a CALS Table Model (OASIS Exchange Table)

To insert an OASIS Exchange Table (CALS), select the Insert Table action on the toolbar or from the

contextual menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select

CALS for the table Model. This model allows you to configure more properties than the Simple model.

Figure 763. Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

Title

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @colwidth attribute with the values listed as

the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%,

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3045

and 66.7%. When entering content into a cell in one column, the width proportions of the

other columns are maintained. If you change the width by dragging a column in Author

mode, the values of the @colwidth attribute are automatically changed accordingly. By

default, when you insert, drag and drop, or copy/paste a column, the value of the @colwidth

attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width

(@colwidth attribute). Entering content into a cell changes the rendered width dynamically.

If you change the width by dragging a column in Author mode, a dialog box will be

displayed that asks you if you want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can

change the units in the colspecs (column specifications) section above the table or in

Text mode. The following units are allowed: pt (points), cm (centimeters), mm (millimeters),

pi (picas), in (inches).

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Row separator

Specifies whether or not to include row separators (@rowsep attribute). The allowed values are: 0

(no separator) and 1 (include separators).

Column separator

Specifies whether or not to include column separators (@colsep attribute). The allowed values are:

0 (no separator) and 1 (include separators).

Alignment

Specifies the alignment of the text within the table (@align attribute). The allowed values are:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3046

• justify - Stretches the line of text so that it has equal width.

Note:

The justify value cannot be rendered in Author mode, so you will only see it in

the output.

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Note:

The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one

session will carry over to another.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table.

Click the link to open the controls that allow you to adjust various column properties. Although they appear as

part of the Author mode (on page 364), the colspecs link and its controls will not appear in your output. They

are just there to make it easier to adjust how the columns of your table are formatted.

Figure 764. CALS Table in DITA

Inserting a Choice Table Model

To insert a Choice table within a <step> element in a DITA Task document, select the Insert Table action on

the toolbar or in the Insert submenu from the contextual menu (or the Table submenu from the DITA menu),

or select choicetable from the Content Completion Assistant (on page 3295). The Insert Table dialog box

appears. Select Simple for the table Model.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3047

Figure 765. Insert Table Dialog Box - Choice Model

The dialog box allows you to configure the following options when you insert a Choice table model within a

DITA Task:

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Column widths

Allows you to specify the type of properties for column widths (@colwidth attribute). You can

choose one of the following properties for the column width:

• proportional - The width is specified in proportional (relative) units of measure. The

proportion of the column is specified in a @relcolwidth attribute with the values listed

as the number of shares followed by an asterisk. The value of the shares is totaled and

rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%,

33.3%, and 66.7%. When entering content into a cell in one column, the width proportions

of the other columns are maintained. If you change the width by dragging a column

in Author mode, the values of the @relcolwidth attribute are automatically changed

accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value

of the @relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width.

Entering content into a cell changes the rendered width dynamically. If you change the

width by dragging a column in Author mode, a dialog box will be displayed that asks you if

you want to switch to proportional or fixed column widths.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3048

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Choice table is inserted into your DITA Task document at the current cursor position

(within a <step> element).

Inserting a Properties Table Model

To insert a Properties table within a <refbody> element in a DITA Reference document, select the Insert

Table action on the toolbar or in the Insert submenu from the contextual menu (or the Table submenu from

the DITA menu), or select properties(wizard) from the Content Completion Assistant (on page 3295). The

Insert Table dialog box appears. Select Properties for the table Model.

Figure 766. Insert Table Dialog Box - Properties Model

The dialog box allows you to configure the following options when you insert a Properties table model within a

DITA Reference:

Table Size

Allows you to choose the number of Rows and Columns for the table.

Generate table header

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3049

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Properties table is inserted into your DITA Reference document at the current cursor

position (within a <refbody> element).

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual

menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can

be used to fine-tune the formatting of your tables by using the Attributes view (on page 641) (Window > Show

View > Attributes). See the DITA documentation for a full explanation of these attributes.

You can also use the Table Properties (Ctrl + T (Command + T on macOS)) (on page 3052) action from

the toolbar or contextual menu (or DITA menu) to modify many of the properties of the table (on page 3052).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary,

you can edit the XML directly by switching to Text mode (on page 363).

You can use normal copy/paste shortcuts to move content between cells. Oxygen XML Editor includes a

Smart Paste feature (on page 626) that preserves certain style and structure information when pasting

content.

Tip:

When copying a multiple selection of table cells and pasting them outside the table, a new table will

be created. When pasting into space-preserved elements, the cell content will be pasted as plain text.

Related Information:

Editing Tables in Author Mode (on page 698)

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/table-elements.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3050

DITA Table Layouts

Depending on the context, DITA accepts the following table layouts:

• CALS table model (on page 3050)

• Simple table model (on page 3050)

• Choice table model (on page 3051)

• Properties table model (on page 3051)

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing

a CALS table model from the Insert Table dialog box, you have access to more configurable properties. The

layout of a CALS table includes a colspecs section that allows you to easily configure some properties without

opening the Table Properties dialog box. For example, you can change the value of column widths (@colwidth

attribute) or the text alignment (@align attribute). Although they appear as part of the Author mode (on page

364), the colspecs link and its controls will not appear in your output. They are just there to make it easier to

adjust how the columns of your table are formatted.

Figure 767. CALS Table in DITA

Tip:

A sample plugin is available that can be used as inspiration to add support for CALS tables in any

XML document: Sample Plugin: Add CALS Support for any XML Document.

Simple Table Model Layout

When choosing a Simple table model from the Insert Table dialog box, you only have access to configure a

few properties. For example, you can choose the number of rows and columns, specify values for frames, and

https://github.com/oxygenxml/web-author-sample-plugins/blob/master/web-author-CALS-table-plugin/README.md

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3051

choose from a few types of properties for the column width. The layout of this type of table is very simple, as

the name suggests.

Figure 768. DITA Simple Table

Choice Table Model Layout

A Choice table model is used within a <step> element in a DITA Task document to describe a series of

optional choices that a user must make before proceeding. The <choicetable> element is a useful device for

documenting options within a single step of a task. You can insert Choice tables in DITA Task documents

either by selecting choicetable from the Content Completion Assistant (on page 3295) (within a <step>

element) or by using the Insert Table action on the toolbar or from the contextual menu). The options and

layout of a Choice table is similar to the Simple table model.

Figure 769. DITA Choice Table

Properties Table Model Layout

A Properties table model is used within a <refbody> element in a DITA Reference document to describe a

property (for example, its type, value, and description). You can insert Properties tables in DITA Reference

documents either by selecting properties(wizard) from the Content Completion Assistant (on page 3295)

(within a <refbody> element) or by using the Insert Table action on the toolbar (or from the contextual

menu) and selecting Properties for the Model. The layout of a Properties table is very simple. It allows for a

maximum of 3 columns (typically for property type, value, and description) and the only options available are

for whether or not you want a header row and for specifying frames (borders).

Figure 770. DITA Properties Table

Table Validation in DITA

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. When

you validate a DITA map (on page 3296) with the Validate and Check for Completeness action, if the

Report table layout problems option (on page 3000) is selected in the DITA Map Completeness Check dialog

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3052

box, table layout problems will be reported in the validation results. The types of errors that may be reported

for DITA table layout problems include:

CALS Tables

• A row has fewer cells than the number of columns detected from the table @cols attribute.

• A row has more cells than the number of columns detected from the table @cols attribute.

• A cell has a vertical span greater than the available rows count.

• The number of <colspecs> is different than the number of columns detected from the table

@cols attribute.

• The number of columns detected from the table @cols attribute is different than the

number of columns detected in the table structure.

• The value of the @cols, @rowsep, or @colsep attributes are not numeric.

• The @namest, @nameend, or @colname attributes point to an incorrect column name.

Simple or Choice Tables

A row has fewer cells than the number of table columns.

Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the Table

Properties (Ctrl + T (Command + T on macOS)) action from the toolbar or the Table submenu of the

contextual menu (or DITA menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that

are available depend on the context and location within the table where the action was invoked.

Note:

Some properties allow the following special values, depending on the context and the current

properties or values:

• <not set> - Use this value if you want to remove a property.

• <preserve> - If you select multiple elements that have the same property set to different values,

you can choose this value to keep the values that are already set. In some cases it can also be

used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.

• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at

the bottom of the tab tells you how many rows will be affected.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3053

• Column tab - The options in this tab apply to the current column or selection of multiple columns. A

message at the bottom of the tab tells you how many columns will be affected.

• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the

bottom of the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Figure 771. Table Properties Dialog Box with Cell Tab Selected (DITA CALS Table Model)

The options in the four tabs include the following:

Horizontal alignment (Available in the Table, Column, and Cell tabs)

Specifies the horizontal alignment of text within the current table/column/cell or selection of

multiple columns/cells (@align attribute). The allowed values are as follows:

• left - Aligns the text to a left position.

• right - Aligns the text to a right position.

• center - Aligns the text to a centered position.

• justify - Stretches the line of text so that it has equal width.

Note:

The justify value cannot be rendered in Author mode, so you will only see it in

the output.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3054

• char - Aligns text to the leftmost occurrence of the value specified on the @char attribute

for alignment.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Vertical alignment (Available in the Row and Cell tabs)

Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/

cells (@valign attribute). The allowed values are as follows:

• top - Aligns the text at the top of the cell.

• middle - Aligns the text in a vertically centered position.

• bottom - Aligns the text at the bottom of the cell.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Column separator (Available in the Table, Column, and Cell tabs)

Specifies whether or not to include column separators (borders/grid lines) in the form of the

@colsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

Row separator (Available in all four tabs)

Specifies whether or not to include row separators (borders/grid lines) in the form of the @rowsep

attribute. The allowed values are: 0 (no separator) and 1 (include separators).

Frame (Available only in the Table tab)

Allows you to specify a value for the @frame attribute. It is used to specify where a border should

appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the

value of this particular attribute from the @conref target. For more information, see https://

www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3055

Edit Table Properties for a Simple, Choice, or Properties Table Model

For a Simple, Choice, Properties table model, the Table properties dialog box only allows you to edit a few

options.

Table tab

Frame

Allows you to specify a value for the @frame attribute. It is used to specify where a

border should appear in the table. The allowed values are as follows:

• none - No border will be added.

• all - A border will be added to all frames.

• top - A border will be added to the top frame.

• topbot - A border will be added to the top and bottom frames.

• bottom - A border will be added to the bottom frame.

• sides - A border will be added to the side frames.

• -dita-use-conref-target - Normally, when using a @conref, the values of

attributes specified locally are preserved. You can choose this option to

override this behavior and pull the value of this particular attribute from

the @conref target. For more information, see https://www.oxygenxml.com/

dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Row tab (not available for Properties tables)

Row type

Allows you change the row to a body or header type of row.

Related Information:

Adding Tables in DITA Topics (on page 3042)

Editing Tables in Author Mode (on page 698)

Adding MathML Equations in DITA Topics

You can add MathML equations in a DITA document open in the Author visual editing mode using one of the

following methods:

• Embed MathML directly into a DITA topic. You can use Insert > Insert Equation from the contextual

menu or the main menu DITA > Insert > Insert Equation action to insert a MathML equation. Clicking on

the equation will open a MathML Editor where you can edit the code.

• Reference an external MathML file as an image, using the Insert Image action that is available on

the DITA toolbar (or from the DITA > Insert menu).

https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3056

Publishing Notes:

• MathML equations contained in DITA topics can be published out-of-the-box in PDF using the

DITA PDF transformation scenario.

• The DITA Map PDF - based on HTML5 & CSS transformation scenario (on page 1827) support

MathML equations (on page 2005).

• For details about HTML output, see How to View MathML Equations in HTML Output (on page

1793).

• For other publishing formats, you might need to employ additional customizations for handling

MathML content.

Adding LaTeX Equations in DITA Topics

LaTeX is a high-quality typesetting system that includes features designed for the production of technical

and scientific documentation. LaTeX can also be used to express mathematical formulas in a textual format.

By default, web browsers and PDF readers do not have support to show mathematical equations written in

LaTeX, but there are open-source projects that can read LaTeX and convert it to other image types.

Adding support for writing LaTeX equations in a DITA topic implies three stages:

1. Find a way to write the equation in the DITA XML content. You can either create a DITA DTD

specialization and add a new element (for example, called <latex> and it extends the DITA <foreign>

element). Alternatively, you can directly use the DITA <foreign> element with a specific @outputclass

attribute value:

<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">

<topic id="testEquation">

 <title>Test equation</title>

 <body>

 <p><foreign outputclass="embed-latex">L' = {L}{\sqrt{1-\frac{v^2}{c^2}}}</foreign></p>

 </body>

</topic>

2. If you want Oxygen XML Editor to properly present the LaTeX equation when editing in the Author visual

mode, you need a plugin that converts the equation content to an image. There is a sample plugin that

does that here: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-

images-support. You can download and copy the plugin folder latex-images-support to the Oxygen

XML Editor plugins folder, then restart Oxygen XML Editor.

3. The final stage would be to publish the content to HTML-based or PDF output. The following DITA

Open Toolkit plugin automatically converts LaTeX images to SVG when publishing: https://github.com/

oxygenxml/dita-latex.

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support
https://github.com/oxygenxml/dita-latex
https://github.com/oxygenxml/dita-latex

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3057

DITA Questions and Answers Topic Type

You can create a new DITA Questions and Answers topic using the Oxygen XML Editor File > New file wizard.

It is found in the Framework templates > DITA > Topics > RNG folder (or you can search for it using the search

filter at the top of the dialog box).

This type of topic groups together multiple question/answer sections and can be used to create a frequently

asked questions document (for example).

There is an Insert Question/Answer Group action that is available on the toolbar and in the DITA Q/A main

menu that can be used to insert multiple question/answer groups. You can also define multiple questions in

the same group, all paired to the same answer.

When producing WebHelp output from DITA content, Q/A-specific Google Structured Data in the HTML files is

generated from these Questions and Answers DITA topic types.

Related information

How to Generate Google Structured Data (on page 1800)

DITA Topic Author Mode Actions

A variety of actions are available for DITA documents that can be found in DITA menu, toolbar, contextual

menu, and the Content Completion Assistant (on page 3295).

DITA Toolbar Actions

The following default actions are available on the DITA toolbar when editing in Author mode (by default, most

of them are also available in the DITA menu and in various submenus of the contextual menu):

Bold

Surrounds the selected text with a tag. You can use this action on multiple non-contiguous

selections.

Italic

Surrounds the selected text with an <i> tag. You can use this action on multiple non-contiguous

selections.

Underline

Surrounds the selected text with a <u> tag. You can use this action on multiple non-contiguous

selections.

Link Actions Drop-Down Menu

The following link actions are available from this menu:

Cross Reference

https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3058

Opens the Cross Reference (xref) dialog box (on page 3132) that allows you to

insert a link to a target DITA resource at the current location within a document.

The target resource can be the location of a file or a key that is already defined

in your DITA map (on page 3296) structure. Once the target resource has been

selected, you can also target specific elements within that resource. For more

information, see Linking in DITA Topics (on page 3131).

File Reference

Opens the File Reference dialog box (on page 3132) that allows you to insert a

link to a target non-DITA file resource at the current location within a document.

The target resource can be the location of a file or a key that is already defined in

your DITA map structure. For more information, see Linking in DITA Topics (on

page 3131).

Web Link

Opens the Web Link dialog box (on page 3132) that allows you to insert a link to a

target web-related resource at the current location within a document. The target

resource can be a URL or a key that is already defined in your DITA map structure.

For more information, see Linking in DITA Topics (on page 3131).

Related Link to Topic

Opens the Cross Reference (xref) dialog box (on page 3133) that allows you to

insert a link to a target DITA resource in a related links section at the bottom of the

current document. The target resource can be the location of a file or a key that

is already defined in your DITA map structure. Once the target resource has been

selected, you can also target specific elements within that resource. If a related

links section does not already exist, this action creates one. For more information,

see Linking in DITA Topics (on page 3131).

Tip:

You can use the Find Similar Topics action (available in the contextual

menu or DITA menu) to quickly find related topics that can be added as

related links. It opens the Open/Find Resource view and performs a search

using text content from the <title>, <shortdesc>, <keyword>, and <indexterm>

elements.

Related Link to File

Opens the File Reference dialog box (on page 3133) that allows you to insert a

link to a target non-DITA file resource in a related links section at the bottom of the

current document. The target resource can be the location of a file or a key that

is already defined in your DITA map structure. If a related links section does not

already exist, this action creates one. For more information, see Linking in DITA

Topics (on page 3131).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3059

Related Link to Web Page

Opens the Web Link dialog box (on page 3133) that allows you to insert a link to

a target web-related resource in a related links section at the bottom of the current

document. The target resource can be a URL or a key that is already defined in your

DITA map structure. If a related links section does not already exist, this action

creates one. For more information, see Linking in DITA Topics (on page 3131).

Insert Image

Opens the Insert Image dialog box (on page 3029) that allows you to configure the properties of

an image to be inserted into a DITA document at the cursor position.

Insert Media Resource

Opens the Insert Media dialog box (on page 3032) that allows you to select and configure the

properties of a media object to be inserted into a DITA document at the cursor position. The

result will be that a reference to the specified video, audio, or embedded HTML frame is inserted

in an <object> element and it is rendered in Author mode so that it can be played directly from

there.

Insert Section Drop-Down Menu

The following insert actions are available from this menu:

Insert Section

Inserts a new <section> element in the document, depending on the current context.

Insert Concept

Inserts a new <concept> element, depending on the current context. Concepts

provide background information that users must know before they can

successfully work with a product or interface.

Insert Task

Inserts a new <task> element, depending on the current context. Tasks are the main

building blocks for task-oriented user assistance. They generally provide step-by-

step instructions that will help a user to perform a task.

Insert Topic

Inserts a new <topic> element, depending on the current context. Topics are the

basic units of DITA content and are usually organized around a single subject.

Insert Reference

Inserts a new <reference> element, depending on the current context. A reference is

a top-level container for a reference topic.

Insert Note

Inserts a new <note> element, depending on the current context.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3060

Insert Codeblock

Inserts a new <codeblock> element, depending on the current context.

Insert Intent Question

Inserts a new special <data> element that contains a question or intent. The

intent can be used to generate Google Structured data (on page 1800) content in

WebHelp Responsive output.

Insert Paragraph

Inserts a new paragraph at current cursor position.

Reuse Content

This action provides a mechanism for reusing content fragments. It opens the Reuse Content

dialog box (on page 3101) that allows you to insert several types of references to reusable

content at the cursor position. The types of references that you can insert using this dialog box

include content references (@conref) (on page 3102), content key references (@conkeyref) (on

page 3104), or key references to metadata (@keyref) (on page 3107).

Insert step or list item

Inserts a new list or step item in the current list type.

Insert Unordered List

Inserts an unordered list at the cursor position. A child list item is also automatically inserted by

default. You can also use this action to convert selected paragraphs or other types of lists to an

unordered list.

Insert Ordered List

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by

default. You can also use this action to convert selected paragraphs or other types of lists to an

ordered list.

Sort

Sorts cells or list items in a table.

Insert Table

Opens a dialog box that allows you to configure and insert a table. You can generate a header

and footer, set the number of rows and columns of the table and decide how the table is framed.

You can also use this action to convert selected paragraphs, lists, and inline content (mixed

content, text plus markup, that is rendered inside a block element (on page 3294)) into a table,

with the selected content inserted in the first column, starting from the first row after the header

(if a header is inserted).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3061

Note:

If the selection contains a mixture of elements that cannot be converted, you will receive

an error message saying that Only lists, paragraphs, or inline content can be converted

to tables.

Insert Row

Inserts a new table row with empty cells below the current row. This action is available when the

cursor is positioned inside a table.

Delete Row(s)

Deletes the table row located at the cursor position or multiple rows in a selection.

Insert Column

Inserts a new table column with empty cells after the current column. This action is available

when the cursor is positioned inside a table.

Delete Column(s)

Deletes the table column located at the cursor position or multiple columns in a selection.

Table Properties

Opens the Table properties dialog box that allows you to configure properties of a table (such as

frame borders).

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split

the cell, a dialog box will be displayed that allows you to select the number of rows or columns

to split the cell into.

DITA Contextual Menu Actions

The following actions are available in the contextual menu when editing in Author mode (most of them are

also available in the DITA menu at the top of the interface):

Add File to Review Task

This action can be used to add the current document to a task in the Content Fusion Tasks

Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to

adapt to any type of documentation review workflow. This functionality is available through a

connector add-on. To fully take advantage of all of the benefits and features of Content Fusion,

your organization will need an Oxygen Content Fusion Enterprise Server. For more information,

see the Oxygen Content Fusion website.

https://www.oxygenxml.com/doc/ug-addons/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion/get_started.html
https://www.oxygenxml.com/content_fusion/get_started.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3062

Edit Attributes

Displays an in-place attributes editor (on page 643) that allows you to manage the attributes of

an element.

Edit Profiling Attributes

Allows you to change the profiling attributes (on page 683) defined on all selected elements.

Cut (Ctrl + X (Command + X on macOS))

Removes the currently selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on macOS))

Places a copy of the currently selected content in the clipboard.

Paste (Ctrl + V (Command + V on macOS))

Inserts the current clipboard content into the document at the cursor position.

Paste special submenu

This submenu includes the following special paste actions that are specific to the DITA

framework:

Paste as content reference

Inserts a content reference (a DITA element with a @conref attribute) to the DITA

XML element from the clipboard. An entire DITA XML element with an ID attribute

must be present in the clipboard when the action is invoked. The conref attribute

will point to this ID value.

Paste as content key reference

Allows you to indirectly reference content using the @conkeyref attribute. When the

DITA content is processed, the key references are resolved using key definitions

from DITA maps (on page 3296). To use this action, you must first do the

following:

1. Make sure the DITA element that contains the copied content has an ID

attribute assigned to it.

2. In the DITA Maps Manager view, make sure that the Context combo box

points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has a

key assigned to it. To assign a key, right-click the topic with its parent map

opened in the DITA Maps Manager, select Edit Properties, and enter a value

in the Keys field.

Paste as link

Looks for the first element with an ID value in the clipboard and inserts an <xref>

that points to that element. If no elements with an ID value are found, a message

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3063

will appear that informs you that to use this action, the clipboard contents must

include at least one element with a declared ID.

Paste as link (keyref)

Inserts a link to the element that you want to reference. To use this action, you

must first do the following:

1. Make sure the DITA element that contains the copied content has an ID

attribute assigned to it.

2. In the DITA Maps Manager view, make sure that the Context combo box

points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has a

key assigned to it. To assign a key, right-click the topic with its parent map

opened in the DITA Maps Manager, select Edit Properties, and enter a value

in the Keys field.

Insert submenu

This submenu includes the following insert actions that are specific to the DITA framework:

Insert Table

Opens a dialog box that allows you to configure and insert a table. You can

generate a header and footer, set the number of rows and columns of the table and

decide how the table is framed. You can also use this action to convert selected

paragraphs, lists, and inline content (mixed content, text plus markup, that is

rendered inside a block element (on page 3294)) into a table, with the selected

content inserted in the first column, starting from the first row after the header (if a

header is inserted).

Note:

If the selection contains a mixture of elements that cannot be converted,

you will receive an error message saying that Only lists, paragraphs, or

inline content can be converted to tables.

Insert Image

Inserts an image reference (on page 733) at the cursor position. Depending on the

current location, an image-type element is inserted.

Insert Media Resource

Opens a Choose Media dialog box (on page 761) that allows you to select the URL

of a media object to be inserted into a document at the cursor position. The result

will be that a reference to the specified video, audio, or embedded HTML frame is

inserted and rendered in Author mode so that it can be played directly from there.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3064

Insert Equation

Opens the XML Fragment Editor that allows you to insert and edit MathML

notations (on page 763).

Insert Note

Inserts a new <note> element at the current cursor position.

Insert Code Block

Inserts a new <codeblock> element at current cursor position.

Insert Menu Cascade

Inserts a new <menucascade> element at current cursor position.

Insert Label

Inserts a special label keyword in the prolog. The label is helpful for searching

WebHelp Responsive output for similar topics with the same label.

Insert Paragraph

Inserts a new <p> (paragraph) element at current cursor position.

Insert Section

Inserts a new <section> element in the document, depending on the current context.

Insert Topic

Inserts a new <topic> element, depending on the current context. Topics are the

basic units of DITA content and are usually organized around a single subject.

Insert Entity

Allows you to insert a predefined entity or character entity. Surrogate character

entities (range #x10000 to #x10FFFF) are also accepted. Character entities can be

entered in one of the following forms:

• #<decimal value> - e.g. #65

• &#<decimal value> - e.g. A

• #x<hexadecimal value> - e.g. #x41

• &#x<hexadecimal value> - e.g. A

Style submenu

This submenu includes the following text styling actions:

Bold

Emphasizes the selected text by surrounding it with a (bold) tag. You can use

this action on multiple non-contiguous selections.

Italic

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3065

Emphasizes the selected text by surrounding it with an <i> (italic) tag. You can use

this action on multiple non-contiguous selections.

Underline

Emphasizes the selected text by surrounding it with a <u> (underline) tag. You can

use this action on multiple non-contiguous selections.

Subscript

Surrounds the selected text with a <sub> (subscript) tag, used for inserting a

character (number, letter, or symbol) that will appear slightly below the baseline

and slightly smaller than the rest of the text.

Superscript

Surrounds the selected text with a <sup> (superscript) tag, used for inserting a

character (number, letter, or symbol) that will appear slightly above the baseline

and slightly smaller than the rest of the text.

Code

Surrounds the selected text with a <codeph> tag.

UI Control

Surrounds the selected text with a <uicontrol> tag, used to mark up names of

buttons, entry fields, menu items, or other interface objects.

Filepath

Surrounds the selected text with a <filepath> tag, used to indicate the name, and

optionally the location of a referenced file. You can specify the directory that

contains the file and other directories that may precede it in the system hierarchy.

Image Map Editor

This action is available in the contextual menu when it is invoked on an image. This action

applies an image map to the current image (if one does not already exist) and opens the Image

Map Editor dialog box. This feature allows you to create hyperlinks in specific areas of an image

that will link to various destinations.

Table Actions

A variety of table editing actions are available in the contextual menu when it is invoked on a

table (depending on the context, the table-related actions are promoted to the top level of the

contextual menu and the Other Actions submenu provides access to the other actions):

Insert Rows

Opens a dialog box that allows you to insert any number of rows and specify the

position where they will be inserted (Above or Below the current row).

Delete Row(s)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3066

Deletes the table row located at the cursor position or multiple rows in a selection.

Insert Columns

Opens a dialog box that allows you to insert any number of columns and specify

the position where they will be inserted (Above or Below the current column).

Delete Column(s)

Deletes the table column located at the cursor position or multiple columns in a

selection.

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one

option to split the cell, a dialog box will be displayed that allows you to select the

number of rows or columns to split the cell into.

Sort

Sorts cells or list items in a table.

Table Properties

Opens the Table properties dialog box that allows you to configure properties of a

table (such as frame borders).

Other Actions submenu

This submenu give you access to all the usual contextual menu actions.

Link submenu

The following link actions are available from this submenu:

Cross Reference

Opens the Cross Reference (xref) dialog box (on page 3132) that allows you to

insert a link to a target DITA resource at the current location within a document.

The target resource can be the location of a file or a key that is already defined

in your DITA map (on page 3296) structure. Once the target resource has been

selected, you can also target specific elements within that resource. For more

information, see Linking in DITA Topics (on page 3131).

File Reference

Opens the File Reference dialog box (on page 3132) that allows you to insert a

link to a target non-DITA file resource at the current location within a document.

The target resource can be the location of a file or a key that is already defined in

your DITA map structure. For more information, see Linking in DITA Topics (on

page 3131).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3067

Web Link

Opens the Web Link dialog box (on page 3132) that allows you to insert a link to a

target web-related resource at the current location within a document. The target

resource can be a URL or a key that is already defined in your DITA map structure.

For more information, see Linking in DITA Topics (on page 3131).

Related Link to Topic

Opens the Cross Reference (xref) dialog box (on page 3133) that allows you to

insert a link to a target DITA resource in a related links section at the bottom of the

current document. The target resource can be the location of a file or a key that

is already defined in your DITA map structure. Once the target resource has been

selected, you can also target specific elements within that resource. If a related

links section does not already exist, this action creates one. For more information,

see Linking in DITA Topics (on page 3131).

Tip:

You can use the Find Similar Topics action (available in the contextual

menu or DITA menu) to quickly find related topics that can be added as

related links. It opens the Open/Find Resource view and performs a search

using text content from the <title>, <shortdesc>, <keyword>, and <indexterm>

elements.

Related Link to File

Opens the File Reference dialog box (on page 3133) that allows you to insert a

link to a target non-DITA file resource in a related links section at the bottom of the

current document. The target resource can be the location of a file or a key that

is already defined in your DITA map structure. If a related links section does not

already exist, this action creates one. For more information, see Linking in DITA

Topics (on page 3131).

Related Link to Web Page

Opens the Web Link dialog box (on page 3133) that allows you to insert a link to

a target web-related resource in a related links section at the bottom of the current

document. The target resource can be a URL or a key that is already defined in your

DITA map structure. If a related links section does not already exist, this action

creates one. For more information, see Linking in DITA Topics (on page 3131).

Sort

Available when invoked on a list, it opens a dialog box where you can configure a sorting

operation for an entire list or a selection of list items.

Generate IDs

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3068

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on

how the action is invoked:

• When invoked on a single selection, an ID is generated for the selected element at the

cursor position.

• When invoked on a block of selected content, IDs are generated for all top-level elements

and elements listed in the ID Options dialog box that are found in the current selection.

Note:

The Generate IDs action does not overwrite existing ID values. It only affects elements

that do not already have an @id attribute.

Reuse submenu

This submenu includes the following actions regarding reusing content in DITA:

Reuse Content

This action provides a mechanism for reusing content fragments. It opens the

Reuse Content dialog box (on page 3101) that allows you to insert several types

of references to reusable content at the cursor position. The types of references

that you can insert using this dialog box include content references (@conref) (on

page 3102), content key references (@conkeyref) (on page 3104), or key references

to metadata (@keyref) (on page 3107).

Push Current Element

Opens the Push current element dialog box (on page 3110) that allows content

from a source topic to be inserted into another topic without any special coding in

the topic where the content will be re-used.

Edit Content Reference

This action is available for elements with a @conref or @conkeyref attribute. It opens

the Edit Content Reference dialog box that allows you to edit the source location

(or key) and source element of a content reference (or content key reference),

and the reference details (@conref/@conkeyref and @conrefend attributes). For more

information, see Reuse Content Dialog Box (on page 3101).

Replace Reference with Content

Replaces the referenced fragment (@conref or @conkeyref) at the cursor position

with its content from it source. This action is useful if you want to make changes

to the content in the currently edited document without changing the referenced

fragment in its source location. If the source content includes references to other

topics/resources (hrefs), the operation also resolves those references relative to

the new location. Attributes are preserved according to the following priority:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3069

1. Attributes from the elements in the current document that reference other

content are preserved except for attributes with a -dita-use-conref-target

value.

2. Attributes from the referenced content are brought into the replaced

elements in the current document except for @id attributes.

Replace All References with Content

Replaces all referenced fragments (@keyref, @conref, or @conkeyref) in the current

document with the content. Attributes are preserved according to the following

priority:

1. Attributes from the elements in the current document that reference other

content are preserved except for attributes with a -dita-use-conref-target

value.

2. Attributes from the referenced content are brought into the replaced

elements in the current document except for @id attributes.

For keyrefs inside <xref> or <link> elements, the @keyref attribute is changed to

an @href attribute, while the rest of the content for the keyref is replaced with its

source content.

If the source content includes references to other topics/resources (hrefs), the

operation also resolves those references relative to the new location.

Remove Content Reference

Removes the content reference (@conref or @conkeyref) inside the element at the

cursor position.

Create Reusable Component

Opens a dialog box that helps you to create a reusable component from the

current element or selection of elements. If the Replace selection with content

reference option is selected in the dialog box, the selection will be replaced with a

content reference (@conref). If multiple elements are selected (for example, multiple

steps or list items), the selection will be replaced with a content reference range

(@conref and @conrefend). For more information, see Creating a Reusable Content

Component (on page 3113).

Insert Reusable Component

Inserts a reusable component at cursor location. For more information, see

Inserting a Reusable Content Component (on page 3114).

Extract Topic From Selection

Creates a new DITA topic from a selection of content in the current topic.

Search References (Ctrl + Shift + G (Command + Shift + G on macOS))

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3070

Finds the references to the @id attribute value for the element at the current cursor position, in

all the topics contained in the current DITA map (on page 3296) (opened in the DITA Maps

Manager view (on page 2950)). If no references are found for the current element, a dialog box

will be displayed that offers you the option of searching for references to its ancestor elements.

Figure 772. Search References to Ancestors Dialog Box

Tip:

If you are invoking the action on an image, see Searching for References to Images (on

page 3032) for details about what will be reported.

Find Similar Topics

Opens the Open/Find Resource view and performs a search using text content from the <title>,

<shortdesc>, <keyword>, and <indexterm> elements. It is helpful for quickly finding related topics that

can be added as related links.

Show Key Definition

Available for elements that have a @conkeyref or @keyref attribute set (or elements with an

ancestor element that has a @conkeyref or @keyref attribute). It computes the key name and opens

the DITA map (on page 3296) that contains the definition of the key with the element that

defines that key selected.

About Element submenu

This submenu includes the following actions:

Style Guide

Opens the DITA Style Guide Best Practices for Authors in your browser and

displays a topic that is relevant to the element at the cursor position. When editing

DITA documents, this action is available in the contextual menu of the editing

area (under the About Element sub-menu), in the DITA menu, and in some of the

documentation tips that are displayed by the Content Completion Assistant (on

page 3295).

Browse reference manual

Opens a reference to the documentation of the XML element closest to the cursor

position in a web browser.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3071

Go to Definition

Moves the cursor to the definition of the current element.

Select submenu

This submenu allows you to select the following:

Element

Selects the entire element at the current cursor position.

Content

Selects the entire content of the element at the current cursor position, excluding

the start and end tag. Performing this action repeatedly will result in the selection

of the content of the ancestor of the currently selected element content.

Parent

Selects the entire parent element at the current cursor position.

Text submenu

This submenu contains the following actions:

To Lower Case

Converts the selected content to lower case characters.

To Upper Case

Converts the selected content to upper case characters.

Capitalize Sentences

Converts to upper case the first character of every selected sentence.

Capitalize Words

Converts to upper case the first character of every selected word.

Count Words

Counts the number of words and characters (no spaces) in the entire document or

in the selection for regular content and read-only content.

Note:

The content marked as deleted with change tracking (on page 3301) is

ignored when counting words.

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on

macOS))

Converts a sequence of hexadecimal characters to the corresponding Unicode

character (on page 475). The action can be invoked if there is a selection

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3072

containing a valid hexadecimal sequence or if the cursor is placed at the right side

of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed

of 2 to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X

prefix. Examples of valid sequences and the characters they will be converted to:

• 0x0045 will be converted to E

• 0X0125 to ĥ

• 265 to ɥ

• 2190 to ←

Note:

For more information about finding the hexadecimal value of a

character, see Finding the Decimal, Hexadecimal, or Character Entity

Equivalent (on page 478).

Refactoring submenu

Contains a series of actions designed to alter the XML structure of the document:

Toggle Comment

Encloses the currently selected text in a comment, or removes the comment if it is

commented.

Move Up (Alt + UpArrow (Option + UpArrow on macOS))

Moves the current node or selected nodes in front of the previous node.

Move Down (Alt + DownArrow (Option + DownArrow on macOS))

Moves the current node or selected nodes after the subsequent node.

Split Element (Alt + Shift + D (Ctrl + Option + D on macOS))

Splits the content of the closest element that contains the position of the cursor.

Thus, if the cursor is positioned at the beginning or at the end of the element, the

newly created sibling will be empty.

Join Elements

Joins two adjacent block elements (on page 3294) that have the same name. The

action is available only when the cursor position is between the two adjacent block

elements. Also, joining two block elements can be done by pressing the Delete or

Backspace keys and the cursor is positioned between the boundaries of these two

elements.

Surround with Tags (Ctrl + E (Command + E on macOS))

Allows you to choose a tag to enclose a selected portion of content. If there is no

selection, the start and end tags are inserted at the cursor position.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3073

• If the Position cursor between tags option (on page 221) is selected in the

Content Completion preferences page, the cursor is placed between the

start and end tag.

• If the Position cursor between tags option (on page 221) is not selected in

the Content Completion preferences page, the cursor is placed at the end of

the start tag, in an insert-attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on macOS))

Surround the selected content with the last tag used.

Rename Element

The element from the cursor position, and any elements with the same name, can

be renamed according with the options from the Rename dialog box.

Delete Element Tags

Deletes the tags of the closest element that contains the position of the cursor.

This operation is also executed if the start or end tags of an element are deleted by

pressing the Delete or Backspace keys.

Remove All Markup

Removes all the XML markup inside the selected block of content and keeps only

the text content.

Remove Text

Removes the text content of the selected block of content and keeps the markup

intact with empty elements.

DITA-related Refactoring Actions

A variety of built-in XML refactoring operations that pertain to DITA documents

with some of the information preconfigured based upon the current context.

Change Topic ID to File Name

Use this operation to change the ID of a topic to be the same as its

file name.

Convert CALS Tables to Simple Tables

Use this operation to convert DITA CALS tables to simple tables. If

you invoke this operation from a nested table (a table inside a table),

only the nested table will be affected. If it is invoked on a parent

table that contains nested tables, all of the contained tables will be

converted.

Convert conrefs to conkeyrefs

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3074

Use this operation to convert @conref attributes to @conkeyref

attributes.

Convert Simple Tables to CALS Tables

Use this operation to convert DITA simple tables to CALS tables. If

you invoke this operation from a nested table (a table inside a table),

only the nested table will be affected. If it is invoked on a parent

table that contains nested tables, all of the contained tables will be

converted.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA

Concept topic type (for example, Topic to Concept).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA

General Task topic type (for example, Task to General Task). A

DITA General Task is a less restrictive alternative to the Strict Task

information type.

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA

Reference topic type (for example, Topic to Reference).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA

Task topic type (for example, Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA

Topic (for example, Task to Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA

Troubleshooting topic type (for example, Topic to Troubleshooting).

Rename Key

Available when invoked on a key, and can be used to quickly rename a

key. It also updates all references to it. Note that it does not work on

DITA 1.3 key scopes.

Generate IDs

Use this operation to automatically generate unique IDs for elements.

Attributes Refactoring Actions

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3075

Contains built-in XML refactoring operations that pertain to attributes with some of

the information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

Allows you to search for a text fragment inside an attribute value and

change the fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some

of the information preconfigured based upon the current context.

Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of

the information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while

keeping the content unchanged.

Wrap element

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3076

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with

some of the information preconfigured based upon the current context.

Insert XML fragment

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment

Allows you to replace elements with an XML fragment.

Review submenu

This submenu includes the following actions:

Track Changes

Enables or disables the Track Changes (on page 3301) support for the current

document.

Accept Change(s) and Move to Next

Accepts the Tracked Change (on page 3301) located at the cursor position or all

of the changes in a selection and then moves to the next change. If you select a

part of a deletion or insertion change, only the selected content is accepted.

Accept All Changes

Accepts all Tracked Changes (on page 3301) in the current document.

Reject Change(s) and Move to Next

Rejects the Tracked Change (on page 3301) located at the cursor position or all of

the changes in a selection and then moves to the next change. If you select a part

of a deletion or insertion change, only the selected content is rejected.

Reject All Changes

Rejects all Tracked Changes (on page 3301) in the current document.

Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked

Change (on page 3301). The comment will appear in a callout and a tooltip when

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3077

hovering over the change. If the action is selected on an existing commented

change, the dialog box will allow you to edit the comment.

Highlight

Enables the highlighting tool that allows you to mark text in your document.

Colors

Allows you to select the color for highlighting text.

Stop highlighting

Use this action to deactivate the highlighting tool.

Remove highlight(s)

Use this action to remove highlighting from the document.

Add Comment

Inserts a comment at the cursor position. The comment appears in a callout box

and a tooltip (when hovering over the change).

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current

user to edit comments that do not have replies. If you are not the author who

inserted the original comment, the dialog box just displays the comment without

the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all

of the replies will also be removed.

Manage Reviews

Opens the Review view (on page 678).

Manage IDs submenu

This submenu is available for topics that have an associated DTD or schema. It includes the

following actions:

Rename in

Renames the ID and all its occurrences. Selecting this action opens the Rename

XML ID dialog box. This dialog box lets you insert the new ID value and choose the

scope of the rename operation.

Search References

Searches for the references of the ID. By default, the scope of this action is the

current project. If you configure a scope using the Select the scope for the Search

and Refactor operations (on page 847) dialog box, this scope will be used instead.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3078

Search References in

Searches for the references of the ID. Selecting this action opens the Select the

scope for the Search and Refactor operations (on page 847).

Search Occurrences in file

Searches for the occurrences of the ID in the current document.

Folding submenu

This submenu includes the following actions:

Toggle Fold

Toggles the state of the current fold.

Collapse Other Folds

Folds all the elements except the current element.

Collapse Child Folds

Folds the elements indented with one level inside the current element.

Expand Child Folds

Unfolds all child elements of the currently selected element.

Expand All

Unfolds all elements in the current document.

Inspect Styles

Opens the CSS Inspector view (on page 654) that allows you to examine the CSS rules that

match the currently selected element.

Options

Opens the Author mode preferences page (on page 184) where you can configure various

options with regard to the Author editing mode.

Floating Contextual Toolbar for DITA

Oxygen XML Editor includes a dynamic feature where certain editing contexts will trigger a floating toolbar

with common actions that are available in the current editing context.

Figure 773. DITA Floating Contextual Toolbar

The floating contextual toolbar is automatically displayed when editing DITA documents in various situations,

including:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3079

• When a <p>, , or <shortdesc> element has a selection inside, the floating toolbar includes actions

such as Bold, Italic, Underline, a Link submenu, and more.

• When an <image> or <xref> element is selected:

◦ If the element has an @href attribute, the floating toolbar includes a URL chooser where you can

select the appropriate target.

◦ If the element has a @keyref attribute, the floating toolbar includes a drop-down control where

you can select the appropriate target key reference.

• When an <object> element is selected:

◦ If the element has a @data attribute, the floating toolbar includes a URL chooser where you can

select the appropriate target.

◦ If the element has a @datakeyref attribute, the floating toolbar includes a drop-down control where

you can select the appropriate target key reference.

• When an element with a @conref attribute is selected, the floating toolbar includes actions for editing,

removing, or replacing content references.

• When a <codeblock> element is selected, the floating toolbar includes a drop-down control where you

can select the value of the @outputclass attribute.

• When a element is selected, the floating toolbar includes actions for converting it to an ordered list

or sorting the list.

• When an element is selected, the floating toolbar includes actions for converting it to an unordered

list or sorting the list.

• When an or <step> element is selected, the floating toolbar includes actions for moving the item up

or down in the list/procedure.

• When a <row> or <strow> element is selected in a table, the floating toolbar includes various table-related

actions (such as actions for editing table properties, inserting rows, or deleting rows).

• When an <entry> or <stentry> element is selected in a table, the floating toolbar includes various table-

related actions (such as actions for editing table properties, inserting/deleting rows, or inserting/

deleting columns).

• When a <table> or <simpletable> element is selected, the floating toolbar includes actions for editing

table properties or sorting the table.

DITA Drag/Drop (or Copy/Paste) Actions

Dragging a file from the Project view (on page 414) or DITA Maps Manager view (on page 2950) and

dropping it into a DITA document that is edited in Author mode, creates a link to the dragged file (the <xref>

DITA element with the @href attribute) at the drop location. Copy and paste actions work the same.

You can also drag images or media files from your system explorer or the Project view (on page 414) and drop

them into a DITA document (or copy and paste). This will insert the appropriate element at the drop or paste

location (for example, dropping/pasting an image will insert the DITA <image> element with an @href attribute).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3080

Tip:

For information about customizing Author mode actions for a particular framework (on page 3297)

(document type), see the Customizing the Author Mode Editing Experience for a Framework (on page

2254) section.

Related Information:

Customizing the Author Mode Editing Experience for a Framework (on page 2254)

Working with Markdown Documents in DITA
The Oxygen XML Editor has special features that make it easy to incorporate Markdown documents into a

DITA project. This is particularly useful for teams with members who are familiar with Markdown syntax but

want to generate their output from DITA projects. The integration between the Markdown editor and DITA

includes options to export or convert Markdown documents into DITA topics, as well as a live preview of the

edited Markdown content.

Preview

The changes made to the Markdown content can be previewed live in three separate tabs: DITA, XDITA, and

HTML.

The DITA tab in the Preview pane shows how an equivalent DITA topic will look after conversion. Similarly, the

XDITA tab shows how a Lightweight DITA topic will look after conversion. The HTML tab shows a previous of

the HTML equivalent.

Keys that are defined in the root map are also resolved in the Preview pane in the XDITA and DITA tabs. If the

Markdown document contains profiling attributes (e.g. ## Header 2 {audience=expert}), the Preview pane

presents the profiling attributes, colors, and filtered elements similar to Author mode (if profiling is set to be

shown in the Profiling/Conditional Text drop-down (on page 2955) in the DITA Maps Manager).

Note:

To make the content generated for preview in the DITA and XDITA preview tabs more readable and to

improve the conversion of Markdown to DITA in the editor, you can add an XML catalog to the XML

catalogs (on page 842) list. This XML catalog will help with post-processing before the content is

displayed. Here is an example of an XML catalog that you can use:

<catalog

 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <uri

 name="http://www.oxygenxml.com/ns/preview/postprocess/dita" uri="postProcessDITA.xsl"/>

 <uri

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3081

 name="http://www.oxygenxml.com/ns/preview/postprocess/lwdita" uri="postProcessLWDITA.xsl"/>

</catalog>

Export Markdown as a DITA Topic

The Markdown editor includes an option to quickly convert the current Markdown document into a DITA topic.

The Export as DITA Topic action is available in the contextual menu.

The conversion creates a new XML file that is defined as a DITA topic and opens it in the Text editing mode.

You can then work with the document as you would with any other DITA topic, although you may need to

manually correct some issues where the parser could not properly map Markdown syntax to DITA markup.

Working with Markdown Documents in the DITA Maps Manager

Oxygen XML Editor has some specialized features that allow you to integrate Markdown documents directly

into your DITA project using the DITA Maps Manager (on page 2950). The following features are available for

Markdown documents in the DITA Maps Manager view:

• Insert Reference to Markdown Document - You can use the New, Reference, and Reference to

the currently edited file actions from the Append Child, Insert Before, or Insert After submenu

when invoking the contextual menu in the DITA Maps Manager to insert a reference to a Markdown

document at the selected location in the map. Markdown documents will be inserted as a topic

reference (topicref element) with the format attribute set to markdown.

• Validate Markdown Documents in DITA Maps - When you use the Validate and Check for

Completeness action from the DITA Maps Manager toolbar to check the integrity of the structure of a

DITA map, Markdown documents that are referenced in the DITA map will be converted to DITA topics

in the background and validated the same as any other DITA topic.

• Transforming DITA Maps with Markdown Documents - When transforming DITA maps that have

Markdown documents referenced, the transformation will convert the Markdown documents to normal

DITA output without you needing to manually convert the Markdown documents to DITA topics.

• Manually Convert Markdown Documents to DITA Topics - If you need to use DITA semantics that are

not possible in Markdown syntax (such as content references, related links, and other DITA-specific

syntax), you can manually convert the Markdown document into a DITA topic. To do so, right-click the

Markdown document in the DITA Maps Manager and select Refactoring > Convert Markdown to DITA

Topic. This will open a dialog box that allows you to configure options for converting the document to

an XML file that is defined as a DITA topic.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3082

Figure 774. Convert Markdown to DITA Topic Dialog Box

This dialog box includes the following options:

Destination

The destination path for the new DITA topic.

File Name

Presents the current name and allows you to change it.

Update references

Select this option to update all references of the file in the DITA map and in the files

referenced from the DITA map.

Delete Markdown file

If selected, the Markdown version of the file is deleted when the document is converted

into a DITA file. If deselected (default value), when the document is converted into a DITA

file, the original Markdown file is also preserved in its current location.

Preview

Select this button to display a preview of the changes Oxygen XML Editor is about to

make.

Convert

Select this button to perform the conversion. If the Markdown file has format="markdown",

it will be converted to a DITA topic. If it has format="mdita", it will be converted to a

LightWeight DITA topic.

Tip:

Oxygen XML Editor comes with a sample ditamap project for converting Markdown to DITA. Go to the

Project view (on page 414), open the sample.xpr project, and navigate to the dita/markdown-

dita folder.

http://docs.oasis-open.org/dita/LwDITA/v1.0/cnprd01/LwDITA-v1.0-cnprd01.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3083

Converting Multiple Markdown Documents to DITA

Oxygen XML Editor offers an add-on that contributes actions in the Tools menu and contextual menu to

enable batch conversion between various formats, including Markdown to DITA. For more information

and instructions for installing the add-on, see https://www.oxygenxml.com/doc/ug-addons/topics/batch-

converter-addon.html.

DITA-Related Markdown Syntax

For a list of Markdown rules and syntax examples that are specific to DITA, see the Markdown DITA Syntax

Reference.

Related information

Markdown Editor (on page 1299)

Actions Available in the Markdown Editor (on page 1302)

Markdown Editor Syntax Rules and Specifications (on page 1314)

Automatic Validation in Markdown Documents (on page 1310)

Markdown DITA Syntax Reference

Working with DITA-Compatible Documents
Oxygen XML Editor includes powerful dynamic publishing features (on page 3187) that allow you to

easily integrate Word, Excel, OpenAPI, HTML, Markdown documents into a DITA project and have them

automatically converted to DITA at the time of publishing. This is especially helpful for teams that have

contributors who work with non-DITA documents but want their output to be generated from DITA projects.

Attention:

These features are available with no restrictions when the publishing process is done using the

default publishing engine that is bundled in Oxygen XML Editor or if you have integrated the DITA-OT

dynamic converter plugin into a custom DITA-OT distribution.

Working with DITA-Compatible Documents in the DITA Maps Manager

Oxygen XML Editor has some specialized features that allow you to integrate DITA-compatible documents

directly into your DITA project using the DITA Maps Manager (on page 2950). The following features are

available in the DITA Maps Manager view:

• Insert References to DITA-Compatible Documents - You can use the New, Reference, and Reference

to the currently edited file actions from the Append Child, Insert Before, or Insert After submenu

when invoking the contextual menu in the DITA Maps Manager to insert a reference to a Word, Excel,

OpenAPI, HTML or Markdown document at the selected location in the map. A topic reference

(<topicref>) element with the appropriate @format attribute value will be inserted.

• Title of Referenced Resources is Displayed - The title of each referenced DITA-compatible resource is

presented in the DITA Maps Manager view.

https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3084

• Validate DITA-Compatible Documents in DITA Maps - When you use the Validate and Check for

Completeness action from the DITA Maps Manager toolbar to check the integrity of the structure of

a DITA map, DITA-compatible documents that are referenced in the DITA map are converted to DITA

topics in the background and validated the same as any other DITA topic.

• IDs Presented When Inserting References - When inserting topic references, cross references, or

content references to content inside DITA-compatible documents, the application presents a list of

DITA-specific IDs from the target document.

• Transform DITA Maps with DITA-Compatible Documents - When transforming DITA maps that have

DITA-compatible documents referenced, the transformation converts the documents to normal DITA

output without you needing to manually convert the documents to DITA topics.

Converting Multiple DITA-Compatible Documents to DITA

Oxygen XML Editor offers an add-on that contributes actions in the Tools menu and contextual menu to

enable batch conversions between various formats. For more information and instructions for installing the

add-on, see Batch Documents converter add-on.

Resources

For more information about working with DITA-compatible resources, see the following resources:

• Video: Integrating REST-API Content into DITA Documentation in Oxygen

• Webinar: Integrating Various Document Formats (OpenAPI, Word, Markdown, HTML, Excel) into DITA

Documentation

Related information

Dynamic Word, Excel, OpenAPI, HTML, Markdown to DITA Conversion (on page 3187)

Working with Keys in DITA
DITA uses keys to insert content that may have different values in particular circumstances. Keys provide a

way to reference something indirectly. This can make it easier to manage and to reuse content in a various

ways.

You can think of keys as like renting a post office box. Instead of the mail going directly from the sender to

your house, it now goes to the post office box. You then go to the post office box and bring the mail back to

your house. If you move to a new house, your mail still gets to you because it comes to the same post office

box. You do not have to send change of address cards to all the people who send you mail. Your mailbox

address is the key that makes sure your mail always reaches you, even if you move.

Similarly, if you use keys in your content to reference other content, you do not have to update the source

content to change the value of the key or what it points to. You just change the definition of the key.

https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.youtube.com/watch?v=mzmnOBzJ5Uk
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/key-based-addressing.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/key-based-addressing.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3085

Defining Keys in DITA Maps

Keys are defined in maps and can then be reused and referenced throughout the whole structure of the map. It

is considered best practice to create a separate submap that contains all of the key definitions and reference

that submap in the main (root) map (on page 3301). This makes it easier to manage since they're all in one

location.

There are two types of key definitions that can be created in a map:

• Key with a value inside a <keyword>. To define this type of key, follow these instructions: Key Definition

with a Keyword Value (on page 2985).

• Key with a target (for example, to target a resource such as an image or external link). To define this

type of key, follow these instructions: Key Definition with a Target (on page 2986).

Using Keys for Values

You can use keys to represent values that may vary depending on the type of output. For instance, you may

have several products that share a common feature. When you want to describe that feature, you need a way

to insert the name of the product, even though that name is different depending on which product the feature

description is being used for. For more information, see Working with Variable Text in DITA (on page 3114).

Assigning Keys to Topics

You can assign a key to a topic and use that key to reference that topic for various purposes, such as reuse

or linking. As always, keys are defined in maps, so the key definition is done using the keys attribute of the

<topicref> element:

<topicref href="quick-heat.dita" keys="feature.quick-heat"/>

The easiest way to assign keys to a topic (and insert the <topicref> element in its DITA map (on page 3296))

is to use the Keys tab in the Edit Properties dialog box (on page 2988). In the DITA Maps Manager (on page

2950), invoke the contextual menu on the topic that will have the key assigned and select Edit Properties.

Go to the Keys tab and enter the name of the key in the Define keys field.

Once a key is assigned to a topic, you can use it to reference that topic for various purposes:

• You can create a link (on page 3131) to it using <xref keyref="feature.quick-heat">. This allows you

to change the target of the link by changing the topic that is pointed to by the key (for example, by

profiling).

• You can use it in a map to create a reference to a topic (on page 2971) by key: <topicref

keyref="feature.quick-heat">. This allows you to change which topic is inserted in the map by the build,

by changing the topic that is pointed to by the key.

• You can use it to insert a content reference (on page 3096). In this case, the content reference

uses the key to locate the topic to pull content from. It uses a @conkeyref attribute: <procedure

conkeyref="feature.quick-heat/preheat-procedure">. In this example, feature.quick-heat is the key,

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3086

and preheat-procedure is the ID of a procedure within the topic for that key. Using this mechanism,

you could have multiple versions of the preheat procedure in various topics and control which one is

inserted by changing the topic that is pointed to by the key.

Assigning Keys to Graphics

You can assign a key to an image (using a map to point to the image file (on page 2986)) and then insert the

image using the key (on page 3029).

Example of a key definition for a targeted image file:

<map id="keydefs">

 <!-- product name -->

 <title>Key Definitions</title>

 <keydef keys="image1" href="../img/image1.png" format="png"/>

</map>

Related information

Defining Keys in DITA Maps (on page 2984)

Creating a DITA Content Key Reference (on page 3096)

Reuse Content Dialog Box (on page 3101)

DITA Reusable Components View (on page 3119)

DITA 1.3 Specification: Indirect Key-based Addressing

Short Video Clip: Learn DITA Editing with Oxygen - Define a Key for a Product Name and Use It

Short Video Clip: Learn DITA Editing with Oxygen - Use an Already Defined Key for a Product Name

Doctales - Key Reference (keyref)

Working with a Glossary of Terms in DITA
There are several ways to manage a Glossary of Terms in DITA, but it is considered best practices to create a

separate submap for the glossary and embed that glossary map in the main (root) map (on page 3301). The

actual glossary terms are small glossary entry topics that are referenced in the glossary map. You can add

links to the glossary terms (on page 3087) in the output and you can even define abbreviated forms (on page

3088) for terms that have an acronym or some other type of abbreviation.

How to Create a Glossary of Terms in Oxygen XML Editor

Even though there are several ways to create a glossary and reference the glossary terms, the following is the

recommended approach:

1. Create a new submap (on page 2969) for your glossary and embed it in your main map.

2. Create a glossary entry topic (<glossentry>) for each glossary term. The <glossentry> element may

contain numerous optional glossentry elements, but every glossentry topic must contain a <glossterm>

and <glossdef> element. The <glossterm> is the name of the term while the <glossdef> is its definition.

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/key-based-addressing.html
https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_xbt_bcq_pvb
https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_d55_1dq_pvb
https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_d55_1dq_pvb
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossentry.html
https://docs.oasis-open.org/dita/v1.2/os/spec/common/glossary2.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3087

Here is an simple example:

<glossentry id="ddl">

 <glossterm>Data Definition Language</glossterm>

 <glossdef>A language used for defining database schemas.</glossdef>

</glossentry>

The easiest way to create a glossentry topic in Oxygen XML Editor:

a. Click the New file wizard button on the toolbar.

b. Type glossentry in the search field at the top of the dialog box.

c. Select the Glossentry DITA topic type, configure the name and optionally the title, and click

Create.

3. Reference each glossary entry topic in your glossary submap using the <glossref> element. This

element requires a @keys attribute. Please make sure the @print attribute is set to yes to show the

glossary also in the PDF output.

<glossref keys="gloss_ddl" href="ddl.dita" print="yes"/>

The easiest way to reference a glossentry in Oxygen XML Editor:

a. With the glossary entry topic opened in the main editor, open the glossary submap in the DITA

Maps Manager, right-click the map node and select Append Child > Reference to the currently

edited file (if you already have existing glossentry topics, you can right-click the glossentry

where you want to insert the new one and select Insert After > Reference to the currently edited

file).

Step Result: This opens the Insert Reference dialog box (on page 2976).

b. Go to the Keys tab and enter a name in the Define keys field.

c. Select Glossary Reference from the Reference type drop-down list at the top of the dialog box.

d. Click Insert and Close.

Tip:

You could also group multiple glossentry topics into a single collection by using the <glossgroup>

element.

How to Create Links to Glossary Terms

To specify that a link is generated in the output from the glossary term to its definition, use the <term> element

(or <abbreviated-form> element as described in the next section (on page 3088)) with a @keyref attribute

that references the corresponding key specified in the <glossref>. Of course, the <glossref> points to the

<glossentry> topic where the glossary term is defined.

<term keyref="gloss_ddl"/>

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossgroup.html
http://docs.oasis-open.org/dita/v1.2/os/spec/langref/term.html#term

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3088

In the output, the text specified in the <glossterm> element is displayed for the glossary term with a link to its

glossentry topic that contains its definition.

The easiest way to add a <term> element and reference the glossary term in Oxygen XML Editor:

1. Place the cursor at the location where you want to insert a link to the glossary term.

2. In the DITA Reusable Componts view (on page 3119), go to the Keys tab and use the search filter field

at the top of the view to find the key for the particular glossary term.

3. Right-click the key and select Insert as Keyref > More > Term.

Using Abbreviated Forms (Acronyms) with Glossary Terms

The <abbreviated-form> element can be used for glossary terms that you want to appear in an abbreviated form

(such as an acronym). Abbreviated forms are expanded to their full form the first time that they appear in a

document, and then all subsequent instances will display the short form (or acronym). You would need to

define the long and short forms in the <glossentry> and then reference it with the <abbreviated-form> element

(instead of the <term> element).

The recommended best practices for defining the long and short forms would be to use a structure similar to

this:

<glossentry id="ddl">

 <glossterm>Data Definition Language</glossterm>

 <glossBody>

 <glossSurfaceForm>Data Definition Language (DDL)</glossSurfaceForm>

 <glossAlt>

 <glossAcronym>DDL</glossAcronym>

 </glossAlt>

 </glossBody>

</glossentry>

The long form is declared using the <glossSurfaceForm> element while the short form is declared using the

<glossAcronym> element.

Then you need to reference the glossentry that contains the long and short forms using the <abbreviated-form>

element:

<abbreviated-form keyref="gloss_ddl"/>

For more information about the recommended best practices for using abbreviations, including information

about using multiple languages, see: http://www.oasis-open.org/committees/download.php/29734/

AcronymBestPractice_08112008.doc.

Related information

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossentry.html

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/abbreviated-form.html

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/abbreviated-form.html
http://www.oasis-open.org/committees/download.php/29734/AcronymBestPractice_08112008.doc
http://www.oasis-open.org/committees/download.php/29734/AcronymBestPractice_08112008.doc
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossentry.html
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/abbreviated-form.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3089

Reusing DITA Content
Reusing content is one of the key features of DITA and DITA provides several methods for reusing content.

Oxygen XML Editor provides support for each of these methods.

Reusing Topics in DITA Maps

A DITA topic does not belong to any one publication. You add a DITA topic to a publication by referencing it in

a map. You can reference the same topic in multiple maps (on page 3092).

Reusing Content with References and Keys

DITA allows you to reuse content by referencing it in another topic. DITA provides several mechanisms for

including content by reference (on page 3093) (conref, conkeyref, coderef). A conref (content reference)

(on page 3094) creates a direct reference to a specific element of another topic. A conkeyref (content key

reference) (on page 3096) creates a reference to a key, which then points to a specific element in another

topic. The advantage of using a conkeyref is that you can change the element that is included by changing the

key reference. For example, since keys are defined in maps, if you include a topic in multiple maps, you can

use a different key reference in each map. A coderef references an external file that contains literal code.

Oxygen XML Editor provides support for all of these mechanisms.

While the conref and conkeyref mechanisms can be used to reference any content element, it is considered

best practice to only conref or conkeyref content that is specifically set and managed as reusable content.

This practice helps reduce expensive errors, such as an author accidentally deleting the source element that

other topics are including by the reference. Oxygen XML Editor can help you create a reusable component

from your current content.

Reusing Content with Reusable Components

DITA allows you to select content in a topic, create a reusable component (on page 3112) from it and

reference that component in other locations. Each reusable component is created as a separate file. Anytime

the content needs to be edited, you only need to update it in the component file and all the locations in your

topics that reference it will also be updated. This can help you to maintain continuity and accuracy throughout

your documents.

Reusing Content with Variables

DITA allows you to replace the content of certain elements with a value that is pointed to by a key. This

mechanism effectively means that you can create variables in your content (on page 3114), which you

can then create multiple outputs by changing the value that the key points to. This is done by profiling the

definition of the key value, or by substituting another map with a different key value.

Reusing Content with DITA 1.3 Concepts

DITA 1.3 allows you to use some advanced concepts to expand content reuse possibilities even further. Key

Scopes (or scoped keys) (on page 3116) allow you to reuse topics with variable content depending on the

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3090

particular context and it maximizes reuse possibilities for keys. Branch Filtering (on page 3118) allows you

to reuse the same content that is profiled in multiple ways within the same publication, each time using a

different filter.

DITA Reusable Components View

If you use a large amount of keys or reusable components in your DITA project, the DITA Reusable

Components view (on page 3119) can be quite helpful. It collects all of the keys and reusable components

that are defined in the root map (on page 3301) and presents them in a dynamic table where you can easily

locate and insert references to them.

Reuse Actions in Oxygen XML Editor

Oxygen XML Editor includes some actions that are specifically designed for DITA reusable content. These

actions are available in the contextual menu, the DITA menu, and some are available on the toolbar.

Reuse Content

This action provides a mechanism for reusing content fragments. It opens the Reuse Content

dialog box (on page 3101) that allows you to insert several types of references to reusable

content at the cursor position. The types of references that you can insert using this dialog box

include content references (@conref) (on page 3102), content key references (@conkeyref) (on

page 3104), or key references to metadata (@keyref) (on page 3107).

Push Current Element

Opens the Push current element dialog box (on page 3110) that allows content from a source

topic to be inserted into another topic without any special coding in the topic where the content

will be re-used.

Edit Content Reference

This action is available for elements with a @conref or @conkeyref attribute. It opens the

Edit Content Reference dialog box that allows you to edit the source location (or key) and

source element of a content reference (or content key reference), and the reference details

(@conref/@conkeyref and @conrefend attributes). For more information, see Reuse Content Dialog

Box (on page 3101).

Replace Reference with Content

Replaces the referenced fragment (@conref or @conkeyref) at the cursor position with its content

from it source. This action is useful if you want to make changes to the content in the currently

edited document without changing the referenced fragment in its source location. If the source

content includes references to other topics/resources (hrefs), the operation also resolves those

references relative to the new location. Attributes are preserved according to the following

priority:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3091

1. Attributes from the elements in the current document that reference other content are

preserved except for attributes with a -dita-use-conref-target value.

2. Attributes from the referenced content are brought into the replaced elements in the

current document except for @id attributes.

Replace All References with Content

Replaces all referenced fragments (@keyref, @conref, or @conkeyref) in the current document with

the content. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are

preserved except for attributes with a -dita-use-conref-target value.

2. Attributes from the referenced content are brought into the replaced elements in the

current document except for @id attributes.

For keyrefs inside <xref> or <link> elements, the @keyref attribute is changed to an @href attribute,

while the rest of the content for the keyref is replaced with its source content.

If the source content includes references to other topics/resources (hrefs), the operation also

resolves those references relative to the new location.

Remove Content Reference

Removes the content reference (@conref or @conkeyref) inside the element at the cursor position.

Create Reusable Component

Opens a dialog box that helps you to create a reusable component from the current element or

selection of elements. If the Replace selection with content reference option is selected in the

dialog box, the selection will be replaced with a content reference (@conref). If multiple elements

are selected (for example, multiple steps or list items), the selection will be replaced with a

content reference range (@conref and @conrefend). For more information, see Creating a Reusable

Content Component (on page 3113).

Insert Reusable Component

Inserts a reusable component at cursor location. For more information, see Inserting a Reusable

Content Component (on page 3114).

Resources

For more information about reusing strategies in DITA, see the following resources:

• Webinar: Working with DITA in Oxygen - Basic Profiling and Reuse Strategies

• Webinar: Working with DITA in Oxygen - Advanced Profiling and Reuse Strategies

Related information

Working with Keys in DITA (on page 3084)

https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3092

Reusing DITA Topics in Multiple Maps

You can reuse an entire DITA topic simply by referencing it in multiple maps (or multiple locations within the

same map (on page 2973)) using one of the following procedures:

Reuse Topics Using the DITA Maps Manager

1. Make sure the DITA map (on page 3296) is opened in the DITA Maps Manager (on page 2950).

2. Add a reference to an existing topic by using one of the following methods (depending on your

particular situation):

a. If the topic already exists in this DITA map, do one of the following:

▪ Simply drag the topic and press Ctrl (or Alt on macOS) at the new location within the map

(or use the Copy and Paste contextual menu actions).

▪ If the topic is the currently open document in the main editor, determine the new location

in the map (in the DITA Maps Manager (on page 2950)), right-click a parent or sibling

topic, and select Append Child > Reference to the currently edited file or Insert After >

Reference to the currently edited file.

b. If the topic already exists in another DITA map, do one of the following:

▪ Open the other map in the DITA Maps Manager (on page 2950), right-click the topic,

select Copy, switch back to the original DITA map in the DITA Maps Manager,

determine the new location in the map, right-click a parent or sibling topic, and use one of

the Paste contextual menu actions (Paste, Paste Before, or Paste After).

▪ If the topic is the currently open document in the main editor, determine the new location

in the map (in the DITA Maps Manager (on page 2950)), right-click a parent or sibling

topic, and select Append Child > Reference to the currently edited file or Insert After >

Reference to the currently edited file.

c. If the topic exists in the project, but has not yet been added to a DITA map, do one of the

following:

▪ Right-click the topic in the Project view (on page 414) (or the file system), select Copy,

switch to the DITA Maps Manager (on page 2950) view, determine the new location in

the map, right-click a parent or sibling topic, and use one of the Paste contextual menu

actions (Paste, Paste Before, or Paste After).

▪ If the topic is the currently open document in the main editor, determine the new location

in the map (in the DITA Maps Manager (on page 2950)), right-click a parent or sibling

topic, and select Append Child > Reference to the currently edited file or Insert After >

Reference to the currently edited file.

3. If your topic uses a key reference (on page 3084), set up the appropriate key definition in your map (on

page 2984).

4. If you want to define relationships between topics, other than those defined in the topics themselves,

you can add a relationship table to your map (on page 3137).

5. When you have finished adding topics, check that your map is complete and that all topic links and keys

resolve correctly. To do this validation, click the Validate and Check for Completeness action (on

page 2995) on the toolbar in the DITA Maps Manager.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3093

Reuse Topics Using Author Mode Editor

1. Open the DITA map (on page 2948) in the Author mode editor.

2. Add a reference to an existing topic by dragging it from the Project view (on page 414) (or the file

system) and dropping it in the desired location in the DITA map opened in Author mode. You can also

accomplish the same thing by using the Copy and Paste contextual menu actions.

3. If your topic uses a key reference (on page 3084), set up the appropriate key definition in your map (on

page 2984).

4. If you want to define relationships between topics, other than those defined in the topics themselves,

you can add a relationship table to your map (on page 3137).

5. When you have finished adding topics, check that your map is complete and that all topic links and keys

resolve correctly. To do this validation, click the Validate and Check for Completeness action (on

page 2995) on the toolbar in the DITA Maps Manager.

Displaying Multiple References to the Same Topics

Whenever multiple references to the same topic are detected in the context of the current map in the DITA

Maps Manager (on page 2950), an indicator will appear in the top-right corner of the Author mode editor that

shows the number of times the current topic is referenced in the DITA map. It also includes navigation arrows

that allow you to jump to the next or previous reference in the DITA Maps Manager.

Working with Content References

The DITA content reference feature lets you insert a piece of source content by referencing it from its source.

When you need to update that content, you only need to do it in one place. The source content can be

referenced using the DITA @conref or @conkeyref attributes.

There are several strategies for managing content references:

• Reusable components - With this strategy, you create a new file for each piece of content that you

want to reuse and you insert references from the content of the reusable component files. For

example, suppose that you have a disclaimer that needs to be included in certain sections of your

documentation. You can create a reusable component that contains your disclaimer and reuse it as

often as you need to. If the disclaimer ever needed to be updated, you only have to edit it in one file.

• Single-source content references - You may prefer to keep many pieces of reusable content in one

file. For example, you might want to create a single file that contains all the actions that are available

in various menus or toolbars for your software application. Then, wherever you need to describe or

display an action in your documentation, you can reuse content from that single file by inserting content

references. This strategy requires more setup than reusable components, but might make it easier

to centrally managing the reused content and it allows for more flexibility in the XML structure of the

reusable content.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3094

• Arbitrary content references - Although it is not recommended, you can create content references

among topics without storing the reusable content in components or a single file. This strategy might

make it difficult to manage content that is reused and to maintain continuity and accuracy, since you

may not have any indication that content you are editing is reused elsewhere.

A reference to the external content is created by adding a @conref or @conkeyref attribute to an element in the

local document. The @conref or @conkeyref attribute defines a link to the referenced content, made up of a path

to the file and the topic ID within the file. The path may also reference a specific element ID within the topic.

Referenced content is not physically copied to the referencing file. However, by default, Oxygen XML Editor

displays it in Author mode as if it is there in the referencing file. If you want to expand referenced content

on demand (rather than having it be automatically expanded), open the Preferences dialog box (Options >

Preferences) (on page 132), go to Editor > Edit modes > Author, and deselect the Display referenced content

option (on page 187).

Note:

A reference also displays tracked changes (on page 3301) and comments that are included in the

source fragment. To edit these comments (or accept/reject changes) right-click the comment or

tracked change and select Edit Reference.

Tip:

To search for references made through a direct content reference, use the Search References action

from the contextual menu.

Related information

Working with Reusable Components (on page 3112)

Working with Keys in DITA (on page 3084)

Working with the Conref Push Mechanism (on page 3110)

DITA Reusable Components View (on page 3119)

Short Video Clip: Learn DITA Editing with Oxygen - Add a Content Reference to a Reusable Note

Short Video Clip: Learn DITA Editing with Oxygen - Add a Content Reference Using Copy/Paste

Doctales - Content Reference

Doctales - Content Key Reference

Creating a DITA Content Reference

DITA Content Reference

A DITA content reference, or conref, is one of the main content reuse features of DITA (on page 3089). It is

a mechanism for re-using the same content in multiple topics (or even in multiple locations within the same

topic).

https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_vvv_kfq_pvb
https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_s23_xgq_pvb
https://stefan-jung.org/dita-introduction/topics/conref.html
https://stefan-jung.org/dita-introduction/topics/conkeyref.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3095

For a conref to be created, the source content must have an id attribute that the conref can reference.

Therefore, creating a conref requires that you add an id to the content to be reused before inserting a conref

into the topic that reuses the referenced content.

Assigning an ID to the Referenced Content

To add an id to a DITA element in a topic, place the cursor on the element and select Edit Attributes from

the contextual menu (or simply press Alt+Enter) to open the in-place attribute editor (on page 643). Enter id

as the Name of the attribute and a value of your choice in the Value field. You can also use the Attributes view

(on page 641) to enter a value in the id attribute.

Note:

The element may already have an id, since in some cases, Oxygen XML Editor automatically

generates an ID value when the id attribute is created.

Creating a Content Reference

To create a content reference (conref), follow these steps:

1. Make sure the element you want to reference has an ID assigned to it (on page 3095).

2. In Author mode (on page 364), place the cursor at the location where you want the reused content to

be inserted.

3. Select the Reuse Content action on the main toolbar (or from the DITA menu or Reuse submenu of

the contextual menu). The Reuse Content dialog box (on page 3101) is displayed.

4. In the Location field of the Reuse Content dialog box, select the topic that contains the element you

want to reference. The elements that you can reference are presented in a table.

5. Select the Target ID of the element (or elements) to have their content inserted, and verify the

content in the Preview pane. The id value of the element that you select is automatically added to the

Reference to (conref) field.

6. Make any other selections you need in the Reuse Content dialog box (on page 3101). If you select

multiple elements, the Expand to (conrefend) field is automatically filled with the id value of the last

element in your selection.

7. Click Insert or Insert and close to create the content reference.

Using Copy/Paste Actions to Create a Content Reference

Oxygen XML Editor also includes support for creating content references with simple copy/paste actions. The

copied content must be an entire DITA XML element with an ID attribute. Also, the location in the document

where you paste the element must be valid, although as long as the Smart paste and drag and drop option

(on page 190) is selected in the Schema-Aware preferences page, if you try to paste it in an invalid location,

Oxygen XML Editor will attempt to place it in a valid location, and may prompt you with one or more choices

for where to place it.

To create a content reference (conref) using copy/paste actions, follow these steps:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3096

1. Copy an entire DITA element that has an ID attribute assigned to it.

2. Place the cursor at a location where the copied element will be valid.

3. Select the Paste as Content Reference action from the Paste Special submenu from the contextual

menu.

Other Ways to Reuse Content

• You can use the Components tab in the DITA Reusable Components view (on page 3124) to easily

insert content references.

• An alternate way to reuse content is to use the Oxygen XML Editor Create Reusable Component (on

page 3113) and Insert Reusable Component (on page 3114) actions (available in the DITA menu and

the Reuse submenu of the contextual menu). They handle the details of creating an ID and conref and

create reusable component files, separate from your normal content files. This can help you manage

your reusable content more effectively.

• You can also insert reusable content using content key references (on page 3096). This may also

make reusable content easier to manage, depending on your particular situation and needs.

• Other topics in this section include information about more specialized or advanced ways or reusing

content, such as code references (on page 3109), the conref push mechanism (on page 3110),

variable text (on page 3114), key scopes (on page 3116), and branch filtering (on page 3118).

Related Information:

Reuse Content Dialog Box (on page 3101)

DITA Reusable Components View (on page 3119)

Creating a DITA Content Key Reference (on page 3096)

Editing DITA Content References (on page 3098)

Working with Reusable Components (on page 3112)

Working with Content References (on page 3093)

Creating a DITA Content Key Reference

DITA Content Key Reference

A DITA content key reference, or @conkeyref, is a mechanism for inserting a piece of content from one topic

into another. It is a version of the DITA content reference mechanism (on page 3094) that uses keys (on page

3084) to locate the content to reuse rather than direct references to topics that contain reused content.

As with a conref, a conkeyref requires that the element to be reused has an @id attribute. It also requires the

topic that contains the reusable content to be assigned a key (on page 3084) in a map. As with all uses of

keys, you can substitute multiple maps or use profiling (on page 3196) to create multiple definitions of keys in

a single map. This allows the same @conkeyref to pull in content from various sources, depending on how your

build is configured. This can make it easier to create and manage sophisticated content reuse scenarios.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3097

Creating a Content Key Reference

To create a content key reference (@conkeyref), follow these steps:

1. Make sure the topic that contains the reusable content is assigned a key in the DITA map and the

element you want to reference has an ID assigned to it.

2. In Author mode (on page 364), place the cursor at the location where you want the reused content to

be inserted.

3. Select Reuse Content on the main toolbar (or from the DITA menu or Reuse submenu of the

contextual menu). The Reuse Content dialog box (on page 3101) is displayed.

4. Select the Key radio button for the content source and use the Choose Key Reference button to

select the key for the topic that contains the reusable content (you can also select one from the drop-

down list in the Key field). The elements that you can reference from the source are presented in the

table in the middle of the Reuse Content dialog box.

5. Select the Target ID of the element (or elements) that you want to insert, and verify the content in the

Preview pane. The @id value of the element that you select is automatically added to the Reference to

(conkeyref) field.

6. Make any other selections you need in the Reuse Content dialog box (on page 3104). If you select

multiple elements, the Expand to (conrefend) field is automatically filled with the @id value of the last

element in your selection.

7. Click Insert or Insert and close to create the content reference.

Note:

If you are using Text mode (on page 363), when you insert a @conkeyref attribute, after you enter the

first quote (conkeyref="), the Content Completion Assistant will list all the defined keys that you can

select from. Also, after you select the key, the Content Completion Assistant will then list the element

IDs from the referenced topic, allowing you to insert an anchor. Note that this only works for local

files.

Using Copy/Paste Actions to Create a Content Key Reference

Oxygen XML Editor also includes support for creating content key references with simple copy/paste actions.

When the DITA content is processed, the key references are resolved using key definitions from DITA maps.

The copied content must be an entire DITA XML element with an ID attribute and the topic that contains the

reusable content must have a key assigned in a DITA map. Also, the location in the document where you paste

the element must be valid, although as long as the Smart paste and drag and drop option (on page 190) is

selected in the Schema-Aware preferences page, if you try to paste it in an invalid location, Oxygen XML Editor

will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.

To create a content key reference (@conkeyref) using copy/paste actions, follow these steps:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3098

1. In the DITA Maps Manager view (on page 2950), make sure that the Context combo box (on page

2954) points to the correct map that stores the keys.

2. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign

a key, right-click the topic with its parent map opened in the DITA Maps Manager (on page 2950),

select Edit Properties, and enter a value in the Keys field.

3. In a topic with an assigned key, copy an entire DITA element that has an ID attribute assigned to it.

4. Place the cursor at a location where the copied element will be valid.

5. Select the Paste as Content Key Reference action from the Paste Special submenu from the

contextual menu.

Other Ways to Reuse Content

• You can use the Components tab in the DITA Reusable Components view (on page 3124) to easily

insert content key references.

• You can also insert reusable content using content references (conref) (on page 3094).

• Other topics in this section include information about more specialized or advanced ways or reusing

content, such as code references (on page 3109), the conref push mechanism (on page 3110),

variable text (on page 3114), key scopes (on page 3116), and branch filtering (on page 3118).

Related Information:

Reuse Content Dialog Box (on page 3101)

DITA Reusable Components View (on page 3119)

Creating a DITA Content Reference (on page 3094)

Editing DITA Content References (on page 3098)

Working with Reusable Components (on page 3112)

Working with Content References (on page 3093)

Editing DITA Content References

When you reference reusable content using a @conref or @conkeyref attribute, by default, the content is grayed

out in the document and can only be edited from the source document. To edit the source of the referenced

content, click the icon at the beginning of the inserted content. This will open the source document where

you can edit the referenced content.

Oxygen XML Editor also includes some actions that allow you to quickly edit existing content references.

When the element that contains a content reference (@conref or @conkeyref) is selected, the following actions

are available in the DITA menu and the Reuse submenu of the contextual menu:

Edit Content Reference

This action is available for elements with a @conref or @conkeyref attribute. It opens the

Edit Content Reference dialog box that allows you to edit the source location (or key) and

source element of a content reference (or content key reference), and the reference details

(@conref/@conkeyref and @conrefend attributes). For more information, see Reuse Content Dialog

Box (on page 3101).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3099

Replace Reference with Content

Replaces the referenced fragment (@conref or @conkeyref) at the cursor position with its content

from it source. This action is useful if you want to make changes to the content in the currently

edited document without changing the referenced fragment in its source location. If the source

content includes references to other topics/resources (hrefs), the operation also resolves those

references relative to the new location. Attributes are preserved according to the following

priority:

1. Attributes from the elements in the current document that reference other content are

preserved except for attributes with a -dita-use-conref-target value.

2. Attributes from the referenced content are brought into the replaced elements in the

current document except for @id attributes.

Replace All References with Content

Replaces all referenced fragments (@keyref, @conref, or @conkeyref) in the current document with

the content. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are

preserved except for attributes with a -dita-use-conref-target value.

2. Attributes from the referenced content are brought into the replaced elements in the

current document except for @id attributes.

For keyrefs inside <xref> or <link> elements, the @keyref attribute is changed to an @href attribute,

while the rest of the content for the keyref is replaced with its source content.

If the source content includes references to other topics/resources (hrefs), the operation also

resolves those references relative to the new location.

Remove Content Reference

Removes the content reference (@conref or @conkeyref) inside the element at the cursor position.

Converting Conrefs to Conkeyrefs

Oxygen XML Editor includes a DITA refactoring operation called Convert conrefs to conkeyrefs that will find

all content references (that reference content outside the current document) and convert them to content key

references. You can also use it to quickly convert all content references in the current document or multiple

documents at once.

To access the Convert conrefs to conkeyrefs operation, use one of the following methods:

Single Document Method

With the document opened in the editor, right-click anywhere in the main editing pane (or right-

click the topic reference in the DITA Maps Manager (on page 2950)), go to the Refactoring

submenu, and choose Convert conrefs to conkeyrefs.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3100

Multiple Documents At Once Method

Select XML Refactoring from the Tools menu (or from the Refactoring submenu when you

right-click a document in the Project view (on page 414)or the DITA Maps Manager view (on

page 2950)). Then select Convert conrefs to conkeyrefs from the DITA section and click Next.

Either method will proceed to the XML Refactoring Wizard. If you used the Multiple Documents At Once

Method (on page 3100), the wizard page allows you to choose a scope for the operation and some filtering

options:

• Scope - Select from a variety of options to define the scope that will have resources affected by the

operation. For example, you can choose to affect all resources in the Project, All opened files, Current

DITA map hierarchy, or just the Current file.

• Filters section

◦ Include files - Specifies files to be excluded from the operation. You can specify multiple files by

separating them with commas and the patterns can include wildcards (such as * or ?).

◦ Restrict to known XML file types only - Excludes non-XML file types from the operation.

◦ Look inside archives - If this option is selected, the scope of the operation will include files

inside archives.

If you used the Single Document Method (on page 3099), the scope will be the current file so the scope and

filtering options are not displayed.

You can then use one of the following buttons to proceed with the operation:

Preview

You can use the Preview button to open a comparison panel where you can review all the

changes that will be made by the refactoring operation before applying the changes.

Warning:

It is always recommended to use the Preview button to make sure the operation is not

going to do something unexpected and after you click the Finish button, any Undo action

will only revert changes on the current document.

Finish

When you use the Finish button, the operation will be processed and all content references will

be converted to content key references (either all content references in the current document

or all content references in all of the documents specified in the scope). The file name for each

converted document is used as the value for its new key. However, the operation does NOT

automatically add the key to the DITA Map (on page 3296), so you still need to manually define

each key in your DITA map (on page 2984).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3101

Related Information:

Creating a DITA Content Reference (on page 3094)

Creating a DITA Content Key Reference (on page 3096)

Defining Keys in DITA Maps (on page 2984)

Reuse Content Dialog Box

The Reuse Content dialog box provides a mechanism for reusing content fragments. DITA @conref, @conkeyref,

and @keyref attributes can be used to insert references to reusable content. The @conref attribute stores

a reference to another element and is processed to replace the referencing element with the referenced

element. The @conkeyref attribute uses keys (on page 3084) to locate the content to reuse rather than

direct references to the topic that contains the reusable content. The @keyref attribute also uses keys (on

page 3084) and can be used to indirectly reference metadata that may have different values in various

circumstances.

Note:

For a conref or conkeyref, to reference the content inside a DITA element, the source element

must have an @id attribute assigned to it. The element containing the content reference acts as a

placeholder for the referenced element. For more details about DITA @conref and @conkeyref attributes,

go to https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/conref.html.

Note:

For the purposes of using a @keyref, keys are defined at map level and referenced afterward. For more

information about the DITA @keyref attribute, go to https://www.oxygenxml.com/dita/1.3/specs/

langRef/attributes/thekeyrefattribute.html.

Oxygen XML Editor displays the referenced content (on page 608) of a DITA content reference if it can

resolve it to a valid resource. If you use URIs instead of local paths in your XML documents and your DITA-OT

transformation needs an XML Catalog (on page 3302) to map the URIs to local paths, you need to add the

catalog in Oxygen XML Editor (on page 842). If the URIs can be resolved, the referenced content is displayed

in Author mode and in the transformation output.

In Author mode, a reference to reusable content (@conref, @conkeyref, or @keyref) can easily be inserted at the

cursor position by using the Reuse Content dialog box. It can be opened with any of the following methods:

• Click the Reuse Content action on the main toolbar.

• In the contextual menu of the editing area, go to Reuse > Reuse Content.

• Go to DITA > Reuse Content.

Your selection at the top of the dialog box for choosing the content source determines whether Oxygen XML

Editor will insert a @conref, @conkeyref, or @keyref.

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/conref.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/thekeyrefattribute.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/thekeyrefattribute.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3102

If you select Location for the content source, a content reference (@conref) will be inserted. If you select Key

for the content source, keys will be used to insert a content key reference (@conkeyref) or a key reference

(@keyref).

Content Reference (@conref) Options Using the Reuse Content Dialog Box

Figure 775. Reuse Content Dialog Box (with the Default Insert Content Reference Options

Displayed)

Choose the content source Section

When Location is selected for the content source, a content reference (@conref) will be inserted. Here you can

specify the path of the topic that contains the content you want to reference.

The dialog box offers the following options:

Select an element from the content source Section

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3103

Show elements of type

You can use this drop-down list to select specific types of elements to be displayed

in the subsequent table. This can help you narrow down the list of possible source

elements that you can select.

Text Filter Field

You can also use the text filter field to narrow down the list of possible source

elements to be displayed in the subsequent table.

Element Table

Presents all the element IDs defined in the source topic. Use this table to select

the Target ID of the element that you want to reference. You can select multiple

contiguous elements to reference a block of content.

Preview Pane

Displays the content that will be references. If you select multiple elements in the

element table, the content from all the selected elements is displayed.

Source Pane

Displays the source code of the element to be referenced.

Reference details Section

Reference to (conref)

Oxygen XML Editor automatically fills this text field with the value of the @conref

attribute to be inserted. However, you can edit this value if need be.

Reference to range end (conrefend)

If you select multiple elements (of the same type) in the element table, Oxygen

XML Editor automatically fills this text field with the @id value of the last element in

your selection. This value will be inserted as a @conrefend attribute, defining the end

of the conref range.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3104

Content Key Reference (@conkeyref) Options Using the Reuse Content Dialog Box

Figure 776. Insert Content Key Reference Options

Choose the content source Section

When Key is selected for the content source, you can use keys to reference content. You can use the

Choose Key Reference button to open the Choose Key dialog box that allows you to select one from a list

of all the keys that are gathered from the root map (on page 3301) (you can also select one from the drop-

down list in the Key field).

Note:

If the current DITA map is not selected as the root map, no keys will be listed.

Tip:

You can also use the DITA Reusable Components view (on page 3119) for similar purposes.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3105

Figure 777. Choose Key Dialog Box

The Choose Key dialog box includes the following:

• Change Root Map - Opens a small dialog box that allows you to select a root map (on page

2967).

• Search Filter - You can enter text in the filter field at the top of the dialog box to filter the list

and search for a specific key.

• Sortable Columns - The dialog box includes the following columns that can be sorted by

clicking on the heading:

◦ Key - The name of the key (the value of the @keys attribute).

◦ Description - The description of the key that is obtained from its definition. Keys that are

defined with a text value in the <navtitle> or <keyword> element have that value listed in

this column.

◦ Href - Keys that are defined with a value in an href attribute have that href value listed in

this column.

◦ Definition Location - The name of the DITA map (on page 3296) where the key is

defined.

• Group by Definition Location - A contextual menu action that can be used to group (and sort)

all the keys based upon the value in the Definition Location column.

To insert a content key reference (@conkeyref), select the key that contains the content you want to reference.

Notice that the file path is shown in the Href column. Keys that do not have a value in the Href column are for

referencing metadata with a @keyref attribute. Therefore, to insert a @conkeyref, you need to select a key that

does have a value (file path) in the Href column.

After you select a key, click OK to return to the Reuse Content dialog box.

When a key that is defined as a content key reference has been selected, the Reuse Content dialog box offers

the following additional options for inserting a @conkeyref:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3106

Select an element from the content source Section

Show elements of type

You can use this drop-down list to select specific types of elements to be displayed

in the subsequent table. This can help you narrow down the list of possible source

elements that you can select.

Text Filter Field

You can also use the text filter field to narrow down the list of possible source

elements to be displayed in the subsequent table.

Element Table

Presents all the element IDs defined in the source topic. Use this table to select

the Target ID of the element that you want to reference. You can select multiple

contiguous elements to reference a block of content.

Preview Pane

Displays the content that will be references. If you select multiple elements in the

element table, the content from all the selected elements is displayed.

Source Pane

Displays the source code of the element to be referenced.

Reference details Section

Reference type

The type of reference that will be inserted. If you selected a key that references a

DITA resource, you will notice that conkeyref value is automatically selected.

Reference to

Oxygen XML Editor automatically fills this text field with the value of the @conkeyref

attribute to be inserted. However, you can edit this value if need be.

Fallback to (conref)

You can select this option to define a @conref attribute to be used as a fallback to

determine the content reference relationship if the specified conkeyref cannot be

resolved.

Reference to range end (conrefend)

If you select multiple elements (of the same type) in the element table, Oxygen

XML Editor automatically fills this text field with the @id value of the last element in

your selection. This value will be inserted as a @conrefend attribute, defining the end

of the conkeyref range.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3107

Key Reference to Metadata (@keyref) Options Using the Reuse Content Dialog Box

Figure 778. Insert Key Reference Options

Choose the content source Section

When Key is selected for the content source, you can use keys to reference content. You can use the

Choose Key Reference button to open the Choose Key dialog box that allows you to select one from a list

of all the keys that are gathered from the root map (on page 3301) (you can also select one from the drop-

down list in the Key field).

Note:

If the current DITA map is not selected as the root map, no keys will be listed.

Tip:

You can also use the DITA Reusable Components view (on page 3119) for similar purposes.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3108

Figure 779. Choose Key Dialog Box

The Choose Key dialog box includes the following:

• Change Root Map - Opens a small dialog box that allows you to select a root map (on page

2967).

• Search Filter - You can enter text in the filter field at the top of the dialog box to filter the list

and search for a specific key.

• Sortable Columns - The dialog box includes the following columns that can be sorted by

clicking on the heading:

◦ Key - The name of the key (the value of the @keys attribute).

◦ Description - The description of the key that is obtained from its definition. Keys that are

defined with a text value in the <navtitle> or <keyword> element have that value listed in

this column.

◦ Href - Keys that are defined with a value in an href attribute have that href value listed in

this column.

◦ Definition Location - The name of the DITA map (on page 3296) where the key is

defined.

• Group by Definition Location - A contextual menu action that can be used to group (and sort)

all the keys based upon the value in the Definition Location column.

To insert a key reference to metadata (@keyref), select the key you want to reference. Keys that do not have a

value in the Href column are for referencing metadata with a @keyref attribute. Therefore, to insert a @keyref,

you need to select a key that does not have a value (file path) in the Href column.

After you select a key, click OK to return to the Reuse Content dialog box.

When a key that references metadata has been selected, the Reuse Content dialog box offers the following

additional options for inserting a @keyref:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3109

Select an element from the content source Section

This section is not used when referencing metadata.

Reference details Section

Reference type

The type of reference that will be inserted. If you selected a key that does not

reference a DITA resource, you will notice that keyref value is automatically

selected.

Reference to

Oxygen XML Editor automatically fills this text field with the value of the @keyref

attribute to be inserted.

Element name

Oxygen XML Editor automatically selects the element that is most commonly used

for the selected type of key reference, but you can use the drop-down list to choose

another element to use for the reference.

Finalizing Your Content Reference Configuration

Once you click Insert or Insert and close, the configured content reference is inserted into your document.

Tip:

You can easily insert multiple content references by keeping the Reuse Content dialog box opened,

using the Insert button.

Related Information:

DITA Reusable Components View (on page 3119)

Working with Content References (on page 3093)

Working with Code References

Code References

The DITA <coderef> element can be used to reference an external file that contains literal code. This is

especially useful if you need to reference code from an external source that may occasionally change. Another

advantage is that you don't have to convert illegal characters into their character equivalents. When the

<coderef> is processed, the referenced code file is imported and delimiting characters (such as < or &) are

displayed as standard text, rather than treated as XML markup.

For more information about code references, see DITA 1.3 Specification: Coderef.

https://www.oxygenxml.com/dita/1.3/specs/langRef/technicalContent/coderef.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3110

Example of using a Coderef

<p>This code is an example of how to use a coderef.</p>

 <codeblock><coderef href="MyExternalCode.xsl"/></codeblock>

Defining Line Ranges

DITA-OT provides additional code reference processing support that allows you to define line ranges in case

you only want to reference certain parts of the external file, rather than the whole file.

For information and examples of how to define line ranges, see DITA Open Toolkit Documentation: Extended

Code Reference Processing.

Working with the Conref Push Mechanism

Content Reference Push Mechanism

The usual method of using content references pulls element content from a source element and inserts it in

the current topic. DITA 1.2 introduced an alternative method of content referencing, allowing element content

to be pushed, or injected, from a source topic to another topic without any special coding in the topic where

the content will be re-used. This technique is known as a content reference push mechanism (conref push).

The conref push mechanism requires elements in the target topic (the topic where the content is to be

pushed) to have ID elements, as the push mechanism inserts elements before or after a named element, or

replaces the named element. Assuming the source topic is included in the DITA map (on page 3296), the

conref push will be processed during the publishing stage for the DITA map.

Example of a Conref Push Scenario

An example of a scenario where a conref push would be useful is where a car manufacturer produces driver

manuals that are distributed to various regions with their own specific regulations and certain sections

need to be customized by the local car dealers before publishing. The local dealer could use a conref push

technique to insert specific content without modifying the manufacturer-supplied content.

Push Current Element Action

Oxygen XML Editor includes an action that allows you to easily reference content with a conref push

mechanism. The Push Current Element action is available in the DITA menu and in the Reuse subfolder of the

contextual menu when editing in Author mode. Selecting this action opens the Push current element dialog

box that allows you to select a target resource and element, and where to insert the current element content.

http://www.dita-ot.org/dev/reference/extended-functionality.html
http://www.dita-ot.org/dev/reference/extended-functionality.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3111

Figure 780. Push Current Element Dialog Box

This dialog box allows you to configure the following options for the conref push action:

Choose the target resource

Allows you to select a Location URL or a Key for the target resource and the table in the next

section of the dialog box will be populated using the information from the specified resource.

Select the target element

The table in this section contains the available elements (identified by their ID) that can be

replaced by, or pushed before/after, the current element, according to the push action.

Push action

Allows you to choose one of the following options for where you want to insert the current

element content:

replace the target element

The target element will be replaced with the current element content.

On the technical side, the value of the @conaction attribute in the current element

will be set to push replace and the @conref or @conkeyref attribute will be set to the

specified reference.

push before

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3112

The current element content will be inserted before the specified target element in

the target resource.

On the technical side, the value of the @conaction attribute in the current element

will be set to pushbefore. Another element with the same name and class as the

target element will be inserted in the document after the current element. The new

element will have the @conaction attribute set to mark and the @conref or @conkeyref

attribute will be set to the specified reference.

push after

The current element content will be inserted after the specified target element in

the target resource.

On the technical side, the value of the @conaction attribute in the current element

will be set to pushafter. Another element with the same name and class as the

target element will be inserted in the document before the current element.

The new element will have the @conaction attribute set to mark and the @conref or

@conkeyref attribute will be set to the specified reference.

You can also use the Preview panel to view the content that will be pushed and the Source panel to see the

XML code for the content to be pushed. After you click OK, the conref push mechanism is inserted in the

current document. The changes in the target resource will be processed when you transform the DITA map.

Resources

For more information about the conref push mechanism and other advanced DITA profiling concepts, watch

our Webinar: Working with DITA in Oxygen - Advanced Profiling and Reuse Strategies.

Related information

The DITA Style Guide Best Practices for Authors: The Conref Push Technique

Doctales - Content Reference Push

Working with Reusable Components

In DITA, the content of almost any element can be made reusable simply by adding an @id attribute to the

element. The DITA content reference mechanism can reuse any element with an ID. However, it is not

considered best practice to arbitrarily reuse pieces of text from random topics due to the difficulties this

creates in trying to manage it. It also creates the possibility of authors deleting or changing content that is

reused in other topics without being aware that the content is reused.

To prevent these types of problems, you can create reusable components to manage a separate set of topics

that contain topics designed specifically for reuse. Then, all of your reusable content can be referenced from

the reusable components and if the content needs to be updated you only need to edit it in one place.

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/dita/styleguide/Content_Reuse/c_Conref_Push.html
https://stefan-jung.org/dita-introduction/topics/conrefpush.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3113

Oxygen XML Editor allows you to select content in a topic, create a reusable component from it and reference

that component in other locations by using the Create Reusable Component (on page 3113) and Insert

Reusable Component (on page 3114) actions.

Related Information:

DITA Reusable Components View (on page 3119)

Creating a Reusable Content Component

Oxygen XML Editor makes it easy to create a reusable component from existing topic content.

Note:

To ensure that the topic file that contains the reusable component is a valid container for the reusable

content component, Oxygen XML Editor attempts to use the same schema information in the current

topic for the file that contains the reused component. If it cannot create a valid instance of the reused

content file with this approach, the application creates a specialized topic type automatically. This

specialization is designed to make sure that the content is compatible with the topic type that it is

created from. You can make changes to the configuration file (OXYGEN_INSTALL_DIR\frameworks

\dita\reuse\reuse_configuration.properties) or override it from a framework extension

to control if the created reusable component file should be based on the currently edited topic or it

should be an automatically created DITA specialization topic.

Follow these steps to create a reusable component:

1. In Author mode, select the content you want to make into a reusable component (or place the cursor

inside an element you want to reuse).

2. Select the Create Reusable Component action that is available in the DITA menu or the Reuse submenu

of the contextual menu.

The Create Reusable Component dialog box is displayed.

3. Use the Reuse Content drop-down list to select the scope of the content to be made reusable. It allows

you to select how much of the current content you want to make reusable. The choices presented

include the element at the current cursor position and its ancestor elements.

4. Add a description. This is used as a description for the reusable component, but is not part of the

reused content. It is just to help you identify the reusable content and will not become part of your

output.

5. If the Replace selection with content reference option is selected, the selection in the current topic will

be replaced with a content reference (@conref) that points to the new reusable component. If multiple

elements are selected (for example, multiple steps or list items), the selection is replaced with a

content reference range (@conref and @conrefend).

6. Select a file name and location to save the topic containing the reusable component and click Save. It

is considered best practice to save or store reusable components in an area set aside for that purpose.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3114

A file is created that contains one reusable component. You can reference the reused content in other topics

by using a content reference (on page 3094) or content key reference (on page 3096). Also, if the Replace

selection with content reference option was selected, Oxygen XML Editor replaces the selected content with a

content reference that will be displayed in your current topic with a gray background and it can only be edited

in the source file (the new reusable component). To edit the source file, click the Edit Content icon at the

beginning of the content reference.

Inserting a Reusable Content Component

Oxygen XML Editor includes an Insert Reusable Content action that allows you to easily insert a reusable

content component that you created using the Create Reusable Component action (on page 3113).

CAUTION:

This action is only designed to insert reusable components created using the Oxygen XML Editor

Create Reusable Component action. It assumes certain things about the structure of the reusable

content file that may not be true of reusable content created by other methods and it may not provide

the expected results if used with content that does not have the same structure.

The Insert Reusable Content action creates a DITA @conref to insert the content, and creates a parent element

for the @conref attribute based on the type of the reusable element in the reusable component file. This action

ensures that the correct element is used to create the @conref. However, that element must still be inserted at a

point in the current topic where that element type is permitted.

To insert a reusable component that was created using the Create Reusable Component action, follow these

steps:

1. Place the cursor at the insertion point where you want the reusable component to be inserted.

2. Select the Insert Reusable Component action that is available in the DITA menu or the Reuse submenu

of the contextual menu.

The Insert Reusable Component dialog box is displayed.

3. Locate the reusable content file that you want to insert its content.

4. If you select Content reference in the Insert as drop-down list, the action will add a @conref attribute

to the DITA element at the current location. If you select Copy in the drop-down list, the content of the

reusable component file will simply be pasted at the current location (assuming the content is valid at

the current location).

5. Click Insert to perform the action.

Working with Variable Text in DITA

You may often find that you want a certain piece of text in a topic to have a different value in various

circumstances. For example, if you are reusing a topic about a feature that is shared between several

products, you might want to make the name of the product a variable so that the correct product name is used

in the manual for each product.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3115

For example, you might have a sentence like this:

The quick-heat feature allows [product-name] to come up to temperature quickly.

You need a way to substitute the correct product name for each product.

One way to do this would be to use conditional profiling to provide conditional values using the @product

profiling attribute, as in the following example:

<p>The quick-heat feature allows

 <ph product="basic">Basic Widget</ph>

 <ph product="pro">Pro Widget</ph>

to come up to temperature quickly.</p>

However, this approach means that you are repeating the product names over and over again everywhere the

product name is mentioned. This is time consuming for authors and will create a maintenance problem if the

product names change.

The alternative is to use a key reference, as in the following example:

<p>The quick-heat feature allows <ph keyref="product"/>

 to come up to temperature quickly.</p>

The definition of the key reference determines the name of the product:

<keydef keys="product" product="basic">

 <topicmeta>

 <keywords>

 <keyword>Basic Widget</keyword>

 </keywords>

 </topicmeta>

 </keydef>

 <keydef keys="product" product="pro">

 <topicmeta>

 <keywords>

 <keyword>Pro Widget</keyword>

 </keywords>

 </topicmeta>

 </keydef>

When the content is published, the value defined in the product key will be inserted for each product.

Inserting a Keyref

To insert a defined key reference (on page 2984) into a document in Oxygen XML Editor Author mode, use

one of the following methods (the method you choose simply depends on which Oxygen XML Editor feature

you prefer):

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3116

• DITA Reusable Components View Method

Use the DITA Reusable Components view (on page 3119) to insert a variable reference to the defined

key (on page 2984). For example, in the Keys tab, find a key defined as a variable and double-click it.

Oxygen XML Editor will insert the variable as a <ph> element with a @keyref attribute that references the

specified key

• Code Template Method

Add the source code pattern of the defined key (on page 2984) to a code template (on page 227)

so that it appears in the list of proposals in the Content Completion Assistant (on page 3295). For

example, the code pattern could be something like <ph keyref="product"> for defined product key.

• Reuse Content Dialog Box Method

Use the Reuse Content action on the main toolbar to open the Reuse Content dialog box (on page

3101). Use the Key option to select a key that is defined as a variable (key reference to metadata) (on

page 3107) and Oxygen XML Editor will insert the variable as a <ph> element with a @keyref attribute

that references the specified key.

• Manual Method

Manually insert the @keyref attribute using the attributes editor as follows:

1. Press Enter and select a DITA element (for example, <ph>) that supports the @keyref attribute.

2. Select Edit Attributes from the contextual menu (or simply press Alt+Enter) to bring up the

attributes editor (on page 643).

3. In the Name field, select keyref.

4. In the Value field, select or enter the name of the defined key (on page 2984).

Related Information:

DITA Reusable Components View (on page 3119)

Defining Keys in DITA Maps (on page 2984)

Doctales - Key Reference (keyref)

Working with DITA 1.3 Key Scopes

DITA 1.3 includes the possibility of using a concept called Key Scopes (or scoped keys). It allows you to reuse

a topic in multiple places within the same DITA map (on page 3296), but with slightly different content in

each instance.

Key Scopes Use-Case

Suppose that you develop a software product and you have a topic in your user guide that explains how

to install your product on a Windows operating system. Suppose that the steps are exactly the same for

installing it on Linux and the only difference is the name of the operating system. Therefore, it would be

helpful if you could reuse the exact same content in two different topics, but with the name of the operating

https://stefan-jung.org/dita-introduction/topics/keyref.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3117

system different in each instance. In DITA 1.2, this is not possible since keys can only be resolved to a single

value. However, with the DITA 1.3 Key Scopes mechanism, you can define multiple values for the same key

depending on the context.

How to Use Key Scopes in Oxygen XML Editor

To use DITA 1.3 key scopes in Oxygen XML Editor, follow these steps:

1. Define the keys (on page 3084) to be used in multiple places within your DITA map.

2. For each particular topic that contains the keys, define the key scopes:

a. Right-click the topic in the DITA Maps Manager (on page 2950) and select Edit properties.

b. In the Keys tab (on page 2988), enter a value (or multiple values) in the Key scopes field.

c. Click OK to save your changes.

3. Save the DITA map.

Result: In the DITA Maps Manager (on page 2950), you can now see the key scopes in brackets and

when you open each topic reference.

Figure 781. Key Scopes in DITA Maps Manager

The content will also be expanded in Author mode according to the context of the key scope you

defined for that particular topic. Also, when you transform the DITA map, the scoped keys will be

reflected in the published content.

Resources

• You can find a more detailed example and download samples for reuse possibilities based on key

scopes in the DITA 1.3 Key Scopes - Next Generation of Reuse blog post.

• You can also watch our DITA 1.3 video tutorial to see how key scopes can be used in Oxygen XML

Editor.

• For more information about key scopes and other advanced DITA reuse concepts, watch our Webinar:

Working with DITA in Oxygen - Advanced Profiling and Reuse Strategies.

Related information

Working with DITA 1.3 Branch Filtering (on page 3118)

Oxygen XML Blog: DITA 1.3 Key Scopes - Next Generation of Reuse

Oxygen Video Tutorial: DITA 1.3 (Key Scopes, Branch Filtering)

Doctales - Key Scopes

https://blog.oxygenxml.com/keyscopes/keyscopesBlog.html
https://www.oxygenxml.com/demo/DITA_13.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://blog.oxygenxml.com/keyscopes/keyscopesBlog.html
https://www.oxygenxml.com/demo/DITA_13.html
https://stefan-jung.org/dita-introduction/topics/key-scopes.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3118

Working with DITA 1.3 Branch Filtering

DITA 1.3 allows you to use a mechanism called Branch Filtering that enables you to set filtering conditions for

specific branches of a DITA map (on page 3296). This makes it possible for multiple conditional profiles to be

applied within a single publication, each time with a different filter.

Branch Filtering Use-Case

Suppose that you sell two models of a mobile phone and you need to create a brochure for each model. You

want both brochures to have the same structure and most of the content is the same for both brochures. The

only differences are in the values for certain details (for example, the model name, size dimensions, battery

life, etc.) Therefore, it would be helpful if you could use the same topic and reference it twice in the same map,

with each reference using different filtering conditions. In DITA 1.2, this is not possible since you can only

apply one DITAVAL filter to a map. However, with the DITA 1.3 Branch Filtering mechanism, you can reuse

content multiple times within the same map, each time using different filters.

How to Use Branch Filtering in Oxygen XML Editor

To use DITA 1.3 branch filtering in Oxygen XML Editor, follow these steps:

1. The support for DITA 1.3 must be enabled in the DITA preferences page (on page 279).

2. Assuming you have already defined your profiling attributes (on page 684), create a DITAVAL filter file

(on page 3220).

3. Insert a reference to the DITAVAL filter file in the DITA map:

a. Right-click the DITA map reference in the DITA Maps Manager (on page 2950) and select

Append Child > DITAVAL Reference.

b. Select the DITAVAL file.

c. Click Insert and Close.

4. Save the DITA map.

Result: You can now see the ditaval files referenced in the DITA Maps Manager (on page 2950) and

when you transform the DITA map, filtered content will be reflected in the published output.

Figure 782. Branch Filtering in DITA Maps Manager

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3119

Resources

• You can find a more detailed example and download samples for reuse possibilities based on key

scopes in the DITA 1.3 Branch Filtering - Next Generation of Reuse blog post.

• You can also watch our DITA 1.3 video tutorial to see how branch filtering can be used in Oxygen XML

Editor.

• For more information about branch filtering and other advanced DITA reuse concepts, watch our

Webinar: Working with DITA in Oxygen - Advanced Profiling and Reuse Strategies.

Related information

Working with DITA 1.3 Key Scopes (on page 3116)

Oxygen XML Blog: DITA 1.3 Branch Filtering - Next Generation of Reuse

Oxygen Video Tutorial: DITA 1.3 (Key Scopes, Branch Filtering)

DITA Reusable Components View

The DITA Reusable Components view is helpful if you use a large number of keys or reusable components

in your DITA project. It collects all of the keys and reusable components that are defined in the root map (on

page 3301) and presents them in a side view where you can easily locate and insert references to them.

It recollects the keys anytime the root map is changed (on page 2967) or you switch the editor focus to a

different file.

If the view is not displayed, it can be opened by selecting it from Window > Show View. By default, it appears

in the bottom-right section of the editor.

Tip:

You can also assign a keyboard shortcut to open the view using the Menu Shortcut Keys preference

page (on page 304).

It includes the following tabs:

• Keys (on page 3120) - Displays all the keys that are defined in the root map (on page 3301) and

provides ways to easily insert references to them as cross reference links, key references, or variables.

It includes a search field, some filtering and sorting options to help you find particular keys, and some

contextual menu actions. It also supports drag and drop actions and double-clicking a key is the fastest

way to insert a reference.

Note:

If the keys are gathered from peer DITA maps (used in cross publication references), the keys

that define variables are not presented.

https://blog.oxygenxml.com/branchFilters/branchFilter.html
https://www.oxygenxml.com/demo/DITA_13.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://blog.oxygenxml.com/branchFilters/branchFilter.html
https://www.oxygenxml.com/demo/DITA_13.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3120

• Components (on page 3124) - Displays all the reusable components found in the root map (on page

3301) and provides ways to easily insert them as content references or content key references. To

determine which components to display in this tab, Oxygen XML Editor looks for any topicref in the root

map (on page 3301) that is marked as resource-only and then looks for elements with an assigned

@id attribute value. This tab includes a search field, some filtering options, and some simple links and

contextual menu actions to quickly insert references or open their source file. It also supports drag and

drop and double-clicking actions.

• Media (on page 3126) - Displays all images referenced as keys in the root map along with all images

found in the user-defined working sets.

Keys Tab

The DITA Reusable Components view collects all the keys that are defined in the current root map (on page

3301) and displays them in the Keys tab. This tab has two view modes. The default tiles style view mode and

a table style view mode.

Tiles Mode

The default tiles mode displays the keys as blocks (cards). The advantage of this display mode is that more

information about each particular key can be seen even when the view is sized with a small width. Each block

(card) displays the name of the key (the value of the @keys attribute), followed by its description and/or @href

value, then followed by the name of the DITA map file where the key is defined.

Figure 783. DITA Reusable Components View - Keys Tab (Default tiles mode)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3121

Table Mode

You can switch to a table style display mode by selecting the Table mode toggle action from the Settings

menu. The advantage of this display mode is that more keys can be listed at once. In this mode, keys that are

defined with a text value in the <navtitle> or <keyword> element have that value listed in the Description column,

while keys that are defined with a value in an @href attribute have that href value listed in the Href column.

Figure 784. DITA Reusable Components View - Keys Tab (Table mode)

Both display modes in the Keys tab include a variety of features and options:

Search Filter

You can enter text in the filter field at the top of this tab to filter the list and search for specific

keys.

Sorting

Tiles Mode: In the default tiles display mode, to sort the keys alphabetically in ascending order,

select Sort by key name from the Settings menu.

Table Mode: In the table display mode, the following columns can be sorted by clicking the

heading:

• Key - The name of the key (the value of the @keys attribute).

• Description - The description of the key that is obtained from its definition. Keys that are

defined with a text value in the <navtitle> or <keyword> element have that value listed in this

column.

• Href - Keys that are defined with a value in an @href attribute have that href value listed in

this column.

• Definition Location - The name of the DITA map (on page 3296) where the key is defined.

Double-Click Mechanism

You can double-click any key listed in this tab to insert a key reference at the current cursor

position or surrounding the current selection.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3122

• If the selected key points to an @href value, it is inserted as a cross reference link (xref)

(on page 3131).

• If the selected key is a reference to an image, it is inserted as an <image> element.

• If the selected key does not have an associated @href, it is inserted as a variable reference

(ph) (on page 3114).

Drag and Drop Mechanism

You can drag a key from this tab and drop it in the main editor to insert a key reference at the

current cursor position.

• If the selected key points to an @href value, it is inserted as a cross reference link (xref)

(on page 3131).

• If the selected key is a reference to an image, it is inserted as an <image> element.

• If the selected key does not have an associated @href, it is inserted as a variable reference

(ph) (on page 3114).

Contextual Menu Actions

Insert as Link

Inserts a cross reference link (xref) (on page 3131) to the selected key at the

current cursor position or surrounding the current selection.

Insert as Variable

Inserts a variable reference (ph) (on page 3114) to the selected key at the current

cursor position or surrounding the current selection. However, if the selected key is

a reference to an image, this action inserts the key reference in an <image> element.

Insert as Keyref

Presents a submenu with all the elements that can be inserted at the current

cursor position. Selecting an element will insert that element at the current cursor

position or surrounding the current selection with a @keyref attribute and its value

set to the selected key.

Insert as Figure

Available if the selection is an image, it inserts the image inside a figure element

(<fig>). Note that the <title> element of the inserted figure will be empty.

Rename Key

Opens a refactoring wizard (on page 860) where you can easily rename the key and

define the scope of the operation. It also updates all references to it.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3123

Notes:

• This action does not work on DITA 1.3 key scopes.

• This action is only available if the DITA map opened in the DITA

Maps Manager is also selected as the Root map.

Go to Definition

Opens the DITA map where the key is defined.

Search References

Searches for all references to the selected key in the entire DITA map structure.

Group by Definition Location (Available in Table mode only)

A toggle action that can be used to group (and sort) all the keys based on the value

in the Definition Location column.

Settings Menu

This menu includes the following options:

Filtering Options

• Show all - Shows all defined keys found in the current root map (on page

3301).

• Show only variables - Filters the keys to show only those defined as variable

references (on page 3114).

• Show only maps and topics - Filters the keys to show only those that

reference DITA maps or topics.

• Show only multimedia resources - Filters the keys to show only those that

reference multimedia resources (such as images).

• Show only external resources - Filters the keys to show only those that

reference external resources (such as web links).

• Show only keys with closest relative key scope - Filters the presented

keys to hide the fully qualified key scope paths and show only the relative

key references that have the closest relative key scope path in the current

context. This toggle option can be combined with any of the other

filtering options. It is deselected by default. This option always remains

synchronized with this same option in the Media tab so changing it one of

the tabs also changes it for the other.

Sort by key name (Available in Tiles mode only)

Sorts the keys alphabetically in ascending order.

Table mode

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3124

A toggle action that switches between the table and tiles display modes.

Components Tab

The DITA Reusable Components view collects all the topics from the current root map (on page 3301)

that are marked as resource-only, then collects the reusable components from those topics, and displays

them in the Components tab. To set a topic as resource-only, the <topicref> in the DITA map file must have a

@processing-role attribute set like this:

<topicref href="topics/randomize-xml-content.dita" processing-role="resource-only"/>

The DITA Reusable Components view considers topic references that contain processing-role="resource-

only" to be candidates to contain reusable components. The reusable components inside these topics

are collected from all elements that have an ID specified. These reusable components are displayed in the

Components tab along with the file name and the specific names of the elements that contain an ID attribute.

Figure 785. DITA Reusable Components View - Components Tab

The Components tab includes the following features and options:

Search Filter

You can enter text in the filter field at the top of this tab to filter the list and search for specific

content inside the list of reusable components. This field supports many of the Lucene-based

search patterns, such as wildcards (* or ?), boolean operators (AND, OR, NOT), fuzzy searches (~),

boosting searches (^), and more.

Settings Menu

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3125

This menu includes the following options:

Compact Mode

You can use this toggle action to switch the display for the Components tab to a

compact visualization mode. When switched to Compact mode, fewer details are

shown for each component, but more components are displayed in the view.

Reindex

You can use this action force a re-indexing of the reusable components.

Show Elements of Type

You can use this drop-down list to select specific types of elements to be displayed in the list of

components. This can help you narrow down the list of possible source elements that you can

select.

Source File(s)

You can use this combo box to search for specific source files (the topics that contain reusable

components) or select a file from its drop-down list. You can also use wildcards (such as * or ?)

in this field.

Double-Click Mechanism

You can double-click any reusable component listed in preview window in this tab to insert it as

a content reference or content key reference at the current cursor position or replace the current

selection.

• If the parent topic of the selected component has a key defined, it is inserted as a content

key reference (conkeyref) (on page 3096).

• If the parent topic of the selected component does not have a key defined, it is inserted as

a content reference (conref) (on page 3094).

Drag and Drop Mechanism

You can drag a reusable component from the preview window in this tab and drop it in the main

editor to insert a content reference or content key reference at the current cursor position.

• If the parent topic of the selected component has a key defined, it is inserted as a content

key reference (conkeyref) (on page 3096).

• If the parent topic of the selected component does not have a key defined, it is inserted as

a content reference (conref) (on page 3094).

Hover and Click Actions

If you hover over a component shown in the preview window, you have access to the following

link actions:

Insert

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3126

Inserts the component as a content reference or content key reference at the

current cursor position or replaces the current selection. If the parent topic has a

key defined, it is inserted as a content key reference (conkeyref) (on page 3096).

Otherwise, it is inserted as a content reference (conref) (on page 3094).

Open

Opens the source file that contains the reusable component.

Contextual Menu Actions

Insert Content Reference

Inserts the component as a content reference (conref) (on page 3094) at the

current cursor position or replaces the current selection.

Insert Content Key Reference

Inserts the component as a content key reference (conkeyref) (on page 3096) at

the current cursor position or replaces the current selection. This action is only

available if the parent topic has a key defined.

Go to Definition

Opens the source file that contains the reusable component.

Search References

Searches for all references to the selected component in the entire DITA map (on

page 3296) structure.

Media Tab

The Media tab displays all media resources (images, audio, video) referenced as keys in the current root map

along with all audio, image, and video resources found in user-defined working sets (on page 3128).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3127

Figure 786. DITA Reusable Components View - Media Tab

The Media tab includes the following features and options:

Search Filter

You can enter text in the filter field at the top of this tab to filter the list and search for specific

media resource key or file names in the list of available resources.

Resource Type Filter

You can quickly show resources of a specific type by clicking one of the type buttons (Images,

Audio, Video, Others).

Settings Menu

This menu includes the following options:

Sort by date

Sorts the presented resources based on both the date when they were last

modified and the date they were created.

Show only keys with closest relative key scope

Filters the presented keys to hide the fully qualified key scope paths and show

only the relative key references that have the closest relative key scope path in the

current context. This toggle option can be combined with any of the other filtering

options. It is deselected by default. This option always remains synchronized with

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3128

this same option in the Keys tab so changing it one of the tabs also changes it for

the other.

Configure working sets

Use this option to define folders where the media resources will be gathered. The

Media tab will include audio, image, and video resources collected from the current

root map as well as media resources located in the folders defined as active

working sets. The working sets are defined at project level so that they can be

easily shared with others. To save working sets in the global user-specific settings

instead, in the Preferences > Project Level Settings page you can uncheck the

Save DITA media working sets at project level checkbox.

Reload

Refreshes the list of displayed media resources. This is useful if resources were

recently added in the searched folders.

Double-Click Mechanism

You can double-click any media resource in the list to add a reference to it.

Drag and Drop Mechanism

You can drag a media resource from the list and drop it in the main editor to add a reference to it.

Contextual Menu Actions

Insert As Image Reference

Inserts an image reference. If the resource is referenced using a key in the DITA

map, an indirect reference using the defined key will be used. Otherwise, the

reference will point directly to the resource location.

Insert As Audio Reference

Inserts an audio reference. If the resource is referenced using a key in the DITA

map, an indirect reference using the defined key will be used. Otherwise, the

reference will point directly to the resource location.

Insert As Video Reference

Inserts a video reference. If the resource is referenced using a key in the DITA map,

an indirect reference using the defined key will be used. Otherwise, the reference

will point directly to the resource location.

Insert As Embedded Reference

Inserts as an embedded reference. If the resource is referenced using a key in the

DITA map, an indirect reference using the defined key will be used. Otherwise, the

reference will point directly to the resource location.

Insert as Link

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3129

Inserts a link to the resource, either as a DITA <xref> or <link>, depending on the

cursor position.

Insert as Variable

Inserts a variable reference (ph) (on page 3114) to the selected key at the current

cursor position or surrounding the current selection. However, if the selected key is

a reference to an image, this action inserts the key reference in an <image> element.

Insert as Keyref

Presents a submenu with all the elements that can be inserted at the current

cursor position. Selecting an element will insert that element at the current cursor

position or surrounding the current selection with a @keyref attribute and its value

set to the selected key.

Insert as Figure

Available if the selection is an image, it inserts the image inside a figure element

(<fig>). Note that the <title> element of the inserted figure will be empty.

Preview

Shows the selection in an Image Preview side view.

Open in System Application

Opens the default system editor/viewer associated with the resource type.

Show in Explorer/Finder

Opens the default file browser at the specific folder where the resource is located.

Items in the Media tab are presented in the following order:

• Key definitions are always presented first, in document order.

• Resources defined and collected from working sets are sorted alphabetically by name, for each folder

separately.

Related information

Working with Reusable Components (on page 3112)

Linking in DITA Topics (on page 3131)

Working with Variable Text in DITA (on page 3114)

Working with Keys in DITA (on page 3084)

Creating a DITA Content Reference (on page 3094)

Creating a DITA Content Key Reference (on page 3096)

Working with Content References (on page 3093)

Short Video Clip: Learn DITA Editing with Oxygen - Add a Content Reference Using the DITA Reusable

Components View

https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_vvv_kfq_pvb
https://blog.oxygenxml.com/topics/shorts_reuse_content.html#shorts_reuse_content__section_vvv_kfq_pvb

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3130

Linking in DITA
DITA provides support for various types of linking between topics, some of which is automated, while others

are specified by the author. Oxygen XML Editor provides support for all forms of linking in DITA.

Linking Between Parent, Child, and Sibling Topics

A DITA map (on page 3296) creates a hierarchical relationship between topics. That relationship map

expresses a narrative flow from one topic to another, or it may be used as a classification system to help the

reader find topics based on their classification, without creating a narrative flow. Since there may be various

types of relationships between topics in a hierarchy, you may want to create links between topics in a variety

of ways. For instance, if your topics are supposed to be organized into a narrative flow, you may want to have

links to the next and previous topics in that flow. If your topics are part of a hierarchical classification, you may

want links from parent to child topics, and vice versa, but not to the next and previous topics.

Parent, child, and sibling links are created automatically by the DITA output transformations (and may differ

between various output formats). The kinds of links that are created are determined by the DITA collection-

type attribute (on page 2990).

In-Line Linking in the Content of a Topic

DITA supports linking within the text of a topic using the <xref> element. The destination of the link can be

expressed directly using the @href attribute or indirectly using the @keyref attribute. If you use the @keyref

attribute, you link to a key rather than directly to a topic. That key is then assigned to a topic in a map that

includes that topic. This means that you can change the destination that a key points to by editing the key

definition in the map or by substituting another map in the build.

Linking Between Related Topics

In addition to the relationships between topics that expressed by their place in the hierarchy of a map, a topic

may be related to other topics in various ways. For instance, a task topic may be related to a concept topic

that gives the background of the task, or to a reference topic that provides data needed to complete the task.

Task topics may also be related to other tasks in a related area, or concepts to related concepts.

Typically, they are grouped in a list at the end of the topic, although this depends on the behavior of the output

transformation. DITA provides two mechanisms for expressing relationships between topics at the topic level:

the Related Links section of a topic and relationship tables in maps. To add related links, select Related Link

to Topic, Related Link to File, or Related Link to Web Page from the Link drop-down menu from the

toolbar (or the Link submenu in the contextual menu or DITA menu).

Tip:

You can use the Find Similar Topics action (available in the contextual menu or DITA menu) to

quickly find related topics that can be added as related links. It opens the Open/Find Resource view

and performs a search using text content from the <title>, <shortdesc>, <keyword>, and <indexterm>

elements.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3131

Managing Links

Links can break for a variety of reasons. The topic that a link points to may be renamed or removed. A topic

may be used in a map that does not include a linked topic. A topic or a key may not exist in a map when a

particular profile is applied. The DITA Maps Manager (on page 2950) provides a way to validate all the links

in the documents that are included in the map (on page 2995). This can include validating all the profiling

conditions that are applied.

Related information

Short Video Clip: Learn DITA Editing with Oxygen - Various Ways to Insert Links

Hierarchical Linking in DITA Maps

To create hierarchical linking between the topics in a DITA map (on page 3296), you set the appropriate

value of the @collection-type attribute on the map. See the DITA documentation for the meaning of each of the

values of the @collection-type attribute.

Note:

Publishing scripts determine when and how to create hierarchical links. The @collection-type attribute

does not force a particular style of linking. Instead, it declares what the nature of the relationship

is between the topics. The publishing scripts use that information to determine how to link topics.

Scripts for different types of media might make the determination depending on what is appropriate

for the particular type of media. You can provide additional instructions to the scripts using the

@linking attribute.

To add the @collection-type to an item in a map:

1. Right-click the topic and choose Edit Properties. The Edit Properties dialog box is displayed.

2. In the Attributes tab, select the appropriate value from the Collection type drop-down list.

3. You can use the Other attributes table to add a value to the @linking attribute.

Linking in DITA Topics

Direct Links

Inline links can be created DITA topics using the <xref> element. The destination of the link can be expressed

directly by using the @href attribute and the target can be another topic or a specific element within the other

topic, another location within the same topic, a file, or a web link. You can also create direct related links to

topics, files, or websites in a DITA topic using the <related-links> element.

Indirect Links Using Keys

The destination of the link can also be expressed indirectly by using keys (on page 3084) to create either

inline links or related links (with the @keyref attribute). By using keys, you avoid creating a direct dependency

between topics. This makes links easier to manage and can make it easier to reuse topics in various

https://blog.oxygenxml.com/topics/shorts_insert_links.html
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/ditamap-attributes.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3132

publications. It can also be helpful in verifying the completeness of a publication, by ensuring that a

publication map provides a key definition for every key reference used in the content.

Links based on keys require two pieces:

• Key Definition - Assigns a key to a topic so that other topics can link to it. For more information, see

Defining Keys in DITA Maps (on page 2984).

• Key Reference - Created in an <xref> element and specifies the key to link to.

The key reference points to a key definition, and the key definition points to a topic. Key definitions are created

in maps, as an element on the <topicref> element that points to a topic. This allows you to assign a particular

key to one topic in one map and to another topic in another map. When a topic that links to that key is used in

each of these maps, the links work correctly in both maps.

Inserting a Link in Oxygen XML Editor

To insert a link in Author mode (on page 364), use the actions available in the Link drop-down menu

from the toolbar (or the Link submenu in the contextual menu or DITA menu). You can choose between the

following types of inline links:

Cross Reference

Opens the Cross Reference (xref) dialog box (on page 3134) that allows you to insert a cross

reference link to a target DITA resource at the current location within a document. The target

resource can be the location of a file or a key that is already defined in your DITA map structure.

Once the target resource has been selected, you can also target specific elements within that

resource. Depending on the context where it is invoked, the action inserts one of the following

two elements:

• <xref> - Used to link to other topics or another location within the same topic and points to

the target using the @href or @keyref attribute.

• <fragref> - A logical reference to a fragment element within a syntax diagram and points

to the target using the @href or @keyref attribute.

File Reference

Opens a dialog box that allows you to insert a link to a target non-DITA file resource at the

current location within a document. The target resource can be the location of a file or a key that

is already defined in your DITA map structure. It inserts an <xref> element with either an @href

attribute or a @keyref attribute. If you select Location for the target, the link is expressed in an

@href attribute. If you select Key for the target, keys will be used to express the link in a @keyref

attribute. You can select a key from the drop-down list or click the Choose Key Reference

button to use the Choose Key dialog box (on page 3135).

Web Link

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3133

Opens a dialog box that allows you to insert a link to a target web-related resource at the current

location within a document. The target resource can be a URL or a key that is already defined in

your DITA map structure. It inserts an <xref> element with either an @href attribute or a @keyref

attribute. If you select URL for the target resource, the link is expressed in an @href attribute. If

you select Key for the target, keys will be used to express the link in a @keyref attribute. You can

select a key from the drop-down list or click the Choose Key Reference button to use the

Choose Key dialog box (on page 3135).

Related Link to Topic

Opens the Cross Reference (xref) dialog box (on page 3134) that allows you to insert a link

to a target DITA resource in a related links section that is typically at the bottom of your topic

(although this depends on the behavior of the output transformation). The target resource can

be the location of a file or a key that is already defined in your DITA map structure. Once the

target resource has been selected, you can also target specific elements within that resource.

If a related links section does not already exist, this action creates one. Specifically, it inserts a

<link> element inside a related-links element.

Tip:

You can use the Find Similar Topics action (available in the contextual menu or DITA

menu) to quickly find related topics that can be added as related links. It opens the

Open/Find Resource view and performs a search using text content from the <title>,

<shortdesc>, <keyword>, and <indexterm> elements.

Related Link to File

Opens a dialog box that allows you to insert a link to a target non-DITA file resource in a related

links section that is typically at the bottom of your topic (although this depends on the behavior

of the output transformation). The target resource can be the location of a file or a key that is

already defined in your DITA map structure. If a related links section does not already exist, this

action creates one. Specifically, it inserts a <link> element inside a related-links element. If you

select Location for the target, the link is expressed in an @href attribute. If you select Key for the

target, keys will be used to express the link in a @keyref attribute. You can select a key from the

drop-down list or click the Choose Key Reference button to use the Choose Key dialog box

(on page 3135).

Related Link to Web Page

Opens the Web Link dialog box that allows you to insert a link to a target web-related resource in

a related links section that is typically at the bottom of your topic (although this depends on the

behavior of the output transformation). The target resource can be a URL or a key that is already

defined in your DITA map structure. If a related links section does not already exist, this action

creates one. Specifically, it inserts a <link> element inside a related-links element. If you select

URL for the target resource, the link is expressed in an @href attribute. If you select Key for the

target, keys will be used to express the link in a @keyref attribute. You can select a key from the

https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/related-links-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/related-links-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/related-links-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/related-links-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/related-links-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/related-links-elements.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3134

drop-down list or click the Choose Key Reference button to use the Choose Key dialog box

(on page 3135).

Cross Reference (xref) Dialog Box

The Cross Reference (xref) dialog box is displayed when you insert a Cross Reference or Related Link to

Topic (from the Link drop-down menu). It allows you to insert a link to a target resource at the current

location within a document (for a Cross Reference link) or in a related links section (for a Related Link to

Topic). The target resource can be the location of a file or a key that is already defined in your DITA map

structure. Once the target resource has been selected, you can also target specific elements within that

resource.

Figure 787. Cross Reference (xref) Dialog Box

This dialog box includes the following sections and fields:

Choose the Target Resource Section

Location

If you select Location for the target, the link is expressed in an @href attribute.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3135

Key

If you select Key for the target, keys will be used to express the link in a @keyref

attribute. You can use the Choose Key Reference button to open the Choose

Key dialog box that allows you to select one from a list of all the keys that are

gathered from the root map (on page 3301) (you can also select one from the

drop-down list in the Key field).

Tip:

You can also use the DITA Reusable Components view (on page 3119) for

similar purposes.

Figure 788. Choose Key Dialog Box

The Choose Key dialog box includes the following:

• Change Root Map - Opens a small dialog box that allows you to select a root

map (on page 2967).

• Search Filter - You can enter text in the filter field at the top of the dialog box

to filter the list and search for specific keys.

• Sortable Columns - The dialog box includes the following columns that can

be sorted by clicking on the heading:

◦ Key - The name of the key (the value of the @keys attribute).

◦ Description - The description of the key that is obtained from its

definition. Keys that are defined with a text value in the <navtitle> or

<keyword> element have that value listed in this column.

◦ Href - Keys that are defined with a value in an @href attribute have that

href value listed in this column.

◦ Definition Location - The name of the DITA map (on page 3296)

where the key is defined.

• Group by Definition Location - A contextual menu action that can be used to

group (and sort) all the keys based upon the value in the Definition Location

column.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3136

Select the Target Element Section

This section can be used to target a specific element inside the target resource.

Show elements of type

You can use this drop-down list to select specific types of elements to be displayed

in the subsequent table. This can help you narrow down the list of possible source

elements that you can select.

Text Filter Field

You can also use the text filter field to narrow down the list of possible source

elements to be displayed in the subsequent table.

Element Table

Presents all the element IDs defined in the source topic. Use this table to select the

Target ID of the element that you want to reference.

Preview Pane

Displays the content that will be references.

Source Pane

Displays the XML source code of the element to be referenced.

Once you click Insert or Insert and close, the configured cross reference is inserted into your document.

Tip:

You can easily insert multiple cross references by keeping the dialog box opened, using the Insert

button.

Using Copy/Paste or Drag/Drop Actions to Insert a Cross Reference

Oxygen XML Editor also includes support for inserting cross reference links with simple copy/paste or drag/

drop actions (additionally, you can insert them using the Paste as Link or Paste as Link (keyref) actions found

in the Paste Special submenu from the contextual menu). The copied/dragged content must be an entire

DITA XML element with an @id attribute or a <topicref>. Also, the location in the document where you paste or

drop the link must be valid, although as long as the Smart paste and drag and drop option (on page 190) is

selected in the Schema-Aware preferences page, if you try to paste it in an invalid location, Oxygen XML Editor

will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.

When the link is inserted, Oxygen XML Editor automatically tries to populate certain attributes based on

detected values. The @format, @scope, and @type attributes are populated if their corresponding options are

selected in the Inserting Links section of the DITA Topics preferences page (on page 284). Even if their

corresponding options are not selected, the @format and @scope attributes are populated if their detected values

are different than the default values.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3137

Note:

For the sake of performance, the @type attribute is never automatically computed in the following

cases:

• When using drag/drop or copy/paste actions from the DITA Maps Manager view (on page

2950) or from the Keys tab of the DITA Reusable Components view (on page 3119).

• When using the Paste as Link or Paste as Link (keyref) actions to paste a topic reference that

was copied from the DITA Maps Manager view (on page 2950) and its <topicref> elements do

not have the @type attribute defined.

Typically, cross reference links are inserted with an @href attribute, but it is also possible to insert them with a

@keyref attribute using the Paste as Link (keyref) contextual menu action or copy/paste or drag/drop actions.

For the latter method, follow these steps :

1. In the DITA Maps Manager view (on page 2950), make sure that the Context combo box (on page

2954) points to the correct map that stores the keys.

2. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign

a key, right-click the topic with its parent map opened in the DITA Maps Manager (on page 2950),

select Edit Properties, and enter a value in the Keys field.

3. Copy an entire DITA element that has an ID attribute assigned to it from a topic with an assigned key, or

a <topicref> from a DITA map.

4. Place the cursor at a location, where you want to insert the link.

5. Select the Paste as Link (keyref) action from the Paste Special submenu from the contextual menu.

Related information

Defining Keys in DITA Maps (on page 2984)

DITA Reusable Components View (on page 3119)

Short Video Clip: Learn DITA Editing with Oxygen - Various Ways to Insert Links

Linking with Relationship Tables in DITA

A relationship table is used to express relationships between topics outside of the topics themselves. The

DITA publishing scripts can then create links between related topics when the content is published.

The reason for using a relationship table is to help make topics easier to reuse. If a topic links directly to

another topic, this creates a dependency between the topics. If one topic is reused in a publication where the

other is not used, the link is broken. By defining relationships between topics in a relationship table, you avoid

creating this dependency.

To create an appropriate set of links between topics in multiple publications, you can create a separate

relationship table for each publication. If you are creating multiple publications by applying profiling conditions

to a single map, you can also profile your relationship table.

https://blog.oxygenxml.com/topics/shorts_insert_links.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3138

To create a relationship table, follow these steps:

1. If the map is currently open in the DITA Maps Manager (on page 2950), double-click the map icon ()

to open the map in Author mode. If it opens in Text mode, click Author at the bottom left to switch to

Author mode.

2. Move the insertion point inside the map root element (usually <map>, but it might be <bookmap>, or another

specialization of the <map> element). The easiest way to do this is to click below the title of the map

in the editor and then press the up arrow once. Confirm that you are inside the map root element by

checking the breadcrumbs at the top left of the editor window. You should only see the name of the

map root element.

3. Select the Insert Relationship Table action on the toolbar or from the Relationship Table submenu

of the contextual menu.

The Insert Relationship Table dialog box is displayed.

4. Set the number of rows, the number of columns, a table title (optional), and select whether or not you

want a table header. Click Insert.

5. Enter the type of the topics in the header of each column.

The header of the table (the <relheader> element) already contains a <relcolspec> element for each

table column. You should set the value of the @type attribute of each <relcolspec> element to a value

such as concept, task, or reference. When you click in the header cell of a column (that is a <relcolspec>

element), you can see all the attributes of that <relcolspec> element, including the @type attribute in the

Attributes view (on page 641). You can edit the attribute type in this view.

6. To insert a topic reference in a cell, place the cursor in a table cell and select Insert Reference (on

page 3015) from the contextual menu or the DITA Map toolbar.

7. To add a new row to the table or remove an existing row use Insert Relationship Row/ Delete

Relationship Row from the contextual menu or the DITA Map toolbar.

8. To add a new column to the table or remove an existing column, use Insert Relationship

Column/ Delete Relationship Column contextual menu or the DITA Map toolbar. If you double-click

the relationship table (or select it and press Enter, or choose Open from the contextual menu) the DITA

map is opened in the editor with the cursor positioned inside the corresponding relationship table.

9. To add topic references to your relationship table, drag and drop topics from the DITA Maps Manager

(on page 2950) or the Project (on page 414) view into the appropriate cell in the relationship table.

See the DITA documentation for a full explanation of the relationship table format and its options. Note

that you can change all the selections that you make here later by using the actions on the toolbar (or

in the Relationship Table submenu of the contextual menu) or by editing the underlying XML in Text

mode.

10. Save the DITA map.

Relationship tables are also displayed in the DITA Maps Manager view (on page 2950), along with the

other elements in its DITA map.

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/reltable.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3139

Figure 789. Relationship Table

You can open the DITA map to edit the relationship table by doing one of the following:

◦ Double-click the appropriate relationship table in the DITA Maps Manager (on page 2950).

◦ Select the relationship table in the DITA Maps Manager (on page 2950) and press Enter.

◦ Select Open from the contextual menu of the relationship table in the DITA Maps Manager (on

page 2950).

Content Completion in DITA
Oxygen XML Editor includes an intelligent Content Completion Assistant (on page 3295) that offers proposals

for inserting structured language elements, attributes, and attribute values that are valid in the current editing

context. The functionality of the feature is slightly difference for each editing mode:

• For detailed information about using the feature in Text mode, see: Content Completion Assistant in

Text Mode (on page 544).

• For detailed information about using the feature in Author mode, see: Content Completion Assistant in

Author Mode (on page 629).

In addition to the general functionality and types of proposals that are offered in the Content Completion

Assistant (as described in the two topics listed above), some DITA-specific actions are offered as proposals in

the content completion when using the feature in DITA documents. These actions include:

• keyref - Opens a pop-up window that allows you to choose a key from a list all the keys that are

gathered from the context DITA map (except for those that point to resource-only topics). If the chosen

key defines a keyword, the @keyref attribute is inserted inside a <ph> element, while if the chosen key

points to a resource, the @keyref attribute is inserted inside an <xref> element.

• conref - Opens a pop-up window that allows you to choose reusable content from a list all the reusable

components (elements with IDs in topics that are referenced as resource-only in the context DITA

map). For each element, a preview of the content is shown in the documentation panel to the right of

the pop-up. Once an element is chosen, a @conref or @conkeyref is inserted, depending on the defined

component.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3140

• xref (cross reference) - Opens the dialog box that allows you to insert a link to a specified target DITA

resource at the current location within a document. The target resource can be the location of a file or

a key that is already defined in your DITA map structure. Once the target resource has been selected,

you can also target specific elements within that resource. The action inserts an <xref> element with an

@href or @keyref attribute that points to the target.

• xref (web link) - Opens a dialog box that allows you to insert a link to a target web-related resource

at the current location within a document. The target resource can be a URL or a key that is already

defined in your DITA map structure. It inserts an <xref> element with either an @href attribute or a @keyref

attribute.

• simpletable - Opens a dialog box that allows you to configure and insert a table. You can generate

a header and footer, set the number of rows and columns of the table, and decide how the table is

framed.

Related information

Content Completion Assistant in Author Mode (on page 629)

Content Completion Assistant in Text Mode (on page 544)

Publishing DITA Output
As a structured writing format, DITA produces structured content (content that is annotated with specific

structural and semantic information rather than with formatting information). To create a publication, your

DITA map (on page 3296) and its associated topics must be processed by a transformation script. That

script is responsible for how the structural and semantic information in the DITA files is converted into

formatting information for display.

Oxygen XML Editor publishes DITA content to various output sources using a bundled version of the DITA

Open Toolkit. The DITA-OT is an open-source publishing engine that can publish DITA content to various

output sources such as XHTML, PDF, or Windows Help (CHM). Since it has a plugin-based architecture, it

can be extended with extra plugins that either define new formats for conversion or customize an existing

conversion format. You can run the DITA-OT from Oxygen XML Editor using a transformation scenario or you

can run it directly from a command line: http://www.dita-ot.org/dev/topics/building-output.html.

The DITA-OT that comes bundled with Oxygen XML Editor contains more plugins than the standard DITA-

OT that can be downloaded from their official website. For example, it contains pre-installed plugins for

converting DITA content to Word, EPUB, WebHelp, or to publish to PDF using CSS to customize the output.

You can download and install extra publishing plugins either from the DITA Open Toolkit registry or from the

list of free plugins (on page 3231) on the Oxygen XML Editor GitHub account.

Warning:

Keep in mind that there could be instances where there are differences between what you see in

Author mode and what you see in the published output. This is typically due to certain limitations in

the publishing engine, especially when the source documents contain advanced constructs such as

https://www.dita-ot.org/
https://www.dita-ot.org/
http://www.dita-ot.org/dev/topics/building-output.html
https://www.dita-ot.org/dev/topics/plugins-registry.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3141

key scopes, branch filtering, chunking, or reusing content through direct references between topics

marked for publishing.

DITA Map Transformation Scenarios

Built-in transformation scenarios allow you to transform DITA maps (on page 3296) to a variety of outputs,

such as WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word. Oxygen XML Editor also includes a

special Integrate/Install DITA-OT Plugins (on page 1498) that can be used to integrate a DITA-OT plugin and a

DITA Map Metrics Report transformation that generates a statistics report for your DITA map. All of them are

listed in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1616).

A variety of transformations scenarios are available for DITA maps (on page 3296):

• Built-in transformation scenarios allow you to transform a DITA map to a variety of outputs, such as

WebHelp, PDF, ODF, XHTML, EPUB, CHM, Metrics Report, and MS Word.

• Integrate/Install DITA-OT Plugins (on page 1498) - Use this transformation scenario if you want to

integrate a DITA-OT plugin (on page 3228). This scenario runs an Ant task that integrates all the

plugins from the DITA-OT/plugins directory.

Related Information:

Editing a Transformation Scenario (on page 1613)

Configure Transformation Scenario(s) Dialog Box (on page 1616)

Applying Associated Transformation Scenarios (on page 1615)

DITA Topic Transformation Scenarios (on page 3165)

DITA Map WebHelp Responsive Transformation

DITA content can be transformed into several types of WebHelp Responsive systems (with or without a

feedback section). The WebHelp Responsive layout and features (on page 1627) are designed to adapt to

any device and screen size to provide an optimal viewing and interaction experience. Oxygen XML Editor also

provides numerous possibilities for customizing the WebHelp Responsive output (on page 1712).

WebHelp Responsive Transformation Scenario

To publish a DITA map (on page 3296) as WebHelp Responsive output, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager (on page

2950) toolbar.

2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.

3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various

options in the following tabs:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3142

◦ Templates Tab (on page 3168) - This tab contains a set of built-in publishing templates (on

page 1673) that you can use for the layout of your WebHelp system output. You can also create

your own publishing templates or edit existing ones (on page 1712).

◦ Parameters Tab (on page 3174) - This tab includes numerous parameters that can be set to

customize your WebHelp system output. See the Parameters section (on page 1476) below for

details about the most commonly used parameters for WebHelp Responsive transformations.

◦ Feedback Tab (on page 3175) - This tab is for those who want to add the Oxygen Feedback

comments component at the bottom of each WebHelp page so that you can interact with your

readers.

◦ Filters Tab (on page 3176) - This tab allows you to filter certain content elements from the

generated output.

◦ Advanced Tab (on page 3177) - This tab allows you to specify some advanced options for the

transformation scenario.

◦ Output Tab (on page 3180) - This tab allows you to configure options that are related to the

location where the output is generated.

4. Click Apply associated to process the transformation.

Result: When the DITA Map WebHelp Responsive transformation is complete, the output is automatically

opened in your default browser.

General Parameters for Customizing WebHelp Responsive Output

To customize a transformation scenario, you can edit various parameters, including the following most

commonly used ones:

default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-

us.

clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes

values are valid and the default value is no).

editlink.remote.ditamap.url

Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the

topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML

Web Author where they can make changes that can be saved to a file server. The value should be

set as the custom URL of the main DITA map. For example, a GitHub custom URL might look like

this: https://getFileContent/oxyengxml/userguide/master/UserGuide.ditamap.

editlink.web.author.url

This parameter needs to be used in conjunction with editlink.remote.ditamap.url to add an Edit

link next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened

in Oxygen XML Web Author where they can make changes that can be saved to a file server.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3143

The value should be set as the URL of the Web Author installation. For example: https://

www.oxygenxml.com/oxygen-xml-web-author/.

editlink.present.only.path.to.topic

When this parameter is set to "true", the DITA topic path is displayed to the right of each

topic title in the WebHelp Responsive output. Also, when this parameter is used, the

editlink.ditamap.edit.url, editlink.remote.ditamap.url, and editlink.web.author.url parameters

are ignored.

fix.external.refs.com.oxygenxml (Only supported when the DITA-OT transformation process is started

from Oxygen XML Editor)

The DITA Open Toolkit usually has problems processing references that point to locations

outside of the directory of the processed DITA map. This parameter is used to specify whether

or not the application should try to fix such references in a temporary files folder before the

DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA

content. Allowed values: true or false (default).

force.unique

When set to true (default value), the transformation will be forced to create unique output files

for each instance of a resource when a map contains multiple references to a single topic.

use.stemming

Controls whether or not you want to include stemming search algorithms into the published

output (default setting is false).

webhelp.csh.disable.topicID.fallback

Specifies whether or not topic ID fallbacks are enabled when computing the mapping of context

sensitive help and resourceid information is not available. Possible values are false (default) and

true.

webhelp.custom.resources

The file path to a directory that contains resources files. All files from this directory will be copied

to the root of the WebHelp output.

webhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.reload.stylesheet

Set this parameter to true if you have out of memory problems when generating WebHelp. It will

increase processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file

The path of the file that contains name patterns for HTML files that should not be indexed by

the WebHelp search engine. Each exclude pattern must be on a new line. The patterns are

considered to be relative to the output directory, and they accept wildcards such as '*' (matches

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3144

zero or more characters) or '?' (matches one character). For more information about the

patterns, see https://ant.apache.org/manual/dirtasks.html#patterns.

webhelp.search.japanese.dictionary

The file path of the dictionary that will be used by the Kuromoji morphological engine for

indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be

UTF8.

webhelp.search.enable.pagination

Specifies whether or not search results will be displayed on multiple pages. Allowed values are

yes or no.

webhelp.search.index.elements.to.exclude

Specifies a list of HTML elements that will not be indexed by the search engine. The value of the

@class attribute can be used to exclude specific HTML elements from indexing. For example, the

div.not-indexed value will not index all <div> elements that have a @class attribute with the value

of not-indexed. Use a comma separator to specify more than one element.

webhelp.search.page.numberOfItems

Specifies the number of search results items displayed on each page. This parameter is only

used when the webhelp.search.enable.pagination parameter is enabled.

webhelp.search.ranking

If this parameter is set to false then the 5-star rating mechanism is no longer included in the

search results that are displayed on the Search tab (default setting is true).

webhelp.search.stop.words.include

Specifies a list of words that will be ignored by the search engine. Use a comma separator to

specify more than one word.

webhelp.show.changes.and.comments

When set to yes, user comments, replies to comments, and tracked changes are published in the

WebHelp output. The default value is no.

webhelp.sitemap.base.url

Base URL for all the <loc> elements in the generated sitemap.xml file. If this parameter is

specified, the loc element will contain the value of this parameter plus the relative path to the

page. If this parameter is not specified, the loc element will only contain the relative path of the

page (the relative file path from the @href attribute of a <topicref> element from the DITA map,

appended to this base URL value).

webhelp.sitemap.change.frequency

The value of the <changefreq> element in the generated sitemap.xml file. The <changefreq>

element is optional in sitemap.xml. If you leave this parameter set to its default empty value,

then the <changefreq> element is not added in sitemap.xml. Allowed values: <empty string>

(default), always, hourly, daily, weekly, monthly, yearly, never.

https://ant.apache.org/manual/dirtasks.html#patterns

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3145

webhelp.sitemap.priority

The value of the <priority> element in the generated sitemap.xml file. It can be set to any

fractional number between 0.0 (least important priority) and 1.0 (most important priority).

For example, 0.3, 0.5, or 0.8. The <priority> element is optional in sitemap.xml. If you leave

this parameter set to its default empty value, then the <priority> element is not added in

sitemap.xml.

Parameters Specific to Oxygen WebHelp Responsive

webhelp.fragment.feedback

You can integrate Oxygen Feedback with your WebHelp Responsive output to provide a

comments area at the bottom of each page where readers can offer feedback. When you create

an Oxygen Feedback site configuration, an HTML fragment is generated during the final step of

the creation process and that fragment should be set as the value for this parameter.

webhelp.default.collection.type.sequence

Specifies if the sequence value will be used by default when the @collection-type attribute is

not specified. This option is helpful if you want to have Next and Previous navigational buttons

generated for all HTML pages. Allowed values are no (default) and yes.

webhelp.enable.search.autocomplete

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default

value is yes.

webhelp.enable.html.fragments.cleanup

Enables or disables the automatic conversion of HTML fragments to well-formed XML. If set

to true (default), the transformation automatically converts non-well-formed HTML content to

a well-formed XML equivalent. If set to false, the transformation will fail if at least one HTML

fragment is not well-formed.

webhelp.enable.scroll.to.search.term

Specifies whether or not the page should scroll to the first search term when opening the search

results page. Possible values are no (default) and true.

webhelp.fragment.after.body

This parameter can be used to display a given XHTML fragment after the body in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.main.page

This parameter can be used to display a given XHTML fragment after the body in the main page.

The value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.after.body.topic.page

https://www.oxygenxml.com/oxygen_feedback.html
https://feedback.oxygenxml.com/
https://feedback.oxygenxml.com/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3146

This parameter can be used to display a given XHTML fragment after the body in the topic page.

The value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.after.body.search.page

This parameter can be used to display a given XHTML fragment after the body in the search

results page. The value of the parameter can be either a well-formed XHTML fragment or a path

to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.terms.page

This parameter can be used to display a given XHTML fragment after the body in the index terms

page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file

that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title

This parameter can be used to display a given XHTML fragment after the logo and title in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input

This parameter can be used to display a given XHTML fragment after the search field in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search (deprecated)

This parameter is deprecated. Use webhelp.fragment.after.search.input.main.page instead.

webhelp.fragment.after.search.input.main.page

This parameter can be used to display a given XHTML fragment after the search field in all the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.topic.page

This parameter can be used to display a given XHTML fragment after the search field in all the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.search.page

This parameter can be used to display a given XHTML fragment after the search field in all the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.terms.page

This parameter can be used to display a given XHTML fragment after the search field in all the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3147

webhelp.fragment.after.toc_or_tiles

This parameter can be used to display a given XHTML fragment after the table of contents or

tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment

or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.top_menu

This parameter can be used to display a given XHTML fragment after the top menu in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body

This parameter can be used to display a given XHTML fragment before the page body in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.main.page

This parameter can be used to display a given XHTML fragment before the page body in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.topic.page

This parameter can be used to display a given XHTML fragment before the page body in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.search.page

This parameter can be used to display a given XHTML fragment before the page body in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.terms.page

This parameter can be used to display a given XHTML fragment before the page body in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title

This parameter can be used to display a given XHTML fragment before the logo and title. The

value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input

This parameter can be used to display a given XHTML fragment before the search field in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search (deprecated)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3148

This parameter is deprecated. Use webhelp.fragment.before.search.input.main.page instead.

webhelp.fragment.before.search.input.main.page

This parameter can be used to display a given XHTML fragment before the search field in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.topic.page

This parameter can be used to display a given XHTML fragment before the search field in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.search.page

This parameter can be used to display a given XHTML fragment before the search field in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.terms.page

This parameter can be used to display a given XHTML fragment before the search field in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles

This parameter can be used to display a given XHTML fragment before the table of contents or

tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment

or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.top_menu

This parameter can be used to display a given XHTML fragment before the top menu in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.footer

This parameter can be used to display a given XHTML fragment as the page footer in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

Important:

This parameter should only be used if you are using a valid, purchased license of Oxygen

XML Editor (do not use it with a trial license).

webhelp.fragment.head

This parameter can be used to display a given XHTML fragment in the header section in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3149

webhelp.fragment.head.main.page

This parameter can be used to display a given XHTML fragment in the header section in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.topic.page

This parameter can be used to display a given XHTML fragment in the header section in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.search.page

This parameter can be used to display a given XHTML fragment in the header section in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.terms.page

This parameter can be used to display a given XHTML fragment in the header section in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome

This parameter can be used to display a given XHTML fragment as a welcome message (or

title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file

that contains a well-formed XHTML fragment.

webhelp.fragment.after.header

This parameter can be used to display a given XHTML fragment after the header section in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.main.page

This parameter can be used to display a given XHTML fragment after the header section in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.topic.page

This parameter can be used to display a given XHTML fragment after the header section in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.search.page

This parameter can be used to display a given XHTML fragment after the header section in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.terms.page

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3150

This parameter can be used to display a given XHTML fragment after the header section in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input

This parameter can be used to display a given XHTML fragment before the search field in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input

This parameter can be used to display a given XHTML fragment after the search field in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area

This parameter can be used to display a given XHTML fragment before the main content section

in all types of pages. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.main.page

This parameter can be used to display a given XHTML fragment before the main content section

in the main page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.topic.page

This parameter can be used to display a given XHTML fragment before the main content section

in the topic page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.search.page

This parameter can be used to display a given XHTML fragment before the main content section

in the search results page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.terms.page

This parameter can be used to display a given XHTML fragment before the main content

section in the index terms page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area

This parameter can be used to display a given XHTML fragment after the main content section in

all types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area.main.page

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3151

This parameter can be used to display a given XHTML fragment after the main content section

in the main page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area.topic.page

This parameter can be used to display a given XHTML fragment after the main content section

in the topic page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.toolbar

This parameter can be used to display a given XHTML fragment before the toolbar buttons

above the topic content in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.toolbar

This parameter can be used to display a given XHTML fragment after the toolbar buttons above

the topic content in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.breadcrumb

This parameter can be used to display a given XHTML fragment before the breadcrumb

component in the topic page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.breadcrumb

This parameter can be used to display a given XHTML fragment after the breadcrumb

component in the topic page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.publication.toc

This parameter can be used to display a given XHTML fragment before the publication's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.publication.toc

This parameter can be used to display a given XHTML fragment before the publication's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.content

This parameter can be used to display a given XHTML fragment before the topic's content in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.content

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3152

This parameter can be used to display a given XHTML fragment after the topic's content in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.feedback

This parameter can be used to display a given XHTML fragment before the Oxygen Feedback

commenting component in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.feedback

This parameter can be used to display a given XHTML fragment after the Oxygen Feedback

commenting component in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.toc

This parameter can be used to display a given XHTML fragment before the topic's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.toc

This parameter can be used to display a given XHTML fragment after the topic's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.custom.search.engine.results

This parameter can be used to replace the search results area with custom XHTML content. The

value of the parameter is the path to an XHTML file that contains your custom content.

webhelp.fragment.custom.search.engine.script

This parameter can be used to replace WebHelp's built-in search engine with your own custom

search engine. The value of the parameter is the path to an XHTML file that contains the scripts

required for your custom search engine to run.

webhelp.labels.generation.mode

Controls whether or not labels are generated in the output. These labels are useful because

users can easily search for topics with the same label by simply clicking on the label presented

in the output. Possible values are:

• keywords-label - Generates labels for each defined <keyword> element that has the

@outputclass attribute value set to label.

• keywords - Generates labels for each defined <keyword> element. If the topic contains

<keyword> elements with the @outputclass attribute value set to label, then only these

elements will have labels generated for them in the output.

• disable - Disables the generation of labels in the Webhelp Responsive output.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3153

webhelp.merge.nested.topics.related.links

Specifies if the related links from nested topics will be merged with the links in the parent topic.

Thus the links will be moved from the topic content to the related links component and all

of the links from the same group (for example, Related Tasks, Related References, Related

Information) are merged into a single group. The default value is yes.

webhelp.publication.toc.hide.chunked.topics

Specifies if the table of contents will contain links for chunked topics. The default value is yes.

webhelp.publication.toc.links

Specifies which links will be included in the table of contents. The possible values are:

• chapter (default) - The TOC will include links for the current topic, its children, its siblings,

and its direct ancestor (including the direct ancestor's siblings), and the parent chapter.

• topic - The TOC will only include links for the current topic and its direct children.

• all - The TOC will include all links.

webhelp.publication.toc.tooltip.position

By default, if a topic contains a <shortdesc> element, its content is displayed in a tooltip when

the user hovers over its link in the table of contents. This parameter controls whether or not this

tooltip is displayed and its position relative to the link. The possible values are:

• left

• right (default)

• top

• bottom

• hidden - The tooltip will not be displayed.

webhelp.search.default.operator

Makes it possible to change the default operator for the search engine. Possible values are

and, or (default). If set to and while the search query is WORD1 WORD2, the search engine only

returns results for topics that contain both WORD1 and WORD2. If set to or and the search query

is WORD1 WORD2, the search engine returns results for topics that contain either WORD1 or

WORD2.

webhelp.search.stop.words.exclude

Specifies a list of words that will be excluded from the default list of stop words that are filtered

out before the search processing. Use comma separators to specify more than one word (for

example: if,for,is).

webhelp.show.breadcrumb

Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3154

Specifies if child links will be generated in the output for all topics that have subtopics. The

default value is no.

webhelp.show.indexterms.link

Specifies if an icon that links to the index terms page will be displayed in the output. The default

value is yes (meaning the index terms icon is displayed). If set to false, the index terms icon is

not displayed in the output and the index terms page is not generated.

webhelp.show.main.page.tiles

Specifies if the tiles component will be presented in the main page of the output. For a tree style

layout, this parameter should be set to no.

webhelp.show.main.page.toc

Specifies if the table of contents will be presented in the main page of the output. The default

value is yes.

webhelp.show.expand.collapse.sections

Specifies if links to collapse sections will be presented within each topic in the output.

Collapsing sections will collapse all collapsible elements (nested topics with titles, sections with

titles, or tables with titles). The default value is yes.

webhelp.show.navigation.links

Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link

Specifies if a print link or icon will be presented within each topic in the output. The default value

is yes.

webhelp.show.related.links

Specifies if the related links component will be presented in the WebHelp Responsive output.

The default value is yes. The webhelp.merge.nested.topics.related.links parameter can be

used in conjunction with this one to merge the related links from nested topics into the links in

the parent topic.

webhelp.show.publication.toc

Specifies if a table of contents will be presented on the left side of each topic in the output. The

default value is yes.

webhelp.show.topic.toc

Specifies if a topic table of contents will be presented on the right side of each topic in the

output. This table of contents contains links to each <section> within the current topic that

contains an @id attribute and the section corresponding to the current scroll position is

highlighted. The default value is yes.

webhelp.show.top.menu

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3155

Specifies if a menu will be presented at the topic of the main page in the output. The default

value is yes.

webhelp.skip.main.page.generation

If set to true, the default main page is not generated in the output. The default value is false.

webhelp.top.menu.activated.on.click

When this parameter is activated (set to yes), clicking an item in the top menu will expand the

submenu (if available). You can then click on a submenu item to open the item (topic). You can

click outside the menu or press ESC to hide the menu. When set to no (default), hovering over a

menu item displays the menu content.

webhelp.top.menu.depth

Specifies the maximum depth level of the topics that will be included in the top menu. The

default value is 3. A value of 0 means that the menu has unlimited depth.

webhelp.topic.collapsible.elements.initial.state

Specifies the initial state of collapsible elements (nested topics with titles, sections with titles,

tables with titles or index term groups). The possible values are collapsed or expanded (default

value).

Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

The following transformation parameters can be used to generate a PDF link component in the WebHelp

Responsive output (for example, it could link to the PDF equivalent of the documentation):

webhelp.pdf.link.url

Specifies the target URL for the PDF link component.

webhelp.pdf.link.text

Specifies the text for the PDF link component.

webhelp.pdf.link.icon.path

Specifies the path or URL of the image icon to be used for the PDF link component. If not

specified, a default icon is used.

webhelp.show.pdf.link

Specifies whether or not the PDF link component is shown in the WebHelp Responsive output.

Allowed values are: yes (default) and no.

webhelp.pdf.link.anchor.enabled

Specifies whether or not the current topic ID should be appended as the name destination at the

end of the PDF link. Allowed values are: yes (default) and no.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3156

Related information

Customizing WebHelp Responsive Output (on page 1712)

Layout and Features (on page 1627)

DITA Map PDF - based on HTML5 & CSS Transformation

Oxygen XML Editor includes a built-in DITA Map PDF - based on HTML5 & CSS transformation scenario

based on a DITA-OT CSS-based PDF Publishing plugin that converts DITA maps to PDF using a CSS-based

processing engine and an HTML5 intermediate format. Oxygen XML Editor comes bundled with a built-in CSS-

based PDF processing engine called Oxygen PDF Chemistry. Oxygen XML Editor also supports some third-

party processors.

For those who are familiar with CSS, this makes it very easy to style and customize the PDF output of your

DITA projects without having to work with xsl:fo customizations. This transformation also includes some

built-in publishing templates that you can use for the layout of your PDF output and you can create your own

templates or edit existing ones.

The following CSS-based PDF processors can be used:

• Oxygen PDF Chemistry - A built-in processor that is bundled with Oxygen XML Editor. For more

information, see the Oxygen PDF Chemistry User Guide. This is the supported processor.

• Prince Print with CSS (not included in the Oxygen XML Editor installation kit) - A third-party component

that needs to be purchased from http://www.princexml.com.

• Antenna House Formatter (not included in the Oxygen XML Editor installation kit) - A third-party

component that needs to be purchased from http://www.antennahouse.com/antenna1/formatter/.

How to Create the Transformation Scenario

To create a DITA Map PDF - based on HTML5 & CSS transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page

2950) toolbar.

2. Select the DITA Map PDF - based on HTML5 & CSS transformation scenario.

3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various

options in the following tabs:

https://www.oxygenxml.com/doc/ug-chemistry/
http://www.princexml.com/
http://www.antennahouse.com/antenna1/formatter/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3157

◦ Templates Tab (on page 3168) - This tab contains a set of built-in publishing templates that you

can use for the layout of your WebHelp system output. You can also create your own publishing

templates by saving one from the gallery and changing it.

Figure 790. DITA Map to PDF Templates

◦ Parameters Tab (on page 3174) - This tab includes numerous parameters that can be set to

customize the transformation.

◦ Filters Tab (on page 3176) - This tab allows you to filter certain content elements from the

generated output.

◦ Advanced Tab (on page 3177) - This tab allows you to specify some advanced options for the

transformation scenario.

◦ Output Tab (on page 3180) - This tab allows you to configure options that are related to the

location where the output is generated.

4. In the Parameters tab, configure any of the following parameters (if applicable):

◦ args.css - Specifies a path to a custom CSS to be used in addition to those specified in the

publishing template. The files must have URL syntax and be separated using semicolons.

◦ css.processor.type- This is where you choose the processor type. You can select between

Oxygen PDF Chemistry, Prince XML, or Antenna House.

◦ css.processor.path.chemistry (if you are using the Oxygen PDF Chemistry processor) - Specifies

the path to the Oxygen PDF Chemistry executable file that will be run to generate the PDF. If

this parameter is not set, the transformation will use the processor specified in the CSS-based

Processors preferences page (on page 274).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3158

◦ css.processor.path.prince (if you are using the Prince Print with CSS processor) - Specifies the

path to the Prince executable file that will be run to produce the PDF. If you installed Prince using

its default settings, you can leave this blank.

◦ css.processor.path.antenna-house (if you are using the Antenna House Formatter processor)

- Specifies the path to the Antenna House executable file that will be run to produce the PDF. If

you installed Antenna House using its default settings, you can leave this blank.

◦ show.changes.and.comments - When set to yes, user comments, replies to comments, and

tracked changes are published in the PDF output. The default value is no.

◦ figure.title.placement - Controls the position of the figure title relative to the image. Allowed

values are "top" and "bottom", "top" is the default

5. Click OK and run the transformation scenario.

Customizing the Output

For information about customizing the output, see CSS-based DITA to PDF Customization (on page 1827).

Related Information:

Editing a Transformation Scenario (on page 1613)

Configure Transformation Scenario(s) Dialog Box (on page 1616)

Oxygen PDF Chemistry User Guide

CSS-based DITA to PDF Customization (on page 1827)

DITA Map PDF - based on XSL-FO Transformation

Oxygen XML Editor comes bundled with the DITA Open Toolkit that provides a mechanism for converting DITA

maps (on page 3296) to PDF output.

Creating a DITA Map PDF - based on XSL-FO Transformation Scenario

To create a DITA Map PDF - based on XSL-FO transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page

2950) toolbar.

2. Select DITA Map PDF - based on XSL-FO and click the Edit button (or use the Duplicate button if your

framework (on page 3297) is read-only).

3. Use the various tabs to configure the transformation scenario. In the Parameters tab, you can use a

variety of parameters to customize the output. For example, the following parameters are just a few of

the most commonly used ones:

◦ show.changes.and.comments - If set to yes, user comments, replies to comments, and tracked

changes are published in the PDF output.

◦ customization.dir - Specifies the path to a customization directory.

◦ editlink.present.only.path.to.topic - When this parameter is set to "true", the DITA topic path

is displayed to the right of each topic title in the PDF output.

4. Click OK and then the Apply Associated button to run the transformation scenario.

https://www.oxygenxml.com/doc/ug-chemistry/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3159

Related Information:

XSL FO-based DITA to PDF Customization (on page 2096)

DITA Map MS Office Word Transformation

Oxygen XML Editor comes bundled with a transformation scenario that allows you to convert DITA

maps (on page 3296) to Microsoft Office Word documents. It utilizes the DITA to Word plugin

created by Jarno Elovirta. This plugin contains a Word document named Normal.docx (located in:

[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT/plugins/com.elovirta.ooxml/

resources) that is used by the transformation scenario as a template to generate the final Word document.

Tip:

You can make general modifications to the Normal.docx template file to alter the published output.

The Word application used to edit the Normal.docx should be configured with English locale as the

style names for each Word element must be in English.

Configuring the Transformation Scenario

To configure a DITA Map to MS Office Word transformation scenario, follow these steps:

1. Open the DITA map in the DITA Maps Manager (on page 2950).

2. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page

2950) toolbar.

3. Select DITA Map MS Office Word.

4. For advanced customizations, in the Parameters tab you can use any of the following parameters that

are unique to this transformation scenario to specify paths to files that affect the output in various

ways:

◦ dotx.file - Specifies the path to a Word template file (.docx) that will be used in the

transformation to generate the final Word document. Set this parameter if you want to use a

different template file other than the Normal.docx file that is used by default.

◦ document.flat.xsl - Specifies the path to a pre-process clean-up stylesheet.

◦ core.xsl - Specifies the path to a core metadata stylesheet.

◦ custom.xsl - Specifies the path to a custom metadata stylesheet.

◦ document.xsl - Specifies the path to a main document stylesheet.

◦ comments.xsl - Specifies the path to a comments stylesheet.

◦ numbering.xsl - Specifies the path to a list and title numbering stylesheet.

◦ footnotes.xsl - Specifies the path to a footnote stylesheet.

◦ document.xml.xsl - Specifies the path to a document relations metadata stylesheet.

◦ inkscape.exec - Specifies the path to an Inkscape (open-source vector graphics editor)

executable file.

5. Click OK and run the transformation scenario.

https://github.com/jelovirt/com.elovirta.ooxml
https://github.com/jelovirt/com.elovirta.ooxml
https://github.com/jelovirt/com.elovirta.ooxml

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3160

Result: The result of the transformation will automatically be opened in your system's default word processing

application (such as Microsoft Word).

Related Information:

Editing a Transformation Scenario (on page 1613)

Configure Transformation Scenario(s) Dialog Box (on page 1616)

Migrating MS Office Documents to DITA (on page 3252)

DITA Map CHM (Compiled HTML Help) Transformation

To perform a Compiled HTML Help (CHM) transformation, Oxygen XML Editor needs Microsoft HTML Help

Workshop to be installed on your computer. Oxygen XML Editor automatically detects if HTML Help Workshop is

installed and uses it.

Note:

HTML Help Workshop might fail if the files used for transformation contain accents in their names, due

to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce

the CHM output but the .hhp (HTML Help Project) file is already generated, you can manually try to

build the CHM output using HTML Help Workshop.

Changing the Output Encoding

Oxygen XML Editor uses the htmlhelp.locale parameter to correctly display specific characters of different

languages in the output of the Compiled HTML Help (CHM) transformation. By default, the DITA Map CHM

transformation scenario that comes bundled with Oxygen XML Editor has the htmlhelp.locale parameter set

to en-US.

To customize this parameter, follow this procedure:

1. Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on macOS))

action from the toolbar or the Document > Transformation menu.

2. Select the DITA Map CHM transformation scenario and click the Edit button.

3. In the Parameter tab, search for the htmlhelp.locale parameter and change its value to the desired

language tag.

Note:

The format of the htmlhelp.locale parameter is LL-CC, where LL represents the language

code (en, for example) and CC represents the country code (US, for example). The language

codes are contained in the ISO 639-1 standard and the country codes are contained in the ISO

3166-1 standard. For further details about language tags, go to http://www.rfc-editor.org/rfc/

rfc5646.txt.

http://www.rfc-editor.org/rfc/rfc5646.txt
http://www.rfc-editor.org/rfc/rfc5646.txt

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3161

Customizing the CHM Output

There are several possibilities available for customizing the CHM output:

• You can use a custom CSS stylesheet to customize how the HTML content is rendered in the output:

1. Create the custom CSS.

2. Select the DITA Map CHM transformation scenario and click the Edit button.

3. In the Parameter tab, set the args.css parameter to point to the location of your custom CSS and

make sure the args.copy.css parameter is set to yes to instruct the transformation to copy the

custom CSS to the output folder.

4. Run the transformation.

• If you are familiar with XSLT, there are two XSLT stylesheets that are used in the transformation to

compile various settings and components in the CHM output. They are found in the following directory:

OXYGEN_INSTALL_DIR/frameworks/dita/DITA-OT/plugins/org.dita.htmlhelp/xsl/

map2htmlhelp. The files are as follows:

◦ map2hhcImpl.xsl - This file is used to compile the table of contents.

◦ map2hhpImpl.xsl - This file contains information for compiling the CHM and various settings

that are read by the HTML Help Workshop when creating the output.

DITA Map Metrics Report Transformation

A DITA Map Metrics Report action is available on the DITA Maps Manager toolbar and in the DITA Maps main

menu. It generates an overview report that contains useful statistics for a DITA map.

As an alternate approach, to create a metrics report from a DITA map (on page 3296) using a transformation

scenario, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager (on page

2950) toolbar.

2. Select the DITA Map Metrics Report scenario from the DITA Map section.

3. Run the transformation.

The generated HTML report contains information such as:

• The number of processed maps and topics.

• The number of map/bookmap/topic/task/concept/reference types in the DITA map.

• Content reuse percentage.

• Number of elements and attributes of different types used in the entire DITA map structure.

• Number of words and characters used in the entire DITA map structure.

• DITA conditional processing attributes used in the DITA maps.

• Processing instructions.

• External links.

• All @outputclass attribute values gathered from the DITA project.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3162

Important:

If you have cross references that point to content outside the scope of the DITA map, that referenced

content is not counted. For example, if you have links to topics that are not included in the DITA map

hierarchy, the content in those topics is ignored when generating the statistics.

The metrics report can also be obtained in XML format, making it possible to construct a metrics report

evolution between multiple versions of the same DITA project.

DITA Map Zendesk Publishing

Oxygen XML Editor includes a built-in transformation scenario that provides the ability to publish DITA topics

to XHTML output and upload them directly as articles to the Zendesk Help Center.

Attention:

This feature is only available in the Enterprise edition of Oxygen XML Editor.

To run the transformation, follow these steps:

1. Start Oxygen XML Editor and open a DITA map in the DITA Maps Manager view (on page 2950).

2. Click the Configure Transformation Scenario(s) button.

3. Create a new DITA-OT transformation scenario and choose the Zendesk Help Center transformation

type.

4. Go to Parameters tab and set the following parameters:

Host

The URL reference to the Zendesk Help Center (for example, https://your-

domain.zendesk.com).

Username

The username (e-mail address) for the account used to upload the content.

API Token

An API token, generated in the Zendesk admin pages, necessary for authentication to the

server: https://support.zendesk.com/hc/en-us/articles/226022787-Generating-a-new-API-

token-.

Article category

The name of the category where the articles are uploaded. The category needs

to be created in the Zendesk admin pages: https://support.zendesk.com/hc/en-

us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-

sections#topic_hjs_tl4_kk.

Article section

https://github.com/oxygenxml/dita-ot-metrics#visualizing-the-evolution-of-metrics-between-different-versions-of-the-documentation
https://github.com/oxygenxml/dita-ot-metrics#visualizing-the-evolution-of-metrics-between-different-versions-of-the-documentation
https://www.zendesk.com/
https://www.zendesk.com/
https://support.zendesk.com/hc/en-us/articles/226022787-Generating-a-new-API-token-
https://support.zendesk.com/hc/en-us/articles/226022787-Generating-a-new-API-token-
https://support.zendesk.com/hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-sections#topic_hjs_tl4_kk
https://support.zendesk.com/hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-sections#topic_hjs_tl4_kk
https://support.zendesk.com/hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-sections#topic_hjs_tl4_kk

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3163

The name of the section (inside the parent category) where articles are uploaded. The

section needs to be created in the Zendesk admin pages: https://support.zendesk.com/

hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-

sections#topic_ysj_wtt_zz.

Note:

When publishing to a subsection, a path of section names separated by '///' can

be passed (for example: Main section///Subsection 1///Subsection 1.1).

Create article draft

This setting controls whether the articles should be published (if the value is false) or

saved as drafts (if the value is true). The default value is false.

Visible to

The name of the user segment that can view the articles.

Permission group name

The name of the Zendesk permission group that controls who edits and publishes

articles: https://support.zendesk.com/hc/en-us/articles/203661966-Creating-managing-

and-using-groups.

Create table of contents

When the zendesk.create.toc parameter is set to true (default value), a table of contents

is published as the first article in the Zendesk section and this initial article references all

other articles. The title of the TOC article is the title of the DITA map.

Specify a prefix title for the table of contents

Set the zendesk.toc.title.prefix parameter to specify a prefix to use for the title of the

table of contents article.

Specify a suffix title for the table of contents

Set the zendesk.toc.title.suffix parameter to specify a suffix to use for the title of the

table of contents article.

5. Save the changes and run the transformation.

Important:

There may be cases when the publishing breaks, presenting an error related to HTTPS certificates,

similar to this one:

Error: org.zendesk.client.v2.ZendeskException: java.net.ConnectException: PKIX path building failed:

sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path

to requested target

https://support.zendesk.com/hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-sections#topic_ysj_wtt_zz
https://support.zendesk.com/hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-sections#topic_ysj_wtt_zz
https://support.zendesk.com/hc/en-us/articles/218222877-Organizing-knowledge-base-content-in-categories-and-sections#topic_ysj_wtt_zz
https://support.zendesk.com/hc/en-us/articles/203661966-Creating-managing-and-using-groups
https://support.zendesk.com/hc/en-us/articles/203661966-Creating-managing-and-using-groups

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3164

This usually occurs if an HTTPS proxy server is installed in your company's network. In this case,

if running on Windows, you can edit the transformation scenario you are using to publish DITA to

Zendesk and in the Advanced tab, go to the JVM Arguments field and set this value:

-Djavax.net.ssl.trustStoreType=Windows-ROOT -Djavax.net.ssl.trustStore=C:\\Windows\\win.ini

Resources

For more information about publishing content to the Zendesk Help Center, watch the following video

demonstration:

https://www.youtube.com/embed/QZ_9Fk_LOk8

Integrate/Install DITA-OT Plugins Transformation

Oxygen XML Editor comes bundled with a transformation scenario designed to integrate DITA-OT plugins (on

page 3299). These DITA-OT plugins are used for various customizations. It is called Integrate/Install DITA-OT

Plugins and is found in the DITA Map section of the Configure Transformation Scenario(s) dialog box (on

page 1616).

Attention:

The integration will be performed on the DITA-OT version specified in the DITA Open Toolkit section of

the DITA preferences page (on page 278).

CAUTION:

Oxygen XML Editor support engineers do not officially offer support and troubleshooting assistance

for custom DITA-OT distributions or custom installed DITA-OT plugins. If you discover any issues

or inconsistent behavior while using a custom DITA-OT or a DITA-OT that contains custom DITA-OT

plugins, you should revert to the default built-in DITA-OT.

Running the Transformation Scenario

To integrate a DITA-OT plugin, follow these steps:

1. If Oxygen XML Editor was installed in the default location, you may need to restart and run it as an

administrator.

2. Select the Apply Transformation Scenario(s) or Configure Transformation Scenario(s) (on page

1616) action from the DITA Maps Manager toolbar (you could also use the same action on the main

toolbar or open the Transformation Scenarios view (on page 1622)).

3. Select the Integrate/Install DITA-OT Plugins transformation scenario. If the integrator is not visible,

select the Show all scenarios action that is available in the Settings drop-down menu.

4. Apply the scenario (on page 1615).

https://www.youtube.com/embed/QZ_9Fk_LOk8

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3165

5. Check the Results panel at the bottom of the application to make sure the build was successful.

6. Restart Oxygen XML Editor with your normal permissions.

Related Information:

Configure Transformation Scenario(s) Dialog Box (on page 1616)

Installing a DITA-OT Plugin (on page 3228)

Integrating a DITA Specialization (on page 3240)

DITA Topic Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios for transforming individual DITA Topics to

HTML5, XHTML, or PDF output. They can be found in the DITA section in the Configure Transformation

Scenario(s) dialog box (on page 1616).

The available transformations scenarios for individual DITA topics include:

• DITA HTML5 - This DITA-OT transformation scenario generates HTML5 output from a single DITA topic.

• DITA XHTML - This DITA-OT transformation scenario generates XHTML output from a single DITA

topic. This was the first transformation scenario created for the DITA Open Toolkit and it originally

served as the basis for all HTML-based transformations.

• DITA PDF - based on HTML5 & CSS - This transformation scenario converts individual DITA topics to

PDF using a CSS-based processing engine and an HTML5 intermediate format. Oxygen XML Editor

comes bundled with a built-in CSS-based PDF processing engine called Oxygen PDF Chemistry. Oxygen

XML Editor also supports some third-party processors.

For those who are familiar with CSS, this makes it very easy to style and customize the PDF output

of your DITA projects without having to work with xsl:fo customizations. Another advantage of this

transformation scenario is that you can use the same customization CSS (on page 1858) or publishing

template (on page 1846) that you use for converting entire DITA maps.

The transformation scenario automatically detects the currently selected context DITA map (root

map) (on page 2954) so that keys and references are properly resolved (the detected context map is

set as the value of the args.root.map parameter (this can be changed in the Parameters tab). It also

automatically detects the currently applied profiling condition set (on page 3205) to be used as the

default filtering option in the transformation scenario (this can be changed in the Filters tab).

The transformation scenario also supports a parameter named args.enable.root.map.key.processing

that can be used to specify whether or not the values for @keyref and @conkeyref attributes within the

transformed topics are resolved. The possible values are:

◦ no - This means that the values for all @keyref and @conkeyref attributes are ignored in the

transformation. This results in lower processing times.

◦ yes - This means that the values for any @keyref and @conkeyref attributes found in the

transformed topic are processed and resolved using the value of the args.root.map parameter.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3166

◦ auto - This means that the process will search for any @keyref and @conkeyref attributes within

the transformed topic and if any are found, the values will be processed and resolved using the

value of the args.root.map parameter. If none are found, the @keyref and @conkeyref attributes are

ignored.

• DITA PDF - based on XSL-FO - This DITA-OT transformation scenario converts individual DITA topics to

PDF using an xsl:fo processor.

Related Information:

Editing a Transformation Scenario (on page 1613)

Configure Transformation Scenario(s) Dialog Box (on page 1616)

Applying Associated Transformation Scenarios (on page 1615)

DITA Map Transformation Scenarios (on page 3141)

Running a DITA Transformation Scenario

To select and run a transformation scenario on your DITA map, follow these steps:

1. Click the Configure Transformation Scenario(s) button on the DITA Maps Manager toolbar (on

page 2952). The Configure Transformation Scenario(s) dialog box (on page 1616) appears. This

dialog box lists all the transformation scenarios that have been configured in your project. Oxygen XML

Editor provides a default set of transformation scenarios, but the people in charge of your DITA system

may have provided others that are specifically configured for your needs.

2. Select the transformation scenario you want to run and click Apply Associated. The transformation

scenario runs in the background. You can continue to work in Oxygen XML Editor while the

transformation is running. If there are errors or warnings, Oxygen XML Editor displays them when the

transformation is complete. If the transformation is successful, Oxygen XML Editor opens the output in

the appropriate application.

3. To rerun the same scenario again, click the Apply Transformation Scenario(s) button.

Creating or Editing a DITA-OT Transformation

Creating a DITA-OT Transformation Scenario

To create a DITA-OT Transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on macOS))

action from the DITA Maps Manager toolbar, main toolbar, or the Document > Transformation menu.

Then click the New button and select DITA-OT Transformation.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the

New Scenario drop-down menu button and select DITA-OT Transformation.

Both methods open the DITA Transformation Type dialog box that presents the list of possible outputs.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3167

Figure 791. DITA Transformation Type Dialog Box

Select the desired type of output and click OK. This opens the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the

following Storage options:

• Project Options (on page 3300) - The scenario is stored in the project file and can be shared with other

users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source

Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.

• Global Options (on page 3297) - The scenario is saved in the global options that are stored in the user

home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the

transformation.

Editing a DITA-OT Transformation Scenario

Editing a transformation scenario is useful if you need to configure some of its parameters.

To configure an existing transformation scenario, follow these steps:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3168

1. Select the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on

macOS)) action from the DITA Maps Manager toolbar, main toolbar, or the Document > Transformation

menu.

Step Result: The Configure Transformation Scenario(s) dialog box (on page 1616) is opened.

2. Select the particular transformation scenario and click the Edit button at the bottom of the dialog box

or from the contextual menu.

Note:

Since transformation scenarios that are associated with built-in frameworks (on page 3297)

are read-only, these scenarios will prompt you to use the Duplicate button and then edit the

duplicated scenario (on page 1615).

Result: This will open an Edit scenario configuration dialog box (on page 1613) that contains several tabs that

allow you to configure the options that control the transformation.

Related Information:

Creating a DITA-OT Plugin (on page 3224)

Installing a DITA-OT Plugin (on page 3228)

DITA Open Toolkit Documentation

Templates Tab (DITA-OT Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The Templates tab is available for DITA-OT transformations with WebHelp Responsive or PDF - based on

HTML5 & CSS output types and it provides a set of built-in publishing templates (on page 1673). You can use

one of them to publish your documentation or as a starting point for a new publishing template.

http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3169

Figure 792. Templates Tab

Filtering and Previewing Templates

You can click on the tags at the top of the pane to filter the templates and narrow your search. Each built-in

template also includes an Online preview icon in the bottom-right corner that opens a webpage in your

default browser providing a sample of how the main page will look when that particular template is used to

generate the output.

Built-in Templates Locations

Oxygen XML Editor scans the following locations to find the built-in templates to display in the dialog box:

• WebHelp Responsive Templates - All built-in WebHelp Responsive publishing templates are stored

in the following directory: DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/

templates.

• PDF - based on HTML5 & CSS - All built-in PDF publishing templates are stored in the following

directories:

◦ DITA-OT-DIR/plugins/com.oxygenxml.pdf.css/templates

◦ DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates

Custom Templates Locations

Oxygen XML Editor scans the locations specified in the DITA > Publishing preferences page (on page 285) to

find custom templates to display in the dialog box. You can access that preferences page directly from the

Template tab by clicking on the Configure Publishing Templates Gallery link.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3170

Selecting Custom Templates

Once you are finished configuring your template, you can click the Choose Custom Publishing Template link to

select your template.

You can also add your custom templates (on page 1716) to the list of templates displayed in the Templates

tab. To do this, store them in a directory, then click the Configure Publishing Templates Gallery link to open

the DITA > Publishing preferences page (on page 285) where you can add that directory to the list. All the

templates contained in your template directory will be displayed in the preview pane along with all the built-in

templates.

Save Template As Button

You can use the Save template as button (at the bottom-left of the transformation dialog box) to export the

currently selected template into a new template package that can be used as a starting point to create your

own custom template (on page 1853). Clicking this button will open a template package configuration dialog

box (on page 3171) that contains some options and displays the parameters that will be exported to your

template package.

Template Errors

When the Templates tab is opened, all templates (built-in and custom) are loaded and validated. Specifically,

certain elements in the template descriptor file are checked for validity. If errors are encountered that prevents

the template from loading, the following message will be displayed toward the bottom of the dialog box:

If you click the More details link, a window will open with more information about the encountered error. For

example, it might offer a hint that the element is missing from the expected descriptor file structure.

Also, if a template could be loaded, but certain elements could not be found in the descriptor file, a warning

icon () will be displayed on the template's image (in the Templates tab of the transformation dialog box).

For example, this happens if a valid preview-image element cannot be found.

Sharing Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder.

2. Go to Options > Preferences > DITA > Publishing (on page 285) and add that new folder to the list.

3. Switch the option as the bottom of that preferences page to Project Options.

4. Share your project file (.xpr).

Resources

For more information about customizing publishing templates, watch our video demonstration:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3171

https://www.youtube.com/embed/zNmXfKWXwO8

Related Information:

Publishing Templates (on page 1673)

Publishing Template Package Contents for PDF Customizations (on page 1847)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

Template Package Configuration Dialog Box

The Save template as button (at the bottom-left of the transformation dialog box for WebHelp Responsive or

PDF - based on HTML5 & CSS transformations) can be used to export the currently selected template into

a new template package that can be used as a starting point to create your own custom template (on page

1853). The result will be a ZIP archive that contains a template descriptor file and other resources (such as

CSS files) that were attached to the selected template.

Clicking the Save template as button opens a template package configuration dialog box contains the

following options and components:

Name

Required field used to specify the name for the new template. This will become the text value of

the <name> element in the template descriptor file. This information is displayed as the name of

the template in the transformation scenario dialog box.

Description

Optional field used to specify a template description. This will become the text value of the

<description> element in the template descriptor file. This information is displayed when the user

hovers over the template in the transformation scenario dialog box.

Parameter Table

This table displays the parameters that will be exported. Only certain relevant parameters are

exported. The parameters and their values will be inserted in the <parameters> section of the

template descriptor file. If any of the parameter values point to a file path that references a

template resource (such as CSS files, custom HTML fragments, images), those resources will

automatically be copied to the new template package and their references will be changed

accordingly.

Note:

Additional resources that are referenced in CSS files or other resources will not be

copied to the new template package, so you will need to copy them manually and update

their references in the template descriptor file.

Include WebHelp Customization

The same publishing template package can contain both a WebHelp Responsive and PDF

customization and you can use the same template in both types of transformations (DITA Map

https://www.youtube.com/embed/zNmXfKWXwO8

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3172

WebHelp Responsive (on page 1475) or DITA Map to PDF - based on HTML5 & CSS (on page

1489)). This option specifies that the custom template will include a WebHelp Responsive

customization.

Include HTML Page Layout Files

For WebHelp Responsive customizations, select this option if you want to copy the

default HTML Page Layout Files (on page 1692) into your template package. They

are helpful if you want to change the structure of the generated HTML pages.

Include PDF Customization

The same publishing template package can contain both a WebHelp Responsive and PDF

customization and you can use the same template in both types of transformations (DITA Map

WebHelp Responsive (on page 1475) or DITA Map to PDF - based on HTML5 & CSS (on page

1489)). This option specifies that the custom template will include a PDF customization.

Save as

Use this field to specify the name and path of the ZIP file where the template will be saved.

Figure 793. Template Package Configuration Dialog Box

Related Information:

Publishing Templates (on page 1673)

Publishing Template Package Contents for PDF Customizations (on page 1847)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3173

FO Processor Tab (DITA-OT Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The FO Processor tab is available for DITA-OT transformations with a PDF output type.

This tab allows you to select an FO Processor to be used for the transformation.

Figure 794. FO Processor Configuration Tab

You can choose one of the following processors:

Apache FOP

The default processor that comes bundled with Oxygen XML Editor.

XEP

The RenderX XEP processor. If XEP is already installed, Oxygen XML Editor displays the detected

installation path under the drop-down menu. XEP is considered installed if it was detected in one

of the following sources:

• XEP was configured as an external FO Processor in the FO Processors option page (on

page 271).

• The system property com.oxygenxml.xep.location was set to point to the XEP executable

file for the platform (for example: xep.bat on Windows).

• XEP was installed in the DITA-OT-DIR/plugins/org.dita.pdf2/lib directory of

the Oxygen XML Editor installation directory.

Antenna House

http://www.renderx.com/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3174

The Antenna House (AH Formatter) processor. If Antenna House is already installed, Oxygen

XML Editor displays the detected installation path under the drop-down menu. Antenna House is

considered installed if it was detected in one of the following sources:

• Environment variable set by Antenna House installation (the newest installation version

will be used).

• Antenna House was added as an external FO Processor in the Oxygen XML Editor

preferences pages.

To further customize the PDF output obtained from the Antenna House processor, follow these

steps:

1. Edit the transformation scenario.

2. Open the Parameters tab (on page 3174).

3. Add the env.AXF_OPT parameter and point to the Antenna House configuration file.

Related information

FO Processors Preferences (on page 271)

XSL-FO (Apache FOP) Processor for Generating PDF Output (on page 1580)

Parameters Tab (DITA-OT Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The Parameters tab allows you to configure the parameters sent to the DITA-OT build file.

The table in this tab displays all the parameters that the DITA-OT documentation specifies as available for

each chosen type of transformation (for example, XHTML or PDF), along with their description and current

values. You can find more information about each parameter in the DITA-OT Documentation. You can also

add, edit, and remove parameters, and you can use the text box to filter or search for a specific term in the

entire parameters collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

• A simple text field for simple parameter values.

• A combo box with some predefined values.

• A file chooser and an editor variable (on page 333) selector to simplify setting a file path as the value of

a parameter.

Note:

To input parameter values at runtime, use the ask editor variable (on page 335) in the Value column.

http://www.antennahouse.com/
http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3175

Below the table, the following actions are available for managing parameters:

New

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can

specify the Value of the parameter by using the Insert Editor Variables (on page 333) button

or the Browse button. You can also use the Open in editor button to open the specified

file in the editor panel.

Unset

Resets the selected parameter to its default value. Available only for edited parameters with set

values.

Edit

Opens the Edit Parameter dialog box that allows you to change the value of the selected

parameter or its description.

Delete

Removes the selected parameter from the list. It is available only for new parameters that have

been added to the list.

Parameters Contributed by an Oxygen Publishing Template

Transformation parameters that are defined in an Oxygen Publishing Template (on page 1846) descriptor file

are displayed in italics. After creating a publishing template (on page 1853) and adding it to the templates

gallery (on page 1716), when you select the template in the Templates tab (on page 3168), the Parameters

tab will automatically be updated to include the parameters defined in the template descriptor file.

Related Information:

DITA Open Toolkit Documentation

Feedback Tab (DITA-OT Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The Feedback tab is for those who want to provide a way for users to offer feedback and ask questions in

the published output and it is available for the DITA Map WebHelp Responsive transformation type. To add a

comments component in the output, you need to use Oxygen Feedback to create a site configuration for the

website where your WebHelp output is published and use this Feedback tab to instruct the transformation to

install the comments component at the bottom of each WebHelp page.

When you create a site configuration in the Oxygen Feedback administration interface, an HTML fragment is

generated during the final step of the creation process. You need to click the Edit button at the bottom-right

of this tab to open a dialog box where you will paste the generated HTML fragment. The HTML fragment can

http://www.dita-ot.org/
https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3176

also be set in an Oxygen Publishing Template (on page 1846), either as an HTML fragment extension point

(on page 1683) or as a transformation parameter (on page 1681) (the webhelp.fragment.feedback parameter).

If the fragment is specified in multiple places, the order of precedence (from highest to lowest) is:

• The fragment specified directly in the Feedback tab.

• The fragment specified in a publishing template as an HTML fragment extension point.

• The fragment specified in a publishing template as a transformation parameter.

Filters Tab (DITA Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The Filters tab allows you to add filters to remove certain content elements from the generated output.

Figure 795. Edit Filters Tab

You can choose one of the following options to define filters:

Use DITAVAL file

If you already have a DITAVAL file associated with the DITA map (on page 3296), you can

specify the file to be used when filtering content. You can specify the path by using the text

field, its history drop-down, the Insert Editor Variables (on page 333) button, or the browsing

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3177

actions in the Browse drop-down list. You can find out more about constructing a DITAVAL

file in the DITA Documentation.

Note:

If a filter file is specified in the args.filter parameter (in the Parameters tab (on page

3174)), the filters are combined (neither file takes precedence over the other).

Use profiling condition set

Sets the profiling condition set (on page 3205) that will be applied to your transformation.

Exclude from output all elements with any of the following attributes

By using the New, Edit, or Delete buttons at the bottom of the pane, you can configure

a list of attributes (name and value) to exclude all elements that contain any of these attributes

from the output.

Note:

The colors and styles of the profiled content (on page 3210) settings are used for rendering it in

Author mode but are not applied in the output.

Advanced Tab (DITA-OT Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The Advanced tab allows you to specify advanced options for the transformation scenario.

https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/ditaval-elements.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3178

Figure 796. Advanced Settings Tab

You can specify the following options:

Prefer using the "dita" command

When selected, Oxygen XML Editor will attempt to use the dita.bat executable script (dita.sh

for macOS and Linux) that is bundled with DITA-OT to run the transformation. If not selected,

the transformation will run as an ANT process. Also, when this option is selected, other options

(Custom build file, Build target, Ant Home) become unavailable. This setting is checked by

default in newly created DITA-OT transformation scenario.

Note:

Even when this option is selected, the dita.bat (dita for macOS and Linux) executable

cannot be used in some cases. For example, if the DITA Map is published from a remote

location or if the fix.external.refs parameter is enabled in the Parameters tab, the

transformation is started as an ANT process instead of using the executable.

Custom build file

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3179

If you use a custom DITA-OT build file, you can specify the path to the customized build file. If

empty, the build.xml file from the dita.dir parameter that is configured in the Parameters

tab (on page 3174) is used. You can specify the path by using the text field, the Insert Editor

Variables (on page 333) button, or the Browse button.

Build target

Optionally, you can specify a build target for the build file. If no target is specified, the default

init target is used.

Additional Ant arguments

You can specify additional Ant-specific command-line arguments (such as -diagnostics).

Ant Home

You can choose between the default or custom Ant installation to run the transformation. The

default path can be configured in the Ant preferences page (on page 275).

Java Home

You can choose between the default or custom Java installation to run the transformation. The

default path is the Java installation that is used by Oxygen XML Editor.

Note:

It may be possible that the used Java version is incompatible with the DITA Open Toolkit

engine. If you encounter related errors running the transformation, consider installing

a Java VM that is supported by the DITA-OT publishing engine and using it in the Java

Home text field.

JVM Arguments

This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant.

When performing a large transformation, you may want to increase the memory allocated to the

Java Virtual Machine. This will help avoid Out of Memory error messages (OutOfMemoryError).

For example, if it is set to -Xmx2g, the transformation process is allowed to use a maximum 2

gigabytes of memory. If you do not specify an -Xmx value in this field, by default, the application

will use a maximum of about a quarter of the total memory available on the machine.

Libraries

By default, Oxygen XML Editor adds libraries (as high priority) that are not transformation-

dependent and also patches for certain DITA Open Toolkit bugs. You can use this button to

specify additional libraries (JAR (on page 3297) files or additional class paths) to be used by

the transformer.

Tip:

You can specify the path to the additional libraries using wildcards (for example,

${oxygenHome}/lib/*.jar).

https://ant.apache.org/manual/running.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3180

Output Tab (DITA-OT Transformations)

When you create a new transformation scenario (on page 1504) or edit an existing one (on page 1613), a

configuration dialog box is displayed that allows you to customize the transformation with various options in

several tabs.

The Output tab allows you to configure options that are related to the location where the output is generated.

Figure 797. Output Settings Tab

You can specify the following parameters:

Base directory

All the relative paths that appear as values in parameters are considered relative to the base

directory. The default value is the directory where the transformed map is located. You can

specify the path by using the text field, the Insert Editor Variables (on page 333) button, or

the Browse button.

Temporary files directory

This directory is used to store pre-processed temporary files until the final output is obtained.

You can specify the path by using the text field, the Insert Editor Variables (on page 333)

button, or the Browse button.

Output directory

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3181

The folder where the content of the final output is stored. You can specify the path by using the

text field, the Insert Editor Variables (on page 333) button, or the Browse button.

Note:

If the DITA map (on page 3296) or topic is opened from a remote location or a ZIP file,

the parameters must specify absolute paths.

Open in Browser/System Application

If selected, Oxygen XML Editor automatically opens the result of the transformation in a system

application associated with the file type of the result (for example, in Windows PDF files are

often opened in Acrobat Reader).

Note:

To set the web browser that is used for displaying HTML/XHTML pages, go to Options >

Preferences > Global, and set it in the Default Internet browser field.

• Output file - When Open in Browser/System Application is selected, you can

use this button to automatically open the default output file at the end of the

transformation.

• Other location - When Open in Browser/System Application is selected, you

can use this option to open the file specified in this field at the end of the

transformation. You can specify the path by using the text field, the Insert

Editor Variables (on page 333) button, or the Browse button.

Open in editor

When this is option is selected, at the end of the transformation, the default output file is opened

in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML

file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO

editor).

At the bottom of the pane there is a link to the Console options (on page 285) preferences page that contains

options to control the display of the console output received from the publishing engine.

Customizing DITA Transformations

You can customize the appearance of any of the output types by customizing the output transformations.

There are several ways to do this:

• Most transformations are configurable by passing parameters to the transformation script. Oxygen

XML Editor allows you to set parameters (on page 3174) on a transformation scenario and you can

save and share them with others (on page 1622). You can also use the ${ask} editor variable (on page

335) in the Parameters tab to instruct Oxygen XML Editor to prompt you for a particular parameter

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3182

whenever a transformation scenario is run. You can set up multiple transformation scenarios for a

given output type, allowing you to maintain several customized transformation scenarios for multiple

types of output configurations.

• If you want to customize an output in a way not supported by the built-in customization options,

you can create a modified version of the transformation code and execute it using a custom build

file (on page 3183). Sometimes the transformation code exports specific forms of extensions or

customizations. You should consult the DITA Open Toolkit for the transformation type that you are

interested in to see what customization options are supported. Oxygen XML Editor provides full editing

and debugging support from XSLT and CSS stylesheets (on page 2209), which you can use to modify

transformation code.

• You can also write your own transformation code (and execute it using a custom build file (on page

3183)) to produce a type of output not supported by the DITA Open Toolkit. Oxygen XML Editor

provides a full source editing environment for developing such transformations. You can create Oxygen

XML Editor transformation scenarios to run these scripts once they are complete.

There are also many other ways to customize specific types of output generated from DITA transformations:

• WebHelp - For information about customizing WebHelp output, see the WebHelp Output section (on

page 1626).

• PDF - For information about customizing PDF output generated from DITA content, see XSL FO-based

DITA to PDF Customization (on page 2096).

Publishing Customizations

Some customizations (usually for HTML-based output), can be made simply by creating a custom CSS and

they do not involve modifying the DITA-OT engine in any way. Instead, most customizations involve adding a

new plugin to the DITA-OT. Here are some best practices to follow before beginning your customization:

1. Copy the bundled DITA-OT folder (usually OXYGEN_INSTALL_DIR\frameworks\dita\DITA-OT) to

a location where you have full write access so that you have the ability to install new DITA-OT plugins

(on page 3228).

2. Go to Options > Preferences > DITA, select Custom for the DITA Open Toolkit option and set the

Location to be the path to the location where you copied the bundled DITA-OT folder. This will allow you

to upgrade the version of Oxygen XML Editor at anytime without affecting the publishing system.

3. Share that external DITA-OT folder with the rest of the team. If you are using a repository (such as

Subversion or Git), you can commit the entire modified DITA-OT publishing engine as part of your

project. This will allow everyone in your team to use the official changes that you made. This will also

allow you to set up some kind of automatic publishing system using an open-source integration server

(such as Travis CI or Jenkins).

Customizing XHTML-based Output

XHTML-based output can be modified by using a custom CSS stylesheet to override various styles. If you

edit an XHTML transformation scenario (on page 3166), there is a parameter called args.css that can be set

https://travis-ci.org/
https://jenkins.io/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3183

to point to your custom CSS and a parameter called args.copy.css that as long as it is set to yes, the CSS is

copied to the output folder.

You can also create plugins to customize the XHTML-based output by adding an extra XSLT stylesheet. For

for information, see: https://blog.oxygenxml.com/topics/creating-simple-dita-open-toolkit.html. A list with

all DITA-OT XSLT extension points can be found here: http://www.dita-ot.org/dev/extension-points/plugin-

extension-points-xslt-import.html.

Customizing WebHelp-based Output

The DITA-OT that comes bundled in Oxygen XML Editor includes specific plugins that provide the ability to

publish DITA content to WebHelp Responsive (on page 1627) output.

For information about customizing WebHelp Responsive output, see Customizing WebHelp Responsive

Output (on page 1712).

Customizing PDF-based Output

DITA to PDF output can be customized either by creating a PDF customization folder (in this case, the

DITA-OT folder will not be modified at all) or by creating a PDF customization plugin. For information about

customizing DITA to PDF output, see XSL FO-based DITA to PDF Customization (on page 2096).

There is also a book called DITA For Print that contains details about how to customize various aspects.

Customizing PDF Output with CSS

Oxygen XML Editor also includes a transformation scenario called DITA Map PDF - based on HTML5 & CSS

(on page 3156) that is based on a DITA-OT CSS-based PDF Publishing plugin that allows you to convert

DITA maps (on page 3296) to PDF using a CSS layout processor. For those who are familiar with CSS, this

makes it very easy to style and customize the PDF output of your DITA projects without having to work with

xsl:fo customizations. For more information about customizing PDF output using this transformation scenario,

see Customization CSS (on page 1858).

Related Information:

DITA Open Toolkit Documentation

Using a Custom Build File

You can use a Custom Build File to customize transformation scenarios.

To use a custom build file in a DITA-OT transformation, follow these steps:

1. Use the Configure Transformation Scenario(s) action to open the Configure Transformation

Scenario(s) dialog box (on page 1616).

2. Select the transformation scenario and click Edit.

3. Go to the Advanced (on page 3177) tab and change the Custom build file path to point to the custom

build file.

https://blog.oxygenxml.com/topics/creating-simple-dita-open-toolkit.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
https://xmlpress.net/publications/dita/dita-for-print/
http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3184

As an example, if you want to call a custom script before running the DITA-OT, your custom build file would

have the following content:

<project basedir="." default="dist">

<!--The DITA-OT default build file-->

 <import file="build.xml"/>

 <target name="dist">

 <!-- You could run your script here -->

 <!--<exec></exec>-->

 <!--Call the DITA-OT default target-->

 <antcall target="init"/>

 </target>

</project>

Note:

If you use the built-in Ant 1.9.8 build tool that comes bundled with Oxygen XML Editor, it is located in

the [OXYGEN_INSTALL_DIR]/tools/ant directory. Any additional libraries for Ant must be copied

to the Oxygen XML Editor Ant lib directory.

Adding a Watermark in DITA Map to XHTML Output

To add a watermark to the XHTML output of a DITA map (on page 3296) transformation, follow these steps:

1. Create a custom CSS stylesheet that includes the watermark image, as in the following example:

body {

 background-image: url(MyWatermarkImage.png);

}

2. Edit a DITA Map XHTML transformation scenario and in the Parameters tab set the value of the

args.css parameter as the path to your watermark image.

3. Set the value of the args.copycss parameter to yes.

4. Apply the transformation scenario.

5. Copy the watermark image in the output directory of the transformation scenario, next to the CSS file

created in step 1.

Related Information:

Adding a Watermark to PDF Output (on page 2100)

How to Add Syntax Highlights for Codeblocks in the Output

Syntax Highlighting makes it easier to read the semantics of the structured content by displaying each type of

code (language) in different colors and fonts. The application provides the ability to add syntax highlights in

codeblocks for DITA to PDF or HTML-based output through the use of the @outputclass attribute and a variety

of predefined values are available.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3185

To provide syntax highlighting in the codeblocks that appear in the output, add the @outputclass attribute on

the <codeblock> element and set its value to one of the predefined language values. The Content Completion

Assistant offers a list of the possible values when adding the @outputclass attribute in Text mode but there are

also two simple ways to set the value in Author mode:

• Select the <codeblock> element in the editor and in the Attributes view, click on the Value cell for the

@outputclass attribute and select one of the predefined values (for example, language-xml).

• Select the <codeblock> element in the editor and use the Alt + Enter keyboard shortcut to open the in-

place attributes editor window. Then select one of the predefined values from the Value drop-down

menu.

The predefined values that can be selected are:

• language-json

• language-yaml

• language-xml

• language-bourne

• language-c

• language-cmd

• language-cpp

• language-csharp

• language-css

• language-dtd

• language-ini

• language-java

• language-javascript

• language-lua

• language-perl

• language-powershell

• language-php

• language-python

• language-ruby

• language-sql

• language-xquery

Attention:

It is recommended that you do not add inline elements in the codeblocks when using this @outputclass

attribute, as it may lead to improper highlighting.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3186

Tip:

Starting with version 24.0, the language values can also be set without using the language-

prefix.

Example:

The following codeblock with the @outputclass set as language-css:

<codeblock outputclass="language-css" id="codeblock_1">@page preface-page {

 background-color:silver;

 @top-center{

 content: "Custom Preface Header";

 }

}

*[class ~= "topic/topic"][@topicrefclass ~= "bookmap/preface"] {

 page: preface-page;

}</codeblock>

would like this in WebHelp output:

@page preface-page {

 background-color:silver;

 @top-center{

 content: "Custom Preface Header";

 }

}

*[class ~= "topic/topic"][@topicrefclass ~= "bookmap/preface"] {

 page: preface-page;

}

Publishing with a DITA-OT Project File

The DITA Open Toolkit project file allows you to define all your DITA map input and filter pairs and to produce

the desired output formats by applying the publishing engine over this single project file: https://www.dita-

ot.org/dev/topics/using-project-files.html.

Once a DITA-OT project file is opened in the application, two predefined publishing scenarios become available

in the Configure Transformation Scenario(s) dialog box (on page 1616):

• Publish DITA-OT Project (all deliverables) - Runs the publishing engine and produces output for all

deliverables defined in the project file.

• Publish DITA-OT Project (select deliverable) - Runs the publishing engine and produces output for only

one deliverable specified by the end-user.

https://www.dita-ot.org/dev/topics/using-project-files.html
https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3187

Some of the allowed transformation parameters that are relevant to the DITA-OT project file include:

• project.file - Specifies the path to the project file.

• dita-ot.dir - Specifies the directory where DITA-OT, used in transformation is installed.

• additional.args - Specifies the additional arguments used in transformation.

• deliverable.id - Specifies the id of the deliverable. This parameter is only available in the Publish DITA-

OT Project (select deliverable) transformation.

• jvm.args - Specifies the JVM arguments used by the transformation for each deliverable. This can be

used to increase the memory allocation used by the transformation.

Example: To set the JVM memory allocation to 5 GB for publishing deliverables, append the following

value to the existing ones:

-Xmx5G

If the "pdf-css-html5" (based on Chemistry PDF CSS processor) deliverable publication fails with an Out

Of Memory Error, try appending the baseJVMArgLine parameter to the "jvm.args" parameter value. For

example:

-DbaseJVMArgLine=-Xmx5G

Tip:

When a DITA-OT project file is open in Author mode, there is a play button () next to the project file

name. You can use this button to publish all deliverables specified in the file. While the transformation

is running, the button turns into a stop button in case you need to terminate the process.

During the publishing processing, whenever WebHelp and PDF final outputs are generated, the generated

documents are opened in the corresponding application (e.g. web browser, PDF reader). This feature can be

inhibited by editing the transformation scenario and deselecting the In System Application checkbox in the

Output tab.

Related Information:

DITA Open Toolkit Project (on page 3234)

Dynamic Word, Excel, OpenAPI, HTML, Markdown to DITA Conversion

The publishing engine has support to dynamically convert various types of non-DITA resources to DITA while

publishing. This support also enables the dynamically converted document titles for the non-DITA resources

that are referenced in a DITA map to be displayed as the title of the resource in the DITA Maps Manager.

Attention:

These features are available with no restrictions when the publishing process is done using the

default publishing engine that is bundled in Oxygen XML Editor/Author or if you have integrated the

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3188

DITA-OT dynamic converter plugin into a custom DITA-OT distribution. However, if the publishing

process is done from a command line, this feature requires an Oxygen Publishing Engine license.

To enable this support for a particular resource that is referenced in a DITA map, you must specify one of the

following values for the @format attribute on the <topicref> element:

Word to DITA (word-to-dita)

Microsoft Word documents that are referenced in the DITA map using the word-to-dita value

for the @format attribute get dynamically converted to DITA topics during publishing. Image

references and internal links are preserved.

Example:

<topicref href="sample.docx" format="word-to-dita"/>

Excel to DITA (excel-to-dita)

Microsoft Excel documents that are referenced in the DITA map using the excel-to-dita value

for the @format attribute get dynamically converted to DITA topics that contain one or more tables

during publishing.

Example:

<topicref href="sample.xlsx" format="excel-to-dita"/>

OpenAPI to DITA (openapi-to-dita)

OpenAPI documents (versions 2.0, 3.0, or 3.1) in JSON or YAML format that are referenced in the

DITA map using the openapi-to-dita value for the @format attribute get dynamically converted to

DITA topics during publishing.

Example:

<topicref href="openapi.json" format="openapi-to-dita"/>

<topicref href="openapi.yaml" format="openapi-to-dita"/>

HTML to DITA (html-to-dita)

HTML documents that are referenced in the DITA map using the html-to-dita value for the

@format attribute get dynamically converted to DITA topics during publishing.

Example:

<topicref href="sample.html" format="html-to-dita"/>

Markdown to DITA (markdown)

Markdown documents that are referenced in the DITA map using the markdown value for the

@format attribute get dynamically converted to DITA topics during publishing using the support

for Markdown bundled with the publishing engine by default.

https://www.oxygenxml.com/doc/ug-ope/topics/ope-licensing.html
https://www.oxygenxml.com/doc/ug-ope/topics/ope-licensing.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3189

Example:

<topicref href="sample.md" format="markdown"/>

Markdown to DITA (markdown-to-dita)

Markdown documents that are referenced in the DITA map using the markdown-to-dita value for

the @format attribute get dynamically converted to DITA topics during publishing using the special

conversion plugin provided by Oxygen XML Editor. The markdown-to-dita format conversion

is more flexible that the built-in markdown conversion, allowing the conversion of Markdown

documents that do not have consistent heading levels.

Example:

<topicref href="sample.md" format="markdown-to-dita"/>

Resources

For more information about working with DITA-compatible resources, see the following resources:

• Video: Integrating REST-API Content into DITA Documentation in Oxygen

• Webinar: Integrating Various Document Formats (OpenAPI, Word, Markdown, HTML, Excel) into DITA

Documentation

Troubleshooting DITA Transformation Problems

This section contains some topics to help you troubleshoot DITA transformation issues.

DITA Map Transformation Fails (Cannot Connect to External Location)

Problem

DITA map (on page 3296) transformation fails because it cannot connect to an external location.

Solution

The transformation is run as an external Ant process so you can continue using the application as the

transformation unfolds. All output from the process appears in the DITA Transformation tab.

The HTTP proxy settings are used for the Ant transformation, so if the transformation fails because it cannot

connect to an external location, you can check the the Proxy preferences page (on page 311)

DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)

Problem

DITA Map WebHelp transformation fails with a message that indicates duplicate topic references were found.

https://www.youtube.com/watch?v=mzmnOBzJ5Uk
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3190

Cause

By default the WebHelp transformation uses the force-unique parameter set to true to force the

transformation to create unique output files for each instance of a resource when a map contains multiple

references to a single topic. However, there are cases when this feature does not work as expected and the

duplicate topic references are not handled properly.

Solution

To solve this issue, you should manually set a unique @copy-to attribute on any duplicate topic reference that

was not handled automatically by DITA-OT:

<map>

...

 <topicref href="../topics/MyTopic.dita"/>

...

 <topicref href="../topics/MyTopic.dita" copy-to="../topics/MyTopic-2.dita"/>

</map>

DITA-OT Transformation Takes a Long Time to Process

Problem

A DITA transformation takes an extremely long time to process (over an hour, for example).

Cause

Large delays in DITA-OT processing are usually caused by intensive disk operations, CPU usage, or

connections to remote websites. The DITA-OT processing is very disk-intensive, each stage takes the entire

content from the transformation temporary files folder, reads it, modifies it, and then writes it back.

Solution

There are several things you can try to troubleshoot this problem:

• If you are using a shared or remote drive, it is recommended to specify a local drive for the output and

temporary files directory (edit the transformation scenario and in the Output tab, select a local directory

for Temporary files directory and Output directory).

• If you want to test if the publishing has a problem downloading remote resources, you could disable

the network adapter on the computer and then try to publish. The purpose is to see if the publishing

finishes without any reported error about obtaining a certain HTTP resource.

• Using DTDs instead of XML Schemas is faster. This is because of a default transformation parameter

called args.grammar.cache that only works for DTD-based DITA topics.

• You can increase the memory available to Oxygen XML Editor (on page 2909). Sometimes, just

increasing the amount of memory available to the DITA-OT process may be enough to lower the time

necessary for the publishing to run.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3191

• You can enable some logging to help you determine which stage in the process is taking

a long time. Edit the transformation scenario and in the Advanced tab, enter logger

org.apache.tools.ant.listener.ProfileLogger in the Additional arguments field. Then go to Options >

Preferences > DITA > Logging and select Always for the Show console output option.

• You could try disabling antivirus applications since the publishing process is very disk intensive and

certain antivirus application might slow down the process.

• If the published DITA map is part of a larger DITA project with lots of maps and topics, references

from topics in the current map to topics in other sub-projects might result in problems resolving those

references. You could look in the output folder to see if the number of HTML documents match the

number of DITA topics in your map.

DITA PDF Transformation Fails

Problem

The DITA to PDF transformation fails.

Cause

To generate the PDF output, Oxygen XML Editor uses the DITA Open Toolkit. This process sometimes results

in errors. For information about some of the most common errors, see DITA PDF Processing Common Errors

(on page 3192).

Solution

If your transformation fails, you can detect some of the problems that caused the errors by running the

Validate and Check for Completeness action (on page 2995). Depending on the options you select when you

run it, this action reports errors such as topics referenced in other topics but not in the DITA map (on page

3296), broken links, and missing external resources.

You can analyze the Results tab of the DITA transformation and search for messages that contain text

similar to [fop] [ERROR]. If you encounter this type of error message, edit the transformation scenario

you are using and set the clean.temp parameter to no and the retain.topic.fo parameter to yes. Run the

transformation, go to the temporary directory of the transformation, open the topic.fo file and go to the line

indicated by the error. Depending on the XSL FO context try to find the DITA topic that contains the text that

generates the error.

If none of the above methods helps you, go to Help > About > Components > Frameworks and check what

version of the DITA Open Toolkit you are using. Copy the whole output from the DITA-OT console output and

either report the problem on the DITA User List or send it to support@oxygenxml.com.

Related Information:

How to Enable Debugging for FO Processor Transformations (on page 1583)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3192

DITA PDF Processing Common Errors

There are cases when the PDF processing fails when trying to publish DITA content to a PDF file. This topic

lists some of the common problems and possible solutions.

Problem: Cannot Save PDF

The FO processor cannot save the PDF at the specified target. The console output contains messages like

this:

[fop] [ERROR] Anttask - Error rendering fo file:

C:\samples\dita\temp\pdf\oxygen_dita_temp\topic.fo

<Failed to open C:\samples\dita\out\pdf\test.pdf>

Failed to open samples\dita\out\pdf\test.pdf

.............

[fop] Caused by: java.io.FileNotFoundException:

C:\Users\default\Desktop\bev\out\pdf\test.pdf

(The process cannot access the file because it is being used by another process)

Solution: Cannot Save PDF

Such an error message usually means that the PDF file is already opened in a PDF reader application. The

solution is to close the open PDF before running the transformation.

Problem: Table Contains More Cells Than Defined in Colspec

One of the DITA tables contains more cells in a table row than the defined number of <colspec> elements. The

console output contains messages like this:

[fop] [ERROR] Anttask - Error rendering fo file:

D:\projects\eXml\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo

<net.sf.saxon.trans.XPathException: org.apache.fop.fo.ValidationException:

The column-number or number of cells in the row overflows the number of

fo:table-columns specified for the table.

(See position 179:-1)>net.sf.saxon.trans.XPathException:

org.apache.fop.fo.ValidationException: The column-number or number of cells

in the row overflows the number of fo:table-columns specified for the table.

(See position 179:-1)

[fop] at org.apache.fop.tools.anttasks.FOPTaskStarter.renderInputHandler

(Fop.java:657)

[fop] at net.sf.saxon.event.ContentHandlerProxy.startContent

(ContentHandlerProxy.java:375)

............

[fop] D:\projects\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo ->

D:\projects\samples\dita\flowers\out\pdf\flowers.pdf

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3193

Solution: Table Contains More Cells Than Defined in Colspec

To resolve this issue, correct the @colspec attribute on the table that caused the issue. To locate the table that

caused the issue:

1. Edit the transformation scenario and set the parameter clean.temp to no.

2. Run the transformation, open the topic.fo file in Oxygen XML Editor, and look in it at the line

specified in the error message (See position 179:-1).

3. Look around that line in the XSL-FO file to find relevant text content that you can use (for example, with

the Find/Replace in Files action in the DITA Maps Manager view (on page 2950)) to find the original

DITA topic where the table was generated.

Problem: Broken Link

There is a broken link in the generated XSL-FO file. The PDF is generated but contains a link that is not

working. The console output contains messages like this:

[fop] 1248 WARN [main] org.apache.fop.apps.FOUserAgent -

Page 6: Unresolved ID reference "unique_4_Connect_42_wrongID" found.

Solution: Broken Link

To resolve this issue:

1. Use the Validate and Check for Completeness action available in the DITA Maps Manager view (on

page 2950) to find such problems.

2. If you publish to PDF using a DITAVAL filter, select the same DITAVAL file in the DITA Map

Completeness Check dialog box.

3. If the Validate and Check for Completeness action does not discover any issues, edit the

transformation scenario and set the clean.temp parameter to no.

4. Run the transformation, open the topic.fo file in Oxygen XML Editor, and search for the unresolved

ID references (for example: unique_4_Connect_42_wrongID).

5. Look in the XSL-FO file to find relevant text content that you can use (for example, with the Find/

Replace in Files action in the DITA Maps Manager view (on page 2950)) to find the original DITA topic

where the table was generated.

Related Information:

How to Enable Debugging for FO Processor Transformations (on page 1583)

DITA to CHM Transformation Fails - Cannot Open File

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5010: Error: Cannot open

"fileName.chm". Compilation stopped.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3194

Cause

This error occurs when the CHM output file is opened and the transformation scenario cannot rewrite its

content.

Solution

To solve this issue, close the CHM help file and run the transformation scenario again.

Tip:

It is a good practice to validate the DITA map (on page 3296) before executing the transformation

scenario. To do so, run the Validate and Check for Completeness action (on page 2995). Depending

on the selected options, it will report detected errors, such as topics referenced in other topics (but

not in the DITA map), broken links, and missing external resources.

Related Information:

DITA Map CHM (Compiled HTML Help) Transformation (on page 3160)

DITA to CHM Transformation Fails - Compilation Failed

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5003: Error: Compilation failed

while compiling fileName.

Cause 1

One possible cause for this error is that the processed file does not exist.

Solution 1

To solve this issue, fix the file reference before executing the transformation scenario again.

Cause 2

Another possible cause for this error is that the processed file has a name that contains space characters.

Solution 2

To solve the issue, remove any spacing from the file name and run the transformation scenario again.

Tip:

It is a good practice to validate the DITA map (on page 3296) before executing the transformation

scenario. To do so, run the Validate and Check for Completeness action (on page 2995). Depending

on the selected options, it will report detected errors, such as topics referenced in other topics (but

not in the DITA map), broken links, and missing external resources.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3195

Related Information:

DITA Map CHM (Compiled HTML Help) Transformation (on page 3160)

Solving DITA Transformation Errors

If a DITA transformation results in errors or warnings, the information is displayed in the message panel at

the bottom of the editor. The information includes the severity, description of the problem, the name of the

resource, and the path of the resource.

To help prevent and solve DITA transformation problems, follow these steps:

1. Validate the DITA map (on page 2995) by using the Validate and Check for Completeness action

that is available on the DITA Maps Manager (on page 2950) toolbar and in the DITA Maps menu.

2. If this action results in validation errors, solve them prior to executing the transformation. Also,

you should pay attention to the warning messages because they may identify problems in the

transformation.

3. Run the DITA transformation scenario (on page 1530).

4. If the transformation results in errors or warnings, they are displayed in the Results panel (on page

560) at the bottom of the editor. The following information is presented to help you troubleshoot the

problems:

◦ Severity - The first column displays the following icons that indicate the severity of the problem:

▪ Informational - The transformation encountered a condition of which you should be

aware.

▪ Warning - The transformation encountered a problem that should be corrected.

▪ Error - The transformation encountered a more severe problem, and the output is

affected or cannot be generated.

◦ Info - Click the See More icon to open a web page that contains more details about DITA-OT

error messages.

◦ Description - A description of the problem.

◦ Resource - The name of the transformation resource.

◦ System ID - The path of the transformation resource.

5. Use this information or other resources from the online DITA-OT community to solve the transformation

problems before re-executing the transformation scenario.

6. If you need to contact the Oxygen technical support team, they will need you to send the entire

transformation scenario execution log. To obtain it:

a. Go to the Options > Preferences > DITA preferences page and set the Show console output

option to Always.

b. Execute the transformation scenario again. The console output messages are displayed in the

DITA-OT view.

c. Copy the entire log, save it in a text file, then send it to the Oxygen technical support team.

d. After your issue has been solved, go back to the Options > Preferences > DITA preferences page

and set the Show console output option to When build fails.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3196

Related Information:

Troubleshooting DITA Transformation Problems (on page 3189)

DITA Profiling / Conditional Text
DITA offers support for conditionally profiling content by using profiling attributes. With Oxygen XML Editor,

you can define values for the DITA profiling attributes and they can be easily managed to filter content in

the published output. You can switch between profile sets to see how the edited content looks like before

publishing. The profiling configuration can also be shared between content authors through the project file and

there is no need for coding or editing configuration files.

Oxygen XML Editor includes a Attributes and Condition Sets preferences page (on page 196) where you can

create and manage profiling attributes and condition sets. Oxygen XML Editor also offers convenient support

for customizing and controlling profiling attribute values with a subject scheme (on page 3214) or DITAVAL

file (on page 3219).

Profiling Attributes

You can profile content elements or map elements by adding one or more of the default DITA profiling

attributes (@product, @platform, @audience, @rev, @props, and @otherprops). You can also create your own custom

profiling attributes and profiling condition sets. The profiling attributes may contain one or more tokens that

represent conditions to be applied to the content when a publication is built.

For example, you could define a section of a topic that would only be included for a publication related to the

Windows platform by adding the @platform profiling attribute:

<section platform="windows">

For information about creating and editing profiling attributes, see Creating and Editing Profiling Attributes in

DITA (on page 3197) (for information about sharing them, see Sharing Profiling Attribute Configurations (on

page 3200)).

Profiling Conditions

DITA allows you to conditionally profile parts of a topic so that certain parts of the topic are displayed when

certain profiling conditions are set. Profiling conditions can be set both within topics and in maps. When set in

a topic, they allow you to suppress an element (such as paragraph), step in a procedure, item in a list, or even

a phrase within a sentence. When set in a map, they allow you to suppress an entire topic or group of topics.

You can then create a variety of publications from a single map by applying profiling conditions to the build.

For information about creating and editing condition sets, see Creating and Editing Profiling Condition Sets in

DITA (on page 3203) (for information about sharing them, see Sharing Condition Set Configurations (on page

3205)).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3197

Resources

For more information about DITA profiling, see the following resources:

• Webinar: Working with DITA in Oxygen - Basic Profiling and Reuse Strategies

• Webinar: Working with DITA in Oxygen - Advanced Profiling and Reuse Strategies

Creating and Editing Profiling Attributes in DITA

You can filter DITA content or the structure of a document by using profiling attributes or profiling conditions

sets (on page 3203).

Defining Profiling Attributes for DITA Content

To create or edit profiling attributes for filtering DITA content, follow these steps:

1. If you are creating a new attribute, make sure the attribute is already defined in the document DTD or

schema before continuing with the procedure.

Tip:

For less technical users who do not want to create attribute specializations in DTD/XML

Schema, you may want to use profiling attribute groups (on page 3212) instead (use an

existing profiling attribute with sub-attributes).

2. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes

> Author > Profiling / Conditional Text > Attributes and Condition Sets.

Information:

The Profiling Attributes section (on page 197) is used to define the attributes and their values.

For DITA documents, the default attributes are included (@audience, @platform, @product, @props,

@otherprops, and @rev), but if a Subject Scheme Map (on page 3214) is used for profiling your

content, you will see the attributes defined in your subject scheme map instead.

3. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table.

To customize existing attributes and their values, select an attribute and click the Edit button.

Step Result: In either case, this opens a Profiling Attribute configuration dialog box where you can

define attributes that exist in your schema.

https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3198

Figure 798. Profiling Attribute Dialog Box

The following options are available in this dialog box:

Document type

Select the document type (framework (on page 3297)).

Tip:

You can use the * or ? wildcards in this combo box. For example, DITA* would

match any document type that starts with "DITA". You can also specify multiple

document types by using commas to separate them.

Attribute name

The name of the profiling attribute.

Display name

This optional field is used for descriptive rendering in profiling dialog boxes.

Attribute Values Table

This table displays information about the values for the profiling attribute. You can

configure them by using the buttons at the bottom of the table (New, Edit, Delete).

The columns are as follows:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3199

◦ Value - The attribute value. You can also define profiling attribute groups using

the following format: ParentAttrValue(SubAttrValue1 SubAttrValue2). For more

information, see Conditional Profiling Attribute Groups (on page 3212).

◦ Label - You can specify a label for the attribute value that will be rendered as its

name in various components in Author mode (Edit Profiling Attributes dialog box

(on page 3200), Condition Set dialog box (on page 3203), Profiling tab in the Edit

Properties dialog box (on page 2991), DITA Maps Manager (on page 2950)). If

the Label is not specified, the Value will be used as its rendered name.

◦ Description - A description for the attribute value that will be displayed in this table.

Single value

Select this option if you want the attribute to only accept a single value.

Multiple values separated by

Select this option if you want the attribute to accept multiple values, and you can choose

the type of delimiter to use. You can choose between space, comma, and semicolon, or

you can enter a custom delimiter in the text field. A custom delimiter must be supported

by the specified document type. For example, the DITA document type only accepts

spaces as delimiters for attribute values.

4. After defining or configuring the attributes and their values according to your needs, click OK to confirm

your selections and close the Profiling Attributes configuration dialog box.

5. Click Apply to save the changes.

Result: You should see your changes in the Profiling Attribute table.

You can also use the Profiling Condition Sets section to apply more complex filters on your DITA content.

Adding Profiling Attribute Values Directly in a Document

You can add values directly to the existing profiling attributes in a document using the In-Place Attributes

Editor (on page 622) in Author mode, the Attributes view (on page 641), or in the source code in Text mode.

However, this just adds them to the document and does not change the conditional text configuration. If you

invoke the Edit Profiling Attributes action (from the contextual menu in Author mode) on the new value, the

Profiling Values Conflict dialog box will appear and it includes an Add these values to the configuration

action that will automatically add the new value to the particular profiling attribute. It also includes an Edit the

configuration action that opens the Attributes and Condition Sets preferences page (on page 196) where you

can edit the profiling configuration.

Note:

If the Allow contributing extra profiling attribute values option (on page 198) is not selected in the

Attributes and Condition Sets preferences page, the Profiling Values Conflict dialog box will never

appear, so this automatically adding value not be possible.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3200

Figure 799. Profiling Values Conflict Dialog Box

Sharing Profiling Attribute Configurations

Your profiling configuration can be shared with other users through a project file. If you select Project Options

(on page 3300) at the bottom of the Profiling/Conditional Text preferences page, your configuration is

stored in the project file and can be shared with others. For instance, if your project file is saved on a version

control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option

configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 427).

Related Information:

Applying Profiling Attributes in DITA (on page 3200)

Creating and Editing Profiling Condition Sets in DITA (on page 3203)

Applying Profiling Condition Sets in DITA (on page 3205)

Showing and Filtering Profiled Content in DITA (on page 3207)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Conditional Profiling Attribute Groups (on page 3212)

Filtering Profiling Values with a DITAVAL File (on page 3219)

Applying Profiling Attributes in DITA

Profiling attributes are applied on element nodes. You can apply profiling attributes on a text fragment (it will

automatically be wrapped into a phrase-type element), on a single element, or on multiple elements at the

same time. If there is no selection in your document, the profiling attributes are applied on the element at the

cursor position.

You can apply defined DITA profiling attributes (on page 3197) as follows:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3201

DITA Topics

To profile DITA topics, right-click a topic reference in the DITA Maps Manager (on page 2950),

select Edit Properties from the contextual menu, go to the Profiling tab, and select the

appropriate values.

DITA Content

To profile DITA content in Author mode, highlight the content and select Edit Profiling Attributes

from the contextual menu and select the appropriate values in the Edit Profiling Attributes

dialog box.

DITA Elements

To profile specific XML elements in Author mode, position the cursor inside the element, right-

click, select Edit Profiling Attributes (you can also right-click the element in the breadcrumb (on

page 615) or Outline (on page 551) view), and select the appropriate values in the Edit Profiling

Attributes dialog box. You can also use the Attributes view (on page 641) to set the profiling

attributes on the element at the current cursor position.

Figure 800. Edit Profiling Attributes Dialog Box

The profiling attributes, and their potential values, that appear in this dialog box depend on what has been

configured in Oxygen XML Editor. If you have a large list of profiling attributes, you can use the text filter

field to search for attributes or values, and you can expand or collapse attributes by using the Expand

All/ Collapse All buttons to the right of the text filter or the arrow button to the left of the profiling attribute

name.

The attributes and values that appear in the dialog box are determined as follows:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3202

• If your root map (on page 3301) references a DITA subject scheme map (on page 3301) that defines

values for the profiling attributes (on page 3214), those values are used. Oxygen XML Editor collects all

the profiling values from the subject scheme map that is referenced in the map that is currently opened

in the DITA Maps Manager (on page 2950) (or set as the root map (on page 2967)). In the image

above (on page 3201) (taken from the Oxygen XML Editor documentation project), you see values for

eight products. They are the only values that are defined in the subject scheme map and thus, are the

only ones that appear in the dialog box.

• If you have defined profiling attribute values (on page 3197) for the DITA document type in the

Attributes and Condition Sets preferences page (on page 196) and you store them at project-level (on

page 3300), those values are displayed in the dialog box.

• If you have defined profiling attribute values (on page 3197) for the DITA document type in the

Attributes and Condition Sets preferences page (on page 196) and you store them at global-level (on

page 3297), those values are displayed in the dialog box.

• If you have defined profiling attribute values (on page 3197) for the DITA document type in the

Attributes and Condition Sets preferences page (on page 196), those values are displayed in the dialog

box.

• Otherwise, a generic default set of profiling attributes and values are available.

The attribute names and values selected in the Edit Profiling Attributes dialog box are set on the elements

contained in the profiled fragment. If you only select a fragment of content (rather than the entire element),

this fragment is wrapped in phrase-type elements where the profiling attributes are set.

If the Show Profiling Attributes option (on page 694) (available in the Profiling / Conditional Text toolbar

menu) is selected, a green border is painted around profiled text in the Author mode and all profiling attributes

set on the current element are listed at the end of the highlighted block. To edit the attributes of a profiled

fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove

attribute values.

Figure 801. Profiling Attribute Value Form Control Pop Up

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3203

Related Information:

Creating and Editing Profiling Attributes in DITA (on page 3197)

Creating and Editing Profiling Condition Sets in DITA (on page 3203)

Applying Profiling Condition Sets in DITA (on page 3205)

Showing and Filtering Profiled Content in DITA (on page 3207)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Creating and Editing Profiling Condition Sets in DITA

Multiple profiling attributes can be aggregated into a profiling condition set that allows you to apply more

complex filters on the document content. In DITA, profiling conditions can be set within both topics and in

maps. When set in a topic, you can filter an element (such as paragraph), step in a procedure, item in a list, or

even a phrase within a sentence. When set in a map, you can filter an entire topic or group of topics.

Creating Profiling Condition Sets

To create a new profiling condition set, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes

> Author > Profiling/Conditional Text > Attributes and Condition Sets.

Information:

The Profiling Condition Sets section (on page 198) is used to define condition sets.

2. To add new condition set, click the New button at the bottom of the Profiling Condition Sets table. To

customize existing condition sets, select an existing condition set and click the Edit button.

Step Result: In either case, this opens a Condition Set configuration dialog box where you can define

attributes that exist in your schema.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3204

Figure 802. Condition Set Configuration Dialog Box

The following options are available in this dialog box:

Name

The name of the new condition set.

Document type

Select the document type (framework (on page 3297)) that has profiling attributes

defined.

Use DITAVAL file

For DITA projects, select this option if you want the Profiling Condition Set to reference a

DITAVAL file (on page 3219). You can specify the path by using the text field, its history

drop-down, the Insert Editor Variables (on page 333) button, or the browsing actions

in the Browse drop-down list.

Include the content matching the following conditions

You can select this option to define the combination of attribute values for your condition

set by selecting the appropriate checkboxes for the values you want to be included in this

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3205

particular condition set. If you have defined a lot of profiling attributes, you can use the

filter text field to search for specific conditions.

Shortcut key

You can click the Choose button to open a dialog box that allows you to define a shortcut

key for this particular condition set. You can then use that shortcut key anytime you want

to select this condition set to filter content.

3. After defining or configuring the condition sets according to your needs, click OK to confirm your

selections and close the Condition Set configuration dialog box.

4. Click Apply to save the condition set.

Sharing Condition Set Configurations

Your condition set configuration can be shared with other users through a project file. If you select Project

Options (on page 3300) at the bottom of the Profiling/Conditional Text preferences page, your configuration

is stored in the project file and can be shared with others. For instance, if your project file is saved on a version

control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option

configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 427).

Related Information:

Applying Profiling Condition Sets in DITA (on page 3205)

Creating and Editing Profiling Attributes in DITA (on page 3197)

Applying Profiling Attributes in DITA (on page 3200)

Showing and Filtering Profiled Content in DITA (on page 3207)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Applying Profiling Condition Sets in DITA

All defined Profiling Condition Sets (on page 3203) are available as shortcuts in the Profiling / Conditional

Text toolbar menu (on page 694). Select a menu entry to apply the condition set. The filtered content is then

grayed-out in the Author mode, Outline view (on page 551), and DITA Maps Manager view (on page 2950).

Your selection will also be used as the default condition set (on page 3222) in transformation scenarios (this

can be changed in the Filters tab). An element is filtered-out when one of its attributes is part of the condition

set and its value does not match any of the values covered by the condition set.

EXAMPLE:

Suppose that you have the following document:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3206

If you apply the following condition set, it means that you want to filter out the content to only include content

profiled with the expert value for the @audience attribute and content that has the prop1 value for the @other

attribute.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3207

This is how the document looks in Author mode after you apply the condition set:

Related Information:

Creating and Editing Profiling Condition Sets in DITA (on page 3203)

Creating and Editing Profiling Attributes in DITA (on page 3197)

Applying Profiling Attributes in DITA (on page 3200)

Showing and Filtering Profiled Content in DITA (on page 3207)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Showing and Filtering Profiled Content in DITA

You can visualize the effect of profiling content by using the profiling tools in the Profiling/Conditional

Text drop-down menu that is located on the DITA Maps Manager (on page 2950) toolbar and on the main

toolbar. This drop-down menu includes the following filtering options:

Show Profiling Colors and Styles

Select this option to show colors and styles for profiled content in Author mode and the DITA

Maps Manager (on page 2950). You can configure the colors and styles or specify whether

or not this option is selected by default in the Profiling/Conditional Text > Colors and Styles

preferences page (on page 198).

Show Profiling Attributes

Select this option to display the values of the profiling attributes at the end of profiled content in

Author mode and next to the nodes in the DITA Maps Manager (on page 2950). You can specify

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3208

whether or not this option is selected by default in the Profiling/Conditional Text preferences

page (on page 196).

Show Excluded Content

Controls whether the content filtered out by a particular condition set is hidden or grayed-out

in Author mode, the DITA Maps Manager (on page 2950), and the Outline (on page 551) view.

When this option is selected and a condition set is selected in this drop-down menu (on page

3208), the filtered content is grayed-out. If this option is not selected and a condition set is

selected in this drop-down menu (on page 3208), the filtered content is hidden. You can specify

whether or not this option is selected by default in the Profiling/Conditional Text preferences

page (on page 196).

Choose Condition Set (Available if more than 15 condition sets are defined)

This option is available if you have more than 15 conditions sets defined. It opens a dialog box

that makes it easier to find and select condition sets that are not displayed in this drop-down

menu.

List of Defined Condition Sets

Up to 15 defined condition sets are listed and you can toggle each one of them on to filter the

content in Author mode and the DITA Maps Manager (on page 2950) to only show content

that will appear in the output for that particular condition set. If there are more than 15 defined

condition sets, the rest of them can be accessed in the More submenu or by using the Choose

Condition Set option (on page 3208) to access a dialog box that presents all of them.

Profiling Settings

Opens the Attributes and Condition Sets preferences page (on page 196) where you can add

and edit profiling attributes and condition sets.

Figure 803. Example: Profiling Controls in Author Mode

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3209

If the Show Profiling Attributes option is selected, a green border is painted around profiled text in the Author

mode. Also, all profiling attributes set on the current element are listed at the end of the highlighted block and

in its tooltip message. To edit the attributes of a profiled fragment, click one of the listed attribute values. A

form control pops up and allows you to add or remove attribute values.

Figure 804. Profiling Attribute Value Form Control Pop Up

Profiling Attribute Icons in the DITA Maps Manager

The following icons are used to mark profiled and non-profiled topics in the DITA Maps Manager:

• - The topic reference contains profiling attributes.

• - The topic reference inherits profiling attributes from an ancestor.

• - The topic reference contains a profiling attribute and inherits profiling from an ancestor.

• (hyphen) - The topic reference neither contains nor inherits profiling attributes.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3210

Figure 805. Rendering Profiled Topics in DITA Maps Manager

Related Information:

Creating and Editing Profiling Condition Sets in DITA (on page 3203)

Applying Profiling Attributes in DITA (on page 3200)

Creating and Editing Profiling Attributes in DITA (on page 3197)

Applying Profiling Condition Sets in DITA (on page 3205)

Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3210)

Customizing Colors and Styles for Rendering Profiling in Author Mode

By applying profiling colors and styles, you can mark profiled content in Author mode and the DITA Maps

Manager (on page 2950) so that you can instantly spot differences between multiple variants of the output.

This allows you to preview the content that will go into the published output. The excluded text is grayed-out

or hidden in Author mode and excluded nodes are grayed-out or hidden in the DITA Maps Manager (on page

2950).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3211

Figure 806. Example: Profiling Colors and Styles in Author Mode

Choosing the right style for a specific profiling attribute is a matter of personal taste, but be aware of the

following:

• If the same block of text is profiled with two or more profiling attributes, their associated styles

combine. Depending on the styling, this might result in an excessively styled content that may prove

difficult to read or work with.

• It is recommended that you only profile the differences. There is no need to profile common content,

since excessive profiling can visually pollute the document.

• A mnemonic associated with a style will help you instantly spot differences in the types of content.

Styling Profiling Attribute Values

To set colors and styles for profiling attribute values, follow these steps:

1. Select the Show Profiling Colors and Styles option (on page 694) from the Profiling / Conditional

Text toolbar drop-down menu.

2. Select Profiling Settings (on page 694) from the Profiling / Conditional Text toolbar drop-

down menu. This is a shortcut to the Attributes and Condition Sets preferences page (on page 196).

3. Go to the Colors and Styles preferences page (on page 198) to configure the colors and styling for the

profiling attributes.

4. Go to the Attributes preferences page (on page 200) to configure how you want the profiling attributes

to appear in Oxygen XML Editor.

Result: The styling is now applied in the Author editing mode, the Outline view (on page 551), and in the DITA

Maps Manager view (on page 2950). Also, to help you more easily identify the profiling you want to apply in

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3212

the current context, the styling is applied in the Edit Profiling Attributes dialog box (on page 684) and in the

inline form control pop-up that allows you to quickly set the profiling attributes.

Figure 807. Profiling Attribute Value Form Control Pop Up

Alternate Method with a DITAVAL File: If you are using a DITAVAL filter file to control the filtering of profiled

content in DITA topics, you can use a flag filter to define the colors and styles that will be used when rendering

the profiling. For detailed information about this alternate method, see the procedure in the Styling the

Rendering of Profiled Content Using a DITAVAL File (on page 3221) topic.

Related Information:

Creating and Editing Profiling Condition Sets in DITA (on page 3203)

Applying Profiling Attributes in DITA (on page 3200)

Creating and Editing Profiling Attributes in DITA (on page 3197)

Applying Profiling Condition Sets in DITA (on page 3205)

Showing and Filtering Profiled Content in DITA (on page 3207)

Conditional Profiling Attribute Groups

Overview

Conditional processing attributes can be specified using grouped values. Groups organize the attributes

into subcategories. This is intended to support situations where an attribute applies to multiple specialized

subcategories. For example, suppose a company needs to filter content for several internal teams (operations

and support) and they use the @audience attribute with the values ops and support, but the Support team

has several levels of personnel (L1, L2, and L3). They could use a group to define the levels (L1, L2, and L3)

as subcategories for the support value. Using groups for these subcategories allows each category to be

processed independently.

A major advantage is that you do not need to add new profiling attributes using a DTD specialization. You can

re-use existing DITA profiling attributes (such as @product, @audience, @otherprops) and specify multiple attribute

subcategories.

https://docs.oasis-open.org/dita/dita/v1.3/cs01/part1-base/archSpec/base/usage-of-conditional-processing-attributes.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3213

Creating a Conditional Profiling Attribute Group

To create a group in Oxygen XML Editor:

1. Open the Preferences dialog box (Options > Preferences) (on page 132) and go to Editor > Edit modes

> Author > Profiling / Conditional Text > Attributes and Condition sets.

2. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table.

To customize existing attributes and their values, select an attribute and click the Edit button.

Step Result: In either case, this opens a Profiling Attribute configuration dialog box where you can

define attributes that exist in your schema.

3. Specify the appropriate values for the Document type, Attribute name, and Display name.

For information about the Profiling Attribute configuration dialog box, see Defining Profiling Attributes

for DITA Content (on page 3197).

4. Click the New button at the bottom of the attribute values table.

5. In the Value field of the resulting dialog box, define groups using the following format:

ParentAttrValue(SubAttrValue1 SubAttrValue2). For example:

support(L1 L2 L3)

6. Click OK and Apply to save and apply the changes.

Using Conditional Profiling Attribute Groups in Conjunction with a DITAVAL File

You can use groups to customize a hierarchy of profiling attribute values and then use it in conjunction with a

DITAVAL file to filter or flag (on page 3219) the values. For example, suppose the company described in the

example in the Overview section (on page 3212) needed to generate content for the Support team, but only

for L1 and L2 support personnel. The DITAVAL file could look like this:

<val>

 <prop action="include" att="support" val="L1"/>

 <prop action="include" att="support" val="L2"/>

 <prop action="exclude" att="support" val="L3"/>

</val>

That DITAVAL file could then be used for a condition set (on page 3203) to filter content in Author mode or

during the transformation stage to filter content in the output (on page 3222) and content profiled with the L1

and L2 values would be included while content with the L3 value would be excluded.

This example company could also have another DITAVAL file for filtering out all content profiled for any of the

three subcategories (L1, L2, L3) by simply excluding the support value (since L1, L2, and L3 are subcategories of

it).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3214

<val>

 <prop action="exclude" att="support"/>

</val>

Defining Conditional Profiling Attribute Groups in a Subject Scheme Map

You can define conditional profiling attribute groups in a subject scheme map (on page 3214) as in the

following example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN" "subjectScheme.dtd">

 <subjectScheme>

 <enumerationdef>

 <attributedef name="product"/>

 <subjectdef keys="productKeys">

 <subjectdef keys="myGroup1(gr1v1)"/>

 <subjectdef keys="myGroup1(gr1v2)"/>

 <subjectdef keys="product1"/>

 </subjectdef>

 </enumerationdef>

 </subjectScheme>

In the above example, myGroup1 is the profiling attribute group for the @product attribute and gr1v1 and gr1v2

in parentheses are the values.

Resources

For more information about advanced DITA profiling concepts, watch our Webinar: Working with DITA in

Oxygen - Advanced Profiling and Reuse Strategies.

Related information

DITA 1.3 Specifications: Conditional Processing Values and Groups

Customizing Profiling Values with a Subject Scheme Map

Overview

A subject scheme map (on page 3301) allows you to create and manage custom profiling values in DITA

documents without having to write a DITA specialization. Ultimately, this allows you to filter and flag content in

Author mode or in transformed output.

Subject scheme maps use key definitions to define a collection of profiling values. You can also use subject

scheme maps to filter out (reject) the values for certain attributes so that you only see the attributes or values

that you want to use in Author mode or the transformed output.

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://docs.oasis-open.org/dita/dita/v1.3/cs01/part1-base/archSpec/base/usage-of-conditional-processing-attributes.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3215

The highest level of map (main DITA map (on page 3301)) that uses the set of profiling values must

reference the subject scheme map where the profiling values are defined and the @type attribute needs to be

set to subjectScheme for the reference, as in the following example:

<topicref href="test.ditamap" format="ditamap" type="subjectScheme"/>

Advantages of Using a Subject Scheme Map

The advantages of using a subject scheme to control profiling attribute values include:

• You can create a hierarchy of profiling attribute values and use a DITAVAL file to filter or flag the tree of

values.

• You can share the subject scheme files with others without having to share preferences or the entire

project.

• The subject scheme offers validation support so you are notified if an undefined value is used.

Creating a Subject Scheme Map

To create and configure a subject scheme map, follow this procedure:

1. Use the New Document wizard (on page 378) to create a new Subject Scheme document (Framework

templates > DITA Map > map > Subject Scheme).

2. Use the controls in Author mode to define the hierarchical tree of values for your subject scheme (see

the Author mode example below (on page 3217)) or switch to Text mode and define it there if you

prefer (see the Text mode example below (on page 3217)).

Note:

The pre-defined subject scheme template includes Navigation Titles (<navtitle> element). This

element is not required, but if you use it, the text that you enter for the <navtitle> will be used

(instead of the name of the value) in the various places where profiling attributes are presented

in Oxygen XML Editor (on page 3218). An example of when this might be helpful is if you want

to use abbreviations for the name of a value, but you want to see its full name in Oxygen XML

Editor.

3. Bind the particular attribute to the key you define for the tree of values using the <attributedef> and

<subjectdef> elements inside the <enumerationdef> element. Notice that in the examples below (on page

3217), the audience attribute is bound to the audienceKey value.

Tip:

By default, attributes can accept multiple values, but you can use outputclass="single_value"

to specify that a certain attribute only accepts a single value at a time and the attribute will be

presented in Oxygen XML Editor with radio buttons instead of checkboxes. For example:

 <enumerationdef outputclass="single_value">

 <attributedef name="audience"/>

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3216

 <subjectdef keyref="audienceKey"/>

 </enumerationdef>

You can also define a specific set of possible attribute values for a specific attribute name that

is set on a specific element name. For example, you can define a specific set of @outputclass

attribute values only for the <image> element:

 <enumerationdef>

 <elementdef name="image"/>

 <attributedef name="outputclass"/>

 <subjectdef keyref="imgOutputClassValuesKey"/>

 </enumerationdef>

4. If you want to filter out (reject) values for certain attributes, bind the attributes to a blank value (as you

see for the props and otherprops attributes in the examples below (on page 3217)). This means that

those attributes will not appear in the various places where profiling attributes are presented in Oxygen

XML Editor (on page 3218).

5. Save your subject scheme file.

6. Reference your subject scheme in the highest level of map (main DITA map (on page 3301)) that will

use the set of profiling values and set its type to subjectScheme. The easiest way to do this is:

a. With your subject scheme file opened in the editor, go to the DITA Maps Manager view, right-click

the main DITA map, and select Append Child > Reference to the currently edited file.

b. In the Insert Topic Reference dialog box, go to the Attributes tab and in the Type field, enter or

select subjectScheme.

c. Click the Insert and Close button and save your main DITA map.

Using a Subject Scheme in Conjunction with a DITAVAL File

You can use a subject scheme to customize a hierarchy of profiling attribute values and then use it in

conjunction with a DITAVAL file to filter or flag (on page 3219) the entire tree of values. For example,

suppose one of the values for the audience attribute in a hierarchical subject scheme is surgeon and it has two

subordinate values of neuro-surgeon and plastic-surgeon (see the examples below (on page 3217)). You

could create a DITAVAL file with the following content:

<val>

 <prop action="exclude" att="audience" val="surgeon"/>

</val>

That DITAVAL file could then be used for a condition set (on page 3203) to filter content in Author mode or

during the transformation stage to filter content in the output (on page 3222) and the neuro-surgeon and

plastic-surgeon values would be excluded by the filter since the subject scheme defines them as subordinate

values of the surgeon value.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3217

Example: Subject Scheme Map that Defines Custom Values for the Audience Attribute

This example uses typical audience values for medical personnel (therapist, oncologist, physicist,

radiologist, surgeon, and so on). The audience attribute is bound to the audienceKey value (which defines

the tree of values). You can also see that it filters out all possible values for other attributes (props and

otherprops) so that they won't be available in the various places where profiling attributes are presented in

Oxygen XML Editor (on page 3218).

Example using Author mode controls:

Figure 808. Subject Scheme Author Mode Controls

Example code in Text mode:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3218

<subjectScheme>

 <!-- A scheme that defines audience user values -->

 <subjectdef keys="audienceKey">

 <subjectdef keys="therapist"/>

 <subjectdef keys="oncologist"/>

 <subjectdef keys="physicist"/>

 <subjectdef keys="radiologist"/>

 <subjectdef keys="surgeon">

 <subjectdef keys="neuro-surgeon"/>

 <subjectdef keys="plastic-surgeon"/>

 </subjectdef>

 </subjectdef>

 <!-- Binding the audience attribute to the values defined in the key -->

 <enumerationdef>

 <attributedef name="audience"/>

 <subjectdef keyref="audienceKey"/>

 </enumerationdef>

 <!--Reject all possible values for other profiling attributes-->

 <enumerationdef>

 <attributedef name="props"/>

 <subjectdef/>

 </enumerationdef>

 <enumerationdef>

 <attributedef name="otherprops"/>

 <subjectdef/>

 </enumerationdef>

</subjectScheme>

Where the Profiling Attributes are Available in Oxygen XML Editor

When you edit a DITA topic in the Text or Author mode, Oxygen XML Editor collects all the profiling values

from the subject scheme map (on page 3301) that is referenced in the map that is currently opened in

the DITA Maps Manager (on page 2950) (or set as the root map (on page 2967)). The values of profiling

attributes defined in a Subject Scheme Map are available in the following places in Oxygen XML Editor

(regardless of their mapping in the Profiling/Conditional Text preferences page (on page 196)):

• The Profiling tab of the Edit Properties dialog box (on page 2991).

• The Edit Profiling Attribute dialog box (on page 3201).

• The inline profiling controls in Author mode (on page 3208).

• The proposals for the attribute values in the Content Completion Assistant (on page 3295).

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3219

Resources

For more information about using a DITA subject scheme map, watch our video demonstration:

https://www.youtube.com/embed/RgkVRg6k6zo

Related Information:

Filtering Profiling Values with a DITAVAL File (on page 3219)

DITA 1.3 Specifications: Subject Scheme Maps

Filtering Profiling Values with a DITAVAL File

You can use a DITAVAL filter file to control the filtering or flagging of profiled content or to identify which

values are to be used for conditional processing during a particular output.

DITAVAL Filtering Use-Case

Suppose that a medical publication uses the audience profiling attribute to profile the content for the following

types of users: therapist, physician, and surgeon. Suppose that in the output, you want to exclude any content

that is profiled as surgeon value for the @audience attribute.

You could use a DITAVAL filter file to exclude anything that is profiled as surgeon:

<val>

 <prop action="exclude" att="audience" val="surgeon"/>

</val>

If you then transform the main DITA map (on page 3296) and specify the DITAVAL filter file in the

transformation scenario, the output will exclude anything that is profiled as surgeon).

DITAVAL Filter File Editor in Author Mode

The Author editing mode in Oxygen XML Editor offer a simple and intuitive editor for creating or modifying

DITAVAL files. It provides a series of drop-down menus and text fields that allow you to easily define the filters.

https://www.youtube.com/embed/RgkVRg6k6zo
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/subject-scheme-maps-and-usage.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3220

Figure 809. DITAVAL File Editor in Author Mode

Use the +... button to display a drop-down list that contains elements that you can add at that particular

location in the DITAVAL file. Clicking this button at the top (next to the DITAVAL FILTER File title, allows you to

insert the following elements:

• Style Conflict - Inserts a <style-conflict> element that declares behavior to be used when one or more

flagging methods collide on a single content element. You can use the simple drop-down menus to

select values for the @foreground-conflict-color and @background-conflict-color attributes.

• Filter - Inserts a <prop> element that identifies an attribute to apply a filtering action on. The possible

actions that you can select are include, exclude, passthrough, and flag. If you select the flag action, you

can use the drop-down menus to select values for the @style, @color, and @background attributes.

• Flag - Inserts a <revprop> element that Identifies a value in the @rev attribute that should be flagged in

some manner. The allowed actions are include, passthrough, and flag. If you select the flag action,

you can use the drop-down menus to select values for the @style, @color, @background, and @changebar

attributes.

See the DITAVAL Element Specifications for more details about the allowed filters and flags.

How to Create a DITAVAL Filter File

To create a DITAVAL filter file, follow these steps:

1. Go to File > New.

2. Scroll to the Framework templates > DITA folder.

3. Select the Filter template file and click Create.

4. Define your filters in the DITAVAL file (in Text or Author mode).

5. Save the DITAVAL file.

Result: The DITAVAL filter file can now be used for all of the following:

https://www.oxygenxml.com/dita/1.3/specs/langRef/ditaval/ditaval-style-conflict.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/ditaval/ditaval-style-conflict.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/ditaval/ditaval-prop.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/ditaval/ditaval-prop.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/ditaval/ditaval-revprop.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/ditaval/ditaval-revprop.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/ditaval-elements.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3221

• To apply a reference to the DITAVAL file in a Profiling Condition Set using the Use DITAVAL File option

in the Condition Set configuration dialog box (on page 3203).

• You can use the Import from DITAVAL option in the Attributes and Condition Sets preferences page

(on page 196) to use the DITAVAL file to define profiling attributes.

• You can use the DITAVAL file to apply the filters to the output by specifying the DITAVAL file in the

transformation scenario (on page 3176).

• You can use the filter file in the DITA Map Completeness Check dialog box (on page 2996) when

validating your DITA map (on page 3296).

• DITAVAL files are also used when working with the DITA 1.3 Branch Filtering mechanism. For more

details, see: Working with DITA 1.3 Branch Filtering (on page 3118).

• You can define the colors and styles to be used for rendering profiled condition sets (on page 3221) in

Author mode and the DITA Maps Manager (on page 2950) view by using a Flag filter in the DITAVAL

file.

Related information

DITAVAL Element Specifications

Working with DITA 1.3 Branch Filtering (on page 3118)

Customizing Profiling Values with a Subject Scheme Map (on page 3214)

Styling the Rendering of Profiled Content Using a DITAVAL File (on page 3221)

Conditional Profiling Attribute Groups (on page 3212)

Styling the Rendering of Profiled Content Using a DITAVAL File

If you are using a DITAVAL filter file to control the filtering of profiled content, you can define the colors and

styles to be used for rendering profiled condition sets in Author mode and the DITA Maps Manager (on page

2950) by defining the styles in a flag filter that is set in a DITAVAL filter file.

How to Define a Flag for a Condition Set in a DITAVAL Filter File

To define the colors and styles to be used for rendering profiled condition sets by using a flag filter in a

DITAVAL filter file, follow these steps:

1. Create or edit your DITAVAL file (on page 3220) to define your profiling condition set (on page 3203).

2. In Author mode, define the filters for your condition set (on page 3219).

3. Select Flag from the drop-down menu on in a particular Filter or Flag Revision to present additional

drop-down menus that allow you to configure the colors and styles for the particular condition set.

4. Save the DITAVAL file.

Result: Test your changes by opening profiled content in Author mode or the DITA Maps Manager (on page

2950) and use the options in the Profiling / Conditional Text drop-down menu to see how the changes

in your DITAVAL flag are rendered.

EXAMPLE:

Using a Flag on a Filter to define the styling for a condition set like this:

https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/ditaval-elements.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3222

will render the styling of the profiled content in Author mode to look like this:

and will render the styling in the DITA Maps Manager view (on page 2950) to look like this:

Related Information:

Filtering Profiling Values with a DITAVAL File (on page 3219)

Publishing Profiled DITA Content

You can create a variety of publications or versions of your documentation from a single map by applying

profiling conditions to the build.

Oxygen XML Editor includes preconfigured transformation scenarios for DITA. By default, these scenarios

take the current profiling condition set (on page 3205) into account during the transformation, as defined in

the Filters tab (on page 3176) when creating a DITA transformation (on page 1530). You can also specify a

DITAVAL file (on page 3219) that defines filters for your profiled content.

Figure 810. Profiling Option in the Filters Tab (DITA-OT Transformations)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3223

Conditional Processing to Generate Multiple Deliverables

By default, the content of most elements is included in all output media. Within maps and topics, elements

can specify the delivery targets to which they apply.

Within maps, topic references can use the @deliveryTarget attribute to indicate the delivery targets to which

they apply. Within topics, most elements can use the @deliveryTarget attribute to indicate the delivery targets.

If a referenced topic should be excluded from all output formats, set the @processing-role attribute to

resource-only instead of using the @deliveryTarget attribute. Content within that topic can still be referenced

for display in other locations.

@deliveryTarget

The intended delivery target of the content, for example html, pdf, or epub. This attribute is a

replacement for the now deprecated @print attribute.

The @deliveryTarget attribute is specialized from the @props attribute. It is defined in the

deliveryTargetAttDomain, which is integrated into all OASIS-provided document-type shells. If

this domain is not integrated into a given document-type shell, the @deliveryTarget attribute will

not be available.

The @deliveryTarget attribute is processed the same way as any other conditional processing attribute.

For example, <topicref deliveryTarget="html5 epub" href="example.dita"/> uses two values for

@deliveryTarget. A conditional processing profile can then set rules for @deliveryTarget that determine

whether the topic is included or excluded when the map is rendered as HTML5 or EPUB.

DITA Open Toolkit Support
The DITA Open Toolkit is an open-source publishing engine that can generate various output formats (for

example, HTML, PDF, CHM) from DITA content. Oxygen XML Editor includes support for the DITA Open Toolkit.

This section includes information about how to install and create a DITA-OT plugin (on page 3299), and how

to use an external instance of the DITA Open Toolkit.

Related Information:

DITA Open Toolkit Documentation

DITA-OT Plugins

The architecture of the DITA Open Toolkit publishing engine is plugin-based. A plugin can add support for

publishing DITA content as a new format or for customizing an existing output format. The DITA Open Toolkit

bundled with Oxygen XML Editor already has lots of plugins pre-installed but you can also install additional

plugins (on page 3299) or create your own.

http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3224

Creating a DITA-OT Plugin

Oxygen XML Editor provides the ability to install additional DITA Open Toolkit plugins (on page 3228) that

can be found from various sources (for example, Oxygen's public GitHub repository includes some DITA-OT

plugins). It is also possible to create your own plugin.

CAUTION:

Oxygen XML Editor support engineers do not officially offer support and troubleshooting assistance

for custom DITA-OT distributions or custom installed DITA-OT plugins. If you discover any issues

or inconsistent behavior while using a custom DITA-OT or a DITA-OT that contains custom DITA-OT

plugins, you should revert to the default built-in DITA-OT.

To create a DITA-OT plugin, follow these steps:

1. Create a new folder in the plugins folder located in your DITA-OT directory (for example, if you are using

DITA 4.2.3, the path would look like this: [OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-

OT/plugins/MyNewPlugin).

2. Create a plugin.xml file in that same folder. This file will contain the extension points for the plugin. For

example, references to the XSLT stylesheets that will be used to style the output.

Note:

You can easily create this file by using the DITA-OT Plugin new document template that is

included in Oxygen XML Editor (from the New document wizard (on page 378) you can find this

template in Framework templates > DITA > plugin.

Example:

<plugin id="org.metadita.specialization.music">

 <feature extension="dita.specialization.catalog.relative"

 file="catalog-dita.xml"/>

 <feature extension="dita.xsl.xhtml" file="xsl/music2xhtml.xsl"/>

 <feature extension="dita.xsl.html5" file="xsl/music2xhtml.xsl"/>

</plugin>

Tip:

Oxygen XML Editor includes special editing support when adding extension points in the

plugin.xml file. If you place the cursor in the value of the @extension attribute and press

Ctrl+Space, a list of possible extension points is presented with links to the DITA-OT

documentation. For more information about extension points that are available to use in

the plugin.xml file, see: http://www.dita-ot.org/dev/extension-points/extension-points-by-

plugin.html.

https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
http://www.dita-ot.org/dev/extension-points/extension-points-by-plugin.html
http://www.dita-ot.org/dev/extension-points/extension-points-by-plugin.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3225

3. Install the newly created DITA-OT plugin (on page 3228) by running the built-in transformation

scenario called Integrate/Install DITA-OT Plugins (on page 3164) from the Apply Transformation

Scenario(s) (on page 1473) or Configure Transformation Scenario(s) dialog box (on page 1616).

Note:

If the integrator is not visible, select the Show all scenarios option in the Settings drop-

down menu.

You can share your new plugin with other users who have the same DITA-OT distribution by sending them your

newly created folder along with the installation instructions (on page 3228).

Related Information:

DITA Open Toolkit Documentation

Defining the Transformation Type and Allowed Parameters in a DITA-OT Plugin (on page 3229)

Example: Creating a DITA-OT Plugin for Embedding Video Resources

To offer a detailed example of the steps required to create a new DITA Open Toolkit plugin (on page 3299),

this topic uses an example of creating an XSLT customization plugin that provides support for referencing

video and audio content using the DITA <object> element and then publishing to HTML and PDF output

formats. This plugin (com.oxygenxml.media) is available in the DITA Open Toolkit distribution that comes

bundled with the latest version of Oxygen XML Editor, but these instructions show you how you could create it

if it were not included.

The following procedure is meant to help you with creating the plugin:

1. Create a folder for your plugin in the DITA-OT plugins folder (DITA-OT-DIR/plugins/).

2. Create a plugin.xml file (in the same plugin folder) that contains the extension points of the plugin.

Note:

You can easily create this file by using the DITA-OT Plugin template that is included in Oxygen

XML Editor (from the New document wizard (on page 378) you can find this template in

Framework templates > DITA > plugin).

Example: Media Plugin File

<plugin id="com.oxygenxml.media">

 <feature extension="package.support.name" value="Oxygen XML Editor Support"/>

 <feature extension="package.support.email" value="support@oxygenxml.com"/>

 <feature extension="package.version" value="21.0"/>

 <feature extension="dita.xsl.xhtml" value="xhtmlMedia.xsl" type="file"/>

 <feature extension="dita.xsl.xslfo" value="pdfMedia.xsl" type="file"/>

</plugin>

http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3226

The most important extensions in it are the references to the XSLT stylesheets that will be used to style

the HTML and PDF outputs.

You can find other DITA-OT plugin extension points here: http://www.dita-ot.org/dev/extension-points/

extension-points-by-plugin.html.

3. Create an XSLT stylesheet to customize the output types. In this example, to customize the HTML

output, it is necessary to create an XSLT stylesheet called xhtmlMedia.xsl (in the same plugin folder).

Tip:

You can use the Find/Replace in Files action (on page 448) to find an XSLT stylesheet with

content that is similar to the desired output and use it as a template to overwrite parts of your

stylesheet. For example, suppose you want to overwrite HTML content produced from a DITA

codeblock element. Since a DITA <object> element has the @class attribute value - topic/

object , you can take part of the class attribute value (topic/object) and search the DITA-

OT resources for a similar stylesheet. The search might find the XSLT stylesheet DITA-OT-

DIR/plugins/org.dita.xhtml/xsl/xslhtml/xsl/xslhtml/dita2htmlImpl.xsl.

You can use it as a starting point to overwrite the xhtmlMedia.xsl stylesheet. For example, the results

might be:

<xsl:template

 match="*[contains(@class, ' topic/object ')][contains(@outputclass, 'video')]">

 <video class="embed-responsive-item">

 <xsl:call-template name="commonattributes"/>

 <xsl:call-template name="setidaname"/>

 <xsl:call-template name="copySource"/>

 </video>

</xsl:template>

4. Create additional XSLT stylesheets to customize all other desired output types. In this example, to

customize the PDF output it is necessary to create an XSLT stylesheet called pdfMedia.xsl (in the same

plugin folder).

In this case, you might find an appropriate XSLT stylesheet called DITA-OT-DIR/plugins/

org.dita.pdf2/xsl/fo/topic.xsl to use as a starting point to overwrite the pdfMedia.xsl

stylesheet, with results looking something like this:

<!--Treat video, audio or iframe objects as links-->

<xsl:template

 match="*[contains(@class,' topic/object ')][@outputclass = 'video']">

 <xsl:variable name="target" select="@data"/>

 <xsl:variable name="baseDir">

 <xsl:call-template name="substring-before-last">

 <xsl:with-param name="text" select="@xtrf"/>

http://www.dita-ot.org/dev/extension-points/extension-points-by-plugin.html
http://www.dita-ot.org/dev/extension-points/extension-points-by-plugin.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3227

 <xsl:with-param name="delim" select="'/'"/>

 </xsl:call-template>

 </xsl:variable>

 <fo:inline xsl:use-attribute-sets="object">

 <xsl:call-template name="commonattributes"/>

 <xsl:if test="exists($target)">

 <fo:basic-link external-destination="url({$target})"

 xsl:use-attribute-sets="xref">

 <xsl:value-of select="$target"/>

 </fo:basic-link>

 </xsl:if>

 </fo:inline>

</xsl:template>

5. To install the created plugin in the DITA-OT, run the built-in transformation scenario called Integrate/

Install DITA-OT Plugins (on page 3164) by executing it from the Apply Transformation Scenario(s)

dialog box (on page 1473). If the integrator is not visible, select the Show all scenarios option that is

available in the Settings drop-down menu. For more information, see Installing a DITA-OT Plugin (on

page 3228).

Results of running the integrator using the media plugin example:

XSLT content is applied with priority when publishing to both HTML and PDF outputs.

a. For the HTML output, in the XSLT stylesheet DITA-OT-DIR/plugins/org.dita.xhtml/

xsl/dita2html-base.xsl, a new import automatically appeared:

<xsl:import href="../plugins/com.oxygenxml.media/xhtmlMedia.xsl"/>

This import is placed after all base imports and thus has a higher priority. For more information

about imported template precedence, see: http://www.w3.org/TR/xslt#import.

b. Likewise, for the PDF output, in the top-level stylesheet DITA-OT-DIR/plugins/

org.dita.pdf2/xsl/fo/topic2fo_shell_fop.xsl, a new import statement appeared:

<xsl:import href="../../../com.oxygenxml.media/pdfMedia.xsl"/>

Now, you can distribute your plugin folder to anyone that has a DITA-OT installation along with some simple

installation notes. Your customization will work provided the templates you are overwriting have not changed

from one DITA-OT distribution to the other.

Related Information:

DITA Open Toolkit Documentation

http://www.w3.org/TR/xslt#import
http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3228

Installing a DITA-OT Plugin

Oxygen XML Editor comes bundled with various DITA-OT plugins (on page 3299), but the architecture of the

DITA Open Toolkit also allows you to install additional plugins that can be found from various sources (for

example, Oxygen's public GitHub repository includes some DITA-OT plugins).

CAUTION:

Oxygen XML Editor support engineers do not officially offer support and troubleshooting assistance

for custom DITA-OT distributions or custom installed DITA-OT plugins. If you discover any issues

or inconsistent behavior while using a custom DITA-OT or a DITA-OT that contains custom DITA-OT

plugins, you should revert to the default built-in DITA-OT.

Installing a DITA-OT Plugin

To install a DITA-OT plugin, following this procedure:

1. Locate the DITA Open Toolkit plugins directory where the plugin will be installed.

To avoid making changes inside the Oxygen XML Editor installation folder, it is strongly recommended

to download the Oxygen Publishing Engine that corresponds to your version of Oxygen XML Editor,

copy it somewhere on your disk where you have full write access, and reference it in the Preferences >

DITA page (on page 278).

The default DITA-OT-DIR is bundled inside the Oxygen XML Editor installation folder. If you want

to install it directly there, the folder where the DITA-OT is located needs to have full write access

permissions set to it. For example, in Windows, if you are integrating plugins in the DITA-OT folder

bundled with Oxygen XML Editor and your application is installed in the Program Files folder, you can

start the Oxygen XML Editor main executable with administrative rights for the integrator process to be

able to modify resources in the DITA-OT folder.

2. Copy the additional plugin to the location of the DITA-OT version you are using (by default, DITA-OT-

DIR\plugins directory).

3. Select the Configure Transformation Scenario(s) (on page 1616) action from the DITA Maps

Manager toolbar (you could also use the same action on the main toolbar or open the Transformation

Scenarios view (on page 1622)).

4. Select the Integrate/Install DITA-OT Plugins transformation scenario (on page 3164). If the integrator

is not visible, select the Show all scenarios option that is available in the Settings drop-down menu.

5. Apply the scenario (on page 1615).

6. Check the Results panel at the bottom of the application to make sure the build was successful.

After the installation, you can open a DITA map and use the Configure Transformation Scenarios dialog

box to create a new DITA-OT transformation scenario. Oxygen XML Editor detects that transformation type

declaration from the DITA-OT plugin and presents descriptions in the DITA Transformation Type dialog

box (on page 1530). Oxygen XML Editor also shows the contributed parameters from the plugin in the

transformation scenario's Parameters tab (on page 3174).

https://github.com/oxygenxml/
https://github.com/oxygenxml/
https://www.oxygenxml.com/publishing_engine.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3229

Tip:

You can declare the transformation type and allowed parameters by following the procedure found in:

Defining the Transformation Type and Allowed Parameters in a DITA-OT Plugin (on page 3229).

Related Information:

Creating a DITA-OT Plugin (on page 3224)

DITA Open Toolkit Documentation

Defining the Transformation Type and Allowed Parameters in a DITA-OT Plugin (on page 3229)

Defining the Transformation Type and Allowed Parameters in a DITA-OT
Plugin

Custom DITA-OT plugins may contribute new transformation types (transtypes) and each transtype may

have a set of allowed configuration parameters. If a DITA-OT plugin declares a transtype, Oxygen XML Editor

detects that transformation type declaration and presents descriptions in the DITA Transformation Type

dialog box (on page 1530) and the contributed parameters in the transformation scenario's Parameters tab

(on page 3174).

To define a transformation type and its contributed parameters in a DITA-OT plugin, follow this procedure:

1. If you have not already done so, create a DITA-OT plugin.xml file (on page 3224) (you can easily create

this file by using the DITA-OT Plugin new document template in the New document wizard (on page

378)).

2. In the plugin.xml file, define the transformation type details by using the <transtype> element to specify

a name, description, and the transtype it extends.

<transtype name="xhtml" extends="base-html" desc="HTML">

3. Define allowed parameters by using the <param> element to specify the name, description, and

information about the default and allowed set of values. For more information, see: https://www.dita-

ot.org/3.1/topics/plugin-configfile.html.

<param name="args.indexshow" desc="Specifies whether to show the index" type="enum">

 <val>yes</val>

 <val default="true">no</val>

</param>

Depending on the type declared for a parameter, Oxygen XML Editor will help you pick values for each

parameter edited in the Parameters tab of the transformation scenario configuration dialog box. For

example, for parameters of type "enum", Oxygen XML Editor will present a combo box for choosing the

proper value for the parameter.

4. You can also extend various extension points in your plugin.xml. For more information, see: https://

www.dita-ot.org/3.1/extension-points/plugin-extension-points.html.

http://www.dita-ot.org/
https://www.dita-ot.org/3.1/topics/plugin-configfile.html
https://www.dita-ot.org/3.1/topics/plugin-configfile.html
https://www.dita-ot.org/3.1/extension-points/plugin-extension-points.html
https://www.dita-ot.org/3.1/extension-points/plugin-extension-points.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3230

Plugin Extension Example - Promote Parameters:

It is possible to promote certain transformation parameters so that they appear above the

table of allowed parameters and values in the Parameters tab of the transformation scenario

configuration dialog box. To do this, you could create a pluginExtension.xml file in the

root folder of the DITA-OT plugin and use the <promotedParams> element to define the promoted

parameters. Here is an example:

<extensionPlugin>

 <transtype name="pdf-css-html5">

 <promotedParams>

 <param name="args.css" promotedName="CSS"/>

 <param name="args.css.param.numbering" promotedName="Numbering"/>

 <param name="args.chapter.layout" promotedName="Chapter layout"/>

 </promotedParams>

 </transtype>

</extensionPlugin>

The example above results in the Parameters tab looking like this:

Figure 811. Promoted Parameters

5. Install the plugin (on page 3228).

Note:

If the plugin is installed using an external command line, you may need to restart Oxygen XML

Editor to properly re-detect the newly contributed transtypes and parameters.

Example of a plugin.xml File:

<plugin id="com.oxygenxml.pdf.prince">

 <!-- extensions -->

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3231

 <feature extension="dita.conductor.transtype.check" value="pdf-prince" type="txt"/>

 <feature extension="dita.conductor.target.relative" value="integrator.xml"

 type="file"/>

 <feature extension="dita.transtype.print" value="pdf-prince"/>

 <transtype name="pdf-prince" extends="commons" desc="PDF (Prince XML)">

 <param name="princeExecPath" type="file" desc="Path to the Prince executable"/>

 </transtype>

</plugin>

Resources

For more information, watch this DITA-OT Day 2015 presentation:

https://www.youtube.com/embed/LcrR0YUFlQ4

Built-in Third-Party DITA Open Toolkit Plugins

The DITA Open Toolkit 4.2.3 distribution that is bundled with Oxygen XML Editor includes some pre-installed

third-party open-source plugins (on page 3299) that add extra publishing formats and functionality.

The plugins that come bundled with Oxygen XML Editor include:

• DITA For Publishers - These plugins allow DITA content to be published to additional formats, such as

EPUB 2.0 and Kindle.

• DITA to Word - This plugin allows users to publish DITA content to MS Word.

• DITA Community - These plugins allow support for DITA 1.3 with embedded or referenced MathML and

SVG images.

Extra Free Publishing Plugins

The DITA Open Toolkit publishing engine comes with support for predefined output formats such as HTM5,

PDF, and Eclipse Help. Since the architecture of the publishing engine is plugin-based, over time, lots of useful

plugins were developed in the Oxygen XML GitHub account that enhance the publishing and some of them are

listed below. The plugins that are already installed within the DITA-OT engine that comes bundled with Oxygen

XML Editor are listed with a [Bundled] marker.

Plugin that Converts DITA Maps to PDF Using CSS 3 [Bundled]

You can use this very popular plugin to publish DITA to PDF output using CSS. As the publishing engine, it

can use the Oxygen XML Chemistry processor (freely bundled with Oxygen XML Editor), the Antenna House

engine, or the Prince XML engine.

DITA Metrics Report [Bundled]

This is a very useful open-source plugin can be used to generate an HTML report from an existing DITA project

and contains a lot of useful information, including:

https://www.youtube.com/embed/LcrR0YUFlQ4
https://github.com/dita4publishers
https://github.com/jelovirt/com.elovirta.ooxml
https://github.com/dita-community/dita13-dita-ot-1.x-support
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/oxygenxml/dita-ot-css-pdf
https://github.com/oxygenxml/dita-ot-metrics

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3232

• Total number of maps and topics that are part of the project.

• Total number of elements used in topics and maps along with a table presenting all element names and

their usage counter.

• The used elements for each DITA domain.

• Total number of attributes used in topics and maps along with a table presenting all attribute names

and their usage counter.

• Statistics about the conditional attributes used in the project.

• Information about content reuse.

• Text and content statistics, including both total words (word count) and unique words (vocabulary).

• List of largest and smallest topics and the number of words each one uses.

• Listing of all links to resources outside of the project.

• A metrics evolution report between different versions of your documentation.

Export DITA Map Plugin [Bundled]

You can use this free plugin to create a ZIP file from your entire DITA project. The plugin also takes filters/

profiling into account when including topics.

Publish DITA Content with References to Video and Audio Resources. [Bundled]

A DITA Open Toolkit plugin can be used to convert the DITA <object> element to various HTML 5 structures

(such as <<video>, <audio>, or <iframe>).

Show Consecutive Codeblocks in Multiple Tabs for WebHelp Output

This open-source plugin can be used to display consecutive DITA <codeblock> elements in separate tabs.

Add Edit Links in HTML or PDF-based Output [Bundled]

This plugin can be used to add edit links in HTML or PDF-based output that allows subject matter experts to

offer feedback for the published content directly in the source using a DITA web editing tool (such as Oxygen

XML Web Author).

Create a Single Merged XML Document From an Entire DITA Project [Bundled]

This plugin can be used to produce a merged output from the entire DITA map structure without further

processing. It is useful if you want to further process the merged XML document for producing various

reports.

Dynamically Publish Excel Content as DITA

A DITA Open Toolkit plugin that can be used to dynamically convert Excel files to DITA (Excel files referenced

with format="excel" in DITA maps).

https://github.com/oxygenxml/dita-ot-metrics/blob/master/README.md#visualizing-the-evolution-of-metrics-between-different-versions-of-the-documentation
https://github.com/oxygenxml/dita-export-map#export-dita-map-plugin
https://github.com/oxygenxml/dita-media-support
https://github.com/oxygenxml/dita-wh-codeblock-tabs
https://github.com/oxygenxml/dita-reviewer-links
https://github.com/oxygenxml/dita-merged
https://github.com/oxygenxml/dita-excel

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3233

Dynamically Use JSON Content in DITA Topics

A DITA Open Toolkit plugin that can be used to dynamically convert JSON content to DITA (JSON files

referenced with format="json" in DITA maps).

Dynamically Publish ASCIIDoc Content as DITA

A DITA Open Toolkit plugin that can be used to dynamically convert ASCIIDoc content to DITA (ASCIIDoc files

referenced with format="ant-parser" in DITA maps).

Embed HTML Content in DITA Topics [Bundled]

A plugin that can be used to embed well-formed HTML content in a DITA topic inside a special element.

Embed LateX Equations in DITA Content

A DITA Open Toolkit plugin that can be used to publish embedded LateX mathematical equations to HTML

and PDF.

Embed UML Diagrams in DITA Content

A DITA Open Toolkit plugin that can be used to publish embedded UML diagrams equations to HTML and PDF.

Float Images in HTML and PDF Outputs

A plugin that can be used to float an image referenced in a DITA topic left or right depending on the specified

@outputclass attribute value.

Embed Referenced MathML and SVGZ Images in HTML Output

A DITA Open Toolkit plugin that can be used to embed referenced MathML and SVG images in the HTML5 and

XHTML output.

Dynamically Convert DITA Tables to Graphs

A DITA Open Toolkit plugin that converts DITA tables having a certain structure to SVG graphs.

Show Oxygen Change Tracking Information in the PDF Output [Bundled]

This plugin can be used to display Oxygen XML Editor tracked changes (insertions, deletions, or comments) in

the PDF output.

Sample Customization Plugin for Classic PDF (XSL-FO) Output

This sample DITA Open Toolkit PDF customization plugin is a good starting point if you want to:

https://github.com/oxygenxml/dita-json
https://github.com/oxygenxml/dita-asciidoc
https://github.com/oxygenxml/dita-embed-html
https://github.com/oxygenxml/dita-latex
https://github.com/oxygenxml/dita-plant-uml
https://github.com/oxygenxml/dita-image-float
https://github.com/oxygenxml/dita-embed-html-mathml-svg
https://github.com/oxygenxml/dita-table-svg
https://github.com/oxygenxml/dita-classic-pdf-review
https://github.com/oxygenxml/com.oxygenxml.pdf2.ug

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3234

• Customize fonts.

• Customize a cover page to provide custom logos and coloring.

• Customize page headers and footers.

PDF (XSL-FO) - Generate Numbers Before a Topic's Title

A DITA-OT PDF2 customization plugin that can be installed to generate numbers before each topic's title.

Presents Chapters With Landscape Orientation in PDF (XSL-FO) output

A PDF customization folder that can be used to define landscape orientation for a certain chapter.

Using an External DITA Open Toolkit in Oxygen XML Editor

Oxygen XML Editor comes bundled with a DITA Open Toolkit, located in the DITA-OT-DIR directory. If you

want to use an external DITA-OT for all transformations and validations, you can open the Preferences dialog

box (Options > Preferences) (on page 132) and go to the DITA page (on page 278), where you can specify the

DITA-OT to be used.

Related Information:

Editing a Transformation Scenario (on page 1613)

Creating New Transformation Scenarios (on page 1504)

DITA Open Toolkit Documentation

DITA Open Toolkit Project

The DITA Open Toolkit project file allows you to define all your DITA map input and filter pairs and to produce

the desired output formats by applying the publishing engine over this single project file: https://www.dita-

ot.org/dev/topics/using-project-files.html.

Oxygen XML Editor has special support for creating, editing, validating, and publishing DITA Open Toolkit

project files represented in XML format. It can also use such files to detect connections between DITA

resources in the entire project and to apply root map and filter pairs when editing.

Editing DITA Open Toolkit Project Files

The New Document wizard (on page 378) includes a template to help you create DITA Open Toolkit

project files (with an .xml file extension). The template is located in the Framework templates >

DITA-OT folder. There is also a sample project file that can be found in the application samples folder:

OXYGEN_INSTALL_DIR/samples/dita/mobile-phone/mobilePhoneProjectFile.xml.

When working with a DITA-OT project file in the Author visual editing mode, you can see a compact

representation of the file by default. You can switch to the Edit style in the Styles toolbar drop-down menu

to edit the file using form controls and inline buttons. The additional View as YAML style can be selected to

see a visual representation of the same document in YAML. Content for all additional project files included in

https://github.com/oxygenxml/dita-ot-numbering
https://github.com/oxygenxml/dita-classic-pdf-landscape-sample
http://www.dita-ot.org/
https://www.dita-ot.org/dev/topics/using-project-files.html
https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3235

the current edited file will appear expanded in place. The included content is read-only by default but can be

directly edited if the Allow referenced content to be edited checkbox is selected in the Options > Preferences

> Editor > Edit Modes > Authorpreferences page.

DITA-OT Project File Content Completion

Content completion is available according to the associated schema and it is enhanced with proposals for ID

references, available transformation types, parameter names, and values.

DITA-OT Project File Validation

The default automatic validation support for DITA-OT project files has enhanced Schematron rules that report

invalid references to non-existing contexts. The default validation is based on a validation scenario named

DITA-OT Project that in included in the DITA-OT project framework.

The DITA-OT Project framework also includes a validation scenario named DITA-OT Project Validation and

Completeness Check. It contains validation units that automatically validate the project file based on the

DITA-OT Project scenario and also a manual validation unit based on the DITA-OT Project Validation and

Completeness Check validation engine that validates all contexts recursively.

When creating a validation scenario (on page 803), or editing an existing scenario (on page 813) for a DITA-

OT project file, you can select DITA-OT Project Validation and Completeness Check engine in the Validation

engine column and clicking the Settings button for that engine opens the Configure validation engine

dialog box where you can configure options for validating the DITA-OT project.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3236

Figure 812. Configure Validation Engine Dialog Box for DITA-OT Project Validation

The options available in this dialog box include:

Batch validate referenced DITA resources

This option specifies the level of validation that applies to referenced DITA files:

• If the checkbox is left unchecked (default setting), the DITA files will be validated using

the rules defined in the DTD or XML Schema declared in the document.

• If the checkbox is selected, the DITA files will be validated using rules defined in their

associated validation scenario (on page 802).

Check the existence of non-DITA references resources

Extends the validation of referenced resources to non-DITA files.

Include remote resources

Select this option if you want to check that remote referenced binary resources

(such as images, movie clips, ZIP archives) exist at the specified location.

Report references to resources outside of the DITA map folder

If selected, it will report any references to DITA resources that are located outside the main DITA

map (on page 3301) folder.

Report links to topics not referenced in DITA maps

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3237

Checks that all the topics referenced by other topics are also linked in the DITA map. Also

reports related links defined in relationship tables whose target topics are not referenced in the

DITA Map.

Report multiple references to the same topic

If selected, it will report warnings when a topic is referenced multiple times in the DITA map,

unless a unique @copy-to attribute is used on the <topicref> element for any topic that is

referenced multiple times.

For example, it will not report a warning if there is a topic referenced twice, but the second

<topicref> has a @copy-to attribute set:

<topicref href="topic.dita"/>

.....

 <topicref href="topic.dita" copy-to="topic2.dita"/>

On the other hand, it will report a warning if there is a topic referenced twice and none of the

reference-type elements has a @copy-to attribute set or both of them have the @copy-to attribute

set to the same value:

<topicref href="topic.dita" copy-to="topic2.dita"/>

......

 <topicref href="topic.dita" copy-to="topic2.dita"/>

Check for duplicate topic IDs within the DITA map context

Checks for multiple topics with the same ID in the context of the entire map.

Report duplicate key definitions

Checks the DITA map for multiple key references with the same key defined for them. This is

helpful because if you have two different resources with the same value for the @keys attribute, all

references will point to the first one encountered and the other will be ignored.

Note:

This option takes key scopes (on page 3116) into account. For example, if you have

something like this:

<topicref href="t2.dita" keys="k2"/>

 <topicgroup keyscope="ks">

 <topicref href="t2.dita" keys="k2"/>

 </topicgroup>

it will not report the "k2" key as a duplicate because it is defined in a key scope (on page

3116) on the second occurrence.

Report unreferenced key definitions

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3238

Checks the entire DITA map and reports any key definitions that are not referenced anywhere.

Note that if the Use DITAVAL filters option is selected, this check will search for unreferenced

key definitions based upon your selected filter.

Report unreferenced reusable elements

Checks the entire DITA map and reports any detected reusable elements that are not referenced

anywhere. It looks for elements that have an ID specified in the following types of topic

references:

• Any <topicref> that contains a @processing-role attribute set to resource-only.

• Any other referenced topic that contains elements that are reused elsewhere through a

@conref or @conkeyref.

Report table layout problems

Looks for table layout problems. The types of errors that may be reported include:

• If a row has fewer cells than the number of columns detected.

• For a CALS table, if a cell has a vertical span greater than the available rows count.

• For a CALS table, if the number of <colspecs> is different than the number of columns

detected from the table @cols attribute.

• For a CALS table, if the number of columns detected from the table @cols attribute is

different than the number of columns detected in the table structure.

• For a CALS table, if the value of the @cols, @rowsep, or @colsep attributes are not numeric.

• For a CALS table, if the @namest, @nameend, or @colname attributes point to an incorrect

column name.

Identify possible conflicts in profile attribute values

When the profiling attributes of a topic contain values that are not found in parent topic profiling

attributes, the content of the topic is overshadowed when generating profiled output. This option

reports these possible conflicts.

Report attributes and values that conflict with profiling preferences

Looks for profiling attributes and values that are not defined in the Profiling / Conditional Text

preferences page (on page 196) (you can click the Profiling Preferences button to open this

preferences page). It also checks if profiling attributes defined as single-value have multiple

values set in the searched topics.

Additional Schematron checks

Allows you to select a Schematron file that Oxygen XML Editor will use for the validation of DITA

resources. You can specify the path by using the text field, its history drop-down, the Insert

Editor Variables (on page 333) button, or the browsing actions in the Browse drop-down

list.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3239

Advanced Tip:

Some APIs are available that retrieve information about DITA keys that are referenced

within a topic. The APIs can be called from XSLT Stylesheets (including XML

Refactoring operations) or Schematron schemas. For details, see API Documentation:

DITAXSLTExtensionFunctionUtil.

Publishing DITA Open Toolkit Project Files

Once a DITA-OT project file is opened in the application, two predefined publishing scenarios become available

in the Configure Transformation Scenario(s) dialog box (on page 1616):

• Publish DITA-OT Project (all deliverables) - Runs the publishing engine and produces output for all

deliverables defined in the project file.

• Publish DITA-OT Project (select deliverable) - Runs the publishing engine and produces output for only

one deliverable specified by the end-user.

Some of the allowed transformation parameters that are relevant to the DITA-OT project file include:

• project.file - Specifies the path to the project file.

• dita-ot.dir - Specifies the directory where DITA-OT, used in transformation is installed.

• additional.args - Specifies the additional arguments used in transformation.

• deliverable.id - Specifies the id of the deliverable. This parameter is only available in the Publish DITA-

OT Project (select deliverable) transformation.

• jvm.args - Specifies the JVM arguments used by the transformation for each deliverable. This can be

used to increase the memory allocation used by the transformation.

Example: To set the JVM memory allocation to 5 GB for publishing deliverables, append the following

value to the existing ones:

-Xmx5G

If the "pdf-css-html5" (based on Chemistry PDF CSS processor) deliverable publication fails with an Out

Of Memory Error, try appending the baseJVMArgLine parameter to the "jvm.args" parameter value. For

example:

-DbaseJVMArgLine=-Xmx5G

When editing DITA OT project files in the Author visual editing mode, each presented deliverable has an inline

button that can be used to individually publish it.

Main Files Support for DITA Open Toolkit Project Files

If you enable main files support at project level (on page 3245), you can choose to detect all top-level DITA

Open Toolkit project files and to add them to the Main Files folder. You could also manually add the top-level

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3240

files for your DITA-OT project in the Main Files folder. The benefit of this is that whenever you rename or move

files in the Project view, the references to those resources will automatically be updated.

Tip:

The Referenced/Dependent Resources view (on page 3247) also works for DITA-OT project files.

Editing Contexts Detected from DITA Open Toolkit Project Files

Once a DITA-OT project file is added to the Main Files folder, the Context drop-down menu on the DITA Maps

Manager toolbar will contain context DITA maps defined in the project file and the Profiling/Conditional

Text menu will contain filter pairs gathered from the project file. When you select one of them in the drop-

down menu, the application gathers the keys from the context DITA map and applies the filters specified in

that context.

DITA Specialization Support
DITA is designed to let you design new markup and new document types that allow any general-purpose

DITA processor to process documents that use the new markup. This in turn enables blind interchange of

DITA documents from any source. In particular, in the context of a map, you can combine topics of any type

and get usable results from any general-purpose DITA processor. Specialization is the one truly unique and

distinguishing aspect of DITA. Even if you have no use for any aspect of DITA modularity or reuse, you still

have a use for specialization simply because it enables reliable interchange in a way that no other XML

application does.

For detailed information and step-by-step tutorials about DITA specializations, see DITA 4 Practitioners: DITA

Configuration and Specialization Tutorials.

In addition, the topics in this section contain information about using DITA specializations in Oxygen XML

Editor.

Integrating a DITA Specialization

A DITA specialization can have its document type defined with any of the following::

• DTD - For configuration and specialization tutorials, see http://dita4practitioners.github.io/dita-

specialization-tutorials/. A small sample plugin is also available here: https://github.com/oxygenxml-

incubator/dita-ot-specialization-plugin-sample/.

• XSD - For configuration and specialization tutorials, see http://dita4practitioners.github.io/dita-

specialization-tutorials/.

• Relax NG - For more information, see the following presentation: Creating DITA-OT Constraint/

Specialization Plugins. For Relax NG coding requirements, see https://www.oxygenxml.com/dita/1.3/

specs/archSpec/base/relax-ng-requirements.html.

http://dita4practitioners.github.io/dita-specialization-tutorials/body/part-config-and-extend/specialization-overview.html
http://dita4practitioners.github.io/dita-specialization-tutorials/body/part-config-and-extend/specialization-overview.html
http://dita4practitioners.github.io/dita-specialization-tutorials/
http://dita4practitioners.github.io/dita-specialization-tutorials/
https://github.com/oxygenxml-incubator/dita-ot-specialization-plugin-sample/
https://github.com/oxygenxml-incubator/dita-ot-specialization-plugin-sample/
http://dita4practitioners.github.io/dita-specialization-tutorials/
http://dita4practitioners.github.io/dita-specialization-tutorials/
https://www.oxygenxml.com/events/2015/dita-ot_day.html#Creating_DITA_OT_constraint_specialisation_plugins
https://www.oxygenxml.com/events/2015/dita-ot_day.html#Creating_DITA_OT_constraint_specialisation_plugins
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/relax-ng-requirements.html
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/relax-ng-requirements.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3241

A DITA specialization may optionally include specialized processing, that is new XSLT template rules that

match the extension part of the @class attribute values of the new elements, and thus extend the default

processing available in the DITA Open Toolkit.

To integrate a DITA specialization into Oxygen XML Editor, use one of the following methods:

DITA-OT Plugin Method

CAUTION:

Oxygen XML Editor support engineers do not officially offer support and troubleshooting assistance

for custom DITA-OT distributions or custom installed DITA-OT plugins. If you discover any issues

or inconsistent behavior while using a custom DITA-OT or a DITA-OT that contains custom DITA-OT

plugins, you should revert to the default built-in DITA-OT.

If the DITA specialization is available as a DITA Open Toolkit plugin, follow this procedure:

1. Copy the additional plugin to the location of the DITA-OT version you are using (by default, DITA-OT-

DIR\plugins directory).

Important:

The application needs to have full write access permissions to the DITA-OT directory.

2. If Oxygen XML Editor was installed in the default location, you may need to restart and run it as an

administrator.

3. Select the Configure Transformation Scenario(s) (on page 1616) action from the DITA Maps

Manager toolbar (you could also use the same action on the main toolbar or open the Transformation

Scenarios view (on page 1622)).

4. Select the Integrate/Install DITA-OT Plugins transformation scenario (on page 3164).

Tip:

If you don't see that scenario in the Configure Transformation Scenario(s) (on page 1616)

dialog box or Transformation Scenarios view (on page 1622), click the Settings button

and select the Show all scenarios option, but don't forget to change it back to Show only the

scenarios available for the editor after you are finished with this procedure.

5. Apply the scenario (on page 1615).

6. Check the Results panel at the bottom of the application to make sure the build was successful.

7. Restart Oxygen XML Editor with your normal permissions.

Tip:

Oxygen XML Editor detects new document templates (on page 387) contributed by the DITA-OT

plugin as long as you do the following:

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3242

1. Create a new folder called template_folders inside your DITA OT plugin's folder. For example:

DITA-OT-DIR\plugins\my_custom_plugin\template_folders.

2. Create one or more subfolders inside the template_folders directory that contain the new

document templates. The new document templates found in those subfolders will be available

in the New document wizard.

Alternative Methods

If the DITA specialization is not available as a DITA-OT plugin, you have the following options:

• If the DTDs that define the extension elements are located in a folder outside the DITA Open Toolkit

folder, add new rules to the DITA-OT catalog file. These rules are meant for resolving the DTD

references from the DITA files that use the specialized elements to that folder. This allows for

correct resolution of DTD references to your local DTD files and is needed for both validation and

transformation of the DITA maps or topics. The DITA-OT catalog file is called catalog-dita.xml and

is located in the root folder of the DITA Open Toolkit.

• If there is specialized processing provided by XSLT stylesheets that override the default stylesheets

from DITA-OT, these new stylesheets must be called from the DITA-OT Ant build scripts.

Important:

If you are using DITA specialization elements in your DITA files, it is recommended that you

activate the Enable DTD/XML Schema processing in document type detection option in the

Document Type Association preferences page (on page 146).

• You could create your own document templates (on page 387), store them in a custom directory,

then add that directory to the list of template directories that Oxygen XML Editor uses by adding the

directory to the list in the Document Templates Preferences (on page 175) page.

Related Information:

DITA Configuration and Specialization Tutorials

Editing DITA Map Specializations

In addition to recognizing the default DITA map (on page 3296) formats (<map> and <bookmap>), the DITA Maps

Manager view (on page 2950) can also be used to open and edit specializations of DITA maps.

All advanced editing actions available for the map (such as insertion actions or editing properties) allow you

to specify the element in an editable combo box. The elements that initially appear in the combo box are all

the elements that are allowed to appear at the insert position for the given specialization.

The topic titles rendered in the DITA Maps Manager view (on page 2950) are collected from the target files by

matching the @class attribute and not a specific element name.

http://dita4practitioners.github.io/dita-specialization-tutorials/

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3243

When editing DITA specializations of maps in the main editor, the insertions of topic reference, topic heading,

topic group and conref actions should work without modification. For the table actions, you have to modify

each action manually to insert the correct element name at the cursor position. You can go to the DITA Map

document type from the Document Type Association preferences page (on page 146) and edit the table

actions to insert the element names as specified in your specialization. See Creating a Framework through the

Configuration Dialog (on page 2240) for more details.

Related Information:

DITA Configuration and Specialization Tutorials

Integrating a DITA Specialization (on page 3240)

Editing DITA Topic Specializations

In addition to recognizing the default DITA topic formats, topic specializations can also be edited in Author

mode.

The content completion should work without additional modifications and you can choose the tags that are

allowed at the cursor position.

The CSS styles used for rendering the elements should also work on the specialized topics without additional

modifications.

The toolbar/menu actions should be customized to insert the correct element names. You can go to the

DITA document type from the Document Type Association preferences page (on page 146) and edit the

actions to insert the element names, as specified in your specialization. See Creating a Framework through

the Configuration Dialog (on page 2240) for more details.

Related Information:

DITA Configuration and Specialization Tutorials

Integrating a DITA Specialization (on page 3240)

Translating DITA Projects Overview
This topic contains some general information about translating DITA content and is meant to help those who

do not store their DITA projects through a Content Management System (CMS) or other type of service that

already includes their own translation support.

Choosing a Translation Agency

To minimize translation costs, it is recommended to choose a translation agency that is able to handle DITA

content directly, without requiring you to convert the content to some intermediary format. This means that

you benefit from the DITA reusable content features (on page 3089).

If you plan to translate your DITA project, it is also recommended that you contact a DITA-aware translation

agency as early in your process as possible because translation agencies who translate DITA content directly

usually need to have a preliminary discussion about how your project is structured, which terms need to be

http://dita4practitioners.github.io/dita-specialization-tutorials/standalone-tutorials/config-and-extend-tutorials-standalone.html
http://dita4practitioners.github.io/dita-specialization-tutorials/standalone-tutorials/config-and-extend-tutorials-standalone.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3244

skipped when translating, how various measuring units are translated, how content is reused, your metadata

strategy, and how screenshots are handled. Those discussions may influence the way that you organize and

write your DITA content.

Note:

If your translation agency does not directly handle DITA content, there are commercial tools that

can be used to convert DITA to XLIFF (for example, https://www.maxprograms.com/products/

fluenta.html).

Optimizing Content for Translation

In general, there are three main principles to take into account when writing DITA content that will be

translated:

1. Use a controlled vocabulary (for example, the Simplified Technical English vocabulary).

2. Avoid reusing inline elements other than product names. The following DITA Users List discussion

describes the reasons for this: https://lists.oasis-open.org/archives/dita/201301/msg00029.html.

3. Avoid profiling/filtering content at inline level, for similar reasons.

General DITA Project Structure

It is usually considered best practice to organize your DITA maps/topics in a separate folder for each

language. One folder that contains the English version of all of your DITA resources and a separate folder

for each of the other languages you will translate with equivalent DITA resources translated in that specific

language.

General Translation Workflow

When translating DITA content, the most common workflow involves these steps:

1. Create your content in the primary language.

2. Before each release, you gather all the DITA files that have been changed and need to be translated.

The DITA Translation Package Builder Add-on could be handy for this.

3. Send a copy of the relevant DITA files to the translation agency (known also as "localization service

provider").

4. Receive translated DITA content back from the translation agency and integrate it in each language-

specific project folder (on page 3244).

Publishing Translated Content

All of your translated DITA maps and topics should have the xml:lang attribute set with the appropriate value

on the root element. Along with the actual translated content, the published output may also contain static

text (such as the word Table followed by the table number, Figure following by the number, or Note appearing

before the content of each DITA <note> element). The DITA Open Toolkit includes support for various

languages for HTML-based output and PDF-based output. You can also add support for other languages:

https://www.maxprograms.com/products/fluenta.html
https://www.maxprograms.com/products/fluenta.html
https://en.wikipedia.org/wiki/Simplified_Technical_English
https://lists.oasis-open.org/archives/dita/201301/msg00029.html
https://www.oxygenxml.com/doc/ug-addons/topics/translation-package-builder-addon.html
http://www.dita-ot.org/2.0/readme/DITA-globalization-xhtml.html
http://www.dita-ot.org/2.0/readme/DITA-globalization-pdf.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3245

Globalizing DITA Content: Customizing Generated Text. For information about how to add a new language to

the Oxygen WebHelp Responsive output, see Adding a New Language (on page 1765).

Liability

Translation agencies usually do not assume any liability for incorrectly translated content. If possible, it is

recommended to have someone who is familiar with the particular language be responsible for reviewing and

accepting the translated content. For example, if your company has regional headquarters located in various

countries, perhaps someone from each headquarters could review the translated content.

Other Resources

Here are some links to other resources that might help you with translating DITA projects:

• DITA Translation: Organizing Your DITA Files

• DITA Translation: Using XLIFF to Translate DITA Projects

• WhP Localization Services Blog Page

• Webinar: DITA Project Management, Validation, and Translation in a Docs as Code Environment

Main Files Support in DITA
Oxygen XML Editor includes a feature that allows you to define Main Files (on page 3298) at project

level. This feature is typically used in Oxygen XML Editor for XML documents to determine the context for

operations such as validation, content completion, refactoring, searches, or displaying components collected

from various modules. For DITA projects, this feature has a more limited purpose in Oxygen XML Editor since

it is mainly used to provide the means for updating references to moved or renamed resources.

Since you can move or rename DITA resources (such as topics and maps) in the DITA Maps Manager (on

page 2950), the root map (on page 3301) is used as the scope to update all the references to the moved

or renamed resources. However, you do not have this option for non-DITA resources (such as folders,

images, HTML files, audio, video, text files, Markdown documents) since they do not appear in the DITA Maps

Manager. Also, when moving DITA resources in the DITA Maps Manager, you have to do it one at a time.

You can use the Main Files support in DITA to update all the references to moved or renamed resources in the

scope of the Main Files, and since the root map (on page 3301) will be set as the Main File, you achieve the

same result as if you were moving or renaming them in the DITA Maps Manager. It also allows you to move

multiple DITA resources (or entire folders) at once in the Project view (on page 414), instead of the DITA Maps

Manager, while still giving you the option of updating all the references.

How to Enable Main Files Support in DITA

To use the Main Files support in DITA, follow these steps:

http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html#ariaid-title1
https://www.maxprograms.com/articles/organize_files.html
https://www.maxprograms.com/articles/ditaxliff.html
https://www.whp.net/en/category/blog-en/
https://www.oxygenxml.com/events/2023/webinar_dita_project_management_validation_and_translation_in_a_docs_as_code_environment.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3246

1. Go to the Project view (on page 414) and enable Main Files support with one of the following methods:

◦ Select Enable Main Files Support from the Settings menu in the top-right corner.

◦ Select Enable Main Files Support from the contextual menu of the project root folder. If a

disabled Main Files folder exists, you can also select that option from its contextual menu.

◦ Click the Enable button in the tooltip located at the bottom. This tooltip window is displayed

when the Main Files support is disabled. Clicking the Read more link takes you to the user guide.

Clicking the Enable button opens the Enable Main Files dialog box. This dialog box contains

general information about the Main Files Support and allows you to enable it.

Warning:

Once you close this window tip, Oxygen XML Editor hides it for all projects. You can

make the window tip reappear by resetting Oxygen XML Editor to its default settings (on

page 324). However, doing so will result in you losing your customized options.

2. Add the main DITA map (root map) (on page 3301) to the Main Files folder by doing one of the

following:

◦ Right-click the project root folder and select Detect Main Files.

◦ Right-click the Main Files folder and select Detect Main Files from Project.

◦ If you enabled the Main Files support from the tooltip at the bottom of the Project view, you can

also use the Detect and Enable button in the resulting dialog box to detect the main files from

the current project.

◦ Manually add the root map (on page 3301) to the Main Files folder by doing one of the

following:

▪ Right-click a file from your project and select Add to Main Files from the contextual

menu (or simply drag and drop it into the Main Files folder).

▪ Select Add Files or Add Edited File from the contextual menu of the Main Files

folder.

Tip:

You can set multiple maps in the Main Files folder and all of them will automatically be added

to the list of root maps you can select from the drop-down menu in the DITA Maps Manager

toolbar (on page 2954).

3. [Alternative] If you have a defined DITA Open Toolkit project XML file (on page 3239) you can add

it to the Main Files folder. Once you do that the application will know the dependencies between all

resources directly and indirectly referenced from the project file, including DITA maps, topics, binary

resources and DITAVAL filter files.

Moving or Renaming Non-DITA Resources and Updating the References to Them

With the Main Files support enabled, you can move or rename non-DITA resources (such as folders, images,

HTML files, audio, video, text files, Markdown documents) or move multiple normal DITA resources (or entire

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3247

folders) in the Project view (on page 414) and Oxygen XML Editor will offer the option of updating all the

references to the moved or renamed resources in the scope of the Main Files (in this case, the main DITA map

(root map) (on page 3301)).

To move or rename non-DITA resources (or move multiple DITA resources) and update the references to them,

follow these steps:

1. Enable Main Files support and add your root DITA map (on page 3301) to the Main Files folder as

described in the How to Enable Main Files Support in DITA (on page 3245) section above.

2. Go to the Project view (on page 414), and use one of the following methods to move or rename the

resources:

Moving Resources

To move resources in the Project view (on page 414), do one of the following:

◦ Simply drag and drop the resource to the new location in the tree structure

(the Enable drag-and-drop in Project view option must be selected in the View

preferences page (on page 316)).

◦ Use the Cut, Copy, and Paste actions from the contextual menu.

◦ Right-click the resource and select Refactoring > Move resource action from the

contextual menu. Note that this method also allows you to specify a new name and

destination path in the Move resource dialog box.

Result: In all cases, a Move resource dialog box will be presented.

Renaming Resources

To rename resources in the Project view (on page 414), do one of the following:

◦ Select the resource and press F2, or simply left-click again, until the in-place editor

allows you to change the file name.

◦ Right-click the resource and select Rename or Refactoring > Rename resource .

Result: In all cases, a Rename resource dialog box will be presented.

3. Make sure the Update references of the moved resource(s) option is selected in the resulting Move or

Rename dialog box and keep the scope as main files to make sure all the references to the moved or

renamed resource are updated.

DITA Referenced/Dependent Resources View

The Referenced/Dependent Resources view displays the hierarchy or dependencies for resources included

in an XML document. For DITA resources, it will only show direct references, so resources that are indirectly

referenced through keys are not presented in the hierarchy or dependencies tree.

To see the references or dependencies for a DITA resource (maps or topics), right-click a resource in the

Project view (on page 414) and either select Show referenced resources or Show dependent resources.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3248

If you want to view the dependencies for a media resource (such as images) directly referenced in a DITA

topic, click the Show dependencies for button on the toolbar of the Referenced/Dependent Resources

view, select the All files filter in the file browser, find the particular resource, and double-click it.

Figure 813. Referenced/Dependent Resources View

The following actions are available on the toolbar of the Referenced/Dependent Resources view:

Refresh

Refreshes the hierarchical structure.

Stop

Stops the computing.

Show hierarchy for

Computes the hierarchical structure of the references for a resource.

Show dependencies for

Computes the structure of the dependencies for a resource.

Configure dependencies search scope

Allows you to configure a scope to compute the dependencies structure. You can restrict the

scope to the current project or to one or multiple working sets (on page 3302). If the Use only

Main Files, if enabled checkbox is selected, the scope of the search is restricted to the Main

Files directory (on page 3245).

History

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3249

Provides access to the list of previously computed dependencies. Use the Clear history

button to remove all items from this list.

The contextual menu for a resource listed in the Referenced/Dependent Resources view contains the

following actions:

Open

Opens the resource. You can also double-click a resource in the hierarchical structure to open it.

Go to reference

Opens the source document where the resource is referenced.

Copy location

Copies the location of the resource.

Move resource

Opens the Move resource dialog box where the following fields are available:

• Destination - Presents the path to the current location of the resource you want to move

and gives you the option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to

change it.

• Update references of the moved resource(s) - As long as Main Files support is enabled

(on page 3245), you can select this option to update the references to the resource

you are moving, in accordance with the new location and name. A Preview option is

available that allows you to see what will be updated before selecting Move to process

the operation.

Rename resource

Opens the Rename resource dialog box where the following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.

• Update references of the renamed resource(s) - As long as Main Files support is enabled

(on page 3245), you can select this option to update the references to the resource you

are renaming. A Preview option is available that allows you to see what will be updated

before selecting Rename to process the operation.

Show referenced resources

Shows the references for the selected resource.

Show dependent resources

Shows the dependencies for the selected resource.

Add to Main Files

Adds the currently selected resource in the Main Files directory.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3250

Expand More

Expands more of the children of the selected resource from the structure.

Collapse All

Collapses all children of the selected resource from the structure.

Tip:

When a recursive reference is encountered in the view, the reference is marked with a special icon .

Search and Rename Actions for IDs in DITA

Oxygen XML Editor allows you to search references to ID attributes (either direct references using the @href

and @conref attributes or indirect references using @keyref or @conkeyref attributes) or to rename the id attribute

in all the declared and referenced locations. The main benefit of this feature is the fact that it allows you to

rename @id attributes (or search for their references) in the scope of the entire project. It also works for IDs

defined inside DITA maps and then referenced in maps and topics.

In Author mode, these operations are available for DITA documents in the contextual menu (grouped in the

Manage IDs submenu). In Text mode, these actions are also available in the Quick Assist menu. To access it,

place the cursor inside the value of an @id attribute and click the yellow light bulb icon.

The possible actions include:

Rename in

Renames the ID and all of its occurrences. Selecting this action opens a dialog box where

you insert the new ID value and choose the scope of the rename operation. For a preview of

the changes you are about to make, click Preview. This opens the Preview dialog box, which

presents a list with the files that contain changes and a preview zone of these changes.

Rename in File (Available in the Text mode only)

Renames the ID you are editing and all its occurrences in the current file.

Search References

Searches for the references of the ID. By default, the scope of this action is the current project.

Search References in

Searches for the references of the ID and you can choose the scope of the operation or

configure working sets to use for the scope.

Search Declarations (Available in the Text mode only)

Searches for the declaration of the ID reference. By default, the scope of this action is the current

project.

Search Declarations in (Available in the Text mode only)

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3251

Searches for the declaration of the ID reference and you can choose the scope of the operation

or configure working sets to use for the scope.

Search Occurrences in file

Searches for the declaration and references of the ID in the current document and presents the

results in the message panel at the bottom of the application.

Change scope (Available in the Quick Assist menu in Text mode only)

Opens a dialog box where you can choose the scope of the operation or configure working sets

to use for the scope.

Tip:

A quick way to go to the declaration of an ID in Text mode is to move the cursor over an ID reference

and use the Ctrl + Single-Click (Command + Single-Click on macOS) navigation.

Selecting an ID that you use for search or refactor operations differs between the Text and Author modes. In

the Text mode, you position the cursor inside the declaration or reference of an ID. In the Author mode, Oxygen

XML Editor collects all the IDs by analyzing each element from the path to the root. If more IDs are available,

you are prompted to choose one of them.

Related Information:

Main Files Support in DITA (on page 3245)

Metadata
Metadata is a broad concept that describes data that explains or identifies other data. Metadata can be

used for many purposes, from driving automation of document builds to enabling authors and readers to

find content more easily. DITA provides numerous types of metadata, each of which is used and created

differently. Some of the most important forms of metadata in DITA are topic and taxonomy.

Topic Metadata

Topic metadata describes the topic and what it is about. Topic metadata can be inserted in the <prolog>

element of a topic or inside the <topicref> element that points to a topic from a map. In other words, metadata

about the topic can be asserted by the topic itself, or can be assigned to it by the map that includes it in the

build. This allows multiple maps to assign different metadata to the same topic. This may be appropriate

when you want to describe a topic differently in various documents.

Taxonomy and Subject Scheme

A taxonomy is a controlled vocabulary. It can be used to standardize how many things in your content and

metadata are named. This consistency in naming can help ensure that automated processes work correctly,

and that consistent terminology is used in content, and in metadata. In DITA, taxonomies are created using

subject scheme maps (on page 3301). When you are authoring, many of the values you choose from have

been defined in subject scheme maps.

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3252

Migrating MS Office Documents to DITA
Oxygen XML Editor integrates the entire DITA for Publishers plugins suite and provides some possibilities for

migrating content from Microsoft Office® (and other Office-type formats) to DITA. There are also possibilities

for migrating various other types of formats. For more information, see Migrating Various Document Formats

to and from DITA (on page 3254).

Migration from Office-type formats to XML is rarely perfect and manual changes may need to be made to

the converted content, but the methods described below should help you find the best approach for your

particular case.

Oxygen's Batch Documents Converter Add-on (Multiple Documents)

The Oxygen Batch Documents Converter add-on can be installed in Oxygen XML Editor to provide the ability to

convert one or more documents to various formats.

For more details about the main stages of the Word to DITA migration using the Batch Documents Converter

add-on, see the following blog post: Migrating MS Word to DITA using Batch Documents Converter.

Note:

The Batch Documents Converter add-on is the recommended way to convert one or more Word

documents to DITA content.

Smart Paste (Single Document)

1. Open the document in MS Office (or other similar application), select all the content, and copy it.

2. Open Oxygen XML Editor and create a new DITA topic.

3. Paste the selected content in Author mode. The Smart Paste functionality (on page 626) will attempt to

convert the content to DITA structure.

HTML to DITA (Single Document)

1. Save your document as HTML.

2. Once you have converted it to HTML, you have several possibilities:

◦ In Oxygen XML Editor, select File > Import/Convert > HTML File to XHTML to import it as

XHTML. Then, open the XHTML in Oxygen XML Editor and use one of the XHTML to DITA

transformation scenarios (on page 1413) to convert the content to DITA structure.

◦ Open the HTML file in any web browser, select all of its content, and copy it. Then, open Oxygen

XML Editor, create a new DITA topic, and paste the selected content in Author mode. The Smart

Paste functionality (on page 626) will attempt to convert the HTML content to DITA structure.

Word to LibreOffice to DITA (Single Document)

1. Open the document in the LibreOffice application and save it as DocBook.

2. Open the DocBook document in Oxygen XML Editor.

http://www.dita4publishers.org/
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://blog.oxygenxml.com/topics/migrating_word_to_dita_bdc/migrating_word_to_dita_using_batch_documents_converter.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3253

3. Run the built-in DocBook to DITA transformation scenario (on page 1501).

4. You may need to make some manual adjustments for elements that could not be mapped.

Word to DITA using DITA For Publishers (Single Document)

1. Save the document in the MS Word DOCX format.

2. Open it in the Archive Browser view (on page 2118) in Oxygen XML Editor and then open the

document.xml file contained in the archive.

3. Run the built-in DOCX DITA transformation scenario. This scenario runs a build file over the DOCX

archive and should produce a DITA project that contains a DITA map and multiple topics.

4. You may need to do some manual reconfiguration to map DOCX styles to DITA content. The XSLT

conversion is part of the DITA For Publishers plugin and there is documentation for it available here:

http://www.dita4publishers.org/d4p-users-guide/user_docs/d4p-users-guide/word2dita/word2dita-

intro.html.

Word to DocBook to DITA (Multiple Documents)

1. Use a tool to convert the documents to DocBook. For example, Pandoc is a free document converter

engine that can convert DOCX documents to DocBook and according to Pandoc's manual, you can

specify multiple input files and use wildcards in the commands.

2. Save the newly converted DocBook documents somewhere in your project.

3. Perform a batch transformation (on page 1621) on all the newly converted DocBook documents:

a. Select all the DocBook documents in the Project view (on page 414).

b. Right-click the selected files and choose Transform > Configure Transformation Scenario(s).

c. Apply the built-in DocBook to DITA transformation scenario (on page 1501).

4. You may need to make some manual adjustments in the resulting documents for elements that could

not be mapped.

Word to HTML/Markdown to DITA (Multiple Documents)

1. Use a tool to convert the documents to HTML or Markdown. For example, Pandoc is a free document

converter engine that can convert DOCX documents to those formats.

2. Use Oxygen's Batch Converter add-on to convert the documents to DITA.

3. You may need to make some manual adjustments in the resulting documents for elements that could

not be mapped.

Migrating Excel and Other Types of Spreadsheets to DITA

There are two possibilities for converting Microsoft Excel (or other similar types of documents) to DITA:

• Copy the spreadsheet content and paste it in a DITA topic in Author mode. The Smart Paste

functionality (on page 626) will attempt to convert the content to DITA.

• Use Oxygen's Batch Converter add-on to convert one or more spreadsheet documents to DITA.

http://www.dita4publishers.org/d4p-users-guide/user_docs/d4p-users-guide/word2dita/word2dita-intro.html
http://www.dita4publishers.org/d4p-users-guide/user_docs/d4p-users-guide/word2dita/word2dita-intro.html
https://pandoc.org
https://pandoc.org
https://pandoc.org
https://pandoc.org/MANUAL.html
https://pandoc.org/MANUAL.html
https://pandoc.org/MANUAL.html
https://pandoc.org/MANUAL.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3254

Resources

For more information about migrating to DITA, see the following resources:

• Webinar: Integrating Various Document Formats (OpenAPI, Word, Markdown, HTML, Excel) into DITA

Documentation

• Webinar: Working with DITA in Oxygen - Migrating to DITA and Refactoring

Related information

Migrating Various Document Formats to and from DITA (on page 3254)

Smart Paste in Author Mode (on page 626)

Importing Data (on page 2197)

Working with Archives (on page 2118)

Migrating Various Document Formats to and from DITA
When organizations decide to use DITA for structuring, developing, managing, or publishing content, they

usually already have content written in other formats and need to convert it to DITA. There are a variety of

possibilities for a conversion to DITA, depending on the original format of the content.

Migration from other formats to DITA is rarely perfect and manual changes may need to be made to the

converted content, but the methods described below should help you find the best approach for your

particular case.

Migrating Microsoft Office and Other Similar Types of Documents to DITA

There are various possibilities for migrating content from Microsoft Office® (and other Office-type formats) to

DITA. For details, see Migrating MS Office Documents to DITA (on page 3252).

Migrating DocBook Content to DITA

The Oxygen Batch Documents Converter add-on can be used for migrating one or multiple DocBook

documents to DITA.

The provided DocBook to DITA conversion contains an option named Create DITA maps from DocBook

documents containing multiple sections. When this option is selected, all sections from your DocBook

document will be separated into individual DITA topics and referenced in a DITA map.

Migrating Google Docs to DITA

There are several possibilities to convert Google Docs to DITA:

https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3255

• Copy the content from Google Docs and paste it in an open DITA topic in Author mode. The Smart

Paste functionality (on page 626) will attempt to convert the content to DITA.

• Save the Google document as OpenDocumentFormat (ODF), then open it in the free LibreOffice

application and save it as DocBook. Next, open the DocBook document in Oxygen XML Editor and run

the built-in transformation scenario called DocBook to DITA (on page 1501).

• If you want to convert multiple Google documents at once, save the documents as HTML, then use

Oxygen's Batch Documents Converter add-on to convert the documents to DITA.

In all cases, you may need to make some manual adjustments in the resulting documents for elements that

couldn't be mapped.

Migrating Markdown Content to DITA

There are several possibilities to convert Markdown content to DITA:

• The DITA Open Toolkit publishing engine bundled with Oxygen XML Editor allows you to reference

Markdown files directly in a DITA map and either publish them directly or export the Markdown files to

DITA one by one. For details, see Working with Markdown Documents in DITA (on page 3080).

• If you want to convert multiple Markdown files at once, you can use Oxygen's Batch Documents

Converter add-on to convert the documents to DITA.

Migrating HTML Content to DITA

There are several possibilities to convert HTML content to DITA:

• Copy the HTML content and paste it in an open DITA topic in Author mode. The Smart Paste

functionality (on page 626) will attempt to convert the content to DITA.

• Convert the HTML file to XHTML by selecting File > Import/Convert > HTML File to XHTML. Then, open

the XHTML file and use one of the XHTML to DITA Transformation Scenarios (on page 1413) to convert

the content to DITA.

• If you want to convert multiple HTML files at once, you can use Oxygen's Batch Converter add-on to

convert the documents to DITA.

Migrating Unstructured FrameMaker to DITA

There is a blog post that details various possibilities for converting Unstructured FrameMaker content to DITA:

Migrating Unstructured FrameMaker to DITA.

Migrating MadCap Content to DITA

This open-source project contains such a stylesheet that attempts to convert a Flare project to DITA XML

along with instructions on how to use it. As an alternative, some recent MadCap versions seem to have

facilities to export content directly to DITA.

https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://blog.oxygenxml.com/topics/migratingFmToDita.html
https://github.com/oxygenxml-incubator/FlareToDITA

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3256

Migrating Confluence to DITA

To migrate Confluence content to DITA, first export the content to HTML. For this, log in to your Confluence

account and navigate to the specific space that you want to export. Then go to Space Settings > Export space

and choose to export it as HTML.

You can then use Oxygen's Batch Documents Converter add-on, selecting the Confluence to DITA action, to

convert the exported index.html file into a DITA map with topics.

Migrating LaTex to DITA

You may use a third-party application (such as Pandoc) to convert LaTex content to Word or HTML. Then, you

can use the Oxygen's Batch Documents Converter add-on to convert it to DITA XML.

Migrating Other Formats to DITA

You may find third-party applications (such as Pandoc) that can convert your content to HTML or to some kind

of XML format like DocBook. Once you have HTML or DocBook content, you can convert them to DITA using

one of the methods described above.

Migrate from DITA to Confluence and Other Formats

There are various possible methods available for converting DITA content to Confluence and other formats

(such as Microsoft Word or HTML). For details and ideas for some of the possible methods, see the DITA to

Confluence blog post.

Resources

For more information about migrating to DITA, see the following resources:

• Webinar: Integrating Various Document Formats (OpenAPI, Word, Markdown, HTML, Excel) into DITA

Documentation

• Webinar: Working with DITA in Oxygen - Migrating to DITA and Refactoring

• Video: Integrating REST-API Content into DITA Documentation in Oxygen

• Blog post: Migrating MS Word to DITA Using the Batch Documents Converter

How to Count Words in DITA Topics or Maps
There are various ways to count words in Oxygen XML Editor:

• Open a DITA topic in the Author visual editing mode, right-click anywhere in the editor, and select Text >

Count Words.

• Open a DITA map in the DITA Maps Manager view. Click the Open map in editor with resolved

topics toolbar button. In the newly opened DITA map, right-click anywhere in the editor and select Text

> Count Words.

https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://pandoc.org/
https://www.oxygenxml.com/doc/ug-addons/topics/batch-converter-addon.html
https://pandoc.org/
https://blog.oxygenxml.com/dita_to_confluence.html
https://blog.oxygenxml.com/dita_to_confluence.html
https://blog.oxygenxml.com/dita_to_confluence.html
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2022/webinar_integrating_various_document_formats.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.youtube.com/watch?v=mzmnOBzJ5Uk
https://www.youtube.com/watch?v=mzmnOBzJ5Uk
https://blog.oxygenxml.com/topics/migrating_word_to_dita_bdc/migrating_word_to_dita_using_batch_documents_converter.html
https://blog.oxygenxml.com/topics/migrating_word_to_dita_bdc/migrating_word_to_dita_using_batch_documents_converter.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3257

• Open a DITA map in the DITA Maps Manager view. Click the Configure Transformation Scenarios

toolbar button and choose the DITA Map Metrics Report transformation scenario.

Tip:

Along with the word count, the DITA Map Metrics Report Transformation (on page 3161)

provides additional information (such as the number of processed maps and topics, content

reuse percentage, the number of elements, attributes, words, and characters used, and more).

DITA 1.3 Support
Starting with version 17.1, Oxygen XML Editor includes support for some DITA 1.3 features.

The Oxygen XML Editor publication of the full DITA 1.3 specifications can be found at https://

www.oxygenxml.com/dita/1.3/specs/index.html#introduction/dita-release-overview.html.

The following table is a list of DITA 1.3 features and their implementation status in Oxygen XML Editor:

Table 54. DITA 1.3 Features Implementation Status

Feature Editing

Publishing [DI

TA Open Toolk

it 4.2.3 is used]

DITA 1.3 DTD, XML Schema, and Re

lax NG-based maps/topics/tasks/

references, etc.

New DITA 1.3 document templates. By default,

DITA topics and maps that do not specify ver

sion in the DOCTYPE declaration are also con

sidered to be DITA 1.3

Specific annotations presented in the content

completion assistance window and documenta

tion tooltips for all new DITA 1.3 elements

N/A

Learning Object and Group maps New document templates No specific support

implemented

Troubleshooting specialization Create and edit new troubleshooting topics No specific support

implemented

XML markup domain Validation and Content Completion Special rendering

in PDF and XHTML-

based outputs

Equation and MathML domain
Validation and content completion

Display and Insert equations

Special rendering

in PDF and XHTML-

based outputs

https://www.oxygenxml.com/dita/1.3/specs/index.html#introduction/dita-release-overview.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#introduction/dita-release-overview.html

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3258

Table 54. DITA 1.3 Features Implementation Status (continued)

Feature Editing

Publishing [DI

TA Open Toolk

it 4.2.3 is used]

SVG domain
Validation and content completion

Display referenced SVG content

Special rendering

in PDF and XHTML-

based outputs

Other new DITA 1.3 elements (div,

strike-through, overline, etc.)
Validation and Content Completion

Special rendering

in PDF and XHTML-

based outputs

Release management domain Validation and Content Completion No specific support

implemented

Scoped keys (on page 3116)
Define key scopes

Validate and check for completeness

Resolve keyrefs and conkeyrefs taking key

scopes into account

Key scope information is displayed in a tooltip

when hovering over an item in the DITA Maps

Manager

Partially imple

mented (Various is

sues may still be

encountered)

Branch filtering (on page 3118)
Display, create, and edit <ditavalref> elements

Partially imple

mented (Various is

sues may still be

encountered)

Key-based cross deliverable ad

dressing
Special display for references to DITA maps

with scope="peer" and a defined keyscope

Gather and present keys from peer maps

Not implemented.

Shorthand to address syntax that

identifies elements in the same top

ic

Properly resolved for validation, links, and con

refs

Implemented

Various table attributes (orienta

tion, rotation, scope, and headers on

cells)

Not implemented in the Table Properties action

support. However, attributes can be changed

from the Attributes view

Not implemented

Oxygen XML Editor 27.1 | 22 - DITA Authoring | 3259

Table 54. DITA 1.3 Features Implementation Status (continued)

Feature Editing

Publishing [DI

TA Open Toolk

it 4.2.3 is used]

New Map topicref attributes (cas

cade, deliveryTarget)

Allow setting new attributes, propose proper val

ues for them

Implemented

Related information

Watch our DITA 1.3 video tutorial for more information about key scopes and branch filtering.

DITA 2.0 Support
Starting with version 23, Oxygen XML Editor includes support for some DITA 2.0 features. To enable this

support, go to the Options > Preferences > DITA page and select the Enable DITA 2.0 Editing Support

(Experimental) checkbox. Enabling it results in DITA 2.0 topic and map templates being available in the New

document wizard (on page 378).

The following table is a list of DITA 2.0 features and their implementation status in Oxygen XML Editor. The

list of proposed DITA 2.0 changes is published here: https://www.oasis-open.org/committees/download.php/

65626/DITA-2.0-proposals.pdf.

Table 55. DITA 2.0 Features Implementation Status

Feature Editing

Publishing [DI

TA Open Toolk

it 4.2.3 is used]

DITA 2.0 DTD, and Relax NG-based

maps/topics/tasks/references, etc.
New DITA 2.0 document templates.

Also supported by

the publishing en

gine.

Other new DITA 2.0 elements (in

clude, etc.)
Validation and Content Completion.

Special rendering

in PDF and XHTML-

based outputs:

https://www.di

ta-ot.org/dev/refer

ence/dita-v2-0-sup

port.html.

Profiling attributes defined using the

new @specializations attribute.

Profiling attributes defined using the new @spe

cializations attribute are recognized by the ap

plication.

Also supported by

the publishing en

gine.

https://www.oxygenxml.com/demo/DITA_13.html
https://www.oasis-open.org/committees/download.php/65626/DITA-2.0-proposals.pdf
https://www.oasis-open.org/committees/download.php/65626/DITA-2.0-proposals.pdf
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html

23.
Scripting Oxygen
Although Oxygen XML Editor is mostly intended to be a visual editing tool, the all platforms distribution

is bundled with a scripts subfolder that contains scripts to automate and run various utilities from a

command line.

To run any of these scripts, you are required to purchase a special scripting commercial license. Trial scripting

licenses are also available, by request, for clients who are interested in testing the scripts for their particular

workflows. Once you have a scripting license key available, you should copy the license key to a file named

scriptinglicensekey.txt and save it in the main application directory (the parent directory of the

"scripts" directory).

For more information about the Oxygen Scripting support, watch our Webinar: Automate XML processing with

Oxygen XML Scripting.

DITA Validate and Check For Completeness

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Validate and Check For Completeness (on page 2995) action that is available on the toolbar of the DITA

Maps Manager view provides the ability to validate a DITA map or a DITA Open Toolkit project file with a large

array of settings. The settings dialog box has an Export settings option that can be used to export the settings

to an XML configuration file. Once the settings are exported, you can use the validateCheckDITA.sh script

(found in the scripts subfolder inside Oxygen's installation directory) to run a validation on a DITA map or

DITA Open Toolkit project file and report the results in a separate XML document.

Sample Command-Line Arguments for the Validate and Check for Completeness Script:

sh scripts/validateCheckDITA.sh -i inputFile [-c contextId] [-s settingsFile] [-r reportFile]

A public example of using such a script as a GitHub action for reporting errors in pull requests on DITA project

can be found here: https://github.com/oxygenxml/blog/blob/master/.github/workflows/validate-check-

completion.yml. The GitHub action calls a Gradle script target named runValidation: https://github.com/

oxygenxml/blog/blob/master/build/build.gradle.

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/events/2020/webinar_automate_xml_processing_with_oxygen_xml_scripting.html
https://www.oxygenxml.com/events/2020/webinar_automate_xml_processing_with_oxygen_xml_scripting.html
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/blog/blob/master/.github/workflows/validate-check-completion.yml
https://github.com/oxygenxml/blog/blob/master/.github/workflows/validate-check-completion.yml
https://github.com/oxygenxml/blog/blob/master/build/build.gradle
https://github.com/oxygenxml/blog/blob/master/build/build.gradle

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3261

Transform

Attention:

• This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script,

you are required to purchase a special scripting commercial license.

• To execute a scenario based on WebHelp using this script, in addition to the scripting

commercial license, you are required to purchase an Oxygen XML WebHelp license or a Oxygen

Publishing Engine license.

• To execute a scenario based on Chemistry using this script, in addition to the scripting

commercial license, you are required to purchase an Oxygen PDF Chemistry license or a

Oxygen Publishing Engine license.

The Transform script (transform.sh, found in the scripts subfolder inside Oxygen's installation directory)

helps you to execute a transformation scenario. You can run the scenarios for the existing document types

(frameworks) (on page 3297) without setting a scenarios file, but for others, you have to specify a specialized

scenarios file or a project file that contains scenarios.

You can export transformation scenarios from Oxygen XML Editor into a specialized scenarios file by using

the Export selected scenarios action from the Transformation Scenarios view or using the Export Global

Transformation Scenarios action from the Options menu.

Arguments for the Transform Script

sh scripts/transform.sh -i inputFile -sn scenarioName [-s scenariosFile] [-v]

-i inputFile

The input file that the transformation scenario is applied to.

-sn scenarioName

The name of the transformation scenario to be executed.

-s scenariosFile

The name of a file that contains additional scenarios. It can be a specialized scenarios file or a

project file that contains project transformation scenarios.

The scenarios from this file are merged with the scenarios from the document types

(frameworks) (on page 3297).

-v

This argument can be specified to activate verbose logging for DITA-OT and ANT scenarios. It is

useful for debugging.

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/xml_webhelp.html
https://www.oxygenxml.com/publishing_engine.html
https://www.oxygenxml.com/publishing_engine.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/chemistry-html-to-pdf-converter.html
https://www.oxygenxml.com/publishing_engine.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3262

Tip:

For a GitHub use case sample of this script, see Oxygen Transformation Template.

Validate

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

All the validations possible in Oxygen XML Editor can also be performed from scripting. This includes

validating various types of XML schemas, such as XSD, RNG, RNC, DTD, and NVDL, as well as JSON Schema,

XProc, ANT, XSLT, XQuery, CSS, LESS, HTML, WSDL, OpenAPI, and of course, XML with XML schema, and

JSON/YAML with JSON Schema.

The Validate script (validate.sh, found in the scripts subfolder inside Oxygen's installation directory) can

be used to validate a file or a directory and get the validation results in various formats.

Arguments for the Transform Script

sh scripts/validate.sh fileOrDirPath [-s schemaFilePath | -sn scenarioName] [-sf scenariosFilePath] [-if includeFilesFilter]

 [-ef excludeFilesFilter] [-ed excludeSubdirsFilter] [-rf reportFile] [-rft reportFormat] [-v] [-help | --help | -h | --h]

fileOrDirPath

Mandatory argument that specifies the path of the file or directory to validate (it can also

be provided as a URL, but if you are validating directories, the only protocol considered is

'file://').

-s schemaFilePath

Optional argument that specifies the file path of the schema to validate against (it can also be

provided as a URL).

-sn scenarioName

Optional argument that specifies the name of the validation scenario to be applied.

-sf scenariosFilePath

Optional argument that specifies the path of the file that stores the validation scenarios (either

an Oxygen scenarios file or an Oxygen project file). It can also be provided as a URL.

Notes:

• The file that stores the validation scenarios must have a similar format to that

generated from Oxygen by invoking Export Global Validation Scenarios from the

Options menu. This type of Oxygen-generated scenarios files has a .scenarios

https://github.com/oxygenxml/oxygen-script-transformation-template
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3263

file extension by default and contains all the necessary information about custom

validation scenarios created in Oxygen.

• Oxygen also saves the custom validation scenarios (as well as the scenario

associations made explicitly for the files you work with) in special formatted

Oxygen project files (usually with the .xpr file extension). Therefore, by using the

arguments provided through -sn and -sf options, you can apply any scenario that

was previously stored in either a scenarios file or an Oxygen project file.

• The -s and -sn options are mutually exclusive. Specifying both in the same

command line is not allowed.

-if includeFilesFilter

Use this argument to only validate the files that match the specified pattern (e.g. .xml,.json).

The default value is *.

-ef excludeFilesFilter

Excludes the files that match the specified pattern (e.g. test.wsdl,draft.xsl) from the

validation.

-ed excludeSubdirsFilter

Excludes the sub-directories that match the specified pattern (e.g. .svn,_svn,.git).

-rf reportFile

Specifies the path for the report file to save the validation results, instead of presenting them in

the console. The content of the report file is formatted according to the -rft argument. The report

file path can also be provided as a URL.

-rft reportFormat

Specifies the format of the validation report. Possible values: txt, text, xml, json, html, htm.

Default values: txt, text.

-v

Prints additional information to the console (Verbose mode).

-help | --help | -h | --h

Displays help text.

Additional Notes:

• Avoid activating the Verbose mode (-v option) when opting to redirect the console (and the

validation report implicitly) to a specific file. That is done using the > operator instead of the -rf

option. The additional information provided through verbose mode is also saved to the report

file, making it to be reported as invalid when inspected in specialized editors. However, that

information is placed at the beginning of the report, as plain text. If removed, the report should

become valid.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3264

• If the validation uses the Saxon engine and you do not have a commercial license, then the

script automatically uses the Saxon Home Edtion distribution that does not require a license.

However, if the validation involves specific Saxon Personal / Enterprise Edition advanced

features, then the validation report clearly signals that an appropriate Saxon license was not

found. Placing a valid Saxon license file in the lib directory from the Oxygen installation folder

solves the problem and the validation operation works as expected.

Examples of the Validate Script

Example 1: Validate a File by Applying a Custom Validation Scenario

sh scripts/validate.sh "workspace/xmlFolder/xmlFile.xml" -sn "xmlValScn"

 -sf "workspace/scn/valScn.scenarios"

This command implies validating xmlFile.xml by applying the validation scenario named

xmlValScn, described in the valScn.scenarios file. If you want to apply more than one

validation scenario, you can use the -sn scenarioName construct multiple times.

Example 2: Validate a Directory by Applying an Oxygen Default Validation Scenario

sh scripts/validate.sh "workspace/DITAFolder" -sn "DITA"

A scenario name is provided, but without specifying a scenarios file. This command implies

validating all files from DITAFolder by applying the Oxygen default validation scenario named

DITA (in accordance with the association made in the Document Type Configuration Dialog Box

(on page 148)).

Example 3: Validate a File by Applying Associated Scenarios Stored in an Oxygen Project File

sh scripts/validate.sh "workspace/mainFolder/main.xml" -sf "worksapce/proj/proj-1.xpr"

A scenarios file is provided, but without specifying a scenario name. In this case, the argument

provided through the -sf option is assumed to be an Oxygen project file and it is used to search

for validation scenario associations made for the main.xml file. This command line implies

that if validation scenario associations for main.xml are found in proj-1.xpr, then those

scenarios are identified and applied. Otherwise, the validation first considers the schema

associations declared in main.xml (if any), or default Oxygen validation scenarios are applied

in accordance with the type of the file to validate (e.g. XML in this example).

Example 4: Directory Default Validation and Custom Formatted Report Saved to a Specific Location

sh scripts/validate.sh ../important/xmlFolder -rft html -rf "../important/reports/validation rep.html"

No validation scenario name, no scenario file, and no schema provided. This command line

involves validating all files from the xmlFolder. Each file is validated against the schema(s)

internally associated (if any). Otherwise, the default Oxygen validation scenarios for the

respective file type are applied. Also, the validation report is formatted in HTML and is saved to

the validation rep.html file at the specified location.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3265

Figure 814. Example of an HTML Validation Report

Resources

For more information about the validation script, see the following resources:

• Video: Validating XML and JSON Using Oxygen Command Line Scripts

• Webinar: Validating XML and JSON Documents Using Oxygen Scripting

Tip:

For some GitHub use case samples of this script, see Oxygen Validation Template and Oxygen

Validation Action.

XML Refactoring

Attention:

• This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script,

you are required to purchase a special scripting commercial license.

• To execute an XQuery refactoring operation using this script, in additional to the scripting

commercial license, you are required to purchase a Saxon EE license.

https://www.youtube.com/watch?v=-StaBf-JQa8
https://www.oxygenxml.com/events/2023/webinar_validating_xml_and_json_documents_using_oxygen_scripting.html
https://github.com/oxygenxml/oxygen-script-validation-template
https://github.com/marketplace/actions/oxygen-xml-json-validate-files
https://github.com/marketplace/actions/oxygen-xml-json-validate-files
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/buy_saxon.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3266

The XML Refactoring script (xmlRefactoring.sh, found in the scripts subfolder inside Oxygen's installation

directory) can be used to execute XML refactoring operations (on page 856). You can run a refactoring

operation by specifying the operation id of the operation. If, in addition to the refactoring operations provided

by Oxygen XML Editor in the OXYGEN_INSTALL_DIR/refactoring folder and in framework configurations,

you want to run a custom refactoring operation, you have to specify the directory that contains it, using the od

(operations directory) argument.

Arguments for the XML Refactoring Script

sh scripts/xmlRefactoring.sh -id operationId -i inputFilesOrDirectories [-f filesFilter]

[-od operationsDirectory] [-p param1=value1...] [-v]

-id operationId

The ID of the refactoring operation to be executed.

-i inputFilesOrDirectories

A list of space-separated input files or directories that the refactoring operation is applied to.

-f filesFilter

Specifies a filter for the input files by using a file pattern. For example, to restrict the operation to

only analyze build files, you could use build*.xml for the file pattern.

-od operationsDirectory

A directory that contains additional refactoring operations.

-p param1=value1...

A list of space-separated pairs of a parameter's name and value used by the refactoring

operation.

-v

This argument can be specified to activate verbose logging.

DITA Translation Package Builder

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The DITA Translation Package Builder (translationPackageBuilder.sh, found in the scripts subfolder inside

Oxygen's installation directory) script helps you to build a translation package for DITA files that can be sent to

translators. You can also extract the changed files back into your project once you receive the package back

from the translators.

This script requires the DITA Translation Package Builder add-on to be installed in the all platforms

distribution of Oxygen XML Editor. To install it the add-on, follow these instructions:

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3267

1. Go on the DITA Translation Package Builder plugin Releases page and download the latest translation-

package-builder-{version}-plugin.jar package.

2. Unzip it inside {oxygenInstallDir}/plugins.

Note:

Do not create any intermediate folders. Afterwards, the file system should look like this:

{oxygenInstallDir}/plugins/translation-package-builder-{version}/

plugin.xml

Examples for the DITA Translation Package Builder Script

Example: Generating a Milestone File

sh scripts/translationPackageBuilder.sh -gm -i ditamapFile [-m milestoneFile] [-verbose]

This action is the first one to use. It will generate a unique hash for each documentation resource. This

information will be used by the second action to detect which files have been modified. A milestone file should

be generated the first time you install this plugin and henceforth, after each package is sent to translators.

-gm

Requests the generation of a milestone file.

-i ditamapFile

The main DITA map file.

-m milestoneFile

The path to the milestone file. If missing, it is assumed that the milestone

will be saved in the DITA map parent folder with the following name:

{ditamapName}_translation_milestone.xml.

-verbose

Generates a console log about the performed steps. It is useful for debugging.

Example: Creating a Package with the Modified Files to Send to Translation

sh scripts/translationPackageBuilder.sh -gp -i ditamapFile [-m milestoneFile] -p package.zip [-verbose]

This action detects which files have been changed since the last generated milestone. These files are packed

inside a ZIP file that can be sent to translators. After doing this, you can also generate a new milestone so that

the next package will only contain new changes.

-gp

Requests the generation of a package with the modified files.

-i ditamapFile

The main DITA map file.

https://github.com/oxygenxml/oxygen-dita-translation-package-builder/releases/latest
https://github.com/oxygenxml/oxygen-dita-translation-package-builder/releases/latest

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3268

-m milestoneFile

The path to the milestone file. If missing, it is assumed that the milestone

will be located in the DITA map parent folder with the following name:

{ditamapName}_translation_milestone.xml.

-p package.zip

The path to the zip archive where all the modified files are collected.

-verbose

Generates a console log about the performed steps. It is useful for debugging.

Example: Applying a Translation Package Over a DITA Map

sh scripts/translationPackageBuilder.sh -ap -i ditamapFile -p package.zip [-verbose]

When the translated files arrive from the translator, you should open the DITA map that corresponds to the

received language (e.g. open dita-map-french.ditamap if the package contains the french translation).

Invoking this action will extract the changed files inside the map's directory.

-ap

Requests the application of a translation package over a DITA map.

-i ditamapFile

The main DITA map file that matches the received package language. For example, if the

package contains topics translated into French, then this map is the French version of your DITA

map.

-p package.zip

The path to the archive with all the translated files.

-verbose

Generates a console log about the performed steps. It is useful for debugging.

Batch Converter

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Batch Converter script (batchConverter.sh, found in the scripts subfolder inside Oxygen's installation

directory) helps you to convert between the following formats:

• HTML to XHTML

• HTML to DITA

• HTML to DocBook4 / DocBook5

• Markdown to XHTML

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3269

• Markdown to DITA

• Markdown to DocBook4 / DocBook5

• Word to XHTML

• Word to DITA

• Word to DocBook4 / DocBook5

• Excel to DITA

• Confluence to DITA

• DocBook to DITA

• OpenAPI to DITA

• JSON to XML

• JSON to YAML

• XML to JSON

• YAML to JSON

This script requires the Oxygen Batch Documents Converter add-on to be installed in the all platforms

distribution of Oxygen XML Editor.

To install the add-on, follow these instructions:

1. Go on the Oxygen Batch Documents Converter plugin Releases page and download the latest oxygen-

batch-converter-{version}-plugin.jar package.

2. Unzip it inside {oxygenInstallDir}/plugins.

Note:

Do not create any intermediate folders. Afterwards, the file system should look like this:

{oxygenInstallDir}/plugins/oxygen-batch-converter-{version}/plugin.xml

Arguments for the Batch Converter Script

sh scripts/batchConverter.sh -i inputFiles -if inputFormat -o outputDirectory

-of outputFormat [-ss (true|false)] [-csd (true|false)] [-cs converterSettingsFile]

-i inputFiles

A list of space-separated input files or directories in file syntax form.

-if inputFormat

The format of the input files. The possible values are: html, markdown, word, confluence,

docbook, excel, openapi, json, yaml, or xml.

-o outputDirectory

The output directory in file syntax form.

-of outputFormat

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://github.com/oxygenxml/oxygen-resources-converter/releases/latest
https://github.com/oxygenxml/oxygen-resources-converter/releases/latest

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3270

The format of the output files. The possible values are: xhtml, dita, docbook4, docbook5, json,

yaml, or xml.

-ss (true|false) [only for Word to DITA, HTML to DITA, Markdown to DITA, DocBook to DITA, and

OpenAPI to DITA conversions]

Splits sections marked by titles or headings to separate files and create a DITA map. The

possible values are true or false (default).

-csd (true|false) [only for Markdown to DITA conversions]

Creates short description elements from the first paragraph before the headings. Possible

values are true or false (default).

-cs converterSettingsFile

A file that contains the Batch Documents Converter add-on preferences settings. It can be an xpr

file that contains project options or an xml file that contains global options. If not specified, the

operation uses the application's default settings.

Confluence to DITA

The Confluence to DITA conversion processes the HTML content generated by the Confluence export

process. For exporting, login to your Confluence account and navigate to the specific space that you want to

export. Go to Space Settings > Export space and choose to export it as HTML. The index.html file resulting

from this process has to be provided in the inputFiles argument.

Compile Framework Script

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor.

A custom framework (on page 3297) (document type) can be created using a special XML descriptor file (on

page 2241), either from scratch or by extending an existing built-in framework (such as DITA or DocBook) and

then making modifications to it.

The Compile Framework Script (compileFrameworkScript.sh, found in the scripts subfolder inside

Oxygen's installation directory) helps you to compile the script into the *.framework file that represents the

framework configuration. Although Oxygen XML Editor is now able to automatically compile and load scripts,

you might want to compile it yourself to obtain the resulting *.framework file if your framework runs on a

different version of Oxygen XML Editor.

Arguments for the Compile Framework Script

 sh scripts/compileFrameworkScript.sh -i "script1.exf" "script2.exf" "frameworksDir"

-i inputFiles

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3271

A list of space-separated Framework Extension Script Files (on page 2243) (*.exf) or directories

in file syntax form. If a directory is specified, the Framework Extension Script Files (on page

2243) are searched for inside it and in its child directories.

XSLT Stylesheets Documentation

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can generate documentation for XSLT Stylesheets from Oxygen XML Editor by using the Tools > Generate

Documentation > XSLT Stylesheet Documentation main menu action. The settings dialog box has an Export

settings option that can be used to export the settings to an XML configuration file. Once the settings are

exported, you can use the stylesheetDocumentation.sh script (found in the scripts subfolder inside

Oxygen's installation directory) to generate XSLT stylesheets documentation from the command line.

Sample Command-Line Arguments for the Generate XSLT Stylesheet Documentation Script

sh scripts/stylesheetDocumentation.sh xslFile [-cfg:configFile] | [-out:outputFile]

Tip:

For some GitHub use case samples of this script, see Oxygen Documentation Template and Oxygen

Documentation Action.

Related information

XML Schema Documentation (on page 3271)

WSDL Documentation (Deprecated) (on page 3276)

XML Schema Documentation

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can generate documentation for XML Schemas from Oxygen XML Editor by using the Tools > Generate

Documentation > XML Schema Documentation main menu action. The settings dialog box has an Export

settings option that can be used to export the settings to an XML configuration file. Once the settings are

exported, you can use the schemaDocumentation.sh script (found in the scripts subfolder inside

Oxygen's installation directory) to generate XML Schema documentation from the command line.

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/oxygen-script-documentation-template
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3272

Sample Command-Line Arguments for the Generate XML Schema Documentation Script

sh scripts/schemaDocumentation.sh schemaFile [-cfg:configFile] [-out:outputFile]

[-format:<value>] [-xsl:xslFile] [-split:<value>] [-openInBrowser:<value>]

Tip:

For some GitHub use case samples of this script, see Oxygen Documentation Template and Oxygen

Documentation Action.

Related information

XSLT Stylesheets Documentation (on page 3271)

WSDL Documentation (Deprecated) (on page 3276)

JSON Schema Documentation

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can generate documentation for a JSON Schema file from Oxygen XML Editor by using the Tools >

Generate Documentation > JSON Schema Documentation main menu action. This tool requires an additional

add-on to be installed, so the first time you invoke the action, Oxygen XML Editor presents a dialog box

asking if you want to install it. Once installed, you need to restart Oxygen XML Editor and the JSON Schema

Documentation action will invoke the tool.

You can use the jsonSchemaDocGen.sh script (found in the scripts subfolder inside Oxygen's installation

directory) to generate documentation from a JSON schema file using the command line.

Tip:

For some GitHub use-case samples for this script, see Oxygen Documentation Template and Oxygen

Documentation Action.

Arguments for the JSON Schema Documentation Script

sh scripts/jsonSchemaDocGen.sh filePath [-ofp outputFilePath] [-sb split by (location, components)] [-ea exclude

 annotations] [-ec exclude constraints] [-ep exclude properties] [-epp exclude pattern properties] [-ee exclude

 enumerations] [-es exclude source] [-eub exclude used by] [-ecp exclude compositions] [-ed exclude diagram] [-eim exclude

 image map] [-il include location] [-help | --help | -h | --h]

filePath

Mandatory argument specifying the path of the file that needs to generate documentation (it can

also be provided as a URL).

https://github.com/oxygenxml/oxygen-script-documentation-template
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/oxygen-script-documentation-template
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3273

-ofp output file path

Optional argument that specifies the path of the output file.

-sb split by (location, components)

Optional argument that specifies what type of split scenario is used (location, components). By

default, one file scenario is used.

-ea exclude annotations

Optional argument that specifies if the JSON schema annotations should be present. Default

value is true.

-ec exclude constraints

Optional argument that specifies if the JSON schema constraints should be present. Default

value is true.

-ep exclude properties

Optional argument that specifies if the JSON schema properties should be present. Default value

is true.

-epp exclude pattern properties

Optional argument that specifies if the JSON schema pattern properties should be present.

Default value is true.

-ee exclude enumerations

Optional argument that specifies if the JSON schema enumerations should be present. Default

value is true.

-es exclude source

Optional argument that specifies if the JSON schema source should be present. Default value is

true.

-eub exclude used by

Optional argument that specifies if the JSON schema used by should be present. Default value is

true.

-ecp exclude compositions

Optional argument that specifies if the JSON schema compositions should be present. Default

value is true.

-ed exclude diagram

Optional argument that specifies if the JSON schema diagram should be present. Default value

is true.

-eim exclude image map

Optional argument that specifies if the JSON schema image map should be present. Default

value is true.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3274

-il include location

Optional argument that specifies if the JSON schema location should be present. Default value

is false.

-help | --help | -h | --h

Displays help text.

OpenAPI Documentation

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can generate documentation for an OpenAPI file from Oxygen XML Editor by using the Tools > Generate

Documentation > OpenAPI Documentation main menu action. This tool requires an additional add-on to be

installed, so the first time you invoke the action, Oxygen XML Editor presents a dialog box asking if you want

to install it. Once installed, you need to restart Oxygen XML Editor and the OpenAPI Documentation action will

invoke the tool.

You can use the openApiDocGen.sh script (found in the scripts subfolder inside Oxygen's installation

directory) to generate documentation from an OpenAPI file using the command line.

Tip:

For some GitHub use case samples of this script, see Oxygen Documentation Template and Oxygen

Documentation Action.

Arguments for the OpenAPI Documentation Script

sh scripts/openApiDocGen.sh filePath [-ofp outputFilePath] [-sb split by (location, components)] [-ea exclude annotations]

 [-ec exclude constraints] [-ep exclude properties] [-epp exclude pattern properties] [-ee exclude enumerations] [-es

 exclude source] [-eub exclude used by] [-ecp exclude compositions] [-ed exclude diagram] [-eim exclude image map] [-il

 include location] [-help | --help | -h | --h]

filePath

Mandatory argument specifying the path of the file that needs to generate documentation (it can

also be provided as a URL).

-ofp output file path

Optional argument that specifies the path of the output file.

-sb split by (location, components)

Optional argument that specifies what type of split scenario is used (location, components). By

default, one file scenario is used.

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/oxygen-script-documentation-template
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3275

-ea exclude annotations

Optional argument that specifies if the JSON schema annotations should be present. Default

value is true.

-ec exclude constraints

Optional argument that specifies if the JSON schema constraints should be present. Default

value is true.

-ep exclude properties

Optional argument that specifies if the JSON schema properties should be present. Default value

is true.

-epp exclude pattern properties

Optional argument that specifies if the JSON schema pattern properties should be present.

Default value is true.

-ee exclude enumerations

Optional argument that specifies if the JSON schema enumerations should be present. Default

value is true.

-es exclude source

Optional argument that specifies if the JSON schema source should be present. Default value is

true.

-eub exclude used by

Optional argument that specifies if the JSON schema used by should be present. Default value is

true.

-ecp exclude compositions

Optional argument that specifies if the JSON schema compositions should be present. Default

value is true.

-ed exclude diagram

Optional argument that specifies if the JSON schema diagram should be present. Default value

is true.

-eim exclude image map

Optional argument that specifies if the JSON schema image map should be present. Default

value is true.

-il include location

Optional argument that specifies if the JSON schema location should be present. Default value

is false.

-help | --help | -h | --h

Displays help text.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3276

WSDL Documentation (Deprecated)

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can generate documentation for WSDL documents from Oxygen XML Editor by using the Tools > Generate

Documentation > WSDL Documentation main menu action. The settings dialog box has an Export settings

option that can be used to export the settings to an XML configuration file. Once the settings are exported, you

can use the wsdlDocumentation.sh script (found in the scripts subfolder inside Oxygen's installation

directory) to generate XML Schema documentation from the command line.

Sample Command-Line Arguments for the Generate WSDL Documentation Script

sh scripts/wsdlDocumentation.sh wsdlFile [-cfg:configFile] | [-out:outputFile]

Tip:

For some GitHub use case samples of this script, see Oxygen Documentation Template and Oxygen

Documentation Action.

Related information

XSLT Stylesheets Documentation (on page 3271)

XML Schema Documentation (on page 3271)

XML Instance Generator

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can generate multiple XML documents from an XML Schema from Oxygen XML Editor by using the Tools

> Generate Sample XML Files main menu action. The settings dialog box has an Export settings option that

can be used to export the settings to an XML configuration file. Once the settings are exported, you can use

the xmlGenerator.sh script (found in the scripts subfolder inside Oxygen's installation directory) to

generate multiple XML instance files from the command line.

Sample Command-Line Arguments for the Generate Sample XML Files Script

sh scripts/xmlGenerator.sh path/to/config/file [-verbose]

Extended Version of the Script and its Arguments

sh scripts/xmlGenerator.sh [[path_to_config_file] [-s XML_schema_path -r root [-n ns] [-o output_dir]

[-f instance_name] [-i num_of_instances]] [-verbose]]

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/oxygen-script-documentation-template
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://github.com/marketplace/actions/oxygen-xml-json-generate-documentation
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3277

path_to_config_file

The path to the file that contains the configuration to be used.

-s XML_schema_path

The path to the XML schema to be used for generating the XML file(s). This argument can also

be provided as a URL.

-n ns

The namespace used for the XML namespace declaration.

-r root

The root element for the generated file(s).

-o output_dir

The output directory to be used for storing the generated file(s).

-f instance_name

The pattern name to be used for the generated file(s). It is usually the name plus extension.

-i num_of_instances

The number of XML files to be generated.

-verbose

This argument can be specified to activate verbose logging.

Note:

Any value specified by the -s, -n, -r, -o, -f, or -i arguments overrides the corresponding value from the

configuration file, if that file is specified in the path_to_config_file argument.

Flatten XML Schema

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

You can flatten an XML schema that contains multiple includes and redefines to a single schema file from

Oxygen XML Editor by using the Tools > Flatten Schema main menu action. You can use the equivalent

flattenSchema.sh script (found in the scripts subfolder inside Oxygen's installation directory) to flatten

an XML schema from the command line.

Sample Command-Line Arguments for the Flatten Schema Script

sh scripts/flattenSchema.sh [-in:inputSchemaURL -outDir:outputDirectory

 [-flattenImports:<boolean_value>]

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3278

 | [-useCatalogs:<boolean_value>]

 [-flattenCatalogResolvedImports:<boolean_value>] [-verbose]]

Compare Directories

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Compare Directories script (compareDirs.sh, found in the scripts subfolder inside Oxygen's installation

directory) can be used to compare two directories and get the comparison results in various formats.

Arguments for the Compare Directories Script

sh scripts/compareDirs.sh firstDirPath [-a dirPathAlias] secondDirPath [-a dirPathAlias] [[baseDirPath [-a dirPathAlias]]

 [-sl suppressLinks] [-if includeFilesFilter] [-ia includeArchives] [-ef excludeFilesFilter] [-ed excludeSubdirsFilter]

 [-cm comparisonMode] [-alg comparisonAlg] [-als algStrength] [-iws ignoreWS] [-ipi ignorePI] [-icm ignoreComments]

 [-idt ignoreDocType] [-itn ignoreText] [-ins ignoreNS] [-ind ignoreNSDecl] [-inp ignorePrefixes] [-iao ignoreAttrOrder]

 [-iee ignoreExpStateForEmptyElems] [-enx XPathExprToExcludeNodes] [-out outputFormat] [-outfile outputFile] [-merge

 mergeOperation] [-mergeout outputDirPathForMerge]] [-help | --help | -h | --h]

firstDirPath

Mandatory argument that specifies the first directory path (it can also be provided as a URL

using 'file://' protocol).

secondDirPath

Mandatory argument that specifies the second directory path (it can also be provided as a URL

using 'file://' protocol).

baseDirPath

Optional argument that specifies the path of the base directory that the other two directories

will be compared against in a 3-way comparison (it can also be provided as a URL). If present, it

must appear immediately after the first two mandatory arguments.

-a dirPathAlias

Optional argument used as the directory path alias to be displayed in the HTML-formatted

operation report instead of a long directory path. If present, it must appear immediately after a

directory path.

-sl suppressLinks

Set this to true to suppress links to the compared directories and files shown in the HTML-

formatted operation report. Default value = false.

-if includeFilesFilter

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3279

Use this argument to only include files that match the specified pattern in the comparison (e.g.

.xml, .json). Default value = *.

-ia includeArchives

If set to true, files from archives are included in the comparison. Default value = false.

-ef excludeFilesFilter

Use this argument to exclude files that match the specified pattern from the comparison (e.g.

*.jpg).

-ed excludeSubdirsFilter

Use this argument to exclude sub-directories that match the specified pattern from the

comparison (e.g. .svn, _svn, .git).

-cm comparisonMode

Specifies the comparison mode. There are three modes available: content, binary, and

timestamp. Default value = content.

-alg comparisonAlg

Specifies the algorithm to be used for the comparison. Possible values: auto, chars, words, lines,

syntax_aware, xml_fast, and xml_accurate. Default value = auto.

-als algStrength

Specifies the strength of the algorithm to be used for the comparison. Possible values: low,

medium, high, and very_high. Default value = medium.

-iws ignoreWS

If set to true, whitespaces are ignored if differences consist only of whitespaces. Default value =

false.

-ipi ignorePI (only for the XML-aware algorithms)

If set to true, processing instructions are ignored in the comparison. Default value = false.

-icm ignoreComments (only for the XML-aware algorithms)

If set to true, comments are ignored in the comparison. Default value = false.

-idt ignoreDocType (only for the XML-aware algorithms)

If set to true, DOCTYPE sections are ignored in the comparison. Default value = false.

-itn ignoreText (only for the XML-aware algorithms)

If set to true, text content is ignored in the comparison. Default value = false.

-ins ignoreNS (only for the XML-aware algorithms)

If set to true, namespaces are ignored in the comparison. Default value = false.

-ind ignoreNSDecl (only for the XML-aware algorithms)

If set to true, namespace declarations are ignored in the comparison. Default value = false.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3280

-inp ignorePrefixes (only for the XML-aware algorithms)

If set to true, prefixes are ignored in the comparison. Default value = false.

-iao ignoreAttrOrder (only for the XML-aware algorithms)

If set to true, the order of attributes is ignored in the comparison. Default value = false.

-iee ignoreExpStateForEmptyElems (only for the XML-aware algorithms)

If set to true, the expansion state for empty elements is ignored in the comparison. Default value

= false.

-enx XPathExprToExcludeNodes

Specifies an XPath expression to exclude certain nodes from the comparison.

-merge mergeOperation

If set to true, a merge operation is invoked after the comparison. Default value = false.

Notes:

• This argument is considered only for 3-way comparisons (i.e. only if the

baseDirPath argument is provided).

• The merge operation is similar to the same process in any versioning system.

Following the comparison between the first and second directories (relative to

the base folder), all the differences of the type incoming are considered and the

content of the first directory is updated accordingly.

• Conflicting changes are not addressed.

• After the comparison, a report is created that provides details about the changes

that were made.

-mergeout outputDirPathForMerge

Invokes a merge operation after the comparison and also allows you to specify the output

directory path for the merge operation. For example, it allows you to specify a specific existing

or new directory where the results of the merge operation is saved, other than the first directory

path for the comparison (which is what happens when using only the -merge argument). The

path of the directory can also be provided as a URL using file:// protocol. This argument and

the -merge argument are not dependent on each other.

-out outputFormat

Specifies the format of the output. Possible values: yaml/grouped, yaml/raw, json/grouped,

json/raw, xml/grouped, xml/raw, html, html/ifcr, htm, or htm/ifcr. Default value = yaml/grouped.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3281

Notes:

• If you choose to save/redirect the console output to a file, this argument

establishes the type of the output file and its content is formatted accordingly.

If you skip specifying the "/grouped" or the "/raw" qualifiers, "/grouped" takes

precedence.

• If you choose the html or htm output format, it is recommended that you also

choose to save/redirect the console to the specified HTML file to view the

comparison result in your preferred browser.

• The "/ifcr" qualifier for the html or htm values is considered only if the -outfile

argument is also present. IFCR is an acronym for Include File Comparison

Reports and it means that, along with generating the directory comparison report,

separate file comparison reports will be generated for all modified file pairs.

These reports are available through links from the main report and are saved to

a specific directory based on the value provided by the outfile argument. It will

have the same parent directory and the same name as the outputFile plus -OXY-

FC-REPORTS added to the end of its name.

• The html value, as well as the grouped, raw, or ifcr qualifiers, are not considered if

the -merge argument is present.

-outfile outputFile

Specifies the path for an output file to save the comparison results, instead of presenting them

in the console. The content of the output file is formatted according to the -out argument. The

output file path can also be provided as a URL using file:// protocol.

-help | --help | -h | --h

Displays help text.

Notes:

• For boolean arguments, it is not necessary to provide the "true" value. Their presence in the

argument list is equivalent to setting their value to "true" (and their absence from the argument

list is equivalent to setting their value to "false"). However, constructs of the form bool_option

true|false are accepted and interpreted accordingly.

• File markers used in reports are as follows: M = modified, O1 = only found in 1st directory, O2 =

only found in 2nd directory.

Examples of Compare Directories Script

Example 1: Compare Directories and Include Archives While Excluding JPEGs

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3282

The following command results in archives being included in the comparison, while JPEGs are

excluded:

sh scripts/compareDirs.sh dir1 dir2 -ia true -ef *.jpg

Example 2: Compare Directories Only Including XML Files While Excluding Comments and the Attribute

Order

The following command only includes XML files (even from archives) in the comparison, while

ignoring the comments and attribute order:

sh scripts/compareDirs.sh dir1 dir2 -if *.xml -ia -iao -icm

Example 3: Compare Directories Only Including XML Files While Excluding Comments and the Attribute

Order

The following command redirects the comparison results to a JSON file named "results.json",

with "raw" mode formatting:

sh scripts/compareDirs.sh dir1 dir2 -out json/raw > results.json

Example 4: Compare Directories and Generate Comparison Report

It is possible to generate a report in the form of an HTML file that contains the results of the

comparison. The following command compares the directories and redirects the console to the

specified HTML file to view the comparison results:

sh scripts/compareDirs.sh dir1 dir2 -out html -outfile results.html

Figure 815. Example of an HTML Report for Directory Comparison

Resources

For more information about the file comparison script and how to generate comparison reports in various

formats, see the following resources:

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3283

• Webinar: The New Oxygen Compare and Merge Scripts.

• Video: Generating Directory Comparison Reports Using Command-Line Scripts.

Tip:

For some GitHub use case samples of this script, see Oxygen Comparison Template and Oxygen

Comparison Action.

Related information

Compare Directories Tool (on page 506)

Compare Files Script (on page 3283)

Compare Files

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Compare Files script (compareFiles.sh, found in the scripts subfolder inside Oxygen's installation

directory) can be used to compare files (2-way or 3-way) and get the comparison results in various formats.

Arguments for the Compare Files Script

sh scripts/compareFiles.sh firstFilePath secondFilePath [[baseFilePath] [-ct contentType] [-alg comparisonAlg]

 [-als algStrength] [-iws ignoreWS] [-ipi ignorePI] [-icm ignoreComments] [-icd ignoreCDATA] [-idt ignoreDocType]

 [-itn ignoreText] [-ins ignoreNS] [-ind ignoreNSDecl] [-inp ignorePrefixes] [-iao ignoreAttrOrder] [-iee

 ignoreExpStateForEmptyElems] [-enx XPathExprToExcludeNodes] [-out outputFormat]] [-help | --help | -h | --h]

firstFilePath

Mandatory argument that specifies the first file path (it can also be provided as a URL).

secondFilePath

Mandatory argument that specifies the second file path (it can also be provided as a URL).

baseFilePath

Optional argument that specifies the path of the base file that the other two files will be

compared against in a 3-way comparison (it can also be provided as a URL).

-ct contentType

Specifies the content type of the files to be compared. Possible values (based on known

extensions of some of the most common file types): .xml, .dtd, .css, .rnc, .xquery, .json,

.yaml, .java, .js, .c, .cpp, .pl, .py, .php, .sql, .bat, .sh, .properties, .txt. The

option is used to force the file handling to the specific type of file. Otherwise, the file extension is

auto-detected.

https://www.oxygenxml.com/events/2021/webinar_the_new_oxygen_compare_and_merge_scripts.html
https://www.oxygenxml.com/demo/generating_directory_comparison_reports_using_command_line.html
https://github.com/oxygenxml/oxygen-script-comparison-template
https://github.com/marketplace/actions/oxygen-xml-json-compare-branches
https://github.com/marketplace/actions/oxygen-xml-json-compare-branches
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3284

-alg comparisonAlg

Specifies the algorithm to be used for the comparison. Possible values: auto, chars, words, lines,

syntax_aware, xml_fast, and xml_accurate. Default value = auto.

-als algStrength

Specifies the strength of the algorithm to be used for the comparison. Possible values: low,

medium, high, and very_high. Default value = medium.

-iws ignoreWS

If set to true, whitespaces are ignored if differences consist only of whitespaces. Default value =

false.

-ipi ignorePI (only for the XML-aware algorithms)

If set to true, processing instructions are ignored in the comparison. Default value = false.

-icm ignoreComments (only for the XML-aware algorithms)

If set to true, comments are ignored in the comparison. Default value = false.

-idt ignoreDocType (only for the XML-aware algorithms)

If set to true, DOCTYPE sections are ignored in the comparison. Default value = false.

-itn ignoreText (only for the XML-aware algorithms)

If set to true, text content is ignored in the comparison. Default value = false.

-ins ignoreNS (only for the XML-aware algorithms)

If set to true, namespaces are ignored in the comparison. Default value = false.

-ind ignoreNSDecl (only for the XML-aware algorithms)

If set to true, namespace declarations are ignored in the comparison. Default value = false.

-inp ignorePrefixes (only for the XML-aware algorithms)

If set to true, prefixes are ignored in the comparison. Default value = false.

-iao ignoreAttrOrder (only for the XML-aware algorithms)

If set to true, the order of attributes is ignored in the comparison. Default value = false.

-iee ignoreExpStateForEmptyElems (only for the XML-aware algorithms)

If set to true, the expansion state for empty elements is ignored in the comparison. Default value

= false.

-enx XPathExprToExcludeNodes

Specifies an XPath expression to exclude certain nodes from the comparison.

-merge mergeOperation

If set to true, a merge operation is invoked after the comparison. Default value = false.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3285

Notes:

• This argument is considered only for 3-way comparisons (i.e. only if the

baseFilePath argument is provided).

• The merge operation is similar to the same process in any versioning system.

Following the comparison between the first and second files (relative to the base

file), all the differences of the type incoming are considered and the content of

the first file is updated accordingly.

• If conflicting changes are detected, the merge operation is aborted and the first

file remains unchanged.

• After the comparison and merge, a report is created that provides some details

about the changes that were made.

-mergeout outputDirPathForMerge

Invokes a merge operation after the comparison and also allows you to specify the output

directory path for the merged file. Instead of directly affecting the first compared file (which is

what happens when using only the -merge argument), a new file is created with the same name

as the first file and it is saved in the specified directory. The path of the output directory can also

be provided as a URL. This argument and the -merge argument are not dependent on each other.

-out outputFormat

Specifies the format of the output. Possible values: yaml, json, xml, html, htm, html/inlineCSS, or

htm/inlineCSS. Default value = yaml.

Notes:

• If you choose to save/redirect the console output to a file, this argument

establishes the type of the output file and its content is formatted accordingly.

• If you choose any of the html, html/inlineCSS, htm, or htm/inlineCSS output

formats, it is recommended that you also choose to save/redirect the console to

the specified HTML file to view the comparison result in your preferred browser.

• The inlineCSS qualifier for the html and htm values implies that the CSS-based

generated HTML code is more suitable to be directly inserted in emails (as most

email clients only accept inline CSS styling for HTML emails.

• The html and htm values (with or without the inlineCSS qualifier) are not

considered if the -merge argument is present.

-outfile outputFile

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3286

Specifies the path for an output file to save the comparison results, instead of presenting them

in the console. The content of the output file is formatted according to the -out argument. The

output file path can also be provided as a URL.

-help | --help | -h | --h

Displays help text.

Note:

For boolean arguments, it is not necessary to provide the "true" value. Their presence in the argument

list is equivalent to setting their value to "true" (and their absence from the argument list is equivalent

to setting their value to "false"). However, constructs of the form bool_option true|false are accepted

and interpreted accordingly

Examples of Compare Files Script

Example 1: Compare Files and View Results in XML Format

The following command compares the files (ignoring the namespaces and prefixes) and

redirects the console output to the results.xml file (XML-formatted):

sh scripts/compareFiles file1 file2 -ins -inp -ind -out xml > results.xml

Example 2: Compare Files with Line by Line Algorithm

The following command compares the files using the lines algorithm and ignores whitespaces:

sh scripts/compareFiles.sh file1 file2 -alg lines -iws

Example 3: Compare Files and Generate Comparison Report

It is possible to generate a report in the form of an HTML file that contains the results of the

comparison. The following command compares the files and redirects the console to the

specified HTML file to view the comparison results:

sh scripts/compareFiles.sh file1 file2 -out html -outfile outFileName.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3287

Figure 816. Example of File Comparison Report in HTML Format

Resources

For more information about the file comparison script and how to generate comparison reports in various

formats, see the following resources:

• Webinar: The New Oxygen Compare and Merge Scripts.

• Video: Generating File Comparison Reports Using Command-Line Scripts.

Related information

Compare Directories Script (on page 3278)

Merge Files with Change Tracking Highlights

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Merge Files with Change Tracking Highlights script (mergeFilesTrackChanges.sh, found in the scripts

subfolder inside Oxygen's installation directory) can be used to merge 2 XML files (based on a 2-way

comparison). The Author mode comparison results are saved as documents with highlighted tracked changes

that can later be reviewed and accepted or rejected.

Notice:

This script is intended to be used for merging XML documents (Oxygen XML Editor creates change

tracking markers only for XML file types. Using this script for document types other than XML, or for

https://www.oxygenxml.com/events/2021/webinar_the_new_oxygen_compare_and_merge_scripts.html
https://www.oxygenxml.com/demo/generating_file_comparison_reports_using_command_line.html
https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3288

documents that are not XML well-formed, causes document parsing errors and the merge operation

fails.

Arguments for the Merge Files with Change Tracking Highlights Script

sh mergeFilesTrackChanges.sh pathOfBaseFile pathOfFileToMergeWith [[pathOfOutFile] [-nb noBackupOfBaseFile]] [-help | --help

 | -h | --h]

pathOfBaseFile

Mandatory argument that specifies the path of the base file (it can also be provided as a URL).

pathOfFileToMergeWith

Mandatory argument that specifies the file to merge with (it can also be provided as a URL).

pathOfOutFile

Optional argument that specifies the path of the file where the merge operation results are saved

to (it can also be provided as a URL). If present, it must appear immediately after the first two

mandatory arguments. If absent, the merge results are saved to the base file, by overwriting

it. You cannot choose the same file specified as the file to merge with as the output file (the

merge process is aborted in this case). Also, if the output is a remote resource, its entire parent

directory structure must already exist. Otherwise, an I/O exception is thrown and the merge

results cannot be saved.

-nb noBackupOfBaseFile

Set to true if you do not want a backup copy of the base file on the hard disk. There are 2

situations when a backup of the base file is performed automatically and the backup operation

must succeed to proceed with the merge. Otherwise, the merge process is aborted if the output

file is not specified (i.e. the pathOfOutFile argument is not present) or the specified output file is

the base file itself.

The backup copy will have the same parent directory as the base directory and its name will be

the name of the base file suffixed by ".OXY.BAK". The default value is false, which means that for

either of the 2 previously mentioned situations, a backup copy of the base file will be kept on the

hard disk.

Note:

The backup copy can be deleted only if the base file and, implicitly, its backup copy are

local resources (not remote).

-help | --help | -h | --h

Displays help text.

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3289

Note:

For boolean arguments, it is not necessary to provide the "true" value. Their presence in the argument

list is equivalent to setting their value to "true" (and their absence from the argument list is equivalent

to setting their value to "false"). However, constructs of the form bool_option true|false are accepted

and interpreted accordingly

Examples of Compare Files Script

Example 1: Compare Files and View Results in XML Format

The following command results in merging file1 and file2 into outfile with changes

highlighted:

sh scripts/mergeFilesTrackChanges.sh file1 file2 outfile

Example 2: Compare Files with Line by Line Algorithm

The following command results in merging file1 and file2 by overwriting file1. However, the

file1 is backed up first:

sh scripts/mergeFilesTrackChanges.sh file1 file2

Example 3: Compare Files and Generate Comparison Report

The following command results in merging file1 and file2 by overwriting file1. Although file1

is initially backed up, the backup is eventually removed:

sh scripts/mergeFilesTrackChanges.sh file1 file2 -nb

Merge Directories with Change Tracking Highlights

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Merge Directories with Change Tracking Highlights script (mergeDirsTrackChanges.sh, found in the

scripts subfolder inside Oxygen's installation directory) can be used to merge 2 directories (based on a 2-

way comparison). All pairs of modified XML files involved in the process are merged by saving the Author

mode comparison results as documents with highlighted tracked changes that can be later reviewed and

accepted or rejected.

Arguments for the Merge Directories with Change Tracking Highlights Script

sh mergeDirsTrackChanges.sh pathOfBaseDir pathOfDirToMergeWith [[pathOfOutDir] [-nb noBackupOfBaseDir] [-nu

 noUpdateOfModifNonXMLFiles] [-na noAddingFilesOnlyPresentInDirToMergeWith] [-nd noDeletionOfFilesOnlyPresentInBaseDir] [-cm

 createChangeTrackingMarkersForAddedXMLFiles]] [-help | --help | -h | --h]

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3290

pathOfBaseDir

Mandatory argument that specifies the path of the base directory (it can also be provided as a

URL using file:// protocol).

pathOfDirToMergeWith

Mandatory argument that specifies the path of the directory to merge with (it can also be

provided as a URL using file:// protocol).

pathOfOutDir

Optional argument that specifies the path of the directory where the merge operation results

are saved to (it can also be provided as a URL using file:// protocol). If present, it must appear

immediately after the first two mandatory arguments. If absent, the merge results are saved

to the base directory, by overwriting it. You cannot choose the same directory specified as the

directory to merge with as the output directory (the merge process is aborted in this case).

-nb noBackupOfBaseDir

Set to true if you do not want a backup copy of the base directory on the hard disk. There are

2 situations when a backup of the base directory is performed automatically and the backup

operation must succeed to proceed with the merge. Otherwise, the merge process is aborted

if the output directory is not specified (i.e. the pathOfOutDir argument is not present) or the

specified output directory is the base directory itself.

The backup copy will have the same parent directory as the base directory and its name will be

the name of the base directory suffixed by ".OXY.BAK". The default value is false, which means

that for either of the 2 previously mentioned situations, a backup copy of the base directory will

be kept on the hard disk.

-nu noUpdateOfModifNonXMLFiles

Set to true if you want to keep the non-XML files at their versions from the base directory. The

default value is false, which means that all files in the output directory that are copies of non-

XML files in the base directory will be replaced by their corresponding files in the directory to

merge with.

-na noAddingFilesOnlyPresentInDirToMergeWith

Set to true if you want to skip adding the files that are only present in the directory to merge with

to the output directory as well. The default value is false, which means that all files that are only

present in the directory to merge with are also added to the output directory.

-nd noDeletionOfFilesOnlyPresentInBaseDir

Set to true if you want to preserve the files that are only present in the base directory. The default

value is false, which means that all files that are only present in the base directory and initially

copied to the output directory are deleted.

-cm createChangeTrackingMarkersForAddedXMLFiles

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3291

Set to true if you want to create change tracking markers for the XML files only present in the

directory to merge with (that will be added to the output directory). Although these files have no

counterparts in the base directory, change tracking markers of the type "entire content added/

inserted" will be created. The option is not necessarily intended for the merge process itself,

but it might prove a useful addition when you want to apply various Oxygen transformation

scenarios to the resulting output directory. For example, if you merge 2 versions of a DITA

project and then want a PDF to highlight the changes between those versions, you can apply

a transformation on the resulting ditamap file. The -am option presents the new DITA files as

"added content" in the resulting PDF. Note that the option is only considered if the -na argument

is absent or is explicitly set to false (default value).

-help | --help | -h | --h

Displays help text.

Notes:

• The merge process has a preliminary phase where the entire structure and content of the base

directory is copied to the output directory.

• For boolean arguments, it is not necessary to provide the "true" value. Their presence in the

argument list is equivalent to setting their value to "true" (and their absence from the argument

list is equivalent to setting their value to "false"). However, constructs of the form bool_option

true|false are accepted and interpreted accordingly.

• Once the merge operation is complete, a report file is created and saved in the output directory

(in a separate subdirectory named ".__OXY__MERGE__REPORT"). Loading the report file

in Oxygen XML Editor provides additional functionality. Aside from the fact that the report

provides an overview of the merge process, it also provides links to all the files in the resulting

output directory. You can use the respective links to load the XML files in the editor, then switch

to Author mode to review the tracked changes and accept or reject them.

Examples of Compare Directories Script

Example 1: Compare Directories Without Updating non-XML Files

The following command results in merging dir1 and dir2 into outdir, but without updating the

non-XML files in dir1 detected with changes to their version in dir2:

sh scripts/mergeDirsTrackChanges.sh dir1 dir2 outdir -nu

Example 2: Compare Two Directories and Overwrite the First One

The following command results in merging dir1 and dir2 by overwriting dir1. However, the dir1

is backed up first:

sh scripts/mergeDirsTrackChanges.sh dir1 dir2

Example 3: Compare Directories and Create Change Tracking Markers

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3292

The following command results in merging dir1 and dir2 into outdir and creating change

tracking markers (of the type "entire content added/inserted") for all XML files that are only

present in dir2 (to be added to the outdir):

sh scripts/mergeDirsTrackChanges.sh dir1 dir2 outdir -cm

Figure 817. Example of a Merged File with Change Tracking Markers Opened in Author Mode

Format and Indent Files

Attention:

This script is bundled with the all platforms distribution of Oxygen XML Editor. To run the script, you

are required to purchase a special scripting commercial license.

The Format and Indent Files script (batchFormatAndIndent.bat/batchFormatAndIndent.sh, found in the

scripts subfolder inside Oxygen's installation directory) can be used to format and indent multiple files at

once.

Arguments for the Format and Indent Files Script

batchFormatAndIndent -i inputFilesAndDirs [-f filesFilter] [-s formattingSettingsFile] [-r] [-ih] [-v]

-i inputFilesAndDirs

The input files and directories.

-f filesFilter

https://www.oxygenxml.com/xml_scripting/download.html
https://www.oxygenxml.com/oxygen_scripting.html

Oxygen XML Editor 27.1 | 23 - Scripting Oxygen | 3293

A filter for the input files, specified by using a file pattern (e.g. *.xml, t_*.dita).

-s formattingSettingsFile

A file that contains formatting settings. It can be an .xpr file that contains project options or an

.xml file that contains global options. If not specified, the operation uses the application's default

settings.

-r

Use this argument if the operation should be performed recursively for the specified input

directories.

-ih

Use this argument if you want the operation to also format and indent hidden files.

-v

Activates verbose logging. It is useful for debugging purposes.

24.
Glossary
Active Cell

Active cell refers to the selected cell where data is entered when you begin typing. Only one cell is

active at a time. The active cell is bounded by a heavy border.

Alternate CSS Style

The Alternate CSS Style refers to the choices in the bottom half of Styles drop-down menu (on the

toolbar) that makes it easy to apply style changes to your documents as they appear in Author mode

and the output without having to edit the CSS stylesheets. By default, the alternate styles are applied

like layers, they are merged sequentially with the main CSS style (on page 3298), and you can activate

any number of them. However, if you deselect the Enable multiple selection of alternate CSSs option

(on page 155) in the CSS subtab of the Document Type configuration dialog box (on page 148), the

alternate styles are treated like main CSS styles (on page 3298) and you can only select one at a time.

For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page

2254).

Anchor
An Anchor is used in various types of links to take the user to a specific location within the target

document. It is designated in a URL or in the value of the @href attribute with a # symbol followed by the

anchor that is defined in a target ID (for example href="MyTopic.dita#anchor).

Apache Ant
Apache Ant (Another Neat Tool) is a software tool for automating software build processes.

Block Element
A block element is intended to be visually separated from its siblings, usually vertically. For instance,

paragraphs and list items are block elements. It is distinct from a inline element, which has no such

separation.

Bookmap
A bookmap is a specialized DITA map used for creating books. A bookmap supports book divisions

such as chapters and book lists such as indexes.

Oxygen XML Editor 27.1 | 24 - Glossary | 3295

Callout
A callout is a string of text inside a graphic and is connected to a specific location in a document by a

line. Oxygen XML Editor uses callouts to present comments and other types of review modifications.

Canonicalize
To canonicalize something means to convert it to a standard format that everyone generally uses.

When using the term with regard to XML, it refers to the process of converting data that has more

than one possible representations into a standardization that conforms to the specification of an XML

document or document subset. It is helpful for applications that require the ability to test whether or not

the content of an XML document or subset has been changed.

Content Completion Assistant
The Content Completion Assistant refers to a very helpful mechanism in Oxygen XML Editor that

offers a list of proposed items that could be inserted at the current location, depending on the current

context, editing mode, and type of document. It also tries to determine the most logical choice in the

current editing context and displays that proposal at the beginning of the list.

For more information about this feature and how to invoke it, depending on your editing context, see the

following:

• Content Completion Assistant in Author Mode (on page 629)

• Content Completion Assistant in Text Mode (on page 544)

• Content Completion Assistant in Grid Mode (on page 599)

• Content Completion in XSLT Stylesheets (on page 911)

• Content Completion in Ant Build Files (on page 956)

• Content Completion in XML Schema (on page 1011)

• Content Completion in XQuery (on page 1053)

• Content Completion Assistance in WSDL Documents (on page 1071)

• Content Completion in CSS Stylesheets (on page 1095)

• Content Completion in LESS Stylesheets (on page 1099)

• Content Completion in Relax NG Schemas (on page 1107)

• Content Completion in NVDL Schemas (on page 1123)

• Content Completion in JavaScript Documents (on page 1224)

• Content Completion in Schematron Documents (on page 1246)

• Content Completion in SQF (on page 1284)

Dockable
A Dockable window is one that can be moved and resized, and either floated or pinned to a location,

allowing you to configure the workspace according to your preferences.

Oxygen XML Editor 27.1 | 24 - Glossary | 3296

Document Fragment
A document fragment represents a portion of an XML document's tree of nodes or content.

Document Type Association
In general terms, a Document Type Association is a set of rules that associate a document type with a

framework (on page 3297). In Oxygen XML Editor, Document Type Association also specifically refers

to a preferences page (on page 146) where you can create new custom frameworks or edit existing

ones. Note that frameworks (document types) that come built-in with Oxygen XML Editor are read-

only, but you can Extend (on page 147) or Duplicate (on page 147) them to configure them as custom

frameworks.

DITA Map

A DITA map is a component of the DITA framework (on page 3297) that provides the means for a

hierarchical collection of DITA topics that can be processed to form an output. Maps do not contain the

content of topics, but only references to them. These are known as topic references. Usually, the maps

are saved on disk or in a CMS with the extension .ditamap.

Maps can also contain relationship tables that establish relationships between the topics contained

within the map. Relationship tables are also used to generate links in your published document.

You can use your map or bookmap (on page 3294) to generate a deliverable using an output type such

as XHTML, PDF, HTML Help, or Eclipse Help.

DITA Open Toolkit
DITA Open Toolkit is an open-source publishing engine for content authored in the Darwin Information

Typing Architecture. It is a vendor-independent, open-source implementation of the DITA standard,

released under the Apache License, Version 2.0.

The toolkit supports all versions of the OASIS DITA specification, including 1.0, 1.1, 1.2, and 1.3.

DITA-OT

Related information

http://www.dita-ot.org/

DITA-OT-DIR

DITA_OT_DIR refers to the default directory that is specified for your DITA Open Toolkit distribution in

the Options > Preferences > DITA preferences page (on page 278).

For example, if you are using DITA-OT 4.2.3 that comes bundled with Oxygen XML Editor, the default

directory is: [OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT. You can also specify a custom

directory.

http://www.apache.org/licenses/LICENSE-2.0
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
http://www.dita-ot.org/

Oxygen XML Editor 27.1 | 24 - Glossary | 3297

Foldable Element
A foldable element refers to elements that can be collapsed and expanded in Oxygen XML Editor.

Foldable elements are marked with a small triangle (/) on the left side of the editor panel and you

can use that triangle to quickly collapse or expand them. This feature is helpful when you are working

with large documents and you want to temporarily hide blocks of content. You can right-click the triangle

to access additional collapse and expand actions (Collapse Other Folds, Collapse Child Folds, Expand

Child Folds, Expand All).

Framework
A framework refers to a package that contains resources and configuration information to provide

ready-to-use support for a vocabulary or document type. A framework is associated to a document type

according to a set of rules. It also includes a variety of settings that improve editing capabilities for its

particular file type. Oxygen XML Editor includes a Document Type Configuration Dialog Box (on page

148) that allows you to define the set of rules and customize various authoring mechanisms for new or

existing frameworks.

For advanced details about customizing your own framework, see the Creating and Configuring Custom

Frameworks (on page 2240) section.

Global Options
Global Options refers to the storage option (on page 321) in the Oxygen XML Editor preference pages

(Options > Preferences). If you select Global Options (on page 322), the options in that particular

preferences page are stored locally on your computer and are not accessible to other users (unless you

export them into an XML options file (on page 323) that can then be shared).

IDML
IDML is an abbreviation for Adobe InDesign Markup files.

Inline Element
An inline element is intended to be displayed in the same line of text as its siblings or the surrounding

text. For instance, strong and emphasis in HTML are inline elements. It is distinct from a block element,

which is visually separated from its siblings.

Java Archive
Java Archive (JAR) is an archive file format. JAR files are built on the ZIP file format and have the

.jar file extension. Computer users can create or extract JAR files using the jar command or an

archive tool.

Oxygen XML Editor 27.1 | 24 - Glossary | 3298

Key Space

The concept of a Key Space in DITA refers to a set of all possible keys that can be used in a DITA map

structure. A Key Space is established when a root map (on page 3301) defines a set of effective key

bindings. When Oxygen XML Editor processes key references, it determines the effective binding of a

given key to a resource in the context of the specified root map (on page 2967).

Keystore

A Keystore is an encrypted file that contains private keys and certificates. There are two types of

keystores that are supported in Oxygen XML Editor:

• Java Key Store (JKS)

• Public-Key Cryptography Standards version 12 (PKCS-12)

Main CSS Style

The Main CSS Style refers to the selection in the top half of the Styles drop-down menu (on the toolbar)

that makes it easy to quickly change the look of your documents as they appear in Author mode and the

output without having to edit the CSS stylesheets. The main CSS applies to the whole document and

you can also select one or more alternate styles (on page 3294) (listed in the bottom half of the drop-

down menu) that behave like layers and are merged sequentially with the main CSS style.

For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page

2254).

Main File

A Main File typically refers to the root of an imported or included tree of modules and this support

helps you simplify the configuration and development of XML projects. For more information, see the

Contextual Project Operations Using 'Main Files' Support (on page 430) section.

Oxygen Publishing Template

Oxygen Publishing Template defines all the aspects related with the look and feel(layout and styles) for

the WebHelp Responsive output.

The template is self-contained and packed as a ZIP archive making it easy t share with others. It

represents the main method for customizing the WebHelp Responsive output.

Related Information:

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1676)

Oxygen XML Editor 27.1 | 24 - Glossary | 3299

Perspective

In Oxygen XML Editor, a perspective refers to an interface layout geared towards a specific editing

environment. Each perspective includes a unique set of interface objects, toolbars, views, and features.

You can change the perspective by selecting the respective icon () in the top-right

corner of Oxygen XML Editor or by selecting the perspective from the Window > Open Perspective

menu.

The perspectives that are available in Oxygen XML Editor are:

• Editor (on page 354) - The most commonly used perspective and it is used to edit XML

documents.

• DITA (on page 356) - Provides an editing environment with default side-views and other

interface components that are optimal for working with DITA projects.

• XSLT Debugger (on page 357) - Used to detect problems in an XSLT transformation by

executing the process step by step in a controlled environment.

• XQuery Debugger (on page 359) - Used to detect problems in an XQuery transformation

process by executing the process step by step in a controlled environment

• Database (on page 360) - Used to browse and manage databases.

Plugin
In Oxygen XML Editor, a plugin is a component that adds extended functionality using a series of

extension points and can be installed as an add-on. For more information, along with a full list of add-

ons that are officially supported for Oxygen XML Editor, see Oxygen XML Add-on Repositories.

For more information, see the following topics:

• Installing and Updating Add-ons (on page 126)

• Automatic and Manual Methods for Installing Plugins (on page 2525)

• Packing and Deploying Plugins as Add-ons (on page 2557)

• Add-ons Preferences (on page 145)

• Extending Oxygen XML Editor with Plugins (on page 2522)

• General Configuration of an Oxygen XML Editor Plugin (on page 2522)

Pretty-Print
Pretty-print refers to formatting and indenting the source code in Text mode to make the content easier

to view and analyze. The formatting actions that are available in Oxygen XML Editor include:

https://www.oxygenxml.com/oxygen_sdk/community.html

Oxygen XML Editor 27.1 | 24 - Glossary | 3300

• Format and Indent Element - Available in the Source submenu of the contextual menu for the

current element.

• Format and Indent - Available on the toolbar for the entire current document.

• Format and Indent Files - Available in the contextual menu of the Project view (on page 414)

for one or more selected files.

Project Options
Project Options refers to the storage option (on page 321) in the Oxygen XML Editor preference pages

(Options > Preferences). If you select Project Options (on page 322), the options in that particular

preferences page are stored at project level in the project file (.xpr), which can easily be shared with

other users (on page 323).

QName
QName stands for "qualified name" and defines a valid identifier for elements and attributes. QNames

are used as URI references to reference particular elements or attributes within XML documents.

Quick Fix/Assist
The Quick Fix/Assist feature gives you easy access to some of the most commonly used actions for

the specific type of document you are editing. If one or more actions are available in the current context,

they are accessible via a yellow bulb help () placed at the current line in the stripe on the left side of

the editor in Text mode. You can also invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1

on macOS) keyboard shortcuts.

Quick Fix
The Quick Fix support in Oxygen XML Editor helps you resolve errors that appear in an XML document

by offering proposals to fix problems such as missing required attributes or invalid elements. Quick

Fixes are available in Text mode and Author mode and they can be presented and activated in several

ways.

• When hovering over an area of text where a validation error or warning occurs, the Quick Fix

proposals can be presented as links in a tooltip pop-up window.

• When hovering over an error or warning in Author mode, the Quick Fix proposals are presented in

a small drop-down menu.

• If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick

Fix icon () is displayed in the stripe on the left side of the editor. Clicking that icon will allow you

select from the available proposals.

• If you place the cursor in the highlighted area where a validation error or warning occurs, you can

also access the Quick Fix menu by pressing Alt + 1 (Command + Option + 1 on macOS) on your

keyboard.

• The Quick Fix menu also contains the option to automatically fix all validation errors in the

document where quick fix proposals were generated. By selecting Apply all default quick fix

Oxygen XML Editor 27.1 | 24 - Glossary | 3301

proposals, each default quick fix proposal for each validation problem reported in the document

will be applied (in bulk). The effect is similar to invoking the Apply all default quick fix proposals

action from the contextual menu in Text mode (on page 590), or the Apply all default quick fix

proposals action from the context menu in Author mode (on page 774).

Oxygen XML Editor also provides support for defining and customizing a library of Quick Fixes using the

Schematron language (on page 1272).

Root Map

A Root Map (or main map) specifies a DITA map (on page 3296) that defines a hierarchical structure

of submaps that are contained within the root map. Essentially, the root map defines a scope and

provides the mechanism to allow your defined keys to be propagated throughout the entire map

structure (this mechanism is also known as a key space (on page 3298)).

In Oxygen XML Editor, the DITA Maps Manager includes an option on its toolbar where you can easily

specify the root map (on page 2954), but there are also several other ways to select or change the root

map (on page 2967).

Space-Preserved Element
A spaced-preserved element refers to elements that require white spaces and line endings to be

preserved (for example, DITA <codeblock> and <pre> elements).

Subject Scheme Map

A Subject Scheme Map allows you to create custom controlled attribute values and to manage

metadata. Subject scheme maps use a key definition to define a collection of controlled values rather

than a collection of topics. The highest level of map that uses the set of controlled values must

reference the subject scheme map where those controlled values are defined.

A controlled value is a keyword that can be used as a value in a metadata attribute. For example, the

@audience metadata attribute may take a value that identifies the user group associated with a particular

content unit (for medical equipment, that might include therapist, oncologist, surgeon, radiologist, and so

on). In a subject scheme map, you can define a list of these audience values and you can then use these

values to profile your content. For more information, see Customizing Profiling Values with a Subject

Scheme Map (on page 3214).

.

Track Changes
The Track Changes feature allows you to review changes that you or other authors have made and

then accept or reject them. You can also manage the visualization mode of the tracked changes,

add comments to changes, and mark them as being done. These actions are easily accessible from

contextual menus, the toolbar, or the Review view (on page 678).

Oxygen XML Editor 27.1 | 24 - Glossary | 3302

For more information about this feature, see Managing Tracked Changes (on page 657).

WebHelp Output Directory

WebHelp_OUTPUT_DIR refers to the output directory where WebHelp transformation files will be

generated.

The output directory can be specified using the Output Directory text field in the Output tab of the

transformation scenario dialog box.

When running the WebHelp transformation from a command line, the output directory can be specified

using the -o or --output option.

Working Set

A Working Set refers to a set of files that will be used for the scope of search and refactoring

operations. Many of the search and refactoring wizards include a step where you can specify the scope

for the operation and you can choose one or more working sets to restrict the scope to that specified set

of files.

XML Catalog
An XML Catalog maps a system ID or a URI reference for a resource (stored either remotely or locally)

to a local copy of the same resource. Whenever XML processing relies on external resources (such as

referenced schemas and stylesheets), the use of an XML Catalog becomes a necessity when Internet

access is not available or the connection is slow.

Oxygen XML Editor includes default global catalogs as well as default catalogs for each of the built-in

frameworks (on page 3297), and you can also create your own. Oxygen XML Editor uses these XML

Catalogs to resolve references for document validation and transformations. For more information, see

Working with XML Catalogs (on page 842).

Index
Special Characters

:after pseudo-element

 2520

:before pseudo-element

 2520

A
Add fonts to built-in FO processor

 1580, 1581

Add hyphenation libraries to built-in DITA-OT FO

processor

 2106

Add hyphenation libraries to built-in FO processor

 1583

Add PDF image support to built-in DITA-OT FO

processor

 2106

Add PDF image support to built-in FO processor

 1583

Add Schematron Quick Fix

 1272

Add-on

 3299

Add-on preferences

 145

Add-ons

 2627, 3299

Check for add-on updates

 126

Install new add-ons

 126

Manage add-ons

 126

Adding custom views

 2529

Adding media resources in Author Mode

 761

Additional Framework plugin extension

 2534

Additional languages plugin extension

 2537

Additional XProc engine plugin extension

 2534

Addons

 2627

AI image rendering in Author mode

 736

Annotation preferences

 226

Ant build files

 953

Component Dependencies view

 962

Content completion

 956

Editing in Main Files context

 954

Highlight occurrences

 963

Outline view

 957

Quick Assist feature

 966

Quick fix support

 956

Refactoring actions

 965

Referenced/Dependent Resources view

 961

Search declarations

 964

Search references

 964

Syntax highlighting

 957

Transforming

 955

Validation

 954

Ant preferences

 275

a

Ant transformation scenario

 1545

Options tab

 1546

Output tab

 1549

Parameters tab

 1548

Appearance preferences

 137

Apply all default quick fix proposals

 894, 2667

Apply profiling attributes in Author Mode

 687

Apply profiling condition sets in Author Mode

 691

Archive preferences

 301

Archives

 2118

Browse

 2118

Edit files

 2123

EPUB

 2121

File browser

 2118

Migrate OOXML to DITA

 2124

Migrate OOXML to TEI

 2124

Modify

 2118

ODF

 2121

OOXML

 2121

Associate JSON schema in a framework

configuration

 1148

Associate schema directly in JAML documents

 1209

Associate schema directly in JSON documents

 1147

Associate schema directly in XML documents

 839

Associate schema in a framework configuration

 841

Associate schema in a validation scenario defined

in framework

 837

Associate schema through a validation scenario

 833, 1145

Associate schema to a JSON document

 1144

Associate schema to an XML document

 831

AsyncAPI documents

Content completion

 1468

Editing features

 1468

Validation

 1468

Attributes view in Author Mode

 641

Attributes view in Design mode

 1015

Attributes view in Text mode

 554

Author Action dialog box

 156

Author editing mode

 364, 601

Adding media resources

 761

Apply profiling attributes

 687

Apply profiling condition sets

 691

Attributes view

 641

Bidirectional text

b

 766

Content completion

 629

Contextual menu actions

 774

Create/Edit profiling attributes

 684

Create/Edit profiling condition sets

 689

Displaying referenced content

 608

Displaying the markup

 607

Drag and Drop

 625

Editing attributes

 622

Editing content

 612

Editing XML markup

 614

Elements view

 646

Entities view

 559, 647

Folding

 624

Form Controls

 772

Generating IDs

 769

Handling whitespaces

 611

Image Map Editor

 738

DITA

 739, 3035

DocBook

 745

TEI

 750

XHTML

 756

Image rendering

 734

AI images

 736

CGM images

 735

EPS images

 736

JAI images

 736

PSD images

 736

Inserting images

 733

MathML

 763

MathML equations in HTML output

 1793

Model view

 557, 645

Navigation

 604

Profiling

 683

Profiling colors and styles

 696

Profiling/Conditional Text menu

 694

Refreshing content

 769

Rendering documents

 603

Review tools

 656

Callouts

 672

Comments

 667

Highlights

 671

Review view

c

 678

Track Changes

 657

Schema annotations

 632

Selecting content

 627

Set schema for content completion

 632

Smart Paste

 626

Special characters

 766

Tables

 697

DITA

 710, 3042

DocBook

 700

Editing features

 698

JATS

 728

Sorting a table

 728

Sorting list items

 731

Sorting selected table rows

 730

Sorting tables with merged cells

 731

TEI

 727

XHTML

 724

Tags Display Mode

 607

Tooltips

 609

User roles

 602

Using Retina/HiDPI Images

 737

Validation errors

 795

Views

 637

Visual hints

 609

Author mode default operations

 2261

Author mode preferences

 184

Author mode serialization preferences

 205

Author serialization

 205

Author Stylesheet plugin extension

 2534

Auto generate IDs

 769

Auto recovery

 395

AutoCorrect

 472

Add dictionaries

 474

AutoCorrect preferences

 202

Automated tests

 2558

Automatic Spell Check

 469

Automatic validation

 790

Automatic validation in JSON

 1135

Automatically correct misspelled words

 472

Available memory

 353

Avoid line breaks at hyphens

 1985

B

d

Backup file

 395

BaseX database connection

 2162

BaseX database contextual menu actions

 2163

BaseX XQJ connection

 2165

Batch Documents Converter Addon - Convert

various document tpes like HTML, Markdown,

Word, Excel to XML formats like DITA XML,

DocBook, XHTML

 2627

Batch transformation

 426, 1621

Batch validation

 426

Bidirectional text in Author mode

 766

Bidirectional text in Grid mode

 599

Bidirectional text in Text mode

 576

Browsing for remote files with SharePoint

 2194

Built-in frameworks

DITA Map

 1399

DITA Topic

 1375

DocBook 4

 1329

DocBook 5

 1350

DocBook 5.1

 1350

DocBook Assembly

 1372

DocBook Targetset Map

 1374

DocBook Topic

 1373

EPUB

 1464

JATS

 1452

jTEI

 1451

TEI ODD

 1439

TEI P5

 1426

XHTML

 1412

Built-in XML refactoring operations

 860, 2631

C
Callout preferences

 195

Callouts in Author Mode

 672

Canonicalize files tool

 899, 2706

Certificates preferences

 277

CGM image rendering in Author mode

 735

CGM Image Support Addon - Experimental support

for rendering CGM 1.0 images in the Author visual

editing mode

 2627

Change language for interface

 348

Changing the font size

 612

Changing the font size in Text mode

 533

Character Map dialog box

 478

Check for add-on updates

 126

Check Spelling

 460

Check Spelling in multiple Files

e

 470

Check Well-Formedness action

 788

Checking Well-Formedness in JSON

 1134

CHM Error HHC5003: Compilation failed while

compiling file

 2924, 2924, 3193, 3194

CHM Error HHC5010: Cannot open file

 2924, 2924, 3193, 3194

Class Loader

 2556

Class Loader issues

 2554

Close file

 397

Code template preferences

 227

Code templates

 548, 635

Color preferences

 139

Comments in Author Mode

 667

Common problems and solutions

 2910

Compare Directories Against a Base tool

 512, 2755

Compare Directories tool

 506, 2749

Compare images

 512, 2755

Menus

 510, 2753

Toolbar

 509, 2752

Compare documents with change tracking

highlights

 2740

Compare Files tool

 486, 2719

Command-line arguments

 495, 2729

Integrate with Git

 495, 2729

Integrate with Sourcetree

 497, 2731

Menus

 502, 2736

Toolbar

 498, 2732

Comparing files and directories

 485

Compile LESS to CSS

 1100

Compile XSL Stylesheet for Saxon tool

 951, 2675

Components Validation plugin extension

 2535

Condition set preferences

 196

Configure Calabash with XEP

 1594

Configure transformation scenario

 1613

Configure Transformation Scenario dialog box

 1616

Configuring content completion proposals

 2303, 2312, 2318

Configuring options

 318

Configuring Oxygen

 132

Configuring Toolbars

 330, 375

Confluence

 3254

Content Completion Assistant in Grid Mode

 599

Content completion configuration file

(cc_config.xml)

 2303, 2312, 2318

Content completion helper views

 548, 634

f

Content completion in Author Mode

 629

Content completion in HTML

 1295

Content completion in JSON

 1142

Content completion in Text Mode

 544

Content completion in YAML

 1210

Content completion preferences

 220

Content Fusion Connector Addon - Create review

tasks and collaborate using the Oxygen Content

Fusion server

 2627

Contextual actions in YAML documents

 1215

Contextual menu actions in Author mode

 774

Contextual menu actions in JSON

 1160

Contextual menu actions in Text Mode

 579

Contextual menu of current editor tab

 407

Convert database to XML Schema

 1044, 2672

Convert JSON to XML

 1152, 2682

Convert JSON to YAML

 1158, 1214, 2681

Convert schema to another schema language

 1041, 2669

Convert XML to JSON

 1155, 2685

Convert XSD to JSON Schema

 1200, 2689

Convert YAML to JSON

 1159, 1213, 2681

Copy/Paste in Grid Mode

 597

Create JSON schema from learned document

structure

 1149

Create new transformation scenario

 1504

Create new validation scenario

 803

Create profiling attributes in Author Mode

 684

Create profiling condition sets in Author Mode

 689

Create Schematron Quick Fix

 1272

Creating frameworks

 2240

Creating Markdown documents

 1301

Creating new documents

 378

Creating publishing templates

 1713, 1853

CSS :has relational pseudo class

 2429

CSS @font-face rule

 2421

CSS @media rule

 2421

CSS attr() function

 2436

CSS extensions

 2444

Additional CSS properties

 2455

-oxy-append-content CSS property

 2455

-oxy-collapse-text property value

 2456

-oxy-display-tags property

 2457

-oxy-editable property

 2458

-oxy-floating-toolbar CSS property

g

 2458

-oxy-foldable property

 2459

-oxy-folded property

 2459

-oxy-link property

 2461

-oxy-link-activation-trigger property

 2462

-oxy-lower-cyrillic property values

 2457

-oxy-morph property value

 2462

-oxy-not-foldable-child property

 2459

-oxy-placeholder-content property

 2462

-oxy-prepend-content CSS property

 2455

-oxy-show-placeholder property

 2462

-oxy-style property

 2463

-oxy-tags-background-color property

 2464

-oxy-tags-color property

 2464

display property

 2462

list-style-type property

 2457

visibility property

 2456

Additional CSS selectors

 2451

Built-in CSS selectors

 2444

Custom CSS pseudo-classes

 2519

Custom form controls

 2516

Custom functions

 2464

oxy_action

 2465

oxy_action_list

 2467

oxy_add

 2465

oxy_attributes

 2468

oxy_base-uri

 2469

oxy_capitalize

 2469

oxy_compound_action

 2469

oxy_concat

 2471

oxy_divide

 2465

oxy_getSomeText

 2472

oxy_indexof

 2472

oxy_label

 2473

oxy_lastindexof

 2475

oxy_link-text

 2476

oxy_local-name

 2477

oxy_lowercase

 2477

oxy_modulo

 2465

oxy_multiply

 2465

oxy_name

 2477

oxy_parent-url

 2478

oxy_replace

h

 2478

oxy_substring

 2479

oxy_subtract

 2465

oxy_unescapeURLValue

 2480

oxy_unparsed-entity-uri

 2480

oxy_uppercase

 2481

oxy_url

 2481

oxy_xpath

 2482

Form Controls

 2484

Audio file player

 2485

Browser

 2486

Button

 2490

Button group

 2493

Checkbox

 2496

Combo box

 2499

Date picker

 2501

Editing processing instructions

 2518

HTML content

 2503

Pop-up

 2505

Text area

 2508

Text field

 2511

URL chooser

 2513

Video player

 2515

CSS Imports

 2419

CSS Inspector view

 2521

CSS Inspector View

 654

CSS namespace selector

 2426

CSS processors preferences

 274

CSS properties

 2430

CSS selectors

 2423

CSS Styles

 2254

CSS stylesheets

Content completion

 1095

Custom CSS properties

 1094

Editing features

 1094

Folding

 1097

Format and indent (pretty print)

 1097

Minifying

 1097

Outline view

 1096

Syntax highlighting

 1096

Validation

 1094

CSS subject selector

 2428

CSS target-counter() function

 2439

i

CSS target-counters() function

 2439

CSS validation preferences

 244

Current license was already activated

 123, 2931

Cursor navigation preferences

 188

Custom editor variables

 310

Custom form controls

 2516

Custom Protocol plugin extension

 2538

Custom system properties

 343

Custom validation engine preferences

 237

Custom XML refactoring operations

 872, 2644

Custom XSLT/XQuery transformation engine

preferences

 269

Customize document templates

 388

Customizing annotations for the Content

Completion Assistant

 2323

Customizing default options

 319

Customizing DITA transformations

 3181

D
Data Source Explorer view

 2125

Data Sources preferences page

 286

Database connection preferences

 286

Database drivers

 291

Database perspective

 360

Databases

 2125

Connections

 2130

BaseX

 2162

Contextual menu actions

 2163

XQJ

 2165

eXist

 2143

Connection wizard

 2144

Contextual menu actions

 2146

Manual configuration

 2145

Generic JDBC

 2160

IBM DB2

 2167

Contextual menu actions

 2170

JDBC-ODBC

 2161

MarkLogic

 2148

Contextual menu actions

 2156

Debugging

 2153, 2181

MarkLogic development

 2152

Microsoft SQL Server

 2131

Contextual menu actions

 2134

MySQL

 2158

Oracle

j

 2135

Contextual menu actions

 2138

PostgreSQL

 2140

Contextual menu actions

 2143

SharePoint

 2184

Browsing for remote files

 2194

Contextual menu actions

 2191

MS Azure authentication

 2195

SharePoint Browser view

 2189

WebDAV

 2171

Contextual menu actions

 2172

Data Source Explorer view

 2125

SQL support

 2174

Table Explorer view

 2127

XQuery

 2177

Debugging

 2181

MarkLogic

 2153, 2181

Drag and drop from Data Source Explorer

 2177

Transformations

 2178

Validation

 2178

Debug PDF transformation

 2107

Debugger preferences

 266

Debugging CSS stylesheets

 2521

Debugging XQuery

 2209

Breakpoints

 2232

Debugging Java extensions

 2238

Identify expressions

 2229

Information views

 2215

Breakpoints view

 2216

Context view

 2217

Messages view

 2219

Nodes/Values Set view

 2225

Output Mapping Stack view

 2221

Stack view

 2220

Templates view

 2224

Trace view

 2223

Variables view

 2226

XPath Watch view

 2218

Layout

 2210

Performance profiling

 2233

Profiling

Hotspots view

 2236

Invocation Tree view

 2235

k

Steps in a typical debugging process

 2228

Toolbar

 2211

Debugging XSLT

 2209

Breakpoints

 2232

Debugging Java extensions

 2238

Debugging XSLT that call Java extensions

 2238

Identify expressions

 2229

Information views

 2215

Breakpoints view

 2216

Context view

 2217

Messages view

 2219

Nodes/Values Set view

 2225

Output Mapping Stack view

 2221

Stack view

 2220

Templates view

 2224

Trace view

 2223

Variables view

 2226

XPath Watch view

 2218

Layout

 2210

Performance profiling

 2233

Profiling

Hotspots view

 2236

Invocation Tree view

 2235

Steps in a typical debugging process

 2228

Supported processors

 2239

Toolbar

 2211

Debugging XSLT that call Java extensions

 2238

Design editing mode

Attributes view

 1015

Components

 980

Grouping components

 1006

xs:all

 998

xs:alternative

 994

xs:any

 999

xs:anyAttribute

 1000

xs:assert

 1004

xs:attribute

 986

xs:attributeGroup

 988

xs:choice

 998

xs:complexType

 989

xs:element

 982

xs:field

 1003

xs:group

 995

l

xs:import

 996

xs:include

 996

xs:key

 1002

xs:keyRef

 1002

xs:notation

 997

xs:openContent

 1005

xs:override

 997

xs:redefine

 997

xs:schema

 981

xs:selector

 1003

xs:sequence

 998

xs:simpleType

 992

xs:unique

 1001

Contextual menu actions

 973

Editing actions

 971

Facets view

 970

Navigation

 968, 1177

Outline view

 1013

Palette view

 969

Design mode preferences

 207

Detect Main Files

 432

Detect Main Files from Project

 432

Diagram preferences

 181

Diff Directories tool

 506, 2749

Diff Files tool

 486, 2719

Diff tool

 486, 2719

Digital Signature

Canonicalize files

 899, 2706

Certificates

 899

Sign files

 901, 2707

Verify signature

 904, 2710

Digital Signatures

 896

Example of how to digitally sign XML content

 904

Overview

 896

Directory comparison appearance preferences

 300

Directory comparison preferences

 299

Displaying markup in Author mode

 607

Displaying referenced content in Author mode

 608

DITA

Abbreviated form

 3086

Coderef

 3109

Conkeyref

 3096

Conref

 3094

m

Conref Push

 3110

Content completion

 3139

Content References

 3093

Creating new projects

 2947

Cross references

 3131

DITA 1.3 support

 3257

DITA 2.0 support

 3259

DITA-OT Plugins

Create customization plugin

 3224

Define allowed parameters

 3229

Define transformation type

 3229

Define transtype

 3229

Install additional plugins

 3228

Third-party plugins

 3231

Filtering content

 3196

Getting started

 39, 2940

Glossary

 3086

Glossary terms

 3086

Image Map Editor

 739, 3035

Index creation

 2993

Keys

 3084

Linking

 3130

Cross reference

 3131

File reference

 3131

Hierarchical

 3131

Related links

 3131

Relationship tables

 3137

Web link

 3131

Main Files support

 3245

Maps

 2948

Add topics

 2971

Change order of topics

 2970

Chunking

 2995

Create bookmap

 2969

Create map

 2967

Create subject scheme

 2967

Create submap

 2968

Create table of contents

 2992

Define keys

 2984

DITA Maps Manager

 2950

Edit Properties dialog box

 2986

Find unreferenced resources

 2975

Insert Reference dialog box

n

 2976

Insert references

 2976

Insert topic groups

 2983

Insert topic headings

 2983

Managing maps

 2970

Move resources

 2973

Remove topics

 2971

Rename resources

 2973

Root map

 2967

Validate and Check for Completeness

 2995

XML catalogs

 2994

Metadata

 3251

Migrate Excel to DITA

 3252

Migrate Office documents to DITA

 3252

Migrate various formats to DITA

 3254

Migrate Word to DITA

 3252

Open Toolkit

 3223

Output

 3140

Customizing Transformations

 3181

Custom build file

 3183

DITA-OT Transformation Scenario

 3166

Syntax highlights in codeblocks

 1732, 3184

Profiling

 3196

Applying profiling attributes

 3200

Applying profiling condition sets

 3205

Attribute groups

 3212

Creating or editing profiling attributes

 3197

Creating or editing profiling condition sets

 3203

Customizing colors and styles for profiling

attributes

 3210

DITAVAL filter file

 3219

Filtering attribute values

 3219

Flagging content with DITAVAL file

 3221

Publishing profiling

 3222

Showing and filtering profiling attributes

 3207

Using subject scheme map

 3214

Projects

 2947

Publishing

 3140

Referenced/Dependent Resources view

 3247

Relationship tables

 3137

reltable

 3137

Reusing content

 3089

Branch Filtering

 3118

o

Code References

 3109

Conkeyref

 3096

Conref

 3094

Content Reference Push mechanism

 3110

Content References

 3093

DITA Reusable Components view

 3119

Edit Content References

 3098

Key Scopes

 3116

Reference Topics in multiple maps

 3092

Reusable components

 3112

Create Reusable Component

 3113

Insert Reusable Component

 3114

Reuse Content dialog box

 3101

Variable text

 3114

Specialization

 3240

Integration

 3240

Maps

 3242

Topics

 3243

Topics

 3013

Add images

 3029

Add media resources

 3032

Content completion

 3021

Convert topic types

 3024

Create new topic

 3015

Edit topics

 3021

Embed HTML Content

 763

Fast Create multiple topics

 3018

Image maps

 739, 3035

LaTeX equations

 3056

MathML equations

 3055

Tables

 710, 3042

Translations

 3243

Use external DITA-OT

 3234

Your first DITA document

 39, 2940

DITA and Markdown documents

 1311, 3080

DITA Authoring and Publishing

 2939

DITA Logging preferences

 285

DITA Map document type

 1399

Author mode actions

 1401, 3001

Open DITA map with content resolved

 3012

DITA Map menu actions

 1401, 3001

DITA Map Metrics Report transformation

 1495, 3161

p

DITA Map PDF - based on HTML5 & CSS

 1489, 3156

Abbreviated-form element

 2044

Accessibility

 1986, 1986

Add

Strings

 2088

Appendices

 1974

Page breaks

 1974

Archiving

 1987, 1987

Back matter

 1930

Style topics

 1931

Bookmap

 2047

Bookmarks

 1962

Change labels

 1962

Depth

 1963

Initial state

 1964

Remove numbering

 1964

Sections display

 1963

Changing the cover page

 2046

Changing the page size

 2046

Changing the TOC depth

 2046

Command Line

 1844

Comments

 1993

Styling

 1996

Cover page

 1898

Add empty pages

 1907

Add second cover

 1905

Add text

 1904

Background image

 1900

Copyright page

 1908

Place cover on left side

 1905

Place cover on right side

 1905

Title styling

 1903

Custom transformation parameters

 2045

Customization CSS

 1858

Customize

Strings

 2086

Debugging

 1860, 1872

XPath Expressions

Debug

 1864

Write

 1864

Deep numbering

 1937

Double sided pagination

 1958

Force even number of pages

 1960

Force odd number of pages

q

 1960

Start chapters on odd page

 1959

Style blank pages

 1959

Style first page

 1960

Draft watermarks

 1999

Conditional draft watermark

 2000, 2000

Figures

Figure numbering

 2018

Flagging content

 2001

Fonts

 1988

Asian languages

 1990

Content

 1988

Music

 1992

Symbols

 1989

Titles

 1988

Footer

 1873

Add copyright

 1886

Add topics

 1887

Chapter Number

 1894

Page Number

 1894

Footnotes

 1975

Reset Counter

 1976

Style Markers and Calls

 1975

Front matter

 1930

Page breaks

 1931

Style topics

 1931

Hazard

 2040

Header

 1873

Add background image

 1881

Add links

 1888

Change header at each chapter

 1882, 1884

Change separators

 1878

Changing the heading

 1893

Changing the heading language

 1894

Only keep chapter title

 1879

Style text

 1880

Styling

 1889

Underlined header

 1891, 1957, 1958

XPath

 1889

Header and Footer

Chapter first page

 1876

Font

 1875

Position

 1876

Size

r

 1874

Hyphenation

 1981

Define for a word

 1985

Enable or disable for tables

 1984

Entire map

 1983

i18n

 2086

Images

 2013

Borders

 2018

Centering

 2017

Control image size

 2017, 2017

Resolution

 2014

Rotate

 2015

Side by side with text

 2015, 2015

Size

 2014

Wide

 2015

Index

 1965

Add a leader

 1970

Change number format

 1971

Change style and letters

 1968

Style labels

 1969

Table style layout

 1971

Integration Server

Jenkins

 1844

Links

 2011

List of Figures

 1956

List of Tables

 1956

Localization

 2086

Logging

 1843

MathML equation customization

 2006

Metadata

 1916

Changing the keywords

 1926

Changing the title property

 1927

Cover page

 1921

Custom

 1920

Footer

 1924

Header

 1924

Index terms

 1919

Key values

 1928

Keywords

 1919, 1926

Removing the title property

 1927

Title property

 1927, 1927

Use key value in CSS

 1928

Modify

Strings

s

 2087

Notes

 2039

Numbering

 1932, 1937

Reset page numbering

 1942

Page breaks

 1895

Add a blank page after a topic

 1897

Avoid in lists and tables

 1895

Enforce number of lines

 1898

Force before or after topic

 1896

Page size

Change setting for an element

 1873

Changing

 1872

Orientation

 1873

Permissions

 2089

Programming Elements

 2034

Publication content

 2047

Security

 2089

Sign PDF

 2089

Styling

 2002

Table of contents

 1943

Change header

 1948

Display short description in TOC

 1951

Display subtopics

 1950

Display topic before TOC

 1950

Increase depth

 1946

Remove TOC entries

 1950

Start on odd page

 1949

Style

 1947

Tables

 2024

Centering

 2027

Customize

Cells

 2028

Columns

 2028

Rows

 2028

Layout

 2024

Rotate

 2025

Small images

 2027

Split Cell

Borders

 2030

Stripes

 2030

Text bleeding

 2026

Wide

 2025

Zebra stripes

 2030

Tasks

 2043

t

Titles

Change prefix

 2003

Layout

 2003

Remove prefixes

 2004

Separate page

 2005

Tracked changes

 1993

Style footnotes

 1997

Styling

 1996

Trademarks

 2045

Translation

 2086

Troubleshooting

Abbreviated-form

 2093

Cell borders missing

 2092

Date formatting issues

 2093

Disappearing lines

 2092

Error Chunk Copy-To

 2096

Error parsing

 2091

Failed to run pipeline error

 2092

Glossentry

 2093

Glossgroup

 2093

Glyph not available in font

 2091

Highlights span off page

 2095

I/O exception

 2091

PDF file is damaged

 2090

Unexpected Page Break

 2095

Unknown host

 2091

Videos

 2023

Key Reference

 2023

DITA Map to CHM (Compiled Help) transformation

 1494, 3160

DITA Map to MS Office Word transformation

 1493, 3159

DITA Map to PDF transformation

 1492, 3158

DITA Map to WebHelp Responsive transformation

 1475, 3141

DITA map to XHTML output customization

 3184

DITA Map to Zendesk transformation

 1496, 3162

DITA Map toolbar actions

 1401, 3001

DITA Map transformations

 1474, 3141

DITA Maps

Transformation scenarios

 1474, 3141

DITA maps preferences

 280

DITA new topics preferences

 283

DITA PDF - based on HTML5 & CSS

Add

Strings

 2088

Changing the cover page

 2046

Changing the page size

u

 2046

Changing the TOC depth

 2046

Command Line

 1844

Comments

Styling

 1996

Cover page

SVG templates

 1910

Custom transformation parameters

 2045

Customization CSS

 1858

Customize

Strings

 2086

Debugging

 1860

Figures

Figure numbering

 2018

i18n

 2086

Integration Server

Jenkins

 1844

Localization

 2086

Modify

Strings

 2087

Permissions

 2089

Security

 2089

Single topic

Cover page

 1910

Tracked changes

Styling

 1996

Translation

 2086

DITA perspective

 356

DITA preferences

 278

DITA Prolog Updater Addon - Automatically update

the created/modification dates and author name

in the DITA map and topic prologs

 2627

DITA publishing preferences

 285

DITA References View Addon - See all outgoing

and incoming references for the current DITA topic

 2627

DITA tables in Author Mode

 710, 3042

DITA to Confluence

 3254

DITA to Word

 1493, 3159

DITA topic

Transformation scenarios

 1500, 3165

DITA Topic document type

 1375

Author mode actions

 1376, 3057

DITA Topic menu actions

 1376, 3057

DITA Topic toolbar actions

 1376, 3057

DITA topic transformations

 1500, 3165

DITA Translation Package Builder Addon - Build

translation packages containing only the modified

DITA content to send to translation agencies

 2627

DITA-OT preferences

 278

DITA-OT transformation scenario

v

 1530

Advanced tab

 1541, 3177

Feedback tab

 1539, 3175

Filters tab

 1540, 3176

FO Processor tab

 1536, 3173

Output tab

 1544, 3180

Parameters tab

 1538, 3174

Templates tab

 1532, 3168

DITA-OT Transformation Scenario

 3166

DocBook 4 document type

 1329

Author mode actions

 1331

DocBook 4 menu actions

 1331

DocBook 4 toolbar actions

 1331

DocBook 5 document type

 1350

Author mode actions

 1352

DocBook 5 menu actions

 1352

DocBook 5 toolbar actions

 1352

DocBook 5.1 document type

 1350

DocBook Assembly

 1372

DocBook Checker Addon - Reports issues such

as broken internal and external links, problems

with images, or profiling conditions that conflict

with profiling preferences in Docbook 4 or 5 XML

documents

 2627

DocBook olink

 1347, 1369

DocBook tables in Author Mode

 700

DocBook Targetset Map document type

 1374

DocBook to DITA

 3254

DocBook to DITA transformation

 1501

DocBook to EPUB transformation

 1503

DocBook to PDF output customization

 2108

DocBook to PDF transformation

 1502

DocBook Topic document type

 1373

DocBook transformations

 1501

Document plugin extension

 2550

Document template preferences

 175

Document templates

Creating

 387

Customizing

 388

Sharing

 392

Document type association preferences

 146

Document type configuration dialog box

 148

Association rules tab

 150

Author tab

 154

Actions subtab

 155

w

Content Completion subtab

 168

Contextual Menu subtab

 165

CSS subtab

 154

Menu subtab

 165

Toolbar subtab

 168

Catalogs tab

 172

Classpath tab

 153

Extensions tab

 175

Schema tab

 152

Templates tab

 171

Transformation tab

 173

Validation tab

 174

Document Types

 1329, 1470

Documents with long lines

 484

Drag and Drop in Author Mode

 625

Drag and Drop in Grid Mode

 596

Drag and Drop in Text Mode

 541

DTD Entities

 851, 851

Duplicate transformation scenario

 1615

E
Edit mode preferences

 179

Edit profiling attributes in Author Mode

 684

Edit profiling condition sets in Author Mode

 689

Edit validation scenario

 813

Editing actions in Grid Mode

 594

Editing attributes in Author Mode

 622

Editing content in Author Mode

 612

Editing Modes

 363

Author

 364

Design

 365, 967

Grid

 364

Text

 363

Editing publishing templates

 1715, 1856

Editing XML markup in Author Mode

 614

Editing XML markup in Text Mode

 535

Editing XSLT

Compile XSL Stylesheet for Saxon tool

 951, 2675

Editor perspective

 354

Editor preferences

 177

Editor variables

 333

Custom editor variables

 343

Elements view in Author Mode

 646

Elements view in Text mode

 558

x

Elements view preferences

 316

Emmet Abbreviations Addon - Provides the means

for high-speed coding and editing in Text mode or

Author mode via a content assistance mechanism.

 2627

Encoding preferences

 176

Entities view

 559, 647

EPS image rendering in Author mode

 736

EPUB document type

 1464

Error: 1248 WARN

org.apache.fop.apps.FOUserAgent

 2922, 3192

Error: Anttask - Error rendering fo file

 2922, 3192

Error: Cannot find files.log file

 2916

Error: Could not create MSXML object

 2932

Error: java.io.FileNotFoundException

 2922, 3192

Error: Navigation to the web page was canceled

 2933

Error: OutOfMemory

 2908, 2909

Error: OutofMemoryError

 2933

Error: stack overflow

 2909

Error: Startup crash - Fault Module Name

nvoglv32.dll

 2916

Executing SQF in Other Documents

 1280

eXist database

Connection wizard

 2144

Manual configuration

 2145

eXist database connection

 2143

eXist database contextual menu actions

 2146

Export actions

 155

Export color themes

 137

Export Global Options

 324

Export Global Transformation Scenarios

 333

Export Global Validation Scenarios

 333

Export Layout

 325, 370

Export to Excel

 600

Exporting Markdown documents

 1299

Extending frameworks

 2240

Extending Oxygen with plugins

 2522

External DITA-OT plugin extension

 2538

External tool configuration

 302

External tool preferences

 302

External Tools

 2905

F
Facets view in Design mode

 970

Feedback Connector Addon - Connect to the

Oxygen Feedback server to see all the comments

added in your WebHelp output

 2627

File comparison appearance preferences

 299

y

File comparison preferences

 296

File properties

 408

File related actions in Text Mode

 577

File type preferences

 307

Filtering profiled content in Author mode

 694

Find actions

 456

Find All Elements action

 454

Find All Elements dialog box

 454

Find and invoke action

 456

Find/Replace action

 443

Find/Replace dialog box

 443

Find/Replace in Files action

 448

Find/Replace in multiple files

 448

Finding/Replacing text

Find All Elements dialog box

 454

Find/Replace dialog box

 443

Find/Replace in multiple files

 448

Navigating Find/Replace matches

 458

Quick Find toolbar

 458

Flatten Schema tool

 1045, 2673

Floating license servers

Server signature does not match

 123, 2931

FO processor preferences

 271

Folding elements in Author Mode

 624

Folding in Text Mode

 540

Folding in YAML documents

 1211

Font preferences

 141

Font size configuration

 612

Font size configuration in Text mode

 533

FOP Error

 2921, 2922, 3191, 3192

Force line breaks at hyphens

 1985

Form Control

Editing processing instructions

 2518

Form Controls

 2484

Audio file player

 2485

Browser

 2486

Button

 2490

Button group

 2493

Checkbox

 2496

Combo box

 2499

Date picker

 2501

HTML content

 2503

Pop-up

 2505

Render HTML frames

z

 2486

Render SVG

 2486

Text area

 2508

Text field

 2511

URL chooser

 2513

Video player

 2515

Form Controls in Author mode

 772

Format and Indent Files tool

 573, 2691

Format and Indent in Text Mode

 567

Format and indent in YAML documents

 1211

Format/Indent multiple files

 573, 2691

Formatting preferences

 211

Formatting Schematron Quick Fix Content

 1279

Framework customization

Configuring an extensions bundle

 2343

Configuring content completion proposals

 2303, 2312, 2318

Configuring document templates

 2338

Configuring transformation scenarios

 2327

Configuring validation scenarios

 2329

Configuring XML catalogs

 2339

Creating

 2240

Creating a basic document type association

 2407

Customizing annotations for the Content

Completion Assistant

 2323

Customizing Smart Paste mapping

 2299

Customizing the Content Completion Assistant

 2301, 2302

Deploying as Add-ons

 2400

Extending

 2240

Extensions

 2342

Author Action Event Handler

 2392

Author Edit Properties Handler

 2397

Author Extension State Listener

 2357

Author Image Decorator

 2347

Author Persistent Highlighter

 2349

Author Reference Resolver

 2353

Author Schema Aware Editing Handler

 2394

Author Table Cell Separator Provider

 2369

Author Table Cell Span Provider

 2366

Author Table Column Width Provider

 2360

Content Completion Handler

 2350

CSS Styles Filter

 2373

Custom Attribute Value Editor

 2371

Custom Drag and Drop Listener

 2352

Custom Object Insertion Handler

aa

 2396

Element Locator Provider

 2374

Link Target Element Finder

 2374

Profiling Conditional Text Provider

 2374

Unique Attributes Recognizer

 2349

XML Node Renderer Customizer

 2380

Sharing

 2399

Text to markup shortcut patterns

 2298

Translating annotations for the Content

Completion Assistant

 2323

Framework directory locations

 148

Frameworks

 1329, 1470

G
General plugin extension

 2547

Generate Documentation tools

 2692

Generate HTML report for directory comparison

tool

 521, 2764

Generate IDs in Author mode

 769

Generate Java Classes from XML Schema Addon

- Generate Java classes from an XML Schema

(XSD) file

 2627

Generate Java classes from XSD

 1047, 2675

Generate Java classes from XSD tool

 1047, 2675

Generate JSON Schema documentation

 1198, 2705

Generate JSON Schema tool

 1196, 2679

Generate OpenAPI documentation

 2705

Generate OpenAPI Documentation Addon -

Generate documentation for OpenAPI components

in HTML format, including annotations and cross

references

 2627

Generate Sample JSON Files tool

 1198, 2678

Generate Sample XML Files tool

 1026, 2661

Generate WSDL Documentation tool

 1085, 2702

Generate XML Schema Documentation tool

 1031, 2693

Customize PDF output for DITA

 1041

Customize PDF output for DocBook

 1040

Output formats

 1035

Generate XSLT Stylesheet Documentation tool

 944, 2696

Custom format

 950

HTML format

 947

Generating JSON Schema Documentation Addon

- Generate documentation for a JSON Schema file

in HTML format

 2627

Generic JDBC database connection

 2160

Getting familiar with the interface

 29, 368

Getting Started

 28

Getting Started with DITA

 39, 2940

Getting Started with Oxygen

ab

Help

 50

Interface

 29, 368

Resources to help you with Oxygen

 31

Shortcut keys

 54

Supported document types

 30

Your first XML document

 33

Git Client Addon- Checkout and Work with a Git

Repository

 2627

Global Options

 321

Global preferences

 134

Google Docs to DITA

 3254

Graphics and media

 1741

Grid editing mode

 364, 592

Bidirectional text

 599

Content Completion Assistant

 599

Copy/Paste

 597

Drag and Drop

 596

Editing actions

 594

Export to Excel

 600

Special characters

 599

Grid editing modes

Layout

 592

Navigation

 593

Grid mode preferences

 183

H
Help

Randomize XML text content

 53

Support related resources

 50

Using the Help menu

 50

Help resources

 1828

Hex Viewer tool

 2716

Hide file tabs

 404

Highlight ID occurrences in Text Mode

 579

Highlights

 524

Highlights in Author Mode

 671

HTML documents

Content completion

 1295

Editing features

 1291

Folding

 1296

Minification

 1296

Minifying

 1296

Outline view

 1297

Syntax highlighting

 1295

Validation

 1293

HTML to DITA

ac

 3254

HTTP authentication schemes

 403

HTTP connection settings

 313

HTTP floating license server

Allowed users list

 123

Replacing

 121

Upgrading

 122

HTTP license server

 112

Management and Statistics

 118

HTTPS troubleshooting

 401

Huge file editor

 483

Huge files

 483

Hyphenation

 1985

I
IBM DB2 database connection

 2167

IBM DB2 database contextual menu actions

 2170

ICU4J Library Add-on - Adds provides the entire

ICU4J JAR library used for sorting and collations

with the Saxon XSLT processor

 2627

ID generation

 769

Ignore validation problems

 827

Ignored validation problems preferences

 239

Image Map Editor in Author Mode

 738

Image Map Editor in DITA

 739, 3035

Image Map Editor in DocBook

 745

Image Map Editor in TEI

 750

Image Map Editor in XHTML

 756

Image maps

 2019

Image not found

 2019

Image preview pane

 481

Image rendering in Author mode

 734

Import color themes

 137

Import data dynamically

 2205

Import Global Options

 324

Import Global Transformation Scenarios

 333

Import Global Validation Scenarios

 333

Import preferences

 275

Import text files

 2197

Importing data

 2197

Importing data from a database

 2202

Importing data from Excel

 2199

Importing data from HTML files

 2204

Importing Data from text files

 2197

Increase memory

 353, 1832

Indenting Schematron Quick Fix Content

ad

 1279

Information view

 524

Information view preferences

 316

Insert File in Text mode

 577

Insert images in Author Mode

 733

Install DITA-OT plugins

 1498, 3164

Install new add-ons

 126

Installed fonts do not appear in Fonts preferences

 2925

Installing license server all-platform distribution

 115, 116

Installing license server on Windows

 114

Installing multiple license server instances

 118

Installing Oxygen

 87

Group deployment

 103

Linux Installation

 94

Linux/Unix Server Installation

 101

macOS Installation

 92

Transfer license key

 107

Upgrading

 124

Windows Installation

 88

Windows Server Installation

 99

Integrate DITA-OT plugins

 1498, 3164

Integrate Schematron Quick Fixes in a framework

 1281

Integrate Schematron rules in a framework

 1244

Integrating external tools

 2905

Introduction

 27

J
JAI images in Author mode

 736

JATS document type

 1452

Author mode actions

 1453

JATS menu actions

 1453

JATS tables in Author Mode

 728

JATS toolbar actions

 1453

Java system properties

 343

Java VM parameters

 349

JavaScript documents

 1221

Content Completion

 1224

Editing features

 1222

Outline view

 1226

Syntax highlighting

 1225

Validation

 1224

JCGM library

 735, 1470

JDBC-ODBC database connection

 2161

JSON documents

 1128

ae

Associate JSON schema in a framework

configuration

 1148

Associate schema

 1144

Associate schema directly in JSON documents

 1147

Associate schema through a validation scenario

 1145

Content completion

 1142

Contextual menu actions

 1160

Flatten schema

 1203

Folding

 1150

JSON to XML converter

 1152, 2682

JSON to YAML converter

 1158, 1214, 2681

Navigating references

 1132

Outline view

 1150

Presenting validation errors

 1137

Schema annotations

 1144

Syntax highlighting

 1149, 1202

Validating JSON schema

 1201

Validation

 1134

Against a schema

 1135

Automatic validation

 1135

Check Well-formedness

 1134

Manual validation

 1136

Resolving references to remote schemas

 1142

Sharing scenarios

 1141

Validation scenarios

 1139

XML to JSON converter

 1155, 2685

XSD to JSON Schema converter

 1200, 2689

YAML to JSON converter

 1159, 1213, 2681

JSON Lines documents

Content completion

 1203

Editing features

 1203

Validation

 1203

JSON schema

 1135, 1201

JSON Schema

 1173

JSON Schema Converter tool

 1200, 2689

JSON Schema Design mode

 365, 1175

Components

 1184, 1184

Contextual menu actions

 1180

Validation

 1195

JSON Schema Design Mode

Editing actions

 1179

JSON Schema diagram editor

 1175

Components

 1184, 1184

Contextual menu actions

af

 1180

Editing actions

 1179

Validation

 1195

JSON Schema Diagram Editor

Navigation

 1177

Palette view

 1177

JSON Schemas

Design mode editing

Navigation

 1177

Palette view

 1177

JSON to XML tool

 1152, 2682

JSON to YAML tool

 1158, 1214, 2681

JSON transformation scenario

FO Processor tab

 1553, 1588

Output tab

 1554, 1588

XQuery tab

 1556, 1604

XSLT tab

 1550, 1584

JSON transformation with XQuery

 1556

JSON transformation with XSLT

 1549

JSON validation scenarios

 1139

JSON-LD documents

Content completion

 1469

Editing features

 1469

Validation

 1469

JSON5 documents

Editing features

 1203

jTEI

document type

 1451

L
Large documents

 482

Large File Viewer tool

 2714

Large files

 482

Layout configuration

 325, 370

Layout preferences

 143

Learn document structure

 1149

LESS stylesheets

Compile to CSS

 1100

Content completion

 1099

Editing features

 1098

Syntax highlighting

 1100

Validation

 1099

Licenses

 105

Licensing

 104, 105

Licensing Oxygen

Floating license

Reserve floating license

 111

Floating licenses

 109

Register floating licenses for multiple users

 111

ag

Release a floating license

 110

Request a floating license

license server

 109

Live Tutorials Addon - Create and run tutorials for

learning how to edit a certain XML vocabulary with

Oxygen. The application will notify you when each

mission in a tutorial is successfully fulfilled

 2627

Load Layout

 325, 370

Localizing frameworks

 2340

Localizing SQF messages

 1281

Localizing the user interface

 348

Localizing XML refactoring operations

 893, 2660

Lock Handler plugin extension

 2539

Lock/Unlock XML tags in Text Mode

 576

Locking a floating license

 111

M
Mac Function Keys

 2931

Mac Touch Bar

 2931

Main Files

 430

Add files

 433

Detecting

 432

Enabling

 431

Overview

 431

Transformation

 434

Validation

 434

Manage add-ons

 126

Manage highlighted content in Text Mode

 574

Managing license server

 118

Manual validation actions

 790

Manual validation in JSON

 1136

Markdown documents

 1298

Actions in Markdown Editor

 1302

Creating Markdown documents

 1301

DITA

 1311, 3080

Markdown Editor

 1299

Rules and specifications

 1314

Syntax highlighting

 1310

Validation

 1310

Markdown Editor

 1299

Markdown preferences

 285

Markdown to DITA

 3254

MarkLogic database connection

 2148

MarkLogic database contextual menu actions

 2156

MarkLogic debugging

 2153, 2181

MarkLogic for the developer

ah

 2152

Markup transparency in Text Mode

 575

MathML equations in HTML output in Author

mode

 1793

MathML equations in WebHelp output

 1745

MathML notations in Author mode

 763

MathML preferences

 200

Media query

 2420

Memory availability

 353

Memory issues

 1832

Menu Shortcut Keys

 304

Merge directories with change tracking tool

 2767

Merge documents with change tracking tool

 2748

Message preferences

 317

Microsoft SQL Server database connection

 2131

Microsoft SQL Server database contextual menu

actions

 2134

Model view

 557, 645

Modular XML files

 845

Move file tabs

 404

Move XML resources

 851

MS Azure authentication

 2195

MSXML 3.0 and 4.0 preferences

 261

MSXML.NET preferences

 261

MySQL database connection

 2158

N
Named-User licenses

 105

Navigating in Text Mode

 529

Navigation in Author Mode

 604

Network connection preferences

 311

New DITA project

 2947

New document from templates

 387

New Document Wizard

 378

New from Templates Wizard

 387

New project

 46, 410

NISO Journal Article Tag Suite document type

 1452

Non-XML files

 409

NTLM

 403

NVDL schemas

 1120

Component Dependencies view

 1125

Content completion

 1123

Diagram Editor

 1120

Contextual menu actions

 1122

Full Model view

 1121

ai

Introduction

 1120

Logical Model view

 1122

Outline view

 1125

Refactoring actions

 1126

Search actions

 1126

Syntax highlighting

 1124

Validation

 1123

O
Olink element

 1347, 1369

Open DITA map with content resolved

 3012

Open File at Cursor in Text mode

 577

Open file at specific location

 394

Open file at start-up

 393

Open file in system application

 393

Open preferences

 208

Open Redirect plugin extension

 2540

Open remote document

 397

Open URL dialog box

 398

Open/Find Resource

In content

 440

In file paths

 443

In reviews

 443

Open/Find Resource dialog box

 437

Open/Find resource preferences

 308

Open/Find Resource view

 434

OpenAPI document type

 1466

OpenAPI test scenario documents

Content completion

 1467

Editing features

 1467

Validation

 1467

OpenAPI tester

 2690

OpenAPI Tester Addon - Testing tool for OpenAPI

files

 2627

Opening file

 392

Option Page Group plugin extension

 2541

Option Page plugin extension

 2540

Options Menu

Preferences

 132

Oracle database connection

 2135

Oracle database contextual menu actions

 2138

Out of memory

 1832

Out Of Memory error

 271, 2714

Outline view

 551, 637

Outline view in Design mode

 1013

Outline view preferences

aj

 316

OutOfMemory

 1832

oxy:allows-child-element function

 160

oxy:allows-global-element function

 162

oxy:current-selected-element function

 164

oxy:is-required-element function

 164, 164

oxy:platform function

 165

oxy:selected-elements function

 164

Oxygen AI Positron Assistant Addon - Provides

support for helping writers generate content by

using the Oxygen AI Positron service

 2627

Oxygen media type

 2420

Oxygen SDK

 2522

Automated tests

 2558

CMS integration

 2550

Configuration

 2522

Custom Protocol

 2555

Debugging a plugin

 2561

IntelliJ

 2560

Debugging an SDK extension

 2562

Deploying plugins as add-ons

 2557

Disable a plugin

 2562

Installation

 2525

Testing plugins and Java extensions

 2557

Types of Extensions

 2526

Oxygen Styles Basket

 1713, 1853

Oxygen XML Author Component

 2563

Customization

 2564

Customize frameworks

 2566

Customize options

 2567

Frequently Asked Questions

 2570

Insert references from a WebDAV connection

 2569

Installation requirements

 2564

Licensing

 2563

MathML support

 2567

Using plugins

 2569

Oxygen XML Web Author Component

 2573

P
Palette view in Design mode

 969

Palette view in JSON Design mode

 1177

PDF

CSS

 2924

Troubleshooting

 2924

PDF images

 735

PDF output

ak

 1827

PDF Output Customization

DocBook to PDF output

 2108

PDF output using Calabash XProc processor

 1594

PDF Processors

 1829

Performance preferences

 208

Perspectives

 354

Database

 360

DITA

 356

Editor

 354

XQuery Debugger

 359

XSLT Debugger

 357

Plugin extensions

 2526

Additional Framework

 2534

Additional XProc engine

 2534

Author Stylesheet

 2534

Components Validation

 2535

Contribute additional languages

 2537

Contribute external DITA-OT

 2538

Custom Protocol

 2538

Document

 2550

General

 2547

Lock Handler

 2539

Open Redirect

 2540

Option Page

 2540

Option Page Group

 2541

Refactoring Operations

 2544

Resource Locking

 2542

Saxon XQuery Transformer

 2546

Saxon XSLT Transformer

 2546

Selection

 2547

Styles Filter

 2542

Trusted Hosts

 2533

URL Stream Handler

 2542

validator

 2545

Workspace Access

 2526

Adding custom views

 2529

Workspace Access (JavaScript-based)

 2529

XQuery Transformer

 2546

XSLT Transformer

 2545

Plugin preferences

 302

Plugins

Automated tests

 2558

CMS integration

al

 2550

Configuration

 2522

Custom Protocol

 2555

Debugging

 2561

IntelliJ

 2560

Debugging an SDK extension

 2562

Deploying plugins as add-ons

 2557

Disable a plugin

 2562

Installation

 2525

Testing

 2557

Types of Extensions

 2526

PostgreSQL database connection

 2140

PostgreSQL database contextual menu actions

 2143

Preferences

 132

Add-ons

 145

Ant

 275

Appearance

 137

Application Layout

 143

Archive

 301

Author mode

 184

Author mode serialization

 205

AutoCorrect

 202

AutoCorrect Dictionaries

 204

Callouts

 195

Code Templates

 227

Colors

 139

Content Completion

 220

Content Completion annotations

 226

CSS formatting

 219

CSS Processors

 274

CSS Validator

 244

Cursor Navigation

 188

Custom Editor Variables

 310

Custom Engines

 269

Custom Validation Engines

 237

Data Sources

 286

Debugger

 266

Diagram

 181

Directories Comparison

 299

Directories Comparison Appearance

 300

DITA

 278

DITA Logging

 285

DITA Maps

am

 280

DITA New topics

 283

DITA publishing

 285

Document Templates

 175

Document Type Association

 146

Document type configuration dialog box

 148

Document Type locations

 148

Document Validation

 236

Edit Modes

 179

Editor

 177

Encoding

 176

External Tools

 302

File Types

 307

Files Comparison

 296

Files Comparison Appearance

 299

FO Processor

 271

Fonts

 141

Format

 211

Global

 134

Grid mode

 183

HTTP(S)/WebDAV

 313

Ignored validation problems

 239

Import

 275

JavaScript Content Completion

 224

JavaScript formatting

 219

JSON Content Completion

 225

JSON formatting

 220

Mark Occurrences

 235

Markdown

 285

MathML

 200

Menu Shortcut Keys

 304

Messages

 317

MSXML XSLT

 261

MSXML.NET XSLT

 261

Network Connection Settings

 311

Open

 208

Open/Find Resource

 308

Plugins

 302

Print

 243

Profiling/Conditional Text

 196

Project Level Settings

 145

Proxy

 311

Relax NG parser

an

 249

Review

 192

Sample XML Files Generator

 252

Save

 210

Saxon-HE/PE/EE XQuery

 264

Saxon-HE/PE/EE XQuery Advanced

 266

Saxon-HE/PE/EE XSLT

 257

Saxon-HE/PE/EE XSLT Advanced

 259

Saxon6 XSLT

 256

Schema Design mode

 207

Schema-Aware

 189

Schematron parser

 250

SFTP

 314

Spell Check

 239

Spell Check Dictionaries

 242

SSH

 315

SVN

 291

SVN Diff

 294

SVN Messages

 295

SVN Working Copy

 293

Syntax Highlight

 234

Text mode

 180

Trusted Hosts

 314

Views

 316

Whitespaces

 217

XML

 244

XML Catalog

 244

XML formatting

 214

XML Parser

 247

XML Refactoring

 278

XML Schema parser

 248

XML Signing Certificates

 277

XML Structure Outline

 316

XPath

 268

XPath Content Completion

 223

XPath formatting

 218

XProc

 254

XQuery

 263

XQuery formatting

 218

XQuery Profiler

 267

XSD Content Completion

 224

XSLT

 255

XSLT Content Completion

ao

 222

XSLT Profiler

 267

XSLT/XQuery

 255

XSLTProc

 260

YAML Content Completion

 225

Presenting validation errors in JSON

 1137

Print documents

 525

Print preferences

 243

Print Preview dialog box

 525

Printing

 525

Problems and solutions

 2910

Process overview

 1829

Profiling attribute preferences

 196

Profiling colors and styles in Author Mode

 696

Profiling content in Author Mode

 683

Profiling/Conditional Text menu in Author mode

 694

Project Level Settings preferences

 145

Project Options

 321

Project view

 414

Project view preferences

 316

Projects

 410

Adding items to projects

 46, 410

Batch transformations

 426

Batch validation

 426

Creating new projects

 46, 410

Main files

 430

Add files

 433

Detecting

 432

Enabling

 431

Overview

 431

Transformation

 434

Validation

 434

Managing resources

 414

Move resources

 424

Project view

 414

Rename resources

 424

Sharing

 427

Protect PDF

 2089

Proxy preferences

 311

PSD image rendering in Author mode

 736

Publishing

 1472

Q
Quick Assist feature in Text Mode

 578

ap

Quick Find toolbar

 458

Quick fix support in XML documents

 828

R
RDP performance issues

 2910

Read-only files

 484

Rectangular Selection feature

 541

Refactoring Operations plugin extension

 2544

Refactoring XML Documents

 856, 2628

Referenced/Dependent Resources view for DITA

documents

 3247

Referenced/Dependent Resources view for XML

documents

 848

Refreshing content in Author mode

 769

Registering floating licenses for multiple users

 111

Registering named-user license

 106

Registering subscription license

 107

Regular expressions syntax

 459

Relax NG schemas

 1101

Component Dependencies View

 1115

Content completion

 1107

Custom datatype library

 1120

Diagram Editor

 1102

Contextual menu actions

 1105

Full Model view

 1102

Introduction

 1102

Logical Model view

 1103

Symbols

 1104

Editing in Main Files context

 1101

Moving resources

 1114

Outline view

 1109

Quick Assist feature

 1118

Refactoring actions

 1116

Referenced/Dependent Resources view

 1112

Renaming resources

 1114

Search actions

 1116

Syntax highlighting

 1108

Validation

 1106

Release a floating license

 110

Remote Desktop performance issues

 2910

Rename XML resources

 851

Rendering DITA documents in Author Mode

 3027

Rendering documents in Author Mode

 603

Request a floating license from a license server

 109

Reserving a floating license

aq

 111

Reset Global Options

 324

Reset Layout

 325, 370

Resolve schemas through XML catalogs

 844

Resource Locking plugin extension

 2542

Restrict access to PDF content

 2089

Restricting Schematron Quick Fix operations

 1278

Results view

 560, 648

Make persistent copy of results

 565, 653

Retina/HiDPI Images in Author mode

 737

Review preferences

 192

Review tools in Author Mode

 656

Review view

 678

Run OpenAPI test scenario tool

 2690

S
S1000D document type

 1470

Sample XML File Generator preferences

 252

Save file

 395

Save preferences

 210

Save remote document

 397

Save template as button

 1534, 3171

Saxon 6 XSLT preferences

 256

Saxon HE/PE/EE advanced XQuery preferences

 266

Saxon HE/PE/EE advanced XSLT preferences

 259

Saxon HE/PE/EE XQuery preferences

 264

Saxon HE/PE/EE XSLT preferences

 257

Saxon XQuery Transformer plugin extension

 2546

Saxon XSLT and XQuery Transformer Addon -

Install various versions of the Saxon XSLT/XQuery

processor for use when transforming

 2627

Saxon XSLT Transformer plugin extension

 2546

Schema annotations in Author Mode

 632

Schema annotations in JSON

 1144

Schema annotations in Text Mode

 546

Schema Design mode

 365, 967

Schema Diagram Editor

 365, 967

Schematron

Editing features

 1229

Editing in Main Files context

 1243

Examples

 1231, 1259

Integrating in a framework

 1244

Sharing

 1244

Unit test (XSpec)

 1257

Validation

Against Schematron

 1243

ar

Schematron examples

 1231, 1259

Schematron Quick Fix examples

 1231, 1259

Schematron Quick Fix Operations

Add

 1273

Delete

 1273

Replace

 1273

String Replace

 1273

Schematron Quick Fixes

 831, 1259

Content Completion

 1284

Customizing

 1272

Defining

 1272

Embedded

 1286

Examples

 1231, 1259

Executing SQF in Other Documents

 1280

Formatting and Indenting

 1279

Highlight occurrences

 1284

Integrating in a framework

 1281

Localization

 1281

Multiple similar quick fixes

 1280

Refactoring actions

 1284

Restricting operations

 1278

Search actions

 1284

Sharing

 1281

SQF Operations

 1273

Use-When Condition

 1278

User Entry operation

 1278

Validation

 1283

Schematron schemas

Content completion

 1246

Syntax highlighting

 1247

Schematron Schemas

Embedded

 825, 1248

Highlight occurrences

 1253

Moving resources

 1253

Outline view

 1249

Quick Assist feature

 1256

Refactoring actions

 1254

Referenced/Dependent Resources view

 1251

Renaming resources

 1253

Search actions

 1254

Validation

 1246

Scratch Buffer

 484

Search actions for IDs

 845

Search dialog box

as

 443

Search multiple files

 448

Search preferences

 308

Searching documents

 434

Open/Find Resource

In content

 440

In file paths

 443

In reviews

 443

Open/Find Resource dialog box

 437

Open/Find Resource view

 434

Security

 2533

Security permissions

 2089

Selecting content in Author Mode

 627

Selecting content in Text Mode

 541

Selection plugin extension

 2547

Server signature does not match

 123, 2931

Set indent to zero in Text Mode

 572

Set schema for content completion in Author

Mode

 632

SFTP connection settings

 314

Share transformation scenarios

 1622

Share validation scenarios

 823

SharePoint Browser view

 2189

SharePoint contextual menu actions

 2191

SharePoint database connection

 2184

Sharing document templates

 392

Sharing frameworks

 2399

Sharing JSON validation scenarios

 1141

Sharing project level options

 323

Sharing project options file

 427

Minimize differences between versions

 430

Sharing publishing templates

 1718, 1858

Sharing Schematron Quick Fixes

 1281

Sharing Schematron rules

 1244

Sharing settings

 323

Sharing transformation scenarios

 427

Sharing validation scenarios

 427

Sharing XML refactoring operations

 892, 2659

Shortcut actions in Text Mode

 533

Shortcut key configuration

 304

Shortcut Keys

 54

Show change tracking/comments in DocBook PDF

 1503

Sign files tool

 901, 2707

Signing XML document preferences

at

 277

Simple text editor

 409

Single sign-on

 404

Smart Editing in Text Mode

 532

Smart paste preferences

 189

Smart Paste support in Author Mode

 626

Sorting a table in Author Mode

 728

Sorting list items in Author Mode

 731

Sorting selected table rows in Author Mode

 730

Sorting tables with merged cells in Author Mode

 731

Special character preferences

 208

Special characters

 474

Character Map

 478

Fallback Font Support

 477

Inserting symbols

 478

Unrecognized characters

 476

Unsupported characters

 476

Special characters in Author mode

 766

Special characters in Grid mode

 599

Special characters in Text mode

 576

Spell check preferences

 239

Spell checking

 460

Add dictionaries

 463

Add term lists

 466

Custom list of terms

 466

Customizing dictionaries and term lists

 462

Dictionaries and term lists

 462

Forbidden words

 466

Ignored words

 468

Learned words

 468

Multiple files

 470

Replace dictionaries

 466

Spell Checking

Automatic spell check

 469

SQF

 831, 1259

Content Completion

 1284

Customizing

 1272

Defining

 1272

Embedded

 1286

Examples

 1231, 1259

Executing SQF in Other Documents

 1280

Formatting and Indenting

 1279

Highlight occurrences

 1284

au

Integrating in a framework

 1281

Localization

 1281

Multiple similar quick fixes

 1280

Operations

 1273

Refactoring actions

 1284

Restricting operations

 1278

Search actions

 1284

Sharing

 1281

Use-When Condition

 1278

User Entry operation

 1278

Validation

 1283

SQF attribute: use-for-each

 1280

SQF examples

 1231, 1259

SQF multi-lingual support

 1281

SQL transformation scenario

 1612

SSH connection settings

 315

StackOverflowException error

 238

Startup parameter

Application launcher parameters

 350

Command-line script parameters

 352

Custom startup parameters file

 353

Startup parameters

 349

Status information

 524

Storing global options

 321

Storing project level options

 321

Storing XML refactoring operations

 892, 2659

Styles Filter plugin extension

 2542

Styles menu

 603, 3027

Subscription licenses

 107

Supported document types

 1327

Supported frameworks

OpenAPI

 1466

S1000D

 1470

Supported processors for XSLT/XQuery debugging

 2239

SVG

Syntax Diagrams

 2022

SVG files

 1287

SVG Viewer

 1288, 2717

SVG viewer in Results panel

 1290

SVG Viewer in Results panel

 1290

SVG Viewer tool

 1288, 2717

SVN Client

 2771

Authentication

 2788

Branches/Tags

av

 2821

Create branch/tag

 2821

Exporting resources

 2856

Importing resources

 2855

Manage resources

 2859

Merging

 2823

Patching

 2842

Relocate working copy

 2842

Switch repository location

 2840

Checking out a working copy

 2792

Define a working copy

 2791

Entering local paths and URLs

 2901

History dialog box

 2794

Manage repository locations

 2787

Menus

 2772

Preferences

 2901

Properties

 2820

Request history for a resource

 2820

Request status information for a resource

 2819

Resource History view

Directory Change Set view

 2886

Revision Graph

 2896

Share projects

 2790

Sparse checkouts

 2860

Status bar

 2786

Synchronize with the SVN repository

 2803

Conflicts

 2806

Integrating bug tracking tools

 2818

Send changes to repository

 2814

Update working copy

 2813

View differences

 2804

Technical issues

 2902

Toolbar

 2785

Use an existing working copy

 2795

Views

 2771

Annotations view

 2888, 2896

Compare Images view

 2894

Compare view

 2890

Dynamic Help view

 2896

Editor view

 2887

History view

 2881

Image Preview panel

 2894

Properties view

 2894

aw

Repositories view

 2861

Working Copy view

 2866

Working copy resource management

 2796

Add resources

 2796

Copy resources

 2800

Delete resources

 2799

Edit files

 2796

Ignore resources

 2798

Lock/Unlock resources

 2801

Move resources

 2801

Rename resources

 2801

SVN message preferences

 295

SVN preferences

 291

Swagger

 1466

Switch file tabs

 404

Syntax highlight preferences

 234

Syntax highlighting in Text Mode

 566

Syntax highlights in codeblocks

 1732, 3184

Syntax highlights in Text mode

 567

System properties

 343

T
Table editing features in Author Mode

 698

Table Explorer view

 2127

Tables in Author Mode

 697

Tags Display Mode

 607

Tags hide text

 2937

Tags transparency selector

 575

TEI ODD document type

 1439

Author mode actions

 1440

TEI ODD menu actions

 1440

TEI ODD toolbar actions

 1440

TEI P5 document type

 1426

Author mode actions

 1427

TEI P5 menu actions

 1427

TEI P5 toolbar actions

 1427

TEI tables in Author Mode

 727

Templates tab

 1532, 3168

Terminology Checker Addon - Report terminology

problems using both Vale and custom rule files.

 2627

Testing plugins and Java extensions

 2557

Text editing mode

 363, 529

Attributes view

 554

Bidirectional text

 576

ax

Content completion

 544

Contextual menu actions

 579

Drag and Drop

 541

Editing XML markup

 535

Elements view

 558

Entities view

 559, 647

File related actions

 577

Folding

 540

Format and indent

 567

Format and indent multiple files

 573, 2691

Highlight ID occurrences

 579

Lock/Unlock XML tags

 576

Manage highlighted content

 574

Markup transparency

 575

Model view

 557, 645

Navigation

 529

Rectangular selection

 541

Schema annotations

 546

Selecting content

 541

Set indent to zero

 572

Shortcut actions

 533

Smart Editing

 532

Special characters

 576

Syntax highlighting

 566

Syntax highlights

 567

Validation errors

 792

Views

 551

Text flows out of code blocks

 2937

Text invisible issue

 2936

Text mode preferences

 180

Text rendering issues

 2937

Text to markup shortcut patterns

 2298

Three-way directory comparison and merge tool

 512, 2755

Three-way file comparison

 486, 2719

Toolbar configuration

 330, 375

Touch Bar on Mac

 2931

Track Changes feature in Author Mode

 657

Trackpad scroll function doesn't work on Lenovo

Thinkpad

 2935

Transform DITA document to MS Word

 1493, 3159

Transformation parameters

 1833

Transformation Scenarios

 1472

Ant

ay

 1545

Apply transformation scenarios

 1615

Batch transformation

 1621

Built-in transformation scenarios

 1473

Configure

 1613

Configure Transformation Scenario dialog box

 1616

Configure XSLT processor extension paths

 1520, 1580

Custom XSLT processor

 1519, 1579

Debugging PDF transformations

 2107

DITA map

 1474, 3141

DITA Map Metrics Report

 1495, 3161

DITA Map PDF - based on HTML5 & CSS

 1489, 3156

DITA Map to CHM (Compiled Help

 1494, 3160

DITA Map to MS Office Word

 1493, 3159

DITA Map to PDF

 1492, 3158

DITA Map to WebHelp Responsive

 1475, 3141

DITA Map to Zendesk

 1496, 3162

DITA topic

 1500, 3165

DITA-OT

 1530, 3166

DocBook

 1501

DocBook to DITA

 1501

DocBook to EPUB

 1503

DocBook to PDF

 1502

DOCX DITA

 3252

Duplicate

 1615

Integrate DITA-OT plugins

 1498, 3164

Integrate external XProc engine

 1594

JSON with XQuery

 1556

JSON with XSLT

 1549

New

 1504

Sharing

 1622

Show Change Tracking and Comments

 1503

SQL

 1612

Supported XSLT processors

 1516, 1576

XML to PDF with CSS

 1528

XML with XQuery

 1520

XML with XSLT

 1504

XProc

 1590

XQuery

 1596, 1604

XSLT

 1564, 1584

Transformation Scenarios view

 1622

Transformation types

 1613

Transforming Documents

az

 1472

Translating annotations for the Content

Completion Assistant

 2323

Translating DITA content

 3243

Translator Helper Addon - Use Google Translate or

the DeepL Translator to translate content selected

in the Author visual editing mode

 2627

Tree editor preferences

 316

Tree Editor tool

 2719

Trusted hosts connection settings

 314

Two-way file comparison

 486, 2719

U
Unicode support

 475

Uninstalling Oxygen

 131

Upgrading Oxygen

 124

Uppercase plugin

 2548

URL Stream Handler plugin extension

 2542

Use-When SQF Condition

 1278

User Entry SQF operation

 1278

User roles in Author Mode

 602

Using a floating license offline

 111

UTF-8 BOM handling

 176

V

Vale Linter for Markdown and HTML Validation

Addon - Run the Vale linter over the currently

edited Markdown or HTML file

 2627

Validating JSON Documents

Automatic validation

 1135

Check Well-formedness

 1134

Manual validation

 1136

Resolving references to remote schemas

 1142

Sharing scenarios

 1141

Validating JSON Documents against a schema

 1135

Validating JSON schema

 1201

Validating XML Documents

 788

Against a schema

 790

Against a schema with embedded Schematron

 825, 1248

Against Schematron

 1243

Author Mode

 795

Automatic validation

 790

Check Well-formedness

 788

Create new validation scenarios

 803

Custom validators

 798

Customizing error messages

 798

Edit validation scenarios

 813

Manual validation

ba

 790

Resolving references to remote schemas

 824

Sharing scenarios

 823

Text Mode

 792

Validating XSLT that call Java extensions

 908

Validation engine 'StackOverflowException' error

 238

Validation errors in Author mode

 795

Validation errors in Text mode

 792

Validation preferences

 236

validator plugin extension

 2545

Verify Signature tool

 904, 2710

Visual hints in Author mode

 609

W
WebDAV connection

 2171

WebDAV connection settings

 313

WebDAV contextual menu actions

 2172

WebDAV over HTTPS

 401

WebHelp feature matrix

 1626

WebHelp Responsive

 1627

Add link to PDF

 1795

Adding audio objects

 1743

Adding favicon

 1742

Adding logo

 1741

Adding publishing templates to gallery

 1716

Adding videos

 1743

Adding welcome message

 1736

Built-in templates

 1674

Changing numbers for ordered lists

 1731

Changing scoring values in search results

 1745

Comments section

 1710

Context-sensitive help

 1641

Converting old publishing templates

 1718

Converting publishing templates to version 22

 1722

Converting publishing templates to version 23

 1721

Converting publishing templates to version 24

 1721

Converting publishing templates to version 24.1

 1720

Converting publishing templates to version 25

 1719

Converting publishing templates to version 27.1

 1718

Converting version 20 publishing templates to

version 21

 1722

Copy resources to output directory

 1789

Creating publishing templates

 1713, 1853

CSS styling

 1723

Custom search engine

bb

 1759

Custom search filter

 1748

Custom templates

 1674

Customizing main page layout

 1734

Customizing output with CSS

 1723

Customizing output with HTML content

 1725

Customizing the footer

 1737

Customizing the menu

 1734

Customizing the tiles

 1739

Disable caching

 1794

Edit link to launch Web Author

 1790

Editing publishing templates

 1715, 1856

Excluding topics from search results

 1749

Facebook Like button

 1766

Flagging DITA content

 1792

Google Analytics

 1771

Google Search

 1754

Index terms layout page

 1637

Inserting HTML

 1725

Local fonts

 1804

Localizing interface

 1764

Main layout page

 1628

Navigation links

 1734

Optimizing Japanese content indexing

 1746

Optimizing search results

 1762

PDF link

 1795

Previous/Next arrows

 1734

Publishing template descriptor file

 1676

Publishing template HTML fragments

 1683

Publishing template HTML page layout files

 1692

Publishing template package

 1676

Publishing template resources

 1679

Publishing template transformation parameters

 1681

Publishing template XSLT extensions

 1682

Publishing templates could not be loaded

 1718

Publishing templates troubleshooting

 1718

Right-to-left languages

 1766

Search features

 1638

Search layout page

 1634

Search rules

 1638

searchQuery parameter

 1761

Sharing publishing templates

 1718, 1858

Sharing templates

bc

 1674

Tabs

 1808

Topic layout page

 1631

Transformation parameters

 1810

Tweet button

 1768

Using publishing templates from a command

line

 1716

XSLT-Import

extension point

 1824

XSLT-import

extension points

 1775

XSLT-Parameter

extension point

 1824

WebHelp Responsive Templates tab

Save template as button

 1534, 3171

Whitespace handling in Author mode

 611

Workspace Access (JavaScript-based) plugin

extension

 2529

Workspace Access plugin extension

 2526

Writer Helper Addon - Helps technical writers

review, find similar content and provides

productivity tips

 2627

WSDL documents

 1069

Component Dependencies view

 1080

Content completion

 1071

Editing in Main Files context

 1070

Generate documentation for WSDL documents

 1085, 2702

Custom format

 1090

HTML format

 1089

Highlight occurrences

 1081

Moving resources

 1079

Outline view

 1073

Quick Assist feature

 1084

Refactoring actions

 1082

Referenced/Dependent Resources view

 1077

Renaming resources

 1079

Search actions

 1082

SOAP analyzer

 1090, 2710

Test remote files

 1093, 2712

Syntax highlighting

 1072

Validation

 1071

WSDL SOAP Analyzer tool

 1090, 2710

Test remote files

 1093, 2712

X
XHTML document type

 1412

Author mode actions

 1414

XHTML documents

Validation

bd

 1413

XHTML menu actions

 1414

XHTML tables in Author Mode

 724

XHTML toolbar actions

 1414

XInclude

 851, 853

XInclude 1.1 features

 853

XLIFF documents

Editing features

 1221

XML catalog preferences

 244

XML Catalogs

 842

XML documents

 528

Associate schema

 831

Associate schema directly in XML documents

 839

Associate schema in a framework configuration

 841

Associate schema in a validation scenario

defined in framework

 837

Associate schema through a validation scenario

 833

Author Mode editing

 601

Adding media resources

 761

Apply profiling attributes

 687

Apply profiling condition sets

 691

Attributes view

 641

Content completion

 629

Contextual menu actions

 774

Create/Edit profiling attributes

 684

Create/Edit profiling condition sets

 689

Drag and Drop

 625

Editing attributes

 622

Editing content

 612

Editing XML markup

 614

Elements view

 646

Entities view

 559, 647

Folding

 624

Form Controls

 772

Generating IDs

 769

Image Map Editor

 738

DITA

 739, 3035

DocBook

 745

TEI

 750

XHTML

 756

Image rendering

 734

AI images

 736

CGM images

 735

EPS images

be

 736

JAI images

 736

PSD images

 736

Inserting images

 733

MathML

 763

MathML equations in HTML output

 1793

Model view

 557, 645

Navigation

 604

Profiling

 683

Profiling colors and styles

 696

Profiling/Conditional Text menu

 694

Refreshing content

 769

Rendering documents

 603

Review tools

 656

Callouts

 672

Comments

 667

Highlights

 671

Review view

 678

Track Changes

 657

Schema annotations

 632

Selecting content

 627

Set schema for content completion

 632

Smart Paste

 626

Tables

 697

DITA

 710, 3042

DocBook

 700

Editing features

 698

JATS

 728

Sorting a table

 728

Sorting list items

 731

Sorting selected table rows

 730

Sorting tables with merged cells

 731

TEI

 727

XHTML

 724

User roles

 602

Using Retina/HiDPI Images

 737

Code templates

 548, 635

DTD Entities

 851, 851

Editing in Main Files context

 845

Grid Mode editing

 592

Content Completion Assistant

 599

Copy/Paste

 597

Drag and Drop

bf

 596

Editing actions

 594

Export to Excel

 600

Learn document structure

 841

Moving resources

 851

Outline view

 551, 637

Quick Assist feature

 578

Quick fix support

 828

Refactoring

 856, 2628

Built-in operations

 860, 2631

Custom operations

 872, 2644

Localizing operations

 893, 2660

Sharing operations

 892, 2659

Storing operations

 892, 2659

Referenced/Dependent Resources view

 848

Renaming resources

 851

Resolve schemas through XML catalogs

 844

Search actions for IDs

 845

Text Mode editing

 529

Attributes view

 554

Content completion

 544

Contextual menu actions

 579

Drag and Drop

 541

Editing XML markup

 535

Elements view

 558

Entities view

 559, 647

File related actions

 577

Folding

 540

Format and indent

 567

Highlight ID occurrences

 579

Lock/Unlock XML tags

 576

Manage highlighted content

 574

Markup transparency

 575

Model view

 557, 645

Navigation

 529

Rectangular selection

 541

Schema annotations

 546

Selecting content

 541

Set indent to zero

 572

Shortcut actions

 533

Smart Editing

 532

Syntax highlighting

 566

Validation

bg

 788

Against a schema

 790

Against a schema with embedded

Schematron

 825, 1248

Author Mode

 795

Automatic validation

 790

Check Well-formedness

 788

Create new validation scenario

 803

Custom validators

 798

Customizing error messages

 798

Edit validation scenario

 813

Manual validation

 790

Resolving references to remote schemas

 824

Sharing scenarios

 823

Text Mode

 792

XInclude

 851, 853

XML catalogs

 842

XML documents without a schema

 841

XML parser preferences

 247

XML refactoring preferences

 278

XML Refactoring tool

 856, 2628

Built-in operations

 860, 2631

Custom operations

 872, 2644

Localizing operations

 893, 2660

Sharing operations

 892, 2659

Storing operations

 892, 2659

XML Schema Design mode

 365, 967

XML Schema Diagram Editor

 365, 967

Attributes view

 1015

Components

 980

Contextual menu actions

 973

Edit namespaces

 1009

Editing actions

 971

Facets view

 970

Navigation

 968

Outline view

 1013

Palette view

 969

Validation

 1007

XML Schema Regular Expression Builder tool

 1047, 2713

XML Schemas

 966

Attributes view

 1015

Component Dependencies view

 1020

Content completion

 1011

bh

Convert DB Structure to XML Schema tool

 1044, 2672

Design mode editing

 365, 967

Components

 980

Grouping components

 1006

xs:all

 998

xs:alternative

 994

xs:any

 999

xs:anyAttribute

 1000

xs:assert

 1004

xs:attribute

 986

xs:attributeGroup

 988

xs:choice

 998

xs:complexType

 989

xs:element

 982

xs:field

 1003

xs:group

 995

xs:import

 996

xs:include

 996

xs:key

 1002

xs:keyRef

 1002

xs:notation

 997

xs:openContent

 1005

xs:override

 997

xs:redefine

 997

xs:schema

 981

xs:selector

 1003

xs:sequence

 998

xs:simpleType

 992

xs:unique

 1001

Contextual menu actions

 973

Edit namespaces

 1009

Editing actions

 971

Facets view

 970

Navigation

 968

Palette view

 969

Validation

 1007

Editing in Main Files context

 1009

Flatten Schema tool

 1045, 2673

Generate documentation for XML Schema

 1031, 2693

Customize PDF output for DITA

 1041

Customize PDF output for DocBook

 1040

Output formats

 1035

bi

Generate Sample XML Files tool

 1026, 2661

Generate/Convert Schema tool

 1041, 2669

Highlight occurrences

 1022

Moving resources

 1019

Outline view

 1013

Quick Assist feature

 1024

Refactoring actions

 1022

Referenced/Dependent Resources view

 1017

Regular Expressions Builder

 1047, 2713

Renaming resources

 1019

Search actions

 1022

Set version

 1050

Syntax highlighting

 1012

Text mode editing

 1009

Validation

 1010

XML Schema 1.1 support

 1049

XML to JSON tool

 1155, 2685

XML to PDF with CSS transformation scenario

 1528

CSS tab

 1529

Output tab

 1530

XML transformation with XQuery

 1520

XML transformation with XSLT

 1504

XPath Expressions

 2109

Catalogs

 2117

Prefix mapping

 2117

Toolbar

 2110

XPath Builder view

 2112

XPath Results view

 2115

XProc Scripts

Editing features

 1227

XProc transformation scenario

 1590

Inputs tab

 1591

Options tab

 1594

Outputs tab

 1592

Parameters tab

 1592

XProc tab

 1591

XQuery

 1052

Content completion

 1053

Folding

 1055

Format and Indent

 1055

Generate HTML documentation

 1063, 2700

Input view

 1061

Outline view

bj

 1056

Sequence view

 1064

Syntax highlighting

 1054

Transformations

 1064

Sequence view

 1064

Updating XML documents

 1068

XQJ

 2180

Unit test (XSpec)

 1068

Updating XML documents

 1068

Validation

 1052

XQuery Builder view

 1057, 1169

XQuery Debugger perspective

 359, 2209

Breakpoints

 2232

Debugging Java extensions

 2238

Identify expressions

 2229

Information views

 2215

Breakpoints view

 2216

Context view

 2217

Messages view

 2219

Nodes/Values Set view

 2225

Output Mapping Stack view

 2221

Stack view

 2220

Templates view

 2224

Trace view

 2223

Variables view

 2226

XPath Watch view

 2218

Layout

 2210

Performance profiling

 2233

Profiling

Hotspots view

 2236

Invocation Tree view

 2235

Steps in a typical debugging process

 2228

Toolbar

 2211

XQuery Documentation tool

 1063, 2700

XQuery preferences

 263

XQuery Profiler preferences

 267

XQuery transformation on JSON scenario

 1604

XQuery transformation scenario

 1596

FO Processor tab

 1526, 1561, 1601, 1609

Output tab

 1526, 1562, 1602, 1610

XQuery tab

 1521, 1596

XQuery Transformer plugin extension

 2546

bk

XSD to JSON Schema Converter Addon -

Converting an XML Schema file (XSD) to a JSON

Schema file

 2627

XSD to JSON Schema tool

 1200, 2689

XSL-FO processor

 1580

XSLT

Component Dependencies view

 928

Component documentation

 931

Content completion

 911

Content completion in XPath expressions

 913

Editing features

 905

Editing in Main Files context

 906

Generate documentation for XSLT stylesheets

 944, 2696

Custom format

 950

HTML format

 947

Highlight occurrences

 930

Input view

 923

Moving resources

 927

Outline view

 918

Quick Assist feature

 939

Quick fix support

 909

Refactoring actions

 934

Referenced/Dependent Resources view

 925

Renaming resources

 927

Search declarations

 930

Search references

 930

Syntax highlighting

 918

Text Value Templates

 933, 934

Unit test (XSpec)

 941

Validating XSLT that call Java extensions

 908

Validating XSLT with custom engines

 908

Validation

 906

XPath Tooltip Helper

 917

XSLT Debugger perspective

 357, 2209

Breakpoints

 2232

Debugging Java extensions

 2238

Debugging XSLT that call Java extensions

 2238

Identify expressions

 2229

Information views

 2215

Breakpoints view

 2216

Context view

 2217

Messages view

 2219

Nodes/Values Set view

 2225

Output Mapping Stack view

bl

 2221

Stack view

 2220

Templates view

 2224

Trace view

 2223

Variables view

 2226

XPath Watch view

 2218

Layout

 2210

Performance profiling

 2233

Profiling

Hotspots view

 2236

Invocation Tree view

 2235

Steps in a typical debugging process

 2228

Supported processors

 2239

Toolbar

 2211

XSLT preferences

 255

XSLT Profiler preferences

 267

XSLT transformation on JSON scenario

 1584

XSLT transformation on XML scenario

 1564

XSLT transformation scenario

FO Processor tab

 1513, 1573

Output tab

 1514, 1574

XSLT tab

 1505, 1564

XSLT Transformer plugin extension

 2545

XSLTProc preferences

 260

XSpec Helper View Addon - Run XSpec test

scenarios and view the results directly in the

application

 2627

Y
YAML documents

 1204

Associate schema directly in YAML documents

 1209

Content completion

 1210

Outline view

 1211

Syntax highlighting

 1211

Validation

 1205

Validation scenarios

 1206

YAML editor

 1204

YAML to JSON tool

 1159, 1213, 2681

YAML validation scenarios

 1206

Your first DITA document

 39, 2940

bm

Copyright
Oxygen XML Editor User Manual

Syncro Soft SRL.

Copyright © 2002-2023 Syncro Soft SRL. All Rights

Reserved.

All rights reserved: No parts of this work may be

reproduced in any form or by any means - graphic,

electronic, or mechanical, including photocopying,

recording, taping, or information storage and

retrieval systems - without the written permission

of the publisher. Products that are referred to in

this document may be either trademarks and/or

registered trademarks of the respective owners. The

publisher and the author make no claim to these

trademarks.

Trademarks: Many of the designations used by

manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those

designations appear in this document, and Syncro

Soft SRL was aware of a trademark claim, the

designations have been rendered in caps or initial

caps.

Notice: While every precaution has been taken in

the preparation of this document, the publisher and

the author assume no responsibility for errors or

omissions, or for damages resulting from the use

of information contained in this document or from

the use of programs and source code that may

accompany it. In no event shall the publisher and

the author be liable for any loss of profit or any other

commercial damage caused or alleged to have been

caused directly or indirectly by this document.

Link disclaimer: Syncro Soft SRL is not responsible

for the contents or reliability of any linked Websites

referenced elsewhere within this documentation,

and Syncro Soft SRL does not necessarily endorse

the products, services, or information described or

offered within them. Syncro Soft cannot guarantee

that these links will work all the time and has no

control over the availability of the linked pages.

Warranty: Syncro Soft SRL provides a limited

warranty on this product. Refer to your sales

agreement to establish the terms of the limited

warranty. In addition, Oxygen XML Editor End-User

License Agreement, as well as information regarding

support for this product, while under warranty, is

available through the Oxygen XML Editor End-User

License Agreement.

Third-party components: Certain software programs

or portions thereof included in the Product may

contain software distributed under third-party

agreements ("Third-Party Components"), which

may contain terms that expand or limit rights to use

certain portions of the Product ("Third-Party Terms").

Information identifying Third-Party Components and

the Third-Party Terms that apply to them is available

on the Third-party License Agreements webpage.

Terms and conditions: For the terms and conditions

for using Oxygen XML Editor, see Oxygen XML Editor

End-User License Agreement.

Documentation: For the most current versions of

documentation, see the Oxygen XML Editor User

Manual.

Contact Syncro Soft SRL: Syncro Soft SRL provides

telephone numbers and e-mail addresses for you

to report problems or to ask questions about your

product, see the Oxygen support webpage.

bn

https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/thirdparty/
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/documentation.html
https://www.oxygenxml.com/documentation.html
https://www.oxygenxml.com/documentation.html
https://www.oxygenxml.com/support.html

	Oxygen XML Editor 27.1
	Contents
	1.  Introduction
	2.  Getting Started
	What is Oxygen XML Editor
	Getting Familiar with the Interface
	Supported Document Types
	Resources to Help You Get Started Using Oxygen XML Editor
	Configuring Oxygen XML Editor
	Video Tutorials and Webinars
	Oxygen XML Editor Documentation
	Sample Documents
	Other Resources

	Your First Document or Project
	Your First XML Document
	Writing Your First Document
	Structuring Your First Document
	Editing Your First Document
	Validating Your First Document
	Proofing Your First Document
	Transforming Your First Document

	Getting Started with DITA
	Understanding DITA Topics
	Creating a DITA Topic in Oxygen XML Editor
	Role of Maps
	Creating a Map in Oxygen XML Editor
	Adding Existing Topics to a Map in Oxygen XML Editor
	Adding New Topics to a Map in Oxygen XML Editor
	Adding Submaps in Oxygen XML Editor
	Validating a Map in Oxygen XML Editor
	Publishing Your Topics in Oxygen XML Editor
	DITA Projects
	Resources

	Creating a New Project
	Creating a New Project
	Editor Variables in Project Templates
	Adding Items to the Project
	Using Linked Folders (Shortcuts)

	Getting Help
	Help Menu
	Randomize XML Text Content

	Frequently Used Shortcut Keys
	Accessibility Support in Oxygen
	Adjusting Fonts and Colors
	Installing Oxygen XML Editor
	Screen Reader Software (Windows OS)
	Using the JAWS Screen Reader (Windows)
	Using the NVDA Screen Reader (Windows)
	Hints for the Visually Impaired
	Screen Reader Software (macOS)
	Oxygen XML Editor VPAT Accessibility Conformance Report
	International Edition
	Applicable Standards/Guidelines
	Terms
	WCAG 2.x Report
	Table 1: Success Criteria, Level A
	Table 2: Success Criteria, Level AA
	Table 3: Success Criteria, Level AAA
	Revised Section 508 Report
	Chapter 3: Functional Performance Criteria (FPC)
	Chapter 4: Hardware
	Chapter 5: Software
	Chapter 6: Support Documentation and Services
	Legal Disclaimer

	3.  Installation
	Choosing How Oxygen XML Editor Runs
	Choosing an Installer
	Choosing a License Option
	Upgrading, Transferring, and Uninstalling.
	Getting Help With Installation
	Installing Oxygen XML Editor on Windows
	System Requirements
	Windows Installer
	Windows Unattended Installation
	Windows Installer Command-Line Reference
	Command-Line Variables for Preconfiguring License Server Details
	Windows Installer response.varfile

	Installing Oxygen XML Editor on macOS
	System Requirements
	macOS Installation
	macOS Unattended Installation

	Installing Oxygen XML Editor on Linux
	System Requirements
	Linux Installer
	Linux Unattended Installation
	Linux Installer Command-Line Reference
	Command-Line Variables for Preconfiguring License Server Details
	Linux Installer response.varfile

	Installing Oxygen XML Editor on Windows Server
	System Requirements
	Windows Installer
	Configuring Windows Terminal Server

	Installing Oxygen XML Editor on a Linux / UNIX Server
	System Requirements
	Linux Installer
	Unix/Linux Server Configuration

	Site-Wide Deployment
	Licensing
	Installing a License Server to Manage Licenses
	Registering License Keys
	Splitting or Combining License Keys to Work with Your License Servers
	License Types
	Named-User Licenses
	Registering a Named-User License
	Transferring a License Key

	Subscription Licenses
	Registering a Subscription License
	Automatic Subscription Renewal

	Floating Licenses
	Requesting a Floating License from a License Server
	How to Request a Floating License
	How to Register Floating Licenses for Multiple Users

	Releasing a Floating License
	Reserving a Floating License
	Registering Floating Licenses for Multiple Users

	Installing License Servers
	HTTP License Server System Requirements
	License Activation
	Activation Signature
	Manual License Activation Procedure
	Preconfiguring License Server Details When Installing Oxygen XML Editor
	Backup License Server Information
	Installing the License Server Distribution for Windows
	Installing the License Server All-Platform Distribution
	Installing the License Server WAR Distribution
	Installing Multiple Instances of WAR Distribution on a Tomcat Web Server

	Managing License Servers
	License Server Management and Statistics Pages
	Allocated License Report Page
	License Usage Statistics Page (Floating License Only)
	Users Management Page (Named-User License Only)

	Replacing or Removing a License Key in an HTTP License Server
	Replacing a License Key
	Removing a License Key

	Upgrading Your HTTP License Server
	Configuring a License Server to Only Allow Certain Users

	Common Problems: License Server Errors
	Server Signature Mismatch Error
	Problem
	Possible Cause 1
	Solution
	Possible Cause 2
	Solution
	Possible Cause 3
	Solution

	Upgrading
	Upgrading Oxygen XML Editor on Windows/Linux
	What is Preserved During an Upgrade?
	How to Upgrade Oxygen XML Editor on Windows or Linux

	Upgrading Oxygen XML Editor on macOS
	What is Preserved During an Upgrade?
	How to Upgrade Oxygen XML Editor on macOS

	Installing and Updating Add-ons
	Installing Add-ons
	Managing Installed Add-ons
	Checking for Add-on Updates
	Preserving Installed Add-ons After Upgrading Oxygen to a New Version

	Privacy Options
	Uninstalling
	How to Uninstall Oxygen XML Editor
	Unattended Uninstall

	4.  Configuration
	Preferences
	Preferences Directory Location
	Global Preferences
	Appearance Preferences
	Colors Preferences
	Fonts Preferences

	Application Layout Preferences
	Resources

	Add-ons Preferences
	Project Level Settings Preferences
	Document Type Association Preferences
	Locations Preferences
	Document Type Configuration Dialog Box
	Association Rules Tab
	Schema Tab
	Classpath Tab
	Author Tab
	CSS Subtab
	Actions Subtab
	Author Action Dialog Box
	Controlling Which Author Operations Gets Executed Through XPath Expressions
	oxy:allows-child-element() Function
	oxy:allows-global-element() Function
	oxy:current-selected-element() Function
	oxy:selected-elements() Function
	oxy:is-required-element() Function
	oxy:is-editable-element() Function
	oxy:platform() Function

	Menu Subtab
	Contextual Menu Subtab
	Toolbar Subtab
	Content Completion Subtab
	Available and Current Actions
	Filter Table

	Templates Tab
	Catalogs Tab
	Transformation Tab
	Validation Tab
	Extensions Tab

	Document Templates Preferences
	Encoding Preferences
	Editor Preferences
	Edit Modes Preferences
	Text Preferences
	Diagram Preferences

	Grid Preferences
	Author Preferences
	Cursor Navigation Preferences
	Schema-Aware Preferences
	Review Preferences
	Callouts Preferences

	Profiling/Conditional Text Preferences
	Attributes and Condition Sets Preferences
	Colors and Styles Preferences
	Attributes Preferences

	MathML Preferences
	Using MathFlow for Editing and Rendering MathML Equations (Deprecated)
	Using an External Tool for Editing MathML Equations

	AutoCorrect Preferences
	AutoCorrect Dictionaries Preferences

	Serialization Preferences

	Schema Design Preferences
	XSD Properties Preferences
	JSON Schema Properties Preferences

	Open Preferences
	Save Preferences
	Format Preferences
	Where Indent Size and Line Width Settings are Used in Oxygen XML Editor
	Resources
	XML Preferences
	Whitespaces Preferences

	XQuery Preferences
	XPath Preferences
	CSS Preferences
	JavaScript Preferences
	JSON Preferences

	Content Completion Preferences
	XSLT Preferences
	XPath Preferences
	XSD Preferences
	JavaScript Preferences
	JSON Preferences
	YAML Preferences
	Annotations Preferences
	Code Templates Preferences

	Syntax Highlight Preferences
	Elements/Attributes by Prefix Preferences

	Mark Occurrences Preferences
	Document Validation Preferences
	Custom Validation Engines Preferences
	Increasing the Stack Size for Validation Engines

	Ignored Validation Problems Preferences

	Spell Check Preferences
	Spell Check Dictionaries Preferences

	Print Preferences

	CSS Validator Preferences
	XML Preferences
	XML Catalog Preferences
	XML Parser Preferences
	XML Schema Preferences
	Relax NG Preferences
	Schematron Preferences

	Sample XML Files Generator Preferences
	XProc Preferences
	XSLT/XQuery Preferences
	XSLT Preferences
	Saxon6 Preferences
	Saxon-HE/PE/EE Preferences
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Saxon-HE/PE/EE Advanced Preferences

	XSLTProc Preferences (Deprecated)
	MSXML Preferences (Deprecated)
	MSXML.NET Preferences (Deprecated)

	XQuery Preferences
	Saxon-HE/PE/EE Preferences
	Saxon HE/PE/EE Advanced Preferences

	Debugger Preferences
	Profiler Preferences
	XPath Preferences
	Custom Engines Preferences

	PDF Output Preferences
	FO Processors Preferences
	Apache FOP Section
	External FO Processors Section

	CSS-based Processors Preferences
	Oxygen PDF Chemistry Section

	Ant Preferences
	Import Preferences
	XML Signing Certificates Preferences
	XML Refactoring Preferences

	DITA Preferences
	DITA Maps Preferences
	DITA Maps Manager section
	Inserting Topic References section
	Review section

	DITA New Topics Preferences
	New Topics section
	Inserting Links section

	DITA Publishing Preferences
	DITA Logging Preferences

	Markdown Preferences
	Data Sources Preferences
	Connection Wizards Section
	Data Sources Section
	Connections Section
	Table Filters Preferences
	Download Links for Database Drivers

	SVN Preferences
	Working Copy Preferences
	Diff Preferences
	Messages Preferences

	Diff Preferences
	Files Comparison Preferences
	Appearance Preferences

	Directories Comparison Preferences
	Appearance Preferences

	Archive Preferences
	Plugins Preferences
	External Tools Preferences
	How to Configure an External Tool

	Menu Shortcut Keys Preferences
	How to Assign a Shortcut Key or Edit an Existing Shortcut

	File Types Preferences
	Open/Find Resource Preferences Page
	Custom Editor Variables Preferences
	Network Connection Settings Preferences
	Proxy Preferences
	HTTP(S)/WebDAV Preferences
	SFTP Preferences
	Trusted Hosts Preferences
	SSH Preferences

	XML Structure Outline Preferences
	Views Preferences
	Messages Preferences

	Configuring Options
	Customizing Default Options
	Creating an XML Options File
	Controlling Which Options are Stored in the Default Options File
	Configuring an Installation to Use Customized Default Options
	Impose a Set of Options Using a Plugin

	Storing Global and Project Level Options
	Global Options
	Project Options

	Sharing Application Settings
	Share Settings Through a Project File
	Share Settings by Exporting/Importing Global Options
	Share Settings with a Custom Options File During Installation
	Share Settings by Imposing Fixed Options with an API

	Importing/Exporting/Resetting Global Options

	Configuring the Layout of the Views and Editors
	Arranging the Layout
	Hide or Float Views
	Maximize the Editing Environment
	Tile/Stack Editor Actions
	Split Editor Actions
	Switch, Move, or Hide Editor Tabs
	Resources

	Configuring Toolbars
	Import/Export Transformation or Validation Scenarios
	Editor Variables
	Custom Editor Variables

	Custom System Properties
	Localizing the User Interface
	How to Create an Interface Localization File
	Adding New Languages to the Interface

	Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor
	Setting Parameters for the Application Launchers
	Increasing the Amount of Memory that Oxygen XML Editor Uses on Windows and Linux
	Increasing the Amount of Memory that Oxygen XML Editor Uses on macOS
	Setting a System Property
	Disabling DPI Scaling
	Setting Environment Variables

	Setting Parameters in the Command-Line Scripts
	Creating Custom Startup Parameters File

	How to Increase the Amount of Available Memory

	5.  Perspectives
	Editor Perspective
	DITA Perspective
	XSLT Debugger Perspective
	Resources

	XQuery Debugger Perspective
	Resources

	Database Perspective
	Supported Databases
	Supported Capabilities
	Layout of the Database Perspective

	6.  Editing Modes
	Text Editing Mode
	Grid Editing Mode
	Author Editing Mode
	Design Editing Mode (Schema Diagram Editor)
	XML Schema Resources
	JSON Schema Resources

	7.  Working With Documents
	Getting Familiar with the Interface
	Configuring the Layout of the Views and Editors
	Arranging the Layout
	Hide or Float Views
	Maximize the Editing Environment
	Tile/Stack Editor Actions
	Split Editor Actions
	Switch, Move, or Hide Editor Tabs
	Resources

	Configuring Toolbars

	Creating, Opening, Saving, and Closing Documents
	Creating New Documents and Templates
	New Document Wizard
	New Document Wizard
	XML Document Configuration Page
	XSLT Document Configuration Page
	XML Schema Document Configuration Page
	Schematron Document Configuration Page
	XProc Configuration Page
	JSON Document Configuration Page
	YAML Document Configuration Page

	Creating New Document Templates
	Creating a New Document Template

	Customizing Document Templates
	Customizing the Icons for a Document Template
	Add a Prefix or Suffix to File Names for a Document Template
	Configure the Displayed Names for Document Templates
	Adding Placeholders or Hints in a Document Template
	Resources

	Sharing Custom Document Templates
	Sharing Custom Document Templates

	Opening Documents
	Opening the Current Document in a System Application
	Opening Local Files at Start-up
	Opening a Document at a Specific Location Using a Command-Line Interface

	Saving Documents
	Auto Recover Documents
	Closing Documents

	Working with Remote Documents
	Open URL
	WebDAV over HTTPS
	Troubleshooting HTTPS

	HTTP Authentication Schemes
	Single Sign-on (Deprecated)

	Switching, Moving, or Hiding Editor Tabs
	Switching Editor Tabs
	Moving Editor Tabs
	Hiding Editor Tabs

	Contextual Menu of the Current Editor Tab
	Viewing File Properties
	Simple Text Editor
	Types of Non-XML Files That are Supported in the Simple Text Editor
	Features Available in the Simple Text Editor

	Using Projects to Group Documents
	Creating a New Project
	Creating a New Project
	Editor Variables in Project Templates
	Adding Items to the Project
	Using Linked Folders (Shortcuts)

	Project View
	Project View Toolbar
	File Explorer Area
	Creating New Projects
	Managing Project Contents
	Other Contextual Menu Actions
	Project Menu Actions
	Moving/Renaming Resources in the Project View
	Moving Resources
	Renaming Resources
	Problems Updating References of Moved/Renamed Resources

	Batch Validation and Transformation
	Batch Validation
	Batch Transformation

	Sharing a Project - Team Collaboration
	Sharing Preferences (Creating a Project-Level Options File)
	Sharing Transformation Scenarios
	Sharing Validation Scenarios
	Using Git for Collaboration
	Using Subversion (SVN) for Collaboration
	Minimize Differences Between Versions Saved on Multiple Computers

	Contextual Project Operations Using 'Main Files' Support
	Resources
	Main Files Benefits
	Enabling the Main Files Support
	Detecting Main Files
	Adding or Removing Files/Folders in the Main Files Directory
	Adding Files/Folders to the Main File Directory
	Removing Files/Folders from the Main Files Directory

	Quick Validation and Transformation for Main Files

	Search and Find/Replace Features
	Open/Find Resource View
	Search Results
	Options Available in the View
	Contextual Menu Actions
	Indexing Process
	Caching Mechanism
	Opening the Results
	Resources

	Open/Find Resource Dialog Box
	Search Results
	Options Available in the Dialog Box
	Contextual Menu Actions
	Indexing Process
	Caching Mechanism
	Opening the Results
	Resources

	Searching in Content
	Complex Query Patterns Using Lucene Syntax

	Searching in File Paths
	Searching in Reviews
	Find/Replace Dialog Box
	Find/Replace Dialog Box

	Find/Replace in Multiple Files
	Find/Replace in Files Dialog Box

	Find All Elements Dialog Box
	Find and Invoke Actions
	Quick Find Toolbar
	Keyboard Shortcuts for Finding the Next and Previous Match
	Regular Expressions Syntax

	Spell Checking
	Spell Check Dictionaries and Term Lists
	Other Hunspell Dictionaries
	Personalized Term Lists
	Adding Custom Dictionaries and Term Lists
	Adding Custom Spell Check Dictionaries
	Download and Add a Pre-Built Hunspell Dictionary
	Create a Custom Hunspell Dictionary that Defines a List of Words
	Build and Add a Full Hunspell Dictionary

	Adding Custom Spell Check Term Lists
	Create and Add Personalized Term Lists

	Replacing a Spell Check Dictionary
	Download a Pre-Built Hunspell Dictionary and Replace an Existing One
	Build a Full Hunspell Dictionary and Replace an Existing One

	Learned Words
	Ignored Words (Elements)
	Automatic Spell Check
	Spell Check Multiple Files

	AutoCorrect Misspelled Words
	AutoCorrect Drop-down Actions
	AutoCorrect Case-Sensitivity
	Add Dictionaries for the AutoCorrect Feature

	Working with Special Characters and Encoding
	Unicode Support
	Opening and Saving Documents with Unsupported Characters
	Opening Documents with Unsupported Characters
	Saving Documents with Unsupported Characters

	Unicode Fallback Font Support
	Example of a Scenario Where a Fallback Font is Needed
	Adding a Fallback Font in Windows (7 or Later)
	Adding a Fallback Font in Other Platforms

	Inserting Special Characters with the Character Map
	Inserting Special Characters
	Finding the Decimal, Hexadecimal, or Character Entity Equivalent
	Character Map Dialog Box

	Image Preview
	Loading Large Documents
	Optimize Loading for Large Files
	Optimize Loading for Huge Files

	Documents with Long Lines
	Features that Might be Affected by Wrapping Lines of Text

	Handling Read-Only Files
	Scratch Buffer
	Compare Files or Directories
	Starting the Tools from a Command Line
	Compare Files Tool
	Two-Way Comparisons
	Three-Way Comparisons
	Second-Level Comparisons
	Author Visual Mode
	Author Mode Algorithms
	Author Mode Second-Level Comparisons
	Starting File Comparison Tool from a Command Line
	How to Integrate the File Comparison Tool with Git
	How to Integrate the File Comparison Tool with Sourcetree
	Toolbar and Contextual Menu Actions of the Compare Files Tool
	Compare Files Tool Menus
	File Menu
	Edit Menu
	Find Menu
	Compare Menu
	Options Menu
	Help Menu

	Compare Directories Tool
	Starting the Tool from a Command Line
	Directory Comparisons
	Toolbar and Contextual Menu Actions of the Compare Directories Tool
	Toolbar Actions
	Contextual Menu Actions

	Compare Directories Tool Menus
	File Menu
	Compare Menu
	Options Menu
	Help Menu

	Compare Images

	Compare Directories Against a Base (3-Way) Tool
	How to Perform 3-Way Directory Comparisons
	3-Way Directory Comparison and Merge Tool
	Author Visual Mode
	Author Mode Algorithms
	Author Mode Second-Level Comparisons

	Generate HTML Report for Directory Comparison
	Resources

	Viewing Status Information
	Editor Highlights
	Printing a Document
	Other Printing Features

	8.  Editing Supported Document Types
	Editing XML Documents
	Editing XML Documents in Text Mode
	Navigating the Document Content in Text Mode
	Navigation Keyboard Shortcuts
	Navigating to a Modification
	Navigating with the Outline View
	Using the Breadcrumb to Navigate
	Navigating with the Go To Dialog Box
	Navigating with Bookmarks

	Smart Editing in Text Mode
	Shortcut Actions in Text Mode
	Changing the Font Size (Zoom)
	Undo/Redo Actions
	Copy and Paste Actions
	Moving XML Nodes
	Miscellaneous Shortcut Actions in Text Mode

	Editing XML Markup in Text Mode
	Using the Breadcrumb
	Move Nodes
	Rename Elements
	Surround Content with Tags (Wrap)
	Unwrap the Content of Elements
	Join or Split Elements
	Other Refactoring Actions

	Folding XML Elements in Text Mode
	Folding Actions in Text Mode
	Resources

	Drag and Drop in Text Mode
	Selecting Content in Text Mode
	Standard Continuous Selection Shortcuts
	Rectangular Selection Shortcuts

	Content Completion Assistant in Text Mode
	Content Completion and the Associated Schema
	Using the Content Completion Assistant in Text Mode
	Where the Content Completion Assistant is Displayed
	Types of Proposals Listed in the Content Completion Assistant
	Schema Annotations in Text Mode
	Styling Annotations with HTML
	Collecting Annotations from XML Schemas
	Collecting Annotations from Relax NG Schemas
	Collecting Annotations from Relax NG Compact Syntax Schemas
	Collecting Annotation from DTDs

	Content Completion Helper Views (Text Mode)
	Code Templates
	How to Create Code Templates
	How to Share Code Templates

	Text Mode Views
	Outline View for XML Documents
	Outline View Features
	Outline View Interface
	Drag and Drop Actions in the Outline View
	Outline View Filters
	Outline View Contextual Menu Actions

	Attributes View in Text Mode
	Expand/Collapse Button
	Contextual Menu Actions in the Attributes View

	Model View
	Element Structure Panel
	Annotation Panel

	Elements View in Text Mode
	Entities View
	Results View
	Results View Toolbar Actions
	Results View Contextual Menu Actions
	Making a Persistent Copy of Results

	Syntax Highlighting in XML Documents
	Syntax Highlight Depending on Namespace Prefix
	Formatting and Indenting XML Documents
	Significant and Insignificant Whitespace in XML
	How Oxygen XML Editor Determines When Whitespace is Significant
	Exception to the Rule
	How Oxygen XML Editor formats and indents XML
	When Oxygen XML Editor formats and indents XML
	Setting an Indent Size to Zero
	Format and Indent (Pretty-Print) Multiple Files

	Managing Highlighted Content
	Adjusting the Transparency of XML Markup
	Locking and Unlocking XML Markup
	Special Character Support in Text Mode
	Inserting or Opening a File at Cursor Location
	Quick Assist Support for IDs and IDREFS
	Highlight ID Occurrences in Text Mode
	Contextual Menu Actions in Text Mode

	Editing XML Documents in Grid Mode
	Resources
	Layouts: Grid and Tree
	Grid Mode Navigation
	Expand/Collapse Submenu
	Keyboard Shortcuts

	Editing Actions in Grid Mode
	Expanding/Collapsing Nodes
	Editing Elements or Attributes
	Editing Text Content in Cells
	Editing the Structure of the Nested Tables

	Drag and Drop in the Grid Editing Mode
	Copy and Paste in the Grid Editing Mode
	Pasting Content Within Grid Mode
	Pasting Content from Grid Mode to Other Editors
	Pasting Content from Other Editors into Grid Mode

	Content Completion Assistant in Grid Mode
	Special Character Support in Grid Mode
	Exporting XML Content to Excel
	Resources

	Editing XML Documents in Author Mode
	Resources
	Author Mode User Roles
	Framework Developers
	Content Authors

	Changing the Look of Documents in Author Mode Using the Styles Menu
	Main CSS Styles
	Alternate CSS Styles

	Navigating the Document Content in Author Mode
	Navigation Keyboard Shortcuts
	Navigating to a Modification
	Navigating with the Outline View
	Using the Breadcrumb to Navigate
	Using the Linking Support
	Navigating with Bookmarks

	Displaying the Markup
	Tags Display Mode

	Displaying Referenced Content
	Visual Hints for the Cursor Position
	Location Tooltip

	Whitespace Handling in Author Mode
	Minimizing Whitespace Differences Between Versions
	Entering Whitespace in Author Mode
	Serialization Options for Author Mode

	Editing Content in Author Mode
	Undo/Redo Actions
	Copy and Paste Actions
	Entering Text in Elements
	Editing Text Content Without Modifying the XML Markup
	Changing the Font Size (Zoom)

	Editing XML Markup in Author Mode
	Selecting XML Markup in Author Mode
	Using the Breadcrumb in Author Mode
	Move Nodes
	Promote/Demote Nodes
	Join or Split Elements
	Rename Elements
	Surround Content with Tags (Wrap)
	Unwrap the Content of Elements
	Remove Markup from Blocks of Content
	Remove Text from Selected Markup
	Other Refactoring Actions
	Copying XML Content in Author Mode to the Clipboard

	Editing Attributes in Author Mode
	In-place Attributes Editor

	Folding XML Elements in Author Mode
	Folding Actions in Author Mode
	Resources

	Drag and Drop in Author Mode
	Smart Paste in Author Mode
	Smart Paste Options
	Smart Paste Supported Document Types
	Resources

	Selecting Content in Author Mode
	Selection Shortcuts in Author Mode
	Intelligent Selection in Author Mode

	Content Completion Assistant in Author Mode
	Using the Content Completion Assistant in Author Mode
	Types of Proposals Listed in the Content Completion Assistant
	Examples of How the Content Completion Assistant Works
	Set the Schema to be Used for Content Completion
	Schema Annotations in Author Mode
	Styling Annotations with HTML
	Collecting Annotations from XML Schemas
	Collecting Annotations from Relax NG Schemas
	Collecting Annotations from Relax NG Compact Syntax Schemas
	Collecting Annotation from DTDs

	Content Completion Helper Views (Author Mode)
	Code Templates
	How to Create Code Templates
	How to Share Code Templates

	Author Mode Views
	Outline View for XML Documents
	Outline View Features
	Outline View Interface
	Drag and Drop Actions in the Outline View
	Outline View Filters
	Outline View Contextual Menu Actions

	Attributes View in Author Mode
	Expand/Collapse Button
	Contextual Menu Actions in the Attributes View
	In-place Attributes Editor

	Model View
	Element Structure Panel
	Annotation Panel

	Elements View in Author Mode
	Entities View
	Results View
	Results View Toolbar Actions
	Results View Contextual Menu Actions
	Making a Persistent Copy of Results

	CSS Inspector View
	Displaying the CSS Inspector View
	Displaying Rules

	Reviewing Documents
	Tracking Document Changes
	Adding Comments in Documents
	Highlighting Content
	Using the Review View
	Printing Review Information
	Managing Tracked Changes
	Types of Tracked Changes
	Activating the Change Tracking Feature
	Rendering Tracked Changes in Author Mode
	Change Tracking Contextual Menu Actions
	Change Tracking Toolbar Actions
	Tracked Change Callouts
	Tracked Changes in the Review View
	Tracked Changes XML Source Code
	Resources
	Tracked Changes Behavior
	Inserting Content
	Surrounding Content
	Deleting Characters
	Deleting Selections of Content
	Deleting Tags
	Copying Content
	Pasting Content

	Track Changes Limitations
	DITA-Specific Track Changes Limitations
	Publishing-Specific Track Changes Limitations

	Tracked Changes XML Markup
	Common Attributes
	Attribute Change Descriptor

	Managing Comments
	Managing Comments in the Main Editor
	Managing Comments in Callouts
	Managing Comments in the Review View
	Comments XML Source Code

	Managing Highlights
	Using the Highlight Tool
	Review View
	Highlights XML Source Code
	Resources

	Author Callouts
	Displaying Callouts in Author Mode
	Adjusting Callout Width
	Type of Callouts in Oxygen XML Editor
	Callout Contextual Menu Actions
	Printing Callouts
	Review View
	Resources

	Review View
	Activating the Review View
	Review View Toolbar Actions and Settings
	Hover Actions in the Review View
	Contextual Menu Actions in the Review View
	Resources

	Publishing Tracked Changes, Comments, and Color Highlights

	Profiling and Conditional Text
	Profiling Attributes and Condition Sets
	Creating and Editing Profiling Attributes
	Create or Editing Profiling Attributes
	Adding Profiling Attribute Values Directly in a Document
	Sharing Profiling Attribute Configurations

	Applying Profiling Attributes
	Creating and Editing Profiling Condition Sets
	Create Profiling Condition Sets
	Sharing Condition Set Configurations

	Applying Profiling Condition Sets
	Showing and Filtering Profiled Content in Author Mode
	Customizing Colors and Styles for Rendering Profiling in Author Mode
	Styling Profiling Attribute Values

	Adding Tables in Author Mode
	Editing Tables in Author Mode
	Adjusting Column Width
	Selecting Columns and Rows
	Selecting Cells
	Drag and Drop
	Copy/Cut and Paste
	Deleting Content
	Navigating Cells

	Adding Tables in DocBook
	Inserting a CALS Table Model in DocBook
	Inserting an HTML Table Model
	Editing an Existing Table
	DocBook Table Layouts
	CALS Table Model Layout
	HTML Table Model Layout
	Pasting Tables in DocBook
	Table Validation in DocBook
	Editing Table Properties in DocBook
	Edit Table Properties for a CALS Table Model
	Edit Table Properties for an HTML Table Model

	Adding Tables in DITA Topics
	Inserting a Simple Table Model
	Inserting a CALS Table Model (OASIS Exchange Table)
	Inserting a Choice Table Model
	Inserting a Properties Table Model
	Editing an Existing Table
	DITA Table Layouts
	CALS Table Model Layout
	Simple Table Model Layout
	Choice Table Model Layout
	Properties Table Model Layout
	Table Validation in DITA
	Editing Table Properties in DITA
	Edit Table Properties for a CALS Table Model
	Edit Table Properties for a Simple, Choice, or Properties Table Model

	Adding Tables in XHTML Documents
	Editing an Existing Table
	XHTML Table Layout
	Table Validation in XHTML

	Adding Tables in TEI Documents
	Editing an Existing Table

	Adding Tables in JATS Documents

	Sorting Content in Tables and List Items
	Sorting a Table
	Sorting a Selection of Rows
	Sort Using Multiple Criteria

	Sorting a Table that Contains Merged Cells
	Sorting List Items

	Inserting Images
	Image Rendering in Author Mode
	Scaling Images
	Rendering CGM Images
	Rendering PDF Images
	Rendering PSD Images
	Rendering EPS and AI Images
	Rendering Special Images with Java Advanced Imaging (JAI) Plugin
	How to Install JAI Image I/O Tools Plugin
	macOS Workaround

	Retina/HiDPI Images in Author Mode
	Retina/HiDPI Naming Convention

	Image Map Editor
	Working with Image Maps in DITA
	Image Map Editor Interface in DITA
	How to Create an Image Map in DITA
	How to Edit an Existing Image Map in DITA
	Overlapping Areas

	Image Maps in DocBook
	Image Map Editor Interface in DocBook
	How to Create an Image Map in DocBook
	How to Edit an Existing Image Map in DocBook
	Overlapping Areas

	Image Maps in TEI
	Image Map Editor Interface in TEI
	How to Create an Image Map in TEI
	How to Edit an Existing Image Map in TEI
	Overlapping Areas

	Image Maps in XHTML
	Image Map Editor Interface in XHTML
	How to Create an Image Map in XHTML
	How to Edit an Existing Image Map in XHTML
	Overlapping Areas

	Adding Video, Audio, and Embedded HTML Resources
	Adding a Media Resource

	Embedding HTML Content in DITA Topics
	Editing MathML Notations
	Configuring the MathType Editor
	Configuring an External MathML Editor
	Configuring the MathFlow Editor (Deprecated)

	Special Character Support in Author Mode
	Resources
	Controlling the Text Direction Using XML Markup
	Controlling the Text Direction Using the Unicode Direction Formatting Codes

	Refreshing the Content
	Generating IDs for Elements in Author Mode
	Generate IDs On-Request
	Automatically Generate IDs
	ID Options Dialog Box
	Duplicating Elements with Existing IDs
	Controlling the Default ID Generation Options

	Using Form Controls in Author Mode
	Contextual Menu Actions in Author Mode
	General Contextual Menu Actions in Author Mode
	Document Type-Specific Contextual Menu Actions in Author Mode

	Validating XML Documents
	Checking XML Well-Formedness
	Well-Formedness Rules
	Check for Well-Formedness

	Validating XML Documents Against a Schema
	Automatic Validation
	Manual Validation Actions
	Manual Validation Actions
	Other Validation Options

	Presenting Validation Errors in Text Mode
	Validation Marker Locations
	Validation Marker Colors
	Validation Markers in the Right-Side Stripe
	Hovering Over Validation Issues
	Details About Validation Issues

	Presenting Validation Errors in Author Mode
	Validation Marker Locations
	Validation Marker Colors
	Validation Markers in the Right-Side Stripe
	Hovering Over Validation Issues
	Details About Validation Issues

	Customizing Assert Error Messages
	Custom Validators
	Linked Output Messages of an External Engine
	Using Saxon Integrated Extension Functions

	Validation Scenarios
	Creating a New Validation Scenario
	Editing a Validation Scenario

	Sharing Validation Scenarios
	Resolving References to Remote Schemas with an XML Catalog
	Validation Example - A DocBook Validation Error

	Validating XML Documents Against a Schema with Embedded Schematron
	Validating XML Documents with XML Schema and Embedded Schematron
	Validating XML Documents with Relax NG and Embedded Schematron
	Example: Embedded Schematron in XML Schema
	Example: Embedded Schematron in Relax NG Schema

	Ignoring/Unignoring Validation Problems
	How to Unignore Validation Problems

	XML Quick Fixes
	Quick Fixes for DTD, XSD, and Relax NG Errors
	Schematron Quick Fixes (SQF)
	Displaying the Schematron Quick Fix Proposals

	Associating a Schema to XML Documents
	Supported Types of Schema
	Detecting the Schema(s) for Validation
	Detecting a Schema for Content Completion
	Associating a Schema Through a Validation Scenario
	Configure a Validation Scenario and Specify the Schema
	Use the Validate with Action to Specify a Schema for Validating the Current Document
	Use the Validate with Schema Action to Specify a Schema for Validating all Selected Documents

	Associating a Schema in Validation Scenarios Defined in the Document Type
	Associating a Schema Directly in XML Documents
	Associating a Schema in a Framework (Document Type) Configuration
	Learn Document Structure When Schema is not Detected
	Creating a DTD from Learned Document Structure

	Working with XML Catalogs
	Creating an XML Catalog with a Template
	How Oxygen XML Editor Determines which Catalog to Use
	Resolving Schema Locations Through XML Catalogs

	Modular Contextual XML Editing Using 'Main Files' Support
	Resources

	Search and Refactoring Actions for IDs and IDREFS
	Search and Refactor Operations Scope

	XML Referenced/Dependent Resources View
	Moving/Renaming XML Resources

	Combining XML Content Using DTD Entities and XInclude
	Combining XML Document Content Using DTD Entities
	Viewing the Expanded Content in Oxygen XML Editor

	Combining XML Documents and Fragments Using XInclude
	Enabling XInclude Support in Oxygen XML Editor
	Example: Using XInclude to Combine Files
	Example: Using XInclude to Combine Fragments of Files
	Viewing the Expanded Content in Oxygen XML Editor
	XInclude 1.1 Features

	Refactoring XML Documents
	XML Refactoring Tool
	XML Refactoring Wizard
	Built-in Refactoring Operations
	Refactoring Operations for Attributes
	Refactoring Operations for Comments
	Refactoring Operations for DITA Topics
	Refactoring Operations for DITA Maps
	Refactoring Operations for Elements
	Refactoring Operations for Fragments
	Refactoring Operations for JATSKit
	Refactoring Operations for Processing Instructions
	Refactoring Operations for Publishing Template

	Custom Refactoring Operations
	Creating a Custom Refactoring Operation
	Custom Refactoring Script
	Custom Refactoring Operation Descriptor File
	Introduction to the Descriptor File
	Declaring Parameters in the Descriptor File
	Specialized Parameters to Match Elements or Attributes
	Grouping Parameters in the Descriptor File

	XQuery Update Script for Creating a Custom Operation
	Example of an XQuery Update Script for Creating a Custom Operation to Convert an Attribute to an Element
	Example of an Operation Descriptor File That References the XQuery Script for Creating a Custom Operation to Convert an Attribute to an Element
	Results
	Debugging XQuery Refactoring Operations

	XSLT Stylesheet for Creating a Custom Operation
	Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element
	Example of an Operation Descriptor File That References the XSLT Stylesheet for Creating a Custom Operation to Convert an Attribute to an Element
	Results
	Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and Modify Content Outside the Root Node

	Storing and Sharing Refactoring Operations
	Sharing Custom Refactoring Operations

	Localizing XML Refactoring Operations

	Applying All Default Quick Fix Proposals
	Resources

	XML Digital Signatures
	Digital Signatures Overview
	Certificates
	Canonicalizing Files
	Signing Files
	Verifying Signature
	Example of How to Digitally Sign XML Files or Content

	Editing XSLT Stylesheets
	Resources
	Modular Contextual XSLT Editing Using 'Main Files' Support
	Resources

	Validating XSLT Stylesheets
	Creating a Validation Scenario for XSLT Stylesheets
	Validating XSLT Stylesheets with Custom Engines
	Validating XSLT Stylesheets that Call Java Extensions

	XSLT Quick Fix Support
	Content Completion in XSLT Stylesheets
	Content Completion in XPath Expressions
	Tooltip Helper for the XPath Functions Arguments

	Syntax Highlighting in XSLT
	XSLT Outline View
	XSLT Input View
	XSLT Referenced/Dependent Resources View
	Moving/Renaming XSLT Resources

	XSLT Component Dependencies View
	Highlight Component Occurrences
	Finding XSLT References and Declarations
	XSLT Stylesheet Component Documentation Support
	Content Completion
	Adding Documentation Blocks
	XSLT Documentation Links

	XSLT 3.0 Text Value Templates
	XSLT 3.0 Packages (xsl:package Element)
	XSLT Refactoring Actions
	Resources

	XSLT Quick Assist Support
	XSLT Unit Test (XSpec)
	Creating an XSLT Unit Test
	Running an XSLT Unit Test
	Testing a Stylesheet
	Adding a Catalog to an XSpec Transformation

	Generating Documentation for an XSLT Stylesheet
	Output Tab
	Settings Tab
	Generate XSLT Documentation in HTML Format
	Generate XSLT Documentation in a Custom Format

	Compiling an XSL Stylesheet for Saxon
	Use-Cases for a Stylesheet Export File (SEF)
	Compiling an SEF File

	Editing Ant Build Files
	Modular Contextual Ant Build File Editing Using 'Main Files' Support
	Validating Ant Build Files
	Create a Validation Scenario for Ant Build Files
	Passing parameters to the Ant validation engine

	Transforming Ant Build Files
	Ant Quick Fix Support
	Content Completion in Ant Build Files
	Syntax Highlighting in Ant Files
	Ant Outline View
	Ant Referenced/Dependent Resources View
	Ant Component Dependencies View
	Highlight Component Occurrences
	Find References and Declarations of Ant Components
	Ant Refactoring Actions
	Ant Quick Assist Support

	Editing XML Schemas (XSD)
	Resources
	XML Schema Design Mode (XML Schema Diagram Editor)
	Resources
	Navigation in the XML Schema Design Mode
	XML Schema Palette View (Available in Design Mode)
	Resources

	XML Schema Facets View (Available in Design Mode)
	Schema Editing Actions
	Contextual Menu Actions in the Design Mode
	XML Schema Components
	xs:schema
	xs:element
	xs:attribute
	xs:attributeGroup
	xs:complexType
	xs:simpleType
	xs:alternative
	xs:group
	xs:include
	xs:import
	xs:redefine
	xs:override
	xs:notation
	xs:sequence / xs:choice / xs:all
	xs:any
	xs:anyAttribute
	xs:unique
	xs:key
	xs:keyRef
	xs:selector
	xs:field
	xs:assert
	xs:openContent
	Constructs Used to Group Schema Components
	Attributes
	Constraints
	Substitutions

	Schema Validation
	Edit Schema Namespaces

	Editing XML Schema in Text Editing Mode
	Modular Contextual XML Schema Editing Using 'Main Files' Support
	Validating XML Schema Documents
	Quick Fixes for DTD, XSD, and Relax NG Errors
	Content Completion in XML Schema
	Syntax Highlighting in XML Schema
	XML Schema Outline View
	XML Schema Attributes View
	XML Schema Referenced/Dependent Resources View
	Moving/Renaming XML Schema Resources

	XML Schema Component Dependencies View
	Resources

	Highlight Component Occurrences
	Searching and Refactoring Actions in XML Schemas
	Search Actions
	Refactoring Actions

	XML Schema Quick Assist Support
	Resources

	Generating Sample XML Files
	Schema Tab
	Options Tab
	Advanced Tab

	Generating Documentation for an XML Schema
	Output Tab
	Settings Tab
	Output Formats for Generating XML Schema Documentation
	HTML Output Format
	PDF Output Format
	DocBook Output Format
	DITA Output Format
	Custom Output Format
	Customizing PDF or DocBook Output of Generated XML Schema Documentation
	Customizing DITA Output of Generated XML Schema

	Converting Schema to Another Schema Language
	Converting Database to XML Schema
	Flatten an XML Schema
	Options in the Flatten Schema Dialog Box

	Generating Java Classes from XML Schema
	XML Schema Regular Expressions Builder Tool
	XML Schema 1.1
	Resources

	Setting the XML Schema Version

	Editing XQuery Documents
	XQuery Validation
	Content Completion in XQuery
	Syntax Highlighting in XQuery
	Formatting and Indenting XQuery Documents
	Folding in XQuery Documents
	XQuery Outline View
	XQuery Builder View
	XQuery Input View
	Generating HTML Documentation for an XQuery Document
	Transforming XML Documents Using XQuery
	Display XQuery Result in Sequence View
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	Updating XML Documents using XQuery Update 1.0

	XQuery Unit Test (XSpec)
	Creating an XQuery Unit Test
	Running an XQuery Unit Test
	Testing an XQuery file

	Editing WSDL Documents (Deprecated)
	Resources
	Modular Contextual WSDL Editing Using 'Main Files' Support
	Resources

	Validating WSDL Documents
	Content Completion Assistance in WSDL Documents
	WSDL Syntax Highlighting
	WSDL Outline View
	WSDL Referenced/Dependent Resources View in WSDL Documents
	Moving/Renaming WSDL Resources

	WSDL Component Dependencies View
	Highlight Component Occurrences in WSDL Documents
	Searching and Refactoring Operations in WSDL Documents
	Search Actions
	Refactoring Actions
	Searching and Refactoring Operations Scope in WSDL Documents

	Quick Assist Support in WSDL Documents
	Generating Documentation for WSDL Documents (Deprecated)
	Output Tab
	Setting Tab
	Generating WSDL Documentation in HTML Format
	Generating WSDL Documentation in a Custom Format

	WSDL SOAP Analyzer Tool (Deprecated)
	Testing Remote WSDL Files

	Editing CSS Stylesheets
	Validating CSS Stylesheets
	Specify Custom CSS Properties

	Content Completion in CSS Stylesheets
	Syntax Highlighting in CSS Files
	CSS Outline View
	Folding in CSS Stylesheets
	Formatting and Indenting CSS Stylesheets (Pretty Print)
	Minifying CSS Stylesheets

	Editing LESS Stylesheets
	Validating LESS Stylesheets
	Content Completion in LESS Stylesheets
	Syntax Highlighting in LESS Files
	Compiling LESS Stylesheets to CSS

	Editing Relax NG Schemas
	Modular Contextual Relax NG Schema Editing Using 'Main Files' Support
	Relax NG Schema Diagram Editor
	Introduction to Relax NG Schema Diagram Editor
	Full Model View
	Logical Model View
	Symbols Used in the Schema Diagram
	Actions Available in the Schema Diagram Editor

	Validating Relax NG Schema Documents
	Content Completion in Relax NG Schemas
	Syntax Highlighting in Relax NG Schemas
	Quick Fixes for DTD, XSD, and Relax NG Errors
	Relax NG Outline View
	RNG Referenced/Dependent Resources View
	Moving/Renaming RNG Resources

	Relax NG Schema Component Dependencies View
	Searching and Refactoring Actions in RNG Schemas
	Search Actions
	Refactoring Actions

	RNG Quick Assist Support
	Configuring a Custom Datatype Library for a RELAX NG Schema

	Editing NVDL Schemas
	NVDL Schema Diagram
	Introduction to NVDL Schema Diagram Editor
	Full Model View
	Logical Model View
	Actions Available in the Diagram Editor

	Validating NVDL Schema Documents
	Content Completion in NVDL Schemas
	Syntax Highlighting in NVDL Schemas
	NVDL Outline View
	NVDL Schema Component Dependencies View
	Searching and Refactoring Actions in NVDL Schemas
	Search Actions
	Refactoring Actions

	Editing JSON Documents
	Resources
	JSON Editor
	Text Mode Editor
	Grid Mode Editor
	Author Visual Editor

	Navigating References in JSON Documents
	JSON Schema References

	Validating JSON Documents
	Resources
	Checking Well-Formedness in JSON Documents
	Check for Well-Formedness Manually

	Validating JSON Documents Against JSON Schema or Schematron
	Automatic Validation
	Manual Validation Actions
	Manual Validation Actions
	Other Validation Options

	Presenting Validation Errors in JSON Documents
	Validation Marker Locations
	Validation Marker Colors
	Validation Markers in the Right-Side Stripe
	Hovering Over Validation Issues
	Details About Validation Issues

	Creating a JSON Validation Scenario
	Creating a JSON Validation Scenario

	Sharing JSON Validation Scenarios
	Resolving References with an XML Catalog

	Content Completion Assistant in JSON
	Content Completion and the Associated Schema
	Using the Content Completion Assistant in JSON
	Types of Proposals Listed in the Content Completion Assistant for JSON
	Code Templates in the Content Completion
	Schema Annotations in JSON Content Completion
	Collecting Annotations from the JSON Schema

	Associating a Schema to JSON Documents
	Detecting the Schema(s) for Validation and Content Completion
	Associating a JSON Schema Through a Validation Scenario
	Configure a Validation Scenario and Specify the Schema
	Use the Validate with Action to Specify a Schema for Validating the Current Document
	Use the Validate with Schema Action to Specify a Schema for Validating all Selected JSON Documents

	Associating a JSON Schema Directly in JSON Documents
	Associate Schema Action

	Associating a JSON Schema in a Framework (Document Type) Configuration
	Learn Document Structure When JSON Schema is not Detected
	Creating a JSON Schema from Learned Document Structure

	Syntax Highlighting in JSON Documents
	Folding in JSON
	JSON Outline View
	Outline View Features
	Outline View Interface
	Drag and Drop Actions in the Outline View
	Contextual Menu Actions

	JSON to XML Converter
	Online JSON to XML Converter
	Converting JSON to XML in Oxygen
	Conversion Details

	XML to JSON Converter
	Online XML to JSON Converter
	Converting XML to JSON in Oxygen
	Conversion Details

	JSON to YAML Converter
	Converting JSON to YAML in Oxygen

	YAML to JSON Converter
	Converting YAML to JSON in Oxygen

	Contextual Menu Actions in JSON Documents
	Transforming and Querying JSON Documents
	Resources
	Transforming JSON Documents with XSLT
	Transforming a JSON Document Directly with XSLT
	Transforming Multiple JSON Documents at Once
	Transforming a JSON Document Using XSLT and XPath Functions

	Transforming JSON Documents with XQuery
	Transforming a JSON Document Directly with XQuery
	Transforming Multiple JSON Documents at Once
	Transforming a JSON Document Using XQuery

	Querying JSON Documents with XPath or XQuery
	XPath Toolbar
	XPath/XQuery Builder View
	Details About Querying JSON Documents Using XPath Expressions

	XQuery Builder View

	Editing JSON Schema Documents
	Resources
	JSON Schema Editor
	New Document Templates
	Text Mode Editor
	Grid Mode Editor
	Author Visual Editor
	Design Mode Editor

	JSON Schema Design Mode (JSON Schema Diagram Editor)
	Resources
	Navigation in the JSON Schema Design Mode
	JSON Schema Palette View (Available in Design Mode)
	Resources

	Editing Actions in JSON Schema Design Mode
	Contextual Menu Actions in the JSON Schema Design Mode
	JSON Schema Design Mode Components and Properties
	JSON Schema Components
	Schema
	Property
	Properties
	Pattern Property
	Pattern Properties
	Unevaluated Properties (for 2019-09 or 2020-12 schemas)
	Definition
	Definitions
	Additional Properties
	Additional Items
	Items
	Prefix Items (for 2020-12 schemas)
	Unevaluated Items (for 2019-09 or 2020-12 schemas)
	AllOf
	AnyOf
	OneOf
	Not
	If/Then/Else
	Dependencies
	Dependent Required (for 2019-09 or 2020-12 schemas)
	Dependent Schemas (for 2019-09 or 2020-12 schemas)

	JSON Schema Component Properties

	JSON Schema Design Mode Validation
	Visual Error Markers

	Generating JSON Schema from a JSON File
	Generating JSON Schema Documentation
	Generating Sample JSON Files from a JSON Schema
	XSD to JSON Schema Converter
	JSON Schema Converter
	Conversion Notes

	Validating JSON Schema Documents
	2019-09 and 2020-12 Validator Limitations

	Syntax Highlighting in JSON Schema Documents
	Flatten JSON Schema

	Editing JSON Lines Documents
	Editing JSON Lines Documents
	Validation
	Content Completion

	Editing JSON5 Documents
	Editing JSON5 Documents
	Outline View
	Validation

	Editing YAML Documents
	Resources
	YAML Editor
	Text Mode Editor

	Validating YAML Documents
	Automatic Validation
	Manual Validation Actions
	Batch Validation
	Creating a YAML Validation Scenario
	Creating a YAML Validation Scenario

	Associating a JSON Schema Directly in YAML Documents
	Associate Schema Action

	Content Completion Assistant in YAML
	Content Completion and the Associated Schema
	Using the Content Completion Assistant in YAML
	Content Completion Options for YAML

	Syntax Highlighting in YAML Documents
	Folding in YAML Documents
	Formatting/Indenting YAML Documents
	YAML Outline View
	Outline View Features
	Outline View Interface
	Contextual Menu Actions

	YAML to JSON Converter
	Converting YAML to JSON in Oxygen

	JSON to YAML Converter
	Converting JSON to YAML in Oxygen

	Contextual Menu Actions in YAML Documents

	Editing XLIFF Documents
	Editing XLIFF Documents in Author Mode

	Editing JavaScript Documents
	JavaScript Editing Actions
	Validating JavaScript Files
	Content Completion in JavaScript Documents
	Syntax Highlighting in JavaScript Documents
	JavaScript Outline View

	Editing XProc Scripts
	XProc Content Completion
	XProc Syntax Highlighting
	Enabling Extensions in Calabash

	Editing Schematron Schemas
	Validating XML Documents Against Schematron
	How to Specify the Query Language Binding
	Multi-Lingual Support in Schematron Messages
	How to Customize Color Schemes in Schematron
	Schematron Transformation Scenario
	Using Schematron with AI
	Resources
	Examples of Schematron Rules and Quick Fixes
	Schematron Use Case 1: Impose a Relax NG Schema Declaration
	Schematron Use Case 2: Check for Missing IDs
	Schematron Use Case 3: Check for Broken Links
	Schematron Use Case 4: Check for Duplicate IDs
	Schematron Use Case 5: Check for Duplicate DITA Topic References
	Schematron Use Case 6: Restrict Certain Words from the Title
	Schematron Use Case 7: Check the Location of a Resource
	Schematron Use Case 8: Check for Extra Spaces at Beginning/End of Elements
	Schematron Use Case 9: Impose Capitalizing the First Letter
	Schematron Use Case 10: Check for Specified Terms in a Paragraph
	Schematron Use Case 11: Impose a Minimum Value
	SQF Use Case 1: Impose a DITA Prolog
	SQF Use Case 2: Impose an ID for all DITA Section Elements
	SQF Use Case 3: Impose a Short Description in an Abstract Element
	SQF Use Case 4: Impose a Certain Article Type
	SQF Use Case 5: Impose Certain Attributes and Values

	Modular Contextual Schematron Editing Using 'Main Files' Support
	Presenting Schematron Validation Issues
	Integrating Schematron Rules in a Framework and Sharing Them
	How to Integrate Schematron Rules in a Framework
	Sharing Schematron Rules

	Validating Schematron Documents
	Content Completion in Schematron Documents
	Syntax Highlighting in Schematron
	Embedding Schematron Rules in XML Schema or RELAX NG
	Validating XML Documents with XML Schema and Embedded Schematron
	Validating XML Documents with Relax NG and Embedded Schematron
	Example: Embedded Schematron in XML Schema
	Example: Embedded Schematron in Relax NG Schema

	Schematron Outline View
	Schematron Referenced/Dependent Resources View
	Moving/Renaming Schematron Resources

	Highlight Component Occurrences in Schematron Documents
	Searching and Refactoring Operations in Schematron Documents
	Search Actions
	Refactoring Actions
	Searching and Refactoring Operations Scope in Schematron Documents

	Quick Assist Support in Schematron Documents
	Schematron Unit Test (XSpec)
	Creating a Schematron Unit Test
	Running a Schematron Unit Test
	Testing a Stylesheet
	Adding a Catalog to an XSpec Transformation

	Editing Schematron Quick Fixes
	Displaying the Schematron Quick Fix Proposals
	Examples of Schematron Rules and Quick Fixes
	Schematron Use Case 1: Impose a Relax NG Schema Declaration
	Schematron Use Case 2: Check for Missing IDs
	Schematron Use Case 3: Check for Broken Links
	Schematron Use Case 4: Check for Duplicate IDs
	Schematron Use Case 5: Check for Duplicate DITA Topic References
	Schematron Use Case 6: Restrict Certain Words from the Title
	Schematron Use Case 7: Check the Location of a Resource
	Schematron Use Case 8: Check for Extra Spaces at Beginning/End of Elements
	Schematron Use Case 9: Impose Capitalizing the First Letter
	Schematron Use Case 10: Check for Specified Terms in a Paragraph
	Schematron Use Case 11: Impose a Minimum Value
	SQF Use Case 1: Impose a DITA Prolog
	SQF Use Case 2: Impose an ID for all DITA Section Elements
	SQF Use Case 3: Impose a Short Description in an Abstract Element
	SQF Use Case 4: Impose a Certain Article Type
	SQF Use Case 5: Impose Certain Attributes and Values

	Defining Schematron Quick Fixes
	Defining a Schematron Quick Fix
	Additional Elements Supported in the Schematron Quick Fixes
	Other SQF Notes
	Basic Schematron Quick Fix Operations
	User Entry SQF Operation
	Restricting Quick Fix Operations
	Formatting/Indenting Content Inserted by SQF Operations
	Executing Schematron Quick Fixes in Other Documents
	Generate Multiple Similar Quick Fixes
	Localizing SQF Messages

	Integrating SQF in a Framework and Sharing Them
	How to Integrate SQF in a Framework
	Sharing Schematron Quick Fixes

	Validating Schematron Quick Fixes
	Content Completion in SQF
	Highlight Quick Fix Occurrences in SQF
	Searching and Refactoring Operations in SQF
	Search Actions
	Refactoring Actions

	Embedding Schematron Quick Fixes in Relax NG or XML Schema

	Editing SVG Files
	How to Render SVG Images that Use Java Scripting
	SVG 1.2 Rendering Issues
	Standalone SVG Viewer
	Actions Available in the SVG Viewer

	Integrated SVG Viewer in the Results Panel
	Example of a Use-Case

	Editing HTML Documents
	Resources
	HTML Editor
	New Document Template
	Text Mode Editor
	Author Mode Editor
	HTML-Specific Contextual Menu Actions
	XML Well-Formedness Details for HTML Documents

	HTML Validation
	Validating HTML Against a Schematron
	Validating HTML Against Other Types of Schema

	HTML Content Completion Assistant
	Using the Content Completion in HTML
	Code Templates in the Content Completion
	Content Completion for XPath Expressions

	Syntax Highlighting in HTML Documents
	Folding in HTML
	Minifying HTML Documents
	HTML Outline View
	Querying HTML Documents with XPath
	XPath Toolbar

	Associating a CSS with an HTML Document

	Editing Markdown Documents
	Resources
	Markdown Editor
	Markdown Text Editor Pane (Left Side)
	WYSIWYG Preview Pane (Right Side)

	Creating New Markdown Documents
	Actions Available in the Markdown Editor
	Toolbar Actions
	Contextual Menu Actions

	Syntax Highlighting in the Markdown Editor
	Automatic Validation in Markdown Documents
	Validating Markdown Documents with Schematron

	Working with Markdown Documents in DITA
	Preview
	Export Markdown as a DITA Topic
	Working with Markdown Documents in the DITA Maps Manager
	Converting Multiple Markdown Documents to DITA
	DITA-Related Markdown Syntax

	Markdown Editor Syntax Rules and Specifications
	Headers
	Horizontal Rules (for HTML output only)
	Paragraphs and Line Breaks
	Styling Text
	Links
	Automatic Links
	Images
	Blockquotes
	Quoting Code (Inline and Code Blocks)
	Inline XHTML (for HTML output only)
	Lists
	Task Lists
	Definition Lists
	Tables
	Emoji
	Backslash Escapes
	Automatic Escaping for Special Characters
	Footnotes
	Latex Mathematical Equations
	DITA-Related Markdown Syntax

	Other Supported Document Types
	External Document Types

	9.  Built-in Frameworks (Document Types)
	DocBook 4 Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalog
	Transformation Scenarios
	Resources
	DocBook 4 Author Mode Actions
	DocBook 4 Toolbar Actions
	DocBook4 Contextual Menu Actions
	Floating Contextual Toolbar for DocBook
	DocBook 4 Drag/Drop (or Copy/Paste) Actions

	Inserting an Olink in DocBook Documents

	DocBook 5 Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Transformation Scenarios
	Resources
	DocBook 5 Author Mode Actions
	DocBook 5 Toolbar Actions
	DocBook5 Contextual Menu Actions
	Floating Contextual Toolbar for DocBook
	DocBook 5 Drag/Drop (or Copy/Paste) Actions

	Inserting an Olink in DocBook Documents

	DocBook Assembly (5.1 and Later)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Transformation Scenarios
	Resources

	DocBook Topic (5.1 and Later)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Transformation Scenarios
	Resources

	DocBook Targetset Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion

	DITA Topics Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalogs
	Transformation Scenarios
	Resources
	DITA Topic Author Mode Actions
	DITA Toolbar Actions
	DITA Contextual Menu Actions
	Floating Contextual Toolbar for DITA
	DITA Drag/Drop (or Copy/Paste) Actions

	DITA Map Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalogs
	Transformation Scenarios
	Resources
	DITA Map Author Mode Actions
	DITA Map Toolbar and Menu Actions
	DITA Map Contextual Menu Actions
	Floating Contextual Toolbar for DITA
	DITA Map Drag/Drop Actions
	Opening a Topic from a DITA Map in Author Mode

	XHTML Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalogs
	Transformation Scenarios
	XHTML Validation
	XHTML Author Mode Actions
	XHTML Toolbar Actions
	XHTML Contextual Menu Actions
	XHTML Drag/Drop (or Copy/Paste) Actions

	TEI P5 Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalogs
	Transformation Scenarios
	Resources
	TEI P5 Author Mode Actions
	TEI P5 Toolbar Actions
	TEI Contextual Menu Actions
	TEI P5 Drag/Drop Actions

	How to Install a TEI Framework with the Latest Schema and Stylesheets

	TEI ODD Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalogs
	Transformation Scenarios
	Resources
	TEI ODD Author Mode Actions
	TEI ODD Toolbar Actions
	TEI Contextual Menu Actions
	TEI ODD Drag/Drop Actions

	jTEI Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalogs
	Transformation Scenarios
	Resources

	JATS Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema for Validation and Content Completion
	Default CSS
	Default XML Catalog
	Transformation Scenarios
	Resources
	JATS Author Mode Actions
	JATS Toolbar Actions
	JATS Contextual Menu Actions
	JATS Drag/Drop Actions

	EPUB Document Type (Framework)
	File Definition
	Default Document Templates
	Default Schema

	OpenAPI (Swagger) Document Type (Framework)
	Editing OpenAPI Documents
	Validation and Content Completion
	Resources

	OpenAPI Test Scenario Document Type (Framework)
	Author Mode Editing
	Default Document Template
	Content Completion
	Validation
	OpenAPI Tools
	Resources

	AsyncAPI Document Type (Framework)
	Editing AsyncAPI Documents
	Default Document Templates
	Content Completion
	Validation
	Resources

	JSON-LD Document Type (Framework)
	Editing JSON-LD Documents
	Default Document Template
	Content Completion
	Validation

	10.  Additional XML Editing Frameworks (Document Types)
	S1000D Document Type (Framework)

	11.  Publishing
	Transformation Scenarios
	Built-in Transformation Scenarios
	DITA Map Transformation Scenarios
	DITA Map WebHelp Responsive Transformation
	WebHelp Responsive Transformation Scenario
	General Parameters for Customizing WebHelp Responsive Output
	Parameters Specific to Oxygen WebHelp Responsive
	Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

	DITA Map PDF - based on HTML5 & CSS Transformation
	How to Create the Transformation Scenario
	Customizing the Output

	DITA Map PDF - based on XSL-FO Transformation
	Creating a DITA Map PDF - based on XSL-FO Transformation Scenario

	DITA Map MS Office Word Transformation
	Configuring the Transformation Scenario

	DITA Map Markdown Transformation
	DITA Map CHM (Compiled HTML Help) Transformation
	Changing the Output Encoding
	Customizing the CHM Output

	DITA Map Metrics Report Transformation
	DITA Map Zendesk Publishing
	Resources

	Integrate/Install DITA-OT Plugins Transformation
	Running the Transformation Scenario

	Solving DITA Transformation Errors

	DITA Topic Transformation Scenarios
	DocBook Transformation Scenarios
	DocBook to DITA Transformation
	DocBook to PDF Transformation
	DocBook to EPUB Transformation
	DocBook PDF (Show Change Tracking and Comments)

	Creating New Transformation Scenarios
	XML Transformation with XSLT
	XSLT Tab
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets
	Advanced Saxon HE/PE/EE XSLT Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	Using Saxon Integrated Extension Functions

	FO Processor Tab (XSLT Transformations)
	Output Tab (XSLT Transformations)
	Configuring an XSLT Processor for Generating Output
	Supported XSLT Processors
	Configuring Custom XSLT Processors
	Configuring the XSLT Processor Extensions Paths

	XML Transformation with XQuery
	XQuery Tab
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	XML to PDF Transformation with CSS
	CSS Tab (XML to PDF Transformation with CSS)
	Output Tab (XML to PDF Transformation with CSS)

	DITA-OT Transformation
	Templates Tab (DITA-OT Transformations)
	Filtering and Previewing Templates
	Built-in Templates Locations
	Custom Templates Locations
	Selecting Custom Templates
	Save Template As Button
	Template Errors
	Sharing Publishing Template
	Resources
	Template Package Configuration Dialog Box

	FO Processor Tab (DITA-OT Transformations)
	Parameters Tab (DITA-OT Transformations)
	Parameters Contributed by an Oxygen Publishing Template

	Feedback Tab (DITA-OT Transformations)
	Filters Tab (DITA Transformations)
	Advanced Tab (DITA-OT Transformations)
	Output Tab (DITA-OT Transformations)

	Ant Transformation
	Options Tab (Ant Transformations)
	Parameters Tab (Ant Transformations)
	Output Tab (Ant Transformations)

	JSON Transformation with XSLT
	XSLT Tab (JSON Transformations)
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets

	FO Processor Tab (JSON Transformations)
	Output Tab (JSON Transformations)

	JSON Transformation with XQuery
	XQuery Tab (JSON Transformations)
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	XSLT Transformation on XML
	XSLT Tab
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets
	Advanced Saxon HE/PE/EE XSLT Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	Using Saxon Integrated Extension Functions

	FO Processor Tab (XSLT Transformations)
	Output Tab (XSLT Transformations)
	Configuring an XSLT Processor for Generating Output
	Supported XSLT Processors
	Configuring Custom XSLT Processors
	Configuring the XSLT Processor Extensions Paths

	XSL-FO (Apache FOP) Processor for Generating PDF Output
	Add a Font to the Built-in FO Processor - Simple Version
	Add a Font to the Built-in FO Processor - Advanced Version
	Adding Libraries to the Built-in FO Processor (XML with XSLT and FO)
	Adding Hyphenation Support for XML with XSLT Transformation Scenarios
	Adding Support for PDF Images

	How to Enable Debugging for FO Processor Transformations

	XSLT Transformation on JSON
	XSLT Tab (JSON Transformations)
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets

	FO Processor Tab (JSON Transformations)
	Output Tab (JSON Transformations)

	XProc Transformation
	XProc Tab
	Inputs Tab (XProc Transformations)
	Parameters Tab (XProc Transformations)
	Outputs Tab (XProc Transformations)
	Options Tab (XProc Transformations)
	Calabash XProc Processor for Generating PDF Output
	Integrating an External XProc Engine

	XQuery Transformation on XML
	XQuery Tab
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	XQuery Transformation on JSON
	XQuery Tab (JSON Transformations)
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Saxon-HE/PE/EE Options
	Saxon-PE/EE Options
	Saxon-EE Options
	Other Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	SQL Transformation

	Editing a Transformation Scenario
	Transformation Types

	Duplicating a Transformation Scenario
	Applying Associated Transformation Scenarios
	Configure Transformation Scenario(s) Dialog Box
	Batch Transformations
	Sharing Transformation Scenarios
	Transformation Scenarios View
	Toolbar/Contextual Menu Actions and Options

	WebHelp Output Customization
	WebHelp Responsive Output for DITA
	Layout and Features
	Layout of the Responsive Page Types
	Main Page - Tiles Layout
	Main Page - Tree Layout
	Main Page Components
	Topic Page Components
	Search Results Page Components
	Auto-complete Suggestions in the Search Input Field
	Missing Terms
	Index Terms Page Components

	Built-in JavaScript-based Search Engine
	Search Field and Results Page
	5-Star Rating Mechanism and Sorting
	Tag Element Scoring Values
	Search Rules
	Excluded Terms

	Context-Sensitive Help System
	Generating Context-Sensitive Help
	Context-Sensitive Queries

	Accessibility
	Writing Guidelines for Accessible Documentation
	Accessible Images
	Short Text Equivalents for Images
	Long Descriptions of Images
	Accessible Image Maps
	Accessible Tables
	Table with Header Cells in the Top Row Only
	Table with Header Cells in the First Column Only
	Table with Header Cells in the Top Row and First Column

	WebHelp Responsive VPAT Accessibility Conformance Report
	International Edition
	Applicable Standards/Guidelines
	Terms
	WCAG 2.x Report
	Table 1: Success Criteria, Level A
	Table 2: Success Criteria, Level AA
	Table 3: Success Criteria, Level AAA
	Revised Section 508 Report
	Chapter 3: Functional Performance Criteria (FPC)
	Chapter 4: Hardware
	Chapter 5: Software
	Chapter 6: Support Documentation and Services
	Legal Disclaimer

	Publishing Templates
	Publishing Templates Gallery
	Built-in Templates
	Built-in Templates Location
	Custom Templates
	Sharing Publishing Template

	Publishing Template Package Contents for WebHelp Responsive Customizations
	Template Name and Description
	Template Author
	Webhelp Element
	Template Tags
	Template Preview Image
	Global Placeholder Parameters
	Main Page Placeholder Parameters
	Topic Page Placeholder Parameters
	Search Results Page Placeholder Parameters
	Index Terms Page Placeholder Parameters
	Using String Values in Placeholder Parameter Values
	Implementations
	Extensibility
	HTML Page Layout Files
	Main Page
	Topic Page
	Search Results Page
	Index Terms Page

	Generating WebHelp Responsive Output
	Running WebHelp Responsive from Oxygen XML Editor/Author
	Automating the WebHelp Responsive Output for DITA

	Adding Oxygen Feedback to WebHelp Responsive Documentation
	Deploying the Oxygen Feedback Comments Component

	Customizing WebHelp Responsive Output
	Working with Publishing Templates
	How to Create a Publishing Template
	Creating a Publishing Template Starting from Scratch
	Creating a Publishing Template Starting from an Existing Template
	Creating a Publishing Template Using the Oxygen Styles Basket
	Resources

	How to Edit a Packed Publishing Template
	How to Add a Publishing Template to the Publishing Templates Gallery
	How to Use a Publishing Template from a Command Line
	How to Share a Publishing Template
	Troubleshooting: Errors Encountered when Loading Templates
	Converting Old Templates to Newer Versions
	Convert Version 25 - 27.0 Publishing Templates to Version 27.1
	Convert Version 24.1 Publishing Templates to Version 25
	Convert Version 24.0 Publishing Templates to Version 24.1
	Convert Version 23 Publishing Templates to Version 24
	Convert Version 22 Publishing Templates to Version 23
	Convert Version 21 Publishing Templates to Version 22
	Convert Version 20 Publishing Templates to Version 21

	Changing the Layout and Styles
	How to Use CSS Styling to Customize the Output
	How to Insert Custom HTML Content
	The XML File
	Using WebHelp Macros
	Referencing the HTML fragment using a Publishing Template
	Referencing the HTML Fragment using a Transformation Parameter

	How to Change Numbering Styles for Ordered Lists
	Referencing the Custom CSS from a Publishing Template
	Referencing the CSS Using the args.css Parameter

	How to Add Syntax Highlights for Codeblocks in the Output
	How to Show or Hide Navigation Links in Topic Pages
	How to Control Which Topic Pages Include Navigation Links
	How to Generate Navigation Links for All Topics (Ignoring the Collection Type Attribute)
	How to Hide All Navigation Links

	How to Change the Main Page Layout
	How to Customize the Menu
	How to Hide Some of the Menu Entries
	How to Hide the Entire Menu
	How to Add a Welcome Message
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author
	How to Create a Custom Footer
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author
	How to Configure the Tiles
	How to Hide Some of the Tiles
	How to Add an Image to the Tiles

	Adding Graphics and Media Resources
	How to Add a Logo Image in the Title Area
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Add a Favicon in WebHelp Systems
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Add Video and Audio Objects in DITA WebHelp Output
	Adding Videos to DITA WebHelp Output
	Adding Audio Clips to DITA WebHelp Output
	Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output
	Resources

	How to Add MathML Equations in WebHelp Output

	Searching the Output
	Built-in JS Based Search Engine Customizations
	How to Change Element Scoring in Search Results
	How to Index Japanese Content
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author
	How to Implement a Custom Search Filter
	How to Exclude Certain DITA Topics from Search Results
	Transformation Parameter Method
	Search Attribute Method

	Oxygen Feedback Search Engine
	How to Configure Faceted Search in WebHelp Output
	Configure Oxygen Feedback as an External Search Engine
	Defining Facets Using a DITA Subject Scheme Map
	Associating Faceted Values With a Topic Using a DITA Classification Map
	Refining the Search Results by Using Facets in the Search Page
	How to Add Searchable Labels in WebHelp Output
	Configure Oxygen Feedback as an External Search Engine
	How to Add Searchable Labels in a DITA Topic
	Transformation Parameters for Generating Searchable Labels
	Searchable Labels in WebHelp Responsive Output

	Custom Search Engine
	How to Integrate Google Search in WebHelp Responsive Output
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author
	Replacing the Search Engine Only
	API Search Objects
	Replacing the Search Engine and Results Presentation

	How to Display Custom Title in Search Results
	How to Trigger a Search Query When WebHelp is Loaded
	Configuring the Search Engine Optimization
	Creating and Editing the sitemap.xml File

	Localization
	How to Localize the Interface of WebHelp Responsive Output
	Modifying the Existing Strings
	Adding a New Language

	How to Activate Support for Right-to-Left (RTL) Languages

	Social Media and Google Tools
	How to Add a Facebook Like Button in WebHelp Responsive Output
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Add Tweet Button in WebHelp Responsive Output
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Integrate Google Analytics in WebHelp Responsive Output
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	Ant Extensions for WebHelp Responsive
	XSLT Extensions for WebHelp Responsive
	How to Use XSLT Extension Points from a Publishing Template
	Use Case 1: Add Copyright Information Extracted from a DITA Bookmap
	Bonus: Add Generation Time in the Output Footer
	Use Case 2: Display Footnotes Below Tables

	How to Use XSLT Extension Points from a DITA-OT Plugin
	Use Case 1: WebHelp XSLT-Import extension point to add copyright information extracted from a DITA Bookmap
	Use-Case 2: WebHelp XSLT-Parameter Extension Point to Control if Generation Time is Displayed in the Output

	Miscellaneous Customization Topics
	How to Copy Additional Resources to Output Directory
	Copying Additional Resources to the Output Directory using a Publishing Template
	Copying Additional Resources to the Output Directory using a Transformation Parameter

	How to Add an Edit Link to Launch Oxygen XML Web Author
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Flag DITA Content in WebHelp Output
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to View MathML Equations in HTML Output
	Alternate Method for DITA

	How to Disable Caching in WebHelp Responsive Output
	How to Add a Link to PDF Documentation
	How to Add a Custom Component for WebHelp Output
	Predefined components
	Customization Methods
	Use Case: Custom Link Component
	Creating a Custom Component
	Sample Publishing Template

	How to Generate Google Structured Data
	Generating Google Structured Data for DITA Tasks Topics
	Generating for Questions and Answers Topics
	Generating from data elements found inside a topic

	How to Group Related Links by Type
	How to Use a Local Font in WebHelp Responsive Output
	How to Use JQuery in WebHelp Responsive Output
	How to Display Certain Elements as Tabs

	Transformation Parameters
	Publishing Template Parameters
	Custom Resource Parameters
	Oxygen Feedback Parameter
	Context Sensitive Help Parameter
	HTML Fragment Extension Parameters
	Output Component Parameters
	Search-Related Parameters
	Publishing Speedup Parameters
	Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

	WebHelp Responsive XSLT-Import and XSLT-Parameter Extension Points
	Extension Points from an Oxygen Publishing Template
	Extension Points from a DITA-OT Extension Plug-in
	XSLT-Import Extension Points
	XSLT-Parameter Extension Points

	DITA to PDF Output Customization
	CSS-based PDF Customization
	DITA Map Transformation Type (DITA Map PDF - based on HTML5 & CSS)
	Single Topic Transformation Type (DITA PDF - based on HTML5 & CSS)
	Overview
	Resources
	Supported Processors
	Technical Details
	Increasing Memory Allocation for Java
	When the Transformation is Started from Oxygen
	When the Transformation is Started from the Command Line

	Transformation Parameters
	Console Logging
	Chemistry Console Logging

	License Key
	Chemistry License
	Oxygen Publishing Engine License

	Generating PDF Output
	Generating PDF from a Command Line
	Generating PDF from an Integration Server

	Publishing Templates
	Template Package Contents for PDF
	Template Name and Description
	Template Author
	PDF Element
	Template Tags
	Template Preview Image

	How to Create a Publishing Template
	Creating a Publishing Template Starting from Scratch
	Creating a Publishing Template Starting from an Existing Template
	Creating a Publishing Template Using the Oxygen Styles Basket
	Resources

	How to Edit a Packed Publishing Template
	How to Use a Publishing Template in a PDF Transformation
	From Oxygen XML Editor/Author
	From a Command Line

	How to Share a Publishing Template

	Customizing PDF Output Using CSS
	Create Custom CSS Rules from Scratch
	Creating a Publishing Template Using the Oxygen Styles Basket
	Debugging the CSS
	Inspecting the Merged Map File
	Inspecting the Applied Styles Using a Browser
	Inspecting the Applied Styles Using Oxygen XML Editor/Author
	Other Debugging Techniques
	How to Speed up CSS Development and Debugging
	How to Use XPath Expressions in CSS
	How to Write XPath Expressions
	How to Debug XPath Expressions

	Default Page Definitions
	Default Page
	Front Page
	Table of Contents Page
	Chapter Page
	Front Matter and Back Matter Page
	Index Page
	Landscape Page
	Blank Page

	Page Size
	Page Size - Built-in CSS rules
	How to Change the Page Size
	How to Change the Page Orientation
	How to Change the Page Settings for a Specific Element

	Page Headers and Footers
	Page Headers and Footers - Built-in CSS
	How to Change the Size of Headers and Footers
	How to Change the Font of the Headers and Footers
	How to Display Chapter's Headers on First Page
	How to Position Text in the Headers and Footers
	How to Change the Header Separators
	How to Simplify the Header (Keep Only the Chapter Title)
	How to Style a Part of the Text from the Header
	How to Add a Background Image to the Header
	How to Decorate the Header by Using a Background Image on the Entire Page
	How to Change Header Text for Each Topic
	How to Change Header Images for Each Chapter
	How to Add a Multi-line Copyright Notice to the Footer
	How to Add a Group of Topics to the Footer
	Method 1: Using the position:fixed CSS Property
	Method 2: Using the float:footnote CSS Property

	How to Add a Link in Headers and Footers
	Method 1: Using an SVG Link Attribute
	Method 2: Using the CSS -oxy-link Property

	How to Change the Header Styling Depending on Page Side
	How to Use XPath Computed Data or Images in the Header or Footer
	Example 1: Compute the Number of Words
	Example 2: Retrieve Image from a Document and Insert it in the Header
	Example 3: Insert the Current Date in the Footer
	Example 4: Picking up Metadata from the Original Map

	How to Add a Line Under the Header
	Method 1: Add a Border in the Page Margin Boxes
	Method 2: Use a Background Image

	How to Change the Headings Using a Parameter
	How to Change the Headings depending on the Language
	How to Display the Chapter and the Page Number in the Footer

	Page Breaks
	Page Breaks - Built-in CSS
	How to Avoid Page Breaks in Lists and Tables
	How to Force a Page Break Before or After a Topic or Another Element
	How to Add a Blank Page After a Topic
	How to Enforce a Number of Lines from Paragraphs that Continue in Next Page
	How to Avoid Page Breaks Between Top-Level Topics (Chapters)

	Cover (Title) Page
	Cover Page - XML Fragment
	Cover Page - Built-in CSS rules
	How to Add a Background Image for the Cover
	How to Display the Background Cover Image Before the Title
	How to Use Different Background Cover Images Based on Bookmap or Map Information

	How to Change Styling of the Cover Page Title
	How to Add Text to the Cover Page
	How to Place Cover on the Right or Left Side
	How to Add a Second Cover Page and Back Cover Page
	How to Dynamically Add a Second Cover Page

	How to Add a Specific Number of Empty Pages After the Cover Page
	How to Add a Copyright Page after the Map Cover (Not for Bookmaps)
	How to Remove the Cover Page and TOC
	How to Add a Cover in Single-Topic Publishing
	How to Use SVG Templates for Creating Dynamic Cover Pages
	Using SVG Template as a Cover Page

	Metadata
	Metadata - XML Fragment
	Bookmaps
	Maps

	Metadata - Built-in CSS rules
	How to Create a Searchable PDF
	Bookmaps
	Maps
	Topics

	How to Add the Publication Audience to the Custom PDF Metadata
	How to Show Metadata in the Cover Page
	Processing Metadata for Bookmaps
	Processing Metadata for DITA Maps
	Generating Synthetic Pages for Metadata

	How to Show Metadata in the Header or Footer
	How to Show Metadata Information (Revision History) in the Topic Prologue
	How to Remove or Change the PDF Keywords
	How to Remove the PDF Publication Title Property
	How to Change the PDF Publication Title Property
	How to Use Data Elements from the Map to Create Custom PDF Metadata
	How to Control the PDF Viewer
	Examples

	Front Matter and Back Matter
	Front Matter and Back Matter - XML Fragment
	Front Matter and Back Matter - Built-in CSS
	How to Remove Page Breaks Between Front Matter Child Topics
	How to Style the Front Matter and Back Matter Topics
	Style all the Topics with the Same Aspect
	Style the Topics Depending on Their Role

	Numbering
	Numbering - Built-in CSS
	Numbering - Input XML Fragments
	The Table of Contents
	The Header and Footers
	The Titles of Chapters

	Numbering Types
	Examples

	How to Reset Page Numbering at First Chapter/Part
	Reset Page Numbering in Shallow Context
	Reset Page Numbering in Deep Context
	Reset Page Numbering in Deep Chapter Scope No Page Reset Context

	How to Use Part, Chapter, and Subtopics Numbers in Links
	How to Include Topic Sections in TOC

	Table of Contents
	Table of Contents - XML Fragment
	Table of Contents - Built-in CSS
	How to Increase TOC Depth
	How to Style TOC Entries
	How to Change TOC Header
	How to Make the TOC Start on an Odd Page
	How to Display a Topic Before the TOC
	How to Remove Entries from the TOC
	How to Display Subtopics in TOC
	How to Hide the TOC
	How to Display Short Descriptions in the TOC

	Table of Contents on a Page (Mini TOC)
	Layout for MINITOC
	Layout for MINITOC-BOTTOM-LINKS
	Table of Contents for Chapters (Mini TOC) - XML Fragment
	Table of Contents for Chapters (Mini TOC) - Built-in CSS
	How to Style the Table of Contents for Chapters (Mini TOC)

	List of Tables/Figures
	How to Set a Header for a List of Tables/Figures
	How to Remove the Numbers Before a List of Tables or Figures

	Double Side Pagination
	How to Start Chapters on Odd Pages
	How to Style the Empty (Blank) Pages
	How to Force an Odd or Even Number of Pages in a Chapter
	How to Style the First page of a Chapter

	Multiple Column Pages
	How to Use a Two Column Layout
	Change Layout for Predefined Pages
	Change Layout for a Specific Topic
	Change Column Breaks for Headings

	Bookmarks
	PDF Bookmarks - Built-in CSS
	How to Change the Bookmark Labels using the Navigation Title
	How to Control Bookmarks Depth and Sections Display in PDF.
	How to Specify the Open/Closed PDF Bookmark State
	How to Remove the Numbering From the PDF Bookmarks

	Index
	Index - XML Fragment
	Index - Built-in CSS
	How to Style the Index Page Title and the Grouping Letters
	How to Style the Index Terms Labels
	How to Add Filling Dots Between the Index Labels and the Page Numbers
	How to Change the Index Page Number Format and Reset its Value
	How to Impose a Table-like Index Layout

	Appendices
	How To Control Page Break Within Appendices

	Footnotes
	Footnotes - Built-in CSS
	How to Change Style of the Footnote Markers and Footnote Calls
	How to Add a Separator Above the Footnotes
	How to Reset the Footnotes Counter
	How to Display Footnotes Below Tables

	Hyphenation
	Hyphenation Dictionaries
	Installing New Hyphenation Dictionaries
	How to Alter a Hyphenation Dictionary
	How to Enable Hyphenation for Entire Map
	How to Enable/Disable Hyphenation for an Element
	How to Define Hyphenation for a Specific Word
	How to Force or Avoid Line Breaks at Hyphens

	Accessibility
	Accessibility - Built-in CSS
	How to Create Fully Accessible Documents

	Archiving
	How to Allow Document Archiving

	Fonts
	How to Set Fonts in Titles and Content
	How to Use Fonts for Symbols
	How to Use Fonts for Asian Languages
	How to Use Asian Fonts in Linux
	How to Add a New Asian Font

	How to Set Fonts for Displaying Music

	Comments, Highlights, and Tracked Changes
	Comments and Tracked Changes - Built-in CSS
	Comments and Tracked Changes - HTML Fragment
	Insertions
	Comments
	Attribute changes
	Deletions
	Colored Highlights

	How to Style Tracked Changes or Comments
	How to Style Tracked Changes Shown as Footnotes
	How to Show Only Change Bars on Tracked Changes

	Draft Watermarks
	How to Add a Draft Watermark on All Pages
	How to Add a Draft Watermark in the Foreground
	How to Add a Draft Watermark Depending on Metadata

	Flagging Content
	How to Flag Content Using Change Bars
	How to Flag Content Using Images

	Styling the Content
	Reusing the Styling for WebHelp and PDF Output
	Titles
	How to Control Titles Layout
	How to Change Chapters Title Prefix
	Changing Prefixes in Shallow Numbering
	Changing Prefixes in Deep Numbering
	How to Remove Parts and Chapter Title Prefixes
	Removing Prefixes in Shallow Numbering
	Removing Prefixes in Deep Numbering
	How to Display Chapters Title on a Separate Page

	Equations
	How to Change the Font of MathML Equations

	Lists
	How to Style Lists
	How to Align Lists with Page Margins
	How to Continue List Numbering
	How to Change the Numbering System of Ordered Lists
	Use the list-style-type CSS Property.
	Change the Content of the :marker CSS Pseudo-Element.

	Links
	How to Change 'on page NNN' Link Label
	How to Change Link Styles
	How to Hide Descriptions in Related Links Sections
	How to Group Related Links by Type

	Images and Figures
	Images - Built-in CSS
	How to Fix Image Bleeding - Control Image Size
	How to Change Image Resolution
	How to Change the Resolution for Raster Images
	How to Change the Resolution for Vector Images
	How to Place Big Images on Rotated Pages
	How to Place a Text and Image Side by Side
	How to Control the Image Size in Complex Static Content
	How to Center Images
	How to Surround Images with Borders
	How to Change/Reset the Figure Numbering
	How to Fix Missing Images
	How to Use Image Maps
	How to Hide the Image Map Links List
	How to Use SVG Syntax Diagrams

	Videos
	How to Reference a Video Using a Key
	How to Change Video Size
	How to Change the Videos Cover
	How to Center Videos

	Tables
	Tables - Built-in CSS
	How to Avoid a Table Exceeding the Page Width
	How to Handle Wide Tables - Page Rotation
	How to Fix Text Bleeding From Table Cells
	How to Fix Small Images in Table
	How to Center Tables
	How to Remove the Table NN Label
	How to Customize Rows, Columns and Cells
	Common Use-Cases
	Applying Properties to Specific Elements
	How to Add Stripes to a Table
	How to Display Borders on a Split Cell
	How to Rotate Content from a Table Cell
	How to Add Horizontal Lines to a Choice Table

	Programming Elements
	How to Change Font in Code Blocks
	How to Enable Syntax Highlight in Code Blocks
	Changing the Colors for the Syntax Highlighting
	How to Add Line Numbering in Code Blocks
	How to Display Whitespaces in Code Blocks
	How to Disable Line Wrapping in Code Blocks
	How to Enable Line Wrap in Code Phrases
	How to Deal with Unwanted Returns in Code Blocks

	Notes
	How to Change Note Icons
	How to Change Note Colors

	Hazard
	How to Customize Hazard Statements
	How to Customize Other Type Hazards
	How to Remove the Hazard Symbol
	Remove the Hazard Symbol from the Header
	Remove the Hazard Symbol on the left of the Message Panel

	Tasks
	How to Add Requirements Labels

	Abbreviated Forms
	Trademarks
	How to Style the Trademark Element Text
	How to Style the Trademark Symbol

	Styling Through Custom Parameters
	How to Limit the Depth of the TOC Using a Parameter
	How to Change the Page Size Using a Parameter
	How to Change the Cover Page Using a Parameter

	Controlling the Publication Content
	Why Use a Bookmap
	How to Omit the Front Page, TOC, Glossary, Index for a Plain DITA Map
	How to Make Chapters Look Like Individual Publications

	XSLT Extensions for PDF Transformations
	How to Use XSLT Extension Points for PDF Output from a Publishing Template
	How to Style Codeblocks with a Zebra Effect
	How to Remove the Related Links Section
	How to Wrap Words in Markup
	How to Convert Definition Lists into Tables
	How to Display Footnotes Below Tables
	How to Wrap Scientific Numbers in Tables Cells
	How to Use a Bullet for Tasks that Contain a Single Step
	How to Change the Critical Dates Format
	How to Remove Links from Terms
	How to Display Glossary as a Table
	How to Include Sections in the Mini TOC
	How to Add a Link to the TOC
	How to Repeat Note Titles After a Page Break
	How to Create a Custom Code Block Highlighter

	How to Use XSLT Extension Points for PDF Output from a DITA-OT Plugin
	How to Style Codeblocks with a Zebra Effect
	How to Remove the Related Links Section
	How to Use Custom Parameters in XSLT Stylesheets

	DITA-OT Extension Points
	How to Contribute a Custom CSS to the Transformation from a DITA-OT Plugin

	Localization
	How to Customize CSS Strings
	How to Modify Existing Strings
	How to Add New Strings

	Security
	How to Protect PDF Files by Setting Security Permissions
	How to Sign a PDF

	Troubleshooting
	Damaged PDF File
	Problem
	Cause
	Solution

	Glyph Not Available in Font
	Problem
	Cause
	Solution

	Error Parsing CSS File - Caused by a Networking Problem
	Problem
	Cause
	Remedy

	Failed to Run Pipeline: The Entity Cannot Be Resolved Through Catalogs
	Problem
	Cause
	Solution

	Disappearing Thin Lines or Cell Borders
	Problem
	Cause
	Solution

	Glossary Entries Referenced Using 'glossref' are not Displayed
	Problem
	Solution

	The format-date() XPath Function Does Not Respect the Specified Locale
	Problem
	Cause
	Solution

	Highlights Span Unexpectedly to the End of the Page
	Problem
	Cause
	Solution

	Unexpected Page Break Before or After an Element
	Problem
	Cause
	Solution

	Error When Processing Topics With Chunk and Copy-To Attribute
	Problem
	Cause
	Solution

	XSL-FO to PDF Customization
	Using a Customization Directory
	How to Create a Customization Directory

	Embedding a Company Logo
	Customizing the Header and Footer in PDF Output
	Adding a Watermark to PDF Output
	Adding an Edit Link in PDF Output to Launch Oxygen XML Web Author
	Force Page Breaks Between Two Block Elements in PDF Output
	Show Comments and Tracked Changes in PDF Output
	Set a Font for PDF Output Generated with FO Processor
	DITA-OT PDF Font Mapping

	Adding Libraries to the Built-in FO Processor (DITA-OT)
	Adding Support for PDF Images
	Adding Support for CGM Images
	Adding Hyphenation Support for DITA-OT Transformation Scenarios

	Debugging DITA PDF Transformations

	DocBook to PDF Output Customization

	12.  Working with XPath Expressions
	XPath Toolbar
	XPath Toolbar

	XPath Builder View
	XPath Expression Results View
	XPath and XML Catalogs
	XPath Prefix Mapping

	13.  Working with Archives
	Resources
	Browsing Archives
	Archive Browser Toolbar Actions
	Archive Browser Contextual Menu Actions
	Resources

	Working with Archive Files
	EPUB-Specific Validation
	Resources
	Creating an Archive
	Editing and Saving Files Inside an Archive
	Migrating Archives to DITA or TEI

	14.  Databases and SharePoint
	Working with Databases
	Data Source Explorer View
	Toolbar Actions
	Database-Specific Contextual Menu Actions

	Table Explorer View
	Table Explorer Contextual Menu Actions
	Table Explorer Toolbar Actions

	Database Connection Support
	Relational Database Support
	Native XML Database Support
	Microsoft SQL Server Database Connections (Deprecated)
	Configuring a Microsoft SQL Server Connection
	How to Configure Microsoft SQL Server Data Source Drivers
	How to Configure a Microsoft SQL Server Connection

	Microsoft SQL Server Contextual Menu Actions
	General Contextual Menu Actions
	Database-Specific Contextual Menu Actions

	Oracle Database Connections (Deprecated)
	Configuring an Oracle 11g Database Connection
	How to Configure Oracle 11g Data Source Drivers
	How to Configure an Oracle 11g Connection

	Oracle Database Contextual Menu Actions
	General Contextual Menu Actions
	Database-Specific Contextual Menu Actions

	PostgreSQL Database Connections (Deprecated)
	Configuring a PostgreSQL Database Connection
	How to Configure PostgreSQL Data Source Drivers
	How to Configure a PostgreSQL Connection

	PostgreSQL Contextual Menu Actions
	General Contextual Menu Actions
	Database-Specific Contextual Menu Actions

	eXist Database Connections
	Configuring an eXist Database Connection
	How to Configure an eXist Connection Using the Built-in Wizard
	How to Configure an eXist Connection Manually
	Step 1: Configure eXist Data Source Drivers
	Step 2: Configure an eXist Connection
	Resources

	eXist Contextual Menu Actions

	MarkLogic Database Connections (Deprecated)
	MarkLogic and XQuery
	Modules Container
	Requests Container
	Configuring a MarkLogic Database Connection
	How to Configure MarkLogic Data Source Drivers
	How to Configure a MarkLogic Connection

	MarkLogic Development in Oxygen XML Editor
	Working with XQuery Files
	XQuery Debugging
	Working with Modules

	Debugging with MarkLogic
	Remote Debugging with MarkLogic
	Resources
	Using Breakpoints for Debugging Queries that Import Modules with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger

	MarkLogic Contextual Menu Actions

	MySQL Database Connections (Deprecated)
	Configuring a MySQL Database Connection
	How to Configure MySQL Data Source Drivers
	How to Configure a MySQL Connection

	Generic JDBC Database Connections
	Configuring a Generic JDBC Database Connection
	How to Configure Generic JDBC Data Source Drivers
	How to Configure a Generic JDBC Connection

	JDBC-ODBC Database Connections
	How to Configure a JDBC-ODBC Connection

	BaseX Database Connections
	How to Configure a BaseX Connection
	BaseX Contextual Menu Actions
	Base X XQJ Connection
	BaseX XQJ Data Source
	BaseX XQJ Connection
	XQuery Execution
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	IBM DB2 Database Connections (Deprecated)
	Configuring an IBM DB2 Database Connection (Deprecated)
	How to Configure IBM DB2 Data Source Drivers (Deprecated)
	How to Configure an IBM DB2 Connection (Deprecated)

	IBM DB2 Contextual Menu Actions (Deprecated)
	General Contextual Menu Actions
	Database-Specific Contextual Menu Actions

	WebDAV Connections
	How to Configure a WebDAV Connection
	WebDAV Contextual Menu Actions

	SQL Execution Support
	Drag and Drop from Data Source Explorer View
	SQL Validation
	Executing SQL Statements

	XQuery and Databases
	Build Queries with Drag and Drop from the Data Source Explorer View
	XQuery Validation When Connected to a Database
	XQuery Transformation for Databases
	XQuery XQJ Transformation
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	XQuery Database Debugging
	Debugging with MarkLogic
	Remote Debugging with MarkLogic
	Resources
	Using Breakpoints for Debugging Queries that Import Modules with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger

	Integration with Microsoft SharePoint
	How to Configure a SharePoint Connection
	SharePoint Online Connection
	SharePoint Connection (Older Version)
	Troubleshooting SharePoint Online Connections
	Allowed SharePoint Online Sites
	Authentication Workflow Problems
	Grant Permissions to Oxygen XML Editor

	SharePoint Browser View
	Getting Started
	The SharePoint Browser View Interface
	Checking Documents In and Out

	SharePoint Contextual Menu Actions
	Browsing for Remote Files with SharePoint Online
	MS Azure Active Directory Authentication

	15.  Importing Data
	Import from Text Files
	Import from MS Excel Files
	Smart Paste Method in Author Mode
	Grid Mode Method
	Import Wizard Method
	Resources

	Import Database Data as an XML Document
	Import from HTML Files
	Smart Paste Method
	Import Wizard Method

	Import Content Dynamically
	Conversion Processors
	Reverse Conversion Processors

	16.  XSLT/XQuery Debugging
	XSLT Debugger Perspective
	XQuery Debugger Perspective
	XSLT/XQuery Debugging Overview
	Resources
	Debugger Layout
	Control Toolbar
	Debugging Information Views
	Breakpoints View
	Context View
	XPath Watch (XWatch) View
	Messages View
	Stack View
	Output Mapping Stack View
	Trace View
	Templates View
	Nodes/Values Set View
	Variables View

	Multiple Output Documents in XSLT 2.0 and XSLT 3.0

	Steps in a Typical Debugging Process
	Identify the XSLT / XQuery Expression that Generated Particular Output
	Using Breakpoints
	Inserting Breakpoints
	Removing Breakpoints

	Performance Profiling of XSLT Stylesheets and XQuery Documents
	Enabling the Profiler
	Profiling Information Views
	Source Backmapping
	Saving and Customizing Profiling Data
	Other Profiling Notes
	Resources
	Invocation Tree View
	Hotspots View

	Debugging XSLT that Call Java Extensions
	Debugging Java Extensions

	Supported Processors for XSLT / XQuery Debugging

	17.  Framework and Author Mode Customization
	Creating and Configuring Custom Frameworks
	Creating a Framework through the Configuration Dialog
	Creating a Framework Using an Extension Script
	Creating a Custom Framework Starting from an Existing Framework
	Creating a Custom Framework Without a Base Framework
	Framework Extension Script File
	Basic Information
	Changing the Association Rules
	Setting the Initial Editing Mode
	Changing the Classpath
	Sharing a Plugin Class Loader
	Setting a Default Schema
	Changing XML Catalogs
	Changing the Document Templates
	Adding New Transformation Scenarios and Removing Existing Ones
	Adding New Validation Scenarios and Removing Existing Ones
	Customizing the Author Mode Through New CSS Files
	Control How CSS Styles are Handled in the Author mode
	Defining Author Actions for the New Framework
	Removing Author Actions from the Base Framework
	Replacing Author Actions from the Base Framework
	Author Toolbar Configuration
	Author Menu and Contextual Menu Configuration
	Configuring the Content Completion in Author Mode
	Using Framework Extension Points
	Reusing Parts of the Script Using XInclude

	Author Mode Customization
	CSS Stylesheets
	Managing the CSS Styles

	Actions
	Creating or Editing Actions Using the Document Type Configuration Dialog Box
	Creating or Editing Actions Using an Individual XML File for Each Action
	Notes About the Storage Path
	Action Configuration Tips
	Resources
	Built-in Author Mode Operations
	ChangeAttributeOperation
	ChangeAttributesOperation
	ChangePseudoClassesOperation
	DeleteElementOperation
	DeleteElementsOperation
	ExecuteCommandLineOperation
	ExecuteCustomizableTransformationScenarioOperation
	ExecuteMultipleActionsOperation
	ExecuteMultipleWebappCompatibleActionsOperation
	ExecuteTransformationScenariosOperation
	ExecuteValidationScenariosOperation
	InsertEquationOperation
	InsertFragmentOperation
	InsertOrReplaceFragmentOperation
	InsertOrReplaceTextOperation
	InsertXIncludeOperation
	JSOperation
	MoveCaretOperation
	MoveElementOperation
	OpenInSystemAppOperation
	ReloadContentOperation
	RemovePseudoClassOperation
	RenameElementOperation
	ReplaceElementContentOperation
	SetPseudoClassOperation
	ShowElementDocumentationOperation
	StopCurrentTransformationScenarioOperation
	SurroundWithFragmentOperation
	SurroundWithTextOperation
	TogglePseudoClassOperation
	ToggleSurroundWithElementOperation
	ToggleCommentOperation
	UnwrapTagsOperation
	XQueryUpdateOperation
	XSLTOperation and XQueryOperation
	Editor Variables in Author Mode Operations
	Arguments of InsertFragmentOperation
	Arguments of SurroundWithFragmentOperation
	Adding a Custom Operation to an Existing Framework

	Example: Configuring the Insert Section Action for a Framework
	Example: Configuring the Insert Table Action for a Framework
	Using Retina/HiDPI Icons for the Actions from a Framework

	Main Menu
	Contextual Menu
	Customizing the Content Completion Assistant for Author Mode Only
	Toolbars
	Text to Markup Shortcut Patterns
	Smart Paste
	How to Customize the Smart Paste Mapping
	Supported Parameters for the Custom Smart Paste XSLT

	Content Completion Assistant
	Resources
	Customizing the Content Completion Assistant Using a Configuration File
	Resources
	Configuring the Proposals for Elements and Attributes
	Setting up the Content Completion Configuration File
	Configuring Elements or Attributes that are Proposed for Each Element
	Other Important Notes About the Configuration File
	Examples: Configuring the Element Proposals
	Examples: Configuring the Attributes Proposals

	Configuring the Proposals for Attribute and Element Values
	Setting up the Content Completion Configuration File
	Configuring Proposed Values
	Other Important Notes About the Configuration File
	Example: Specifying Values Directly
	Example: Using Attribute Conditions
	Example: Calling an External XSLT Script
	Configuring Proposed Values in the Context Where the Content Completion was Invoked

	Customizing the Rendering of Elements
	Setting up the Content Completion Configuration File
	Changing the Rendering of Elements (Their Names, Annotations, and Icons)
	Other Important Notes About the Configuration File for Rendering Elements
	Example: Changing the Rendering of an Element

	Customizing Annotations in the Content Completion Assistant
	Translating Annotations

	Customizing the Content Completion Assistant for Author Mode Only

	Transformation Scenarios
	Validation Scenarios
	Document Templates
	XML Catalogs
	Localization
	Java Extensibility Guide
	Configuring an Extensions Bundle
	Adding a Custom Image Decorator for Author Mode
	How to Implement an AuthorImageDecorator
	Example

	Adding Custom Persistent Highlights
	Configuring the Automatic ID Generation and Unique Attributes Recognizer
	Configuring Content Completion Proposals
	Configuring a Custom Drag and Drop Listener
	Configuring a Reference Resolver
	Configuring a State Listener for Author Mode
	Configuring Tables
	Configuring a Table Column Width Provider
	Configuring a Table Cell Span Provider
	Configuring a Table Cell Row and Column Separator Provider

	Customizing Attribute Value Editors
	How to Implement a CustomAttributeValueEditor
	Example

	Customizing the CSS Styles Filter
	Customizing Elements that Wrap Profiled Content
	Customizing the Link Target Reference Finder
	Creating a Custom Link Target Reference Finder
	Default Link Target Reference Finder
	ID Element Locator
	XPointer Element Locator

	Customizing XML Node Rendering
	Support for Retina/HiDPI Displays

	Customizing Author Operations
	Example 1 - Simple Use of a Dialog Box from an Author Mode Operation
	Example 2 - Operations with Arguments - Report from Database Operation

	Handling Author Mode Action Events
	How to Implement an AuthorActionEventHandler
	Example

	Handling Schema-Aware Editing Events
	How to Implement an AuthorSchemaAwareEditingHandlerAdapter
	Example
	Methods for Improving the Paste Mechanism

	Handling When URLs or XHTML Fragments are Dropped or Pasted in Author Mode
	How to Implement an AuthorExternalObjectInsertionHandler
	Example

	Presenting an Edit Properties Dialog Box for Actions in Author Mode
	How to Implement an EditPropertiesHandler
	Example

	Sharing a Framework
	Sharing the Extended Framework
	Packing and Deploying Frameworks as Add-ons
	Packing a Framework as an Add-on
	Deploying an Add-on

	Basic Framework Customization Tutorial
	Overview
	XML Grammar
	CSS Stylesheet
	XML Instance Template

	Creating and Configuring a Custom Framework
	Step 1: Organize Framework Files
	Step 2: Extend an Existing Framework
	Step 3: Create a Custom XML Schema
	Step 4: Associate the Schema to the Framework
	Step 5: Create a Custom CSS
	Defining the General Layout
	Styling an Element
	Styling Inline Elements
	Styling Images

	Step 6: Associate the Custom CSS to the Framework
	Step 7: Testing the Framework Customization

	CSS Support in Author Mode
	Resources
	Associating a CSS with an XML Document
	Associating a Stylesheet with an XML Document

	Handling CSS Imports
	Adding a Custom Default CSS for Every XML Document
	Editor Variables in CSS Imports

	Displaying Processing Instructions from Other XML Editors
	Specifying Media Types in the CSS
	CSS At-Rules
	@font-face At-Rule
	@media Rule
	Supported Media Types
	Supported Properties

	Standard W3C CSS Supported Features
	Supported CSS Selectors
	Namespace Selector
	Subject Selector
	Taking Processing Instructions into Account in CSS Subject Selectors
	Descendant Selectors Limitation

	:has Relational Pseudo-Class
	Taking Processing Instructions into Account in CSS Subject Selectors
	Descendant Selectors Limitation

	Supported CSS Properties
	Transparent Colors
	attr() Function: Properties Values Collected from the Edited Document
	CSS Level 3 target-counter() and target-counters() Functions
	The target-counter Function
	The target-counters Function

	calc() Function

	Custom CSS Properties (CSS Variables)
	Usage
	Defining a Custom Property
	Inheritance of Custom Properties
	Inheritance
	Custom Properties Fallback Values
	Specifying a Fallback Value
	Dependencies
	A Custom Property Safely Using a Variable
	Combining Custom Variables with calc()
	An Invalid Situation of Variables Depending on Each Other

	CSS Extensions
	Built-in CSS Selectors
	List of CSS Selector Contributed by Oxygen XML Editor

	Additional CSS Selectors
	Additional CSS Properties
	Append Content Properties: -oxy-append-content / -oxy-prepend-content
	-oxy-append-content Property
	-oxy-prepend-content Property

	Collapse Text: -oxy-collapse-text Property Value
	Cyrillic Counters: -oxy-lower-cyrillic Property Values
	Display Tag Markers: -oxy-display-tags Property
	Editable: -oxy-editable Property
	Floating Toolbar: -oxy-floating-toolbar Property
	Folding Elements: -oxy-foldable / -oxy-folded / -oxy-not-foldable-child
	-oxy-foldable Property
	-oxy-folded Property
	-oxy-not-foldable-child Property

	Links: -oxy-link Property
	Link Navigation: -oxy-link-activation-trigger Property
	Morph Elements: -oxy-morph Property Value
	Placeholders for Empty Elements: -oxy-placeholder-content Property
	-oxy-placeholder-content CSS Property
	-oxy-show-placeholder CSS Property

	Style Elements: -oxy-style Property
	Tags Color: -oxy-tags-color Property

	Custom CSS Functions
	Arithmetic Functions
	Actions: oxy_action() Function
	Action Lists: oxy_action_list() Function
	Attributes Concatenation: oxy_attributes() Function
	Base URL: oxy_base-uri() Function
	Capitalization: oxy_capitalize() Function
	Compound Actions: oxy_compound_action() Function
	Concatenation: oxy_concat() Function
	Get Text: oxy_getSomeText(text, length) Function
	Indexing: oxy_indexof() Function
	Label: oxy_label() Function
	Last Occurrence: oxy_lastindexof() Function
	Link Text: oxy_link-text() Function
	DITA Support
	DocBook Support

	Local Name: oxy_local-name() Function
	Lowercase: oxy_lowercase() Function
	Name: oxy_name() Function
	Parent URL: oxy_parent-url() Function
	Replace: oxy_replace() Function
	Substring of Text: oxy_substring() Function
	Unescape URL Value: oxy_unescapeURLValue(string) Function
	Unparsed Entity URI: oxy_unparsed-entity-uri() Function
	Uppercase: oxy_uppercase() Function
	URL: oxy_url() Function
	XPath: oxy_xpath() Function

	Form Controls
	How to Add a Built-in Form Control in Author Mode
	Resources
	Audio File Player Form Control
	Resources

	Browser Form Control
	Interacting with the Oxygen XML Editor Workspace
	Listening for Changes in the Document
	Debugging JavaScript Used for Custom Form Controls
	Resources

	Button Form Control
	Resources

	Button Group Form Control
	Resources

	Checkbox Form Control
	Resources

	Combo Box Form Control
	Resources

	Date Picker Form Control
	Resources

	HTML Content Form Control
	Resources

	Pop-up Form Control
	Resources

	Text Area Form Control
	Text Field Form Control
	Resources

	URL Chooser Form Control
	Resources

	Video Player Form Control
	Resources

	Implementing Custom Form Controls
	Custom Form Controls Implementation
	Example: Java Code
	Example: CSS
	How to Implement Custom Form Controls
	Resources

	Editing Processing Instructions Using a Form Control

	Custom CSS Pseudo-classes
	Predefined Pseudo-Class Author Mode Operations

	Using the :before(n) and :after(n) CSS Pseudo-Elements

	Debugging CSS Stylesheets

	18.  Extending Oxygen With the SDK
	Extending Oxygen XML Editor with Plugins
	General Configuration of an Oxygen XML Editor Plugin
	Referencing Libraries
	Dependency Injection for Plugins

	Installing an Oxygen XML Editor Plugin
	Manual Method
	Automatic Method

	Types of Plugin Extensions Available with the SDK
	Workspace Access Plugin Extension
	Example: Adding a Custom View in Oxygen XML Editor

	Workspace Access Plugin Extension (JavaScript-Based)
	Declaring Multiple Modules

	Trusted Hosts Plugin Extension
	Author Stylesheet Plugin Extension
	Additional Framework Plugin Extension
	Additional XProc Engine Plugin Extension
	Components Validation Plugin Extension
	Contribute Additional Languages Plugin Extension
	Contribute External DITA-OT Distribution Plugin Extension
	Custom Protocol Plugin Extension
	Lock Handler Plugin Extension
	Open Redirect Plugin Extension
	Option Page Plugin Extension
	Sharing Options Through Project Files

	Option Page Group Plugin Extension
	Resource Locking Custom Protocol Plugin Extension
	Styles Filter Plugin Extension
	Targeted URL Stream Handler Plugin Extension
	XML Refactoring Operations Plugin Extension
	XSLT Transformer Plugin Extension
	Validator Plugin Extension
	Saxon XSLT Transformer Plugin Extension
	XQuery Transformer Plugin Extension
	Saxon XQuery Transformer Plugin Extension
	Plugin Extensions Designed to Work only in the Text Editing Mode
	General Plugin Extension
	Selection Plugin Extension
	Document Plugin Extension

	How to Write a CMS Integration Plugin
	Class Loading Issues

	How to Write A Custom Protocol Plugin
	How to Share a Class Loader Between a Framework and Plugin
	Packing and Deploying Plugins as Add-ons
	Packing a Plugin as an Add-on
	Deploying an Add-on

	Testing Plugins and Java Extensions
	Creating and Running Automated Tests
	Debugging a Plugin Using IntelliJ IDEA
	Debugging a Plugin Using the Eclipse Workbench
	Debugging an Oxygen SDK Extension Using the Eclipse Workbench

	Disabling a Plugin

	Oxygen XML Author Component
	Licensing
	Installation Requirements
	Customization
	Example - Customizing the DITA Framework
	Packing a Fixed Set of Options

	Adding MathML support in the Oxygen XML Author Component
	Adding MathML Support Using JEuclid
	Adding MathML Support Using MathFlow (Deprecated)

	Adding Support to Insert References from a WebDAV Connection
	Using Plugins with the Oxygen XML Author Component
	Frequently Asked Questions
	Installation and Licensing
	Functionality
	Customization
	Print Document Within the Oxygen XML Author Component
	Question
	Answer

	Oxygen XML Web Author Component
	Web Author Component Integration
	Web Author Customization
	Using Web Author
	Web Author vs. Web Author Component
	Functionality
	Legal
	Financial
	Customization
	Deployment
	Distribution

	Developer Quick Start Guide
	Plugins
	Sample Plugins
	Workspace Access Plugin Extension
	Java or JavaScript?
	API Overview
	Adding Toolbar and Menu Actions
	Adding a New Side-View
	Customizing the Project View
	Customizing the DITA Maps Manager View
	Persistent Storage
	Contributing a Custom Preferences Page
	Imposing a Fixed Set of Global Preferences
	Interaction with the End-User
	Contributing Translations for New Labels and UI Text
	Comparing Documents

	Customizing the Application Layout
	Adding new User Interface Translations

	Frameworks
	Customizing an Existing Framework
	Customizing the Content Completion Proposals
	Adding Custom New File Templates
	Adding Custom Validation Stages
	Adding Custom Transformation Scenarios
	Customizing the Author Visual Editing Mode
	Adding Toolbar and Menu Actions
	Embedding Form Controls
	Adding Inline Actions

	Debugging CSS-related Problems

	Customizing Links
	Customizing the Smart Paste Mapping

	Difference Between a Framework (Document Type) and a Plugin Extension
	Question
	Answer

	SDK Common Use Cases
	Add Custom Actions to the Contextual Menu
	Use Case
	Solution

	Add Custom Callouts
	Use Case
	Solution

	Add Custom Highlights to Content
	Use Case
	Solution

	Auto-Generate an ID When a Document is Opened or Created
	Use Case
	Solution

	Change the Default Track Changes (Review) Author Name
	Use Case
	Solution

	Change the DOCTYPE of an Open XML Document
	Use Case
	Solution

	Control XML Serialization in the Oxygen XML Author Component
	Use Case
	Solution

	Customize the Outline View in Text Mode
	Use Case
	Solution

	Disable Context-Sensitive Menu Items for Custom Author Actions
	Use Case
	Solution

	Dynamically Add Form Controls Using a Styles Filter
	Use Case
	Solution

	Dynamically Modify the Content Inserted by the Author
	Use Case
	Solution

	Extend the Java Functionality of an Existing Framework (Document Type)
	Use Case
	Solution

	Impose Custom Options for Authors
	Use Case
	Solution

	Insert an Element with all the Required Content
	Use Case
	Solution

	Modify the XML Content on Open
	Use Case
	Solution

	Modify the XML Content on Save
	Use Case
	Solution

	Multiple Rendering Modes for the Same Document in Author Mode
	Use Case
	Solution

	Obtain the Currently Selected Element Using the Author API
	Use Case
	Solution

	Open a Document from Another Application
	Use Case
	Solution

	Run XSLT or XQuery Transformations
	Use Case
	Solution

	Save a New Document with a Predefined File Name Pattern
	Use Case
	Solution

	Split Paragraph on Enter (Instead of Showing Content Completion List)
	Use Case
	Solution

	Use Custom Rendering Styles for Entity References, Comments, or PIs
	Use Case
	Solution

	19.  Add-ons
	20.  Tools
	XML Refactoring
	XML Refactoring Tool
	XML Refactoring Wizard
	Built-in Refactoring Operations
	Refactoring Operations for Attributes
	Refactoring Operations for Comments
	Refactoring Operations for DITA Topics
	Refactoring Operations for DITA Maps
	Refactoring Operations for Elements
	Refactoring Operations for Fragments
	Refactoring Operations for JATSKit
	Refactoring Operations for Processing Instructions
	Refactoring Operations for Publishing Template

	Custom Refactoring Operations
	Creating a Custom Refactoring Operation
	Custom Refactoring Script
	Custom Refactoring Operation Descriptor File
	Introduction to the Descriptor File
	Declaring Parameters in the Descriptor File
	Specialized Parameters to Match Elements or Attributes
	Grouping Parameters in the Descriptor File

	XSLT Stylesheet for Creating a Custom Operation
	Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element
	Example of an Operation Descriptor File That References the XSLT Stylesheet for Creating a Custom Operation to Convert an Attribute to an Element
	Results
	Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and Modify Content Outside the Root Node

	Storing and Sharing Refactoring Operations
	Sharing Custom Refactoring Operations

	Localizing XML Refactoring Operations

	Generate Sample XML Files
	Schema Tab
	Options Tab
	Advanced Tab

	Applying All Default Quick Fix Proposals
	Resources

	Generate/Convert Schema
	Convert DB Structure to XML Schema
	Flatten Schema
	Options in the Flatten Schema Dialog Box

	Generate Java Classes from XSD
	Compile XSL Stylesheet for Saxon
	Use-Cases for a Stylesheet Export File (SEF)
	Compiling an SEF File

	JSON Tools
	Generate Sample JSON Files
	Generate JSON Schema
	JSON to YAML
	Converting JSON to YAML in Oxygen

	YAML to JSON
	Converting YAML to JSON in Oxygen

	JSON to XML
	Online JSON to XML Converter
	Converting JSON to XML in Oxygen
	Conversion Details

	XML to JSON
	Online XML to JSON Converter
	Converting XML to JSON in Oxygen
	Conversion Details

	XSD to JSON Schema Converter
	JSON Schema Converter
	Conversion Notes

	OpenAPI Tester
	Run OpenAPI Test Scenario
	Resources

	Format and Indent Files
	Generate Documentation
	XML Schema Documentation Generator
	Output Tab
	Settings Tab

	XSLT Stylesheet Documentation Generator
	Output Tab
	Settings Tab

	XQuery Documentation Generator
	WSDL Documentation Generator (Deprecated)
	Output Tab
	Setting Tab

	JSON Schema Documentation Generator
	OpenAPI Documentation Generator

	Canonicalize
	Sign
	Verify Signature
	WSDL SOAP Analyzer (Deprecated)
	Testing Remote WSDL Files

	XML Schema Regular Expressions Builder
	Large File Viewer
	Hex Viewer
	SVG Viewer
	Actions Available in the SVG Viewer

	Tree Editor (Deprecated)
	Comparison Tools
	Compare Files
	Two-Way Comparisons
	Three-Way Comparisons
	Second-Level Comparisons
	Author Visual Mode
	Author Mode Algorithms
	Author Mode Second-Level Comparisons
	Starting File Comparison Tool from a Command Line
	How to Integrate the File Comparison Tool with Git
	How to Integrate the File Comparison Tool with Sourcetree
	Toolbar and Contextual Menu Actions of the Compare Files Tool
	Compare Files Tool Menus
	File Menu
	Edit Menu
	Find Menu
	Compare Menu
	Options Menu
	Help Menu

	How to Compare and Merge Documents with Change Tracking Highlights
	Use Case 1: Review Changes Made to an XML Document
	Use Case 2: Compare Differences Between Two Versions
	Use Case 3: Compare and Merge Entire Directories
	Resources

	Merge Documents with Change Tracking Highlights
	Resources

	Compare Directories
	Starting the Tool from a Command Line
	Directory Comparisons
	Toolbar and Contextual Menu Actions of the Compare Directories Tool
	Toolbar Actions
	Contextual Menu Actions

	Compare Directories Tool Menus
	File Menu
	Compare Menu
	Options Menu
	Help Menu

	Compare Images

	Compare Directories Against a Base (3-Way)
	How to Perform 3-Way Directory Comparisons
	3-Way Directory Comparison and Merge Tool
	Author Visual Mode
	Author Mode Algorithms
	Author Mode Second-Level Comparisons

	Generate HTML Report for Directory Comparison
	Resources

	Merge Directories with Change Tracking Highlights
	Resources

	Syncro SVN Client (Deprecated)
	Main Window
	Views
	SVN Main Menu
	SVN Main Toolbar
	Status Bar

	Getting Started
	SVN Repository Location
	Add / Edit / Remove Repository Locations
	Authentication

	Share a Project
	Defining a Working Copy
	Check Out a Working Copy
	History Dialog Box

	Use an Existing Working Copy

	Manage Working Copy Resources
	Edit Files
	Add Resources to Version Control
	Ignore Resources Not Under Version Control
	Delete Resources
	Copy Resources
	Move Resources
	Rename Resources
	Lock / Unlock Resources
	Scanning for Locks
	Locking a File
	Unlocking a File

	Synchronize with Repository
	View Differences
	Conflicts
	Real Conflicts vs Mergeable Conflicts
	Content Conflicts vs Property Conflicts
	Edit Real Content Conflicts
	Revert Your Changes
	Merge Conflicted Resources
	Drop Incoming Modifications
	Tree Conflicts

	Update the Working Copy
	Send Your Changes to the Repository
	Committing to Multiple Locations

	Integration with Bug Tracking Tools

	Obtain Information for a Resource
	Request Status Information for a Resource
	Request History for a Resource

	Management of SVN Properties
	Branches and Tags
	Create a Branch / Tag
	Merging
	Pre-Merge Checks
	Merge Revisions
	Synchronize a Branch
	Reintegrate a Branch
	Merge Two Different Trees
	Merge Options
	Resolving Merge Conflicts
	Additional Notes About the Merge Operation
	Sub-tree Merges
	Merging from Foreign Repositories
	General Merge Recommendations

	Switch the Repository Location
	Relocate a Working Copy
	Patches
	What is a Patch
	Generating a Patch - Local Items
	Create Patch from Local Modifications
	Create Patch Against a Specific Revision
	Create Patch Between Two Revisions of an Item
	Create Patch Between Two Repository Items

	Generating a Patch - Remote Items
	Create Patch Between Two Revisions of an Item
	Create Patch Between Two Repository Items

	Patch Options
	Patch Section
	Files Comparison Section
	Output Section

	Working with Repositories
	Importing Resources Into a Repository
	Exporting Resources From a Repository
	Copy / Move / Delete Resources From a Repository

	Sparse Checkout

	Syncro SVN Client Views
	Repositories View
	Toolbar
	Repositories View Contextual Menu Actions
	Assistant Actions
	Drag and Drop Operations

	Working Copy View
	Working Copy Settings
	Working Copy Format
	Refresh a Working Copy
	Working Copy View Contextual Menu Actions
	Drag and Drop Operations
	Assistant Actions

	History View
	History Filter Dialog Box
	History Filter Field
	History View Contextual Menu Actions

	Directory Change Set View
	Editor Panel of SVN Client
	Annotations View
	Compare View
	Compare View Toolbar

	Image Preview
	Compare Images View
	Properties View
	svn:externals Property
	Toolbar / Contextual Menu

	Console View
	Dynamic Help View

	Revision Graph of an SVN Resource
	Oxygen XML Editor SVN Preferences
	Entering Local Paths and URLs
	Local Item Paths
	Repository Item URLs

	Technical Issues
	Authentication Certificates Not Saved
	Updating Newly Added Resources
	Accessing Old Items from a Repository
	Checksum Mismatch Error

	External Tools

	21.  Troubleshooting
	Performance Problems and Solutions
	Display Problems on Linux or Solaris
	Problem
	Cause
	Solution

	Out of Memory on External Processes
	Problem
	Cause
	Solutions

	Too many nested apply-templates calls Error When Running a Transformation
	Problem
	Cause
	Solution

	Performance Issues with Large Documents
	Problem
	Cause
	Solutions

	Performance Issues when Using Oxygen XML Editor with Remote Desktop
	Problem
	Cause
	Solution

	Misc Problems and Solutions
	Address Family Not Supported by Protocol Family
	Problem
	Cause
	Solution

	Application Reports Errors During Startup After Installing a New Version
	Problem
	Cause
	Solution

	Application Takes Several Minutes to Start
	Problem
	Cause 1
	Solution
	Cause 2
	Solution 2
	Cause 3
	Solution 3

	Archive Distribution Fails to Run on macOS 10.12 (Sierra)
	Problem
	Cause
	Solution

	Blank Window is Shown When Starting the App Over an RDP Connection on Linux
	Problem
	Cause
	Solution

	Cannot Connect to SVN Repository from Repositories View
	Problem
	Solution

	Cannot Open Files from Desktop/Downloads/OneDrive on macOS
	Problem
	Cause
	Solution

	Cannot Uninstall Oxygen XML Editor in Windows
	Problem
	Cause
	Solution

	Compatibility Issue Between Java and Certain Graphics Card Drivers
	Problem
	Solution

	Crash at Startup on Windows with an Error About the nvoglv32.dll File
	Problem
	Cause
	Solution

	Damaged File Associations on macOS
	Problem
	Cause
	Solution

	Details to Submit in a Request for Technical Support Using the Online Form
	Problem
	Solution

	Dialog Boxes Cannot Be Resized on Mac
	Problem
	Cause
	Solution

	DITA Map Transformation Fails (Cannot Connect to External Location)
	Problem
	Solution

	DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)
	Problem
	Cause
	Solution

	DITA-OT Transformation Takes a Long Time to Process
	Problem
	Cause
	Solution

	DITA PDF Transformation Fails
	Problem
	Cause
	Solution

	DITA PDF Processing Common Errors
	Problem: Cannot Save PDF
	Solution: Cannot Save PDF
	Problem: Table Contains More Cells Than Defined in Colspec
	Solution: Table Contains More Cells Than Defined in Colspec
	Problem: Broken Link
	Solution: Broken Link

	DITA PDF CSS-based Processing Common Errors
	DITA to CHM Transformation Fails - Cannot Open File
	Problem
	Cause
	Solution

	DITA to CHM Transformation Fails - Compilation Failed
	Problem
	Cause 1
	Solution 1
	Cause 2
	Solution 2

	Fonts Installed in Windows Do Not Appear in Fonts Preferences Page
	Problem
	Cause
	Solution

	Format and Indent Fails
	Problem
	Cause
	Solution

	Handshake Failure Error When Accessing an HTTPS (SSL) Resource
	Problem
	Cause
	Solution

	Hunspell Spell Checker is Unusable on Your Platform Error
	Problem
	Cause
	Solution

	High Resolution Scaling Issues
	Problem
	Cause
	Solution

	High Resolution Scaling Issues on Linux
	Problem
	Cause
	Solution

	Images Appear Stretched Out in the PDF Output
	Problem
	Solution

	Increasing the Memory for the Ant Process
	Problem
	Solution

	Java Virtual Machine (JVM) Crash on macOS
	Problem
	Cause
	Solution

	JPEG CMYK Color Space Issues
	Problem
	Solution

	Keyboard Language Resets to Default on Windows
	Problem
	Cause
	Solution

	Keyboard Shortcuts Do Not Work At All
	Problem
	Cause
	Solution

	Keyboard Shortcuts Result in Unexpected Behavior
	Problem
	Cause
	Solution

	Mac Touch Bar Function Keys Do Not Work
	Problem
	Causes
	Solution

	Server Signature Mismatch Error
	Problem
	Possible Cause 1
	Solution
	Possible Cause 2
	Solution
	Possible Cause 3
	Solution

	MSXML 4.0 Transformation Issues
	Problem
	Cause
	Solution

	Navigation to a Web Page is Canceled when Viewing CHM on a Network Drive
	Problem
	Cause
	Solution

	Out Of Memory Error When Opening Large Documents
	Problem
	Solution

	References Outside the Main DITA Map Folder
	Problem
	Cause
	Solution

	Saxon 9.7 Transformer Issues
	Problem
	Solution

	Scroll Function of my Notebook Trackpad is Not Working
	Problem
	Cause
	Solution

	Special Characters are Replaced with a Square
	Problem
	Solution

	TocJS Transformation Does not Generate All Files for a Tree-Like TOC
	Problem
	Solution

	Text on Buttons and Labels is Invisible for Linux Installer
	Problem
	Cause
	Solution

	Text Rendering Issues on macOS
	Problem
	Cause
	Solution

	XML Document Takes a Long Time to Open
	Problem
	Cause
	Solution

	XSLT Debugger Is Very Slow
	Problem
	Solution

	22.  DITA Authoring
	DITA Resources
	Getting Started with DITA
	Understanding DITA Topics
	Creating a DITA Topic in Oxygen XML Editor
	Role of Maps
	Creating a Map in Oxygen XML Editor
	Adding Existing Topics to a Map in Oxygen XML Editor
	Adding New Topics to a Map in Oxygen XML Editor
	Adding Submaps in Oxygen XML Editor
	Validating a Map in Oxygen XML Editor
	Publishing Your Topics in Oxygen XML Editor
	DITA Projects
	Resources

	Working with Projects in DITA
	Resources

	Working with DITA Maps
	DITA Maps
	Submaps
	Opening a DITA Map
	Chunking DITA Maps
	Validating a Map
	Resources
	DITA Maps Manager
	Opening Maps in the DITA Maps Manager
	Submap Nodes
	Moving Nodes in the DITA Maps Manager
	DITA Maps Manager Toolbar
	Contextual Menu of the DITA Maps Manager
	Resources

	Creating a Map
	Selecting a Root Map
	Creating DITA Submaps
	Adding a Submap to a Map

	Creating a Bookmap in DITA

	Managing DITA Maps
	Resources
	Change the Order of Topics in DITA Maps
	Adding Topics to a DITA Map
	Adding Existing Topics to a Map
	Adding a New Topic to a Map
	Adding Multiple Skeleton Topics at Once
	Adding Multiple References to the Same Topic in a Map
	Remove Topics from a Map

	Moving and Renaming Resources
	Moving or Renaming DITA Resources (Topics or Maps)
	Moving or Renaming Resources and Updating the References to Them Using the Project View

	Finding Resources Not Referenced in DITA Maps
	Inserting References in DITA Maps
	Insert Reference Dialog Box
	Target Tab
	Keys Tab
	Attributes Tab
	Metadata Tab
	Profiling Tab
	Finalizing Your Insert Reference Configuration

	Inserting Topic Headings
	Inserting Topic Groups

	Defining Keys in DITA Maps
	Key Definition with a Keyword Value
	Key Definition with a Target

	Edit Properties Dialog Box
	Target Tab
	Keys Tab
	Attributes Tab
	Metadata Tab
	Profiling Tab
	Finalizing Your Modifications

	Generating a Table of Contents in DITA
	Creating an Index in DITA
	Resolving Topic References Through an XML Catalog
	Adding a Custom URI Resolver to Oxygen XML Editor
	Publishing a DITA Map with References Resolved Through the XML Catalog

	Chunking DITA Topics
	DITA Map Validation and Completeness Check
	Validating a DITA Map
	Validation Process
	DITA Map Completeness Check Dialog Box

	DITA Map Author Mode Actions
	DITA Map Toolbar and Menu Actions
	DITA Map Contextual Menu Actions
	Floating Contextual Toolbar for DITA
	DITA Map Drag/Drop Actions
	Opening a Topic from a DITA Map in Author Mode

	Opening a DITA Map With Topic Content Resolved
	Editing Referenced Content Directly

	Working with DITA Topics
	Information Types
	Text Structure
	Semantic Structure
	Document Semantics
	Subject Matter Semantics
	Audience Semantics
	Creating Topic Structures
	Resources
	Creating a New DITA Topic
	Creating a New DITA Topic Using the New File Wizard
	Other Ways to Create a New DITA Topic

	Fast Create Multiple DITA Topics
	Editing DITA Topics
	Opening a DITA Topic
	Visual Editing in Author Mode
	Content Completion Assistance
	DITA Editing Actions

	Converting DITA Topics to Another Type
	DITA Conversion Refactoring Operations for DITA
	Methods for Accessing the DITA Conversion Refactoring Operations
	XML Refactoring Wizard Dialog Box
	Handling Special Characters When Generating New File Names
	Converting To and From DITA Specialization Document Types

	Changing the Look of DITA Documents in Author Mode Using the Styles Menu
	Unique CSS Styles for DITA

	Working with Images in DITA Topics
	Adding an Image Inline with the Insert Image Dialog Box
	Adding an Image Inline with Drag/Drop (or Copy/Paste) Actions
	Adding an Image in a Figure Element
	Floating Images in DITA Topics for PDF or XHTML Output
	Searching for References to Images

	Adding Video, Audio, and Embedded HTML Resources in DITA Topics
	Adding a Media Resource
	Inserting Media in HTML Outputs That Do Not Support Embedded Media
	Resources

	Working with Image Maps in DITA
	Image Map Editor Interface in DITA
	How to Create an Image Map in DITA
	How to Edit an Existing Image Map in DITA
	Overlapping Areas

	Adding Tables in DITA Topics
	Inserting a Simple Table Model
	Inserting a CALS Table Model (OASIS Exchange Table)
	Inserting a Choice Table Model
	Inserting a Properties Table Model
	Editing an Existing Table
	DITA Table Layouts
	CALS Table Model Layout
	Simple Table Model Layout
	Choice Table Model Layout
	Properties Table Model Layout
	Table Validation in DITA
	Editing Table Properties in DITA
	Edit Table Properties for a CALS Table Model
	Edit Table Properties for a Simple, Choice, or Properties Table Model

	Adding MathML Equations in DITA Topics
	Adding LaTeX Equations in DITA Topics
	DITA Questions and Answers Topic Type
	DITA Topic Author Mode Actions
	DITA Toolbar Actions
	DITA Contextual Menu Actions
	Floating Contextual Toolbar for DITA
	DITA Drag/Drop (or Copy/Paste) Actions

	Working with Markdown Documents in DITA
	Preview
	Export Markdown as a DITA Topic
	Working with Markdown Documents in the DITA Maps Manager
	Converting Multiple Markdown Documents to DITA
	DITA-Related Markdown Syntax

	Working with DITA-Compatible Documents
	Working with DITA-Compatible Documents in the DITA Maps Manager
	Converting Multiple DITA-Compatible Documents to DITA
	Resources

	Working with Keys in DITA
	Defining Keys in DITA Maps
	Using Keys for Values
	Assigning Keys to Topics
	Assigning Keys to Graphics

	Working with a Glossary of Terms in DITA
	How to Create a Glossary of Terms in Oxygen XML Editor
	How to Create Links to Glossary Terms
	Using Abbreviated Forms (Acronyms) with Glossary Terms

	Reusing DITA Content
	Reusing Topics in DITA Maps
	Reusing Content with References and Keys
	Reusing Content with Reusable Components
	Reusing Content with Variables
	Reusing Content with DITA 1.3 Concepts
	DITA Reusable Components View
	Reuse Actions in Oxygen XML Editor
	Resources
	Reusing DITA Topics in Multiple Maps
	Reuse Topics Using the DITA Maps Manager
	Reuse Topics Using Author Mode Editor
	Displaying Multiple References to the Same Topics

	Working with Content References
	Creating a DITA Content Reference
	DITA Content Reference
	Assigning an ID to the Referenced Content
	Creating a Content Reference
	Using Copy/Paste Actions to Create a Content Reference
	Other Ways to Reuse Content

	Creating a DITA Content Key Reference
	DITA Content Key Reference
	Creating a Content Key Reference
	Using Copy/Paste Actions to Create a Content Key Reference
	Other Ways to Reuse Content

	Editing DITA Content References
	Converting Conrefs to Conkeyrefs

	Reuse Content Dialog Box
	Content Reference (@conref) Options Using the Reuse Content Dialog Box
	Content Key Reference (@conkeyref) Options Using the Reuse Content Dialog Box
	Key Reference to Metadata (@keyref) Options Using the Reuse Content Dialog Box
	Finalizing Your Content Reference Configuration

	Working with Code References
	Code References
	Example of using a Coderef
	Defining Line Ranges

	Working with the Conref Push Mechanism
	Content Reference Push Mechanism
	Example of a Conref Push Scenario
	Push Current Element Action
	Resources

	Working with Reusable Components
	Creating a Reusable Content Component
	Inserting a Reusable Content Component

	Working with Variable Text in DITA
	Inserting a Keyref

	Working with DITA 1.3 Key Scopes
	Key Scopes Use-Case
	How to Use Key Scopes in Oxygen XML Editor
	Resources

	Working with DITA 1.3 Branch Filtering
	Branch Filtering Use-Case
	How to Use Branch Filtering in Oxygen XML Editor
	Resources

	DITA Reusable Components View
	Keys Tab
	Components Tab
	Media Tab

	Linking in DITA
	Linking Between Parent, Child, and Sibling Topics
	In-Line Linking in the Content of a Topic
	Linking Between Related Topics
	Managing Links
	Hierarchical Linking in DITA Maps
	Linking in DITA Topics
	Direct Links
	Indirect Links Using Keys
	Inserting a Link in Oxygen XML Editor
	Cross Reference (xref) Dialog Box
	Using Copy/Paste or Drag/Drop Actions to Insert a Cross Reference

	Linking with Relationship Tables in DITA

	Content Completion in DITA
	Publishing DITA Output
	Built-in DITA Map Transformation Scenarios
	DITA Map WebHelp Responsive Transformation
	WebHelp Responsive Transformation Scenario
	General Parameters for Customizing WebHelp Responsive Output
	Parameters Specific to Oxygen WebHelp Responsive
	Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

	DITA Map PDF - based on HTML5 & CSS Transformation
	How to Create the Transformation Scenario
	Customizing the Output

	DITA Map PDF - based on XSL-FO Transformation
	Creating a DITA Map PDF - based on XSL-FO Transformation Scenario

	DITA Map MS Office Word Transformation
	Configuring the Transformation Scenario

	DITA Map CHM (Compiled HTML Help) Transformation
	Changing the Output Encoding
	Customizing the CHM Output

	DITA Map Metrics Report Transformation
	DITA Map Zendesk Publishing
	Resources

	Integrate/Install DITA-OT Plugins Transformation
	Running the Transformation Scenario

	Built-in DITA Topic Transformation Scenarios
	Running a DITA Transformation Scenario
	Creating or Editing a DITA-OT Transformation
	Creating a DITA-OT Transformation Scenario
	Editing a DITA-OT Transformation Scenario
	Templates Tab (DITA-OT Transformations)
	Filtering and Previewing Templates
	Built-in Templates Locations
	Custom Templates Locations
	Selecting Custom Templates
	Save Template As Button
	Template Errors
	Sharing Publishing Template
	Resources
	Template Package Configuration Dialog Box

	FO Processor Tab (DITA-OT Transformations)
	Parameters Tab (DITA-OT Transformations)
	Parameters Contributed by an Oxygen Publishing Template

	Feedback Tab (DITA-OT Transformations)
	Filters Tab (DITA Transformations)
	Advanced Tab (DITA-OT Transformations)
	Output Tab (DITA-OT Transformations)

	Customizing DITA Transformations
	Publishing Customizations
	Customizing XHTML-based Output
	Customizing WebHelp-based Output
	Customizing PDF-based Output
	Customizing PDF Output with CSS
	Using a Custom Build File
	Adding a Watermark in DITA Map to XHTML Output
	How to Add Syntax Highlights for Codeblocks in the Output

	Publishing with a DITA-OT Project File
	Dynamic Word, Excel, OpenAPI, HTML, Markdown to DITA Conversion
	Resources

	Troubleshooting DITA Transformation Problems
	DITA Map Transformation Fails (Cannot Connect to External Location)
	Problem
	Solution

	DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)
	Problem
	Cause
	Solution

	DITA-OT Transformation Takes a Long Time to Process
	Problem
	Cause
	Solution

	DITA PDF Transformation Fails
	Problem
	Cause
	Solution

	DITA PDF Processing Common Errors
	Problem: Cannot Save PDF
	Solution: Cannot Save PDF
	Problem: Table Contains More Cells Than Defined in Colspec
	Solution: Table Contains More Cells Than Defined in Colspec
	Problem: Broken Link
	Solution: Broken Link

	DITA to CHM Transformation Fails - Cannot Open File
	Problem
	Cause
	Solution

	DITA to CHM Transformation Fails - Compilation Failed
	Problem
	Cause 1
	Solution 1
	Cause 2
	Solution 2

	Solving DITA Transformation Errors

	DITA Profiling / Conditional Text
	Profiling Attributes
	Profiling Conditions
	Resources
	Creating and Editing Profiling Attributes in DITA
	Defining Profiling Attributes for DITA Content
	Adding Profiling Attribute Values Directly in a Document
	Sharing Profiling Attribute Configurations

	Applying Profiling Attributes in DITA
	Creating and Editing Profiling Condition Sets in DITA
	Creating Profiling Condition Sets
	Sharing Condition Set Configurations

	Applying Profiling Condition Sets in DITA
	Showing and Filtering Profiled Content in DITA
	Profiling Attribute Icons in the DITA Maps Manager

	Customizing Colors and Styles for Rendering Profiling in Author Mode
	Styling Profiling Attribute Values

	Conditional Profiling Attribute Groups
	Overview
	Creating a Conditional Profiling Attribute Group
	Using Conditional Profiling Attribute Groups in Conjunction with a DITAVAL File
	Defining Conditional Profiling Attribute Groups in a Subject Scheme Map
	Resources

	Customizing Profiling Values with a Subject Scheme Map
	Overview
	Advantages of Using a Subject Scheme Map
	Creating a Subject Scheme Map
	Using a Subject Scheme in Conjunction with a DITAVAL File
	Example: Subject Scheme Map that Defines Custom Values for the Audience Attribute
	Where the Profiling Attributes are Available in Oxygen XML Editor
	Resources

	Filtering Profiling Values with a DITAVAL File
	DITAVAL Filtering Use-Case
	DITAVAL Filter File Editor in Author Mode
	How to Create a DITAVAL Filter File

	Styling the Rendering of Profiled Content Using a DITAVAL File
	How to Define a Flag for a Condition Set in a DITAVAL Filter File

	Publishing Profiled DITA Content
	Conditional Processing to Generate Multiple Deliverables

	DITA Open Toolkit Support
	DITA-OT Plugins
	Creating a DITA-OT Plugin
	Example: Creating a DITA-OT Plugin for Embedding Video Resources

	Installing a DITA-OT Plugin
	Installing a DITA-OT Plugin

	Defining the Transformation Type and Allowed Parameters in a DITA-OT Plugin
	Resources

	Built-in Third-Party DITA Open Toolkit Plugins
	Extra Free Publishing Plugins
	Plugin that Converts DITA Maps to PDF Using CSS 3 [Bundled]
	DITA Metrics Report [Bundled]
	Export DITA Map Plugin [Bundled]
	Publish DITA Content with References to Video and Audio Resources. [Bundled]
	Show Consecutive Codeblocks in Multiple Tabs for WebHelp Output
	Add Edit Links in HTML or PDF-based Output [Bundled]
	Create a Single Merged XML Document From an Entire DITA Project [Bundled]
	Dynamically Publish Excel Content as DITA
	Dynamically Use JSON Content in DITA Topics
	Dynamically Publish ASCIIDoc Content as DITA
	Embed HTML Content in DITA Topics [Bundled]
	Embed LateX Equations in DITA Content
	Embed UML Diagrams in DITA Content
	Float Images in HTML and PDF Outputs
	Embed Referenced MathML and SVGZ Images in HTML Output
	Dynamically Convert DITA Tables to Graphs
	Show Oxygen Change Tracking Information in the PDF Output [Bundled]
	Sample Customization Plugin for Classic PDF (XSL-FO) Output
	PDF (XSL-FO) - Generate Numbers Before a Topic's Title
	Presents Chapters With Landscape Orientation in PDF (XSL-FO) output

	Using an External DITA Open Toolkit in Oxygen XML Editor
	DITA Open Toolkit Project
	DITA-OT Project File Content Completion
	DITA-OT Project File Validation
	Editing Contexts Detected from DITA Open Toolkit Project Files

	DITA Specialization Support
	Integrating a DITA Specialization
	DITA-OT Plugin Method
	Alternative Methods

	Editing DITA Map Specializations
	Editing DITA Topic Specializations

	Translating DITA Projects Overview
	Choosing a Translation Agency
	Optimizing Content for Translation
	General DITA Project Structure
	General Translation Workflow
	Publishing Translated Content
	Liability
	Other Resources

	Main Files Support in DITA
	How to Enable Main Files Support in DITA
	Moving or Renaming Non-DITA Resources and Updating the References to Them
	DITA Referenced/Dependent Resources View
	Search and Rename Actions for IDs in DITA

	Metadata
	Topic Metadata
	Taxonomy and Subject Scheme

	Migrating MS Office Documents to DITA
	Oxygen's Batch Documents Converter Add-on (Multiple Documents)
	Smart Paste (Single Document)
	HTML to DITA (Single Document)
	Word to LibreOffice to DITA (Single Document)
	Word to DITA using DITA For Publishers (Single Document)
	Word to DocBook to DITA (Multiple Documents)
	Word to HTML/Markdown to DITA (Multiple Documents)
	Migrating Excel and Other Types of Spreadsheets to DITA
	Resources

	Migrating Various Document Formats to and from DITA
	Migrating Microsoft Office and Other Similar Types of Documents to DITA
	Migrating DocBook Content to DITA
	Migrating Google Docs to DITA
	Migrating Markdown Content to DITA
	Migrating HTML Content to DITA
	Migrating Unstructured FrameMaker to DITA
	Migrating MadCap Content to DITA
	Migrating Confluence to DITA
	Migrating LaTex to DITA
	Migrating Other Formats to DITA
	Migrate from DITA to Confluence and Other Formats
	Resources

	How to Count Words in DITA Topics or Maps
	DITA 1.3 Support
	DITA 2.0 Support

	23.  Scripting Oxygen
	DITA Validate and Check For Completeness
	Sample Command-Line Arguments for the Validate and Check for Completeness Script:

	Transform
	Arguments for the Transform Script

	Validate
	Arguments for the Transform Script
	Examples of the Validate Script
	Resources

	XML Refactoring
	Arguments for the XML Refactoring Script

	DITA Translation Package Builder
	Examples for the DITA Translation Package Builder Script

	Batch Converter
	Arguments for the Batch Converter Script
	Confluence to DITA

	Compile Framework Script
	Arguments for the Compile Framework Script

	XSLT Stylesheets Documentation
	Sample Command-Line Arguments for the Generate XSLT Stylesheet Documentation Script

	XML Schema Documentation
	Sample Command-Line Arguments for the Generate XML Schema Documentation Script

	JSON Schema Documentation
	Arguments for the JSON Schema Documentation Script

	OpenAPI Documentation
	Arguments for the OpenAPI Documentation Script

	WSDL Documentation (Deprecated)
	Sample Command-Line Arguments for the Generate WSDL Documentation Script

	XML Instance Generator
	Sample Command-Line Arguments for the Generate Sample XML Files Script
	Extended Version of the Script and its Arguments

	Flatten XML Schema
	Sample Command-Line Arguments for the Flatten Schema Script

	Compare Directories
	Arguments for the Compare Directories Script
	Examples of Compare Directories Script
	Resources

	Compare Files
	Arguments for the Compare Files Script
	Examples of Compare Files Script
	Resources

	Merge Files with Change Tracking Highlights
	Arguments for the Merge Files with Change Tracking Highlights Script
	Examples of Compare Files Script

	Merge Directories with Change Tracking Highlights
	Arguments for the Merge Directories with Change Tracking Highlights Script
	Examples of Compare Directories Script

	Format and Indent Files
	Arguments for the Format and Indent Files Script

	24.  Glossary
	Active Cell
	Alternate CSS Style
	Anchor
	Apache Ant
	Block Element
	Bookmap
	Callout
	Canonicalize
	Content Completion Assistant
	Dockable
	Document Fragment
	Document Type Association
	DITA Map
	DITA Open Toolkit
	DITA-OT

	DITA-OT-DIR
	Foldable Element
	Framework
	Global Options
	IDML
	Inline Element
	Java Archive
	Key Space
	Keystore
	Main CSS Style
	Main File
	Perspective
	Plugin
	Pretty-Print
	Project Options
	QName
	Quick Fix/Assist
	Quick Fix
	Root Map
	Space-Preserved Element
	Subject Scheme Map
	Track Changes
	WebHelp Output Directory
	Working Set
	XML Catalog

	Index
	Copyright

